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A B S T R A C T   

This paper analyses the impact of urban mobility (UM) on air pollution by studying the effects of an intervention 
on local air quality. The study focuses on the PM2.5 levels in Kampala, the capital of Uganda, and considers 
COVID-19 as an unintentional intervention. The PM2.5 level of the city was obtained from a network of low-cost 
calibrated sensors, while UM is characterized by open-access Google reports. The period under consideration 
excludes the weeks immediately before and after the first lockdown. PM2.5 data were deweathered using the 
machine learning technique of random forest (RF) to exclude the variation of meteorological factors, seasonality, 
and weekday-weekend effect, and then the impact of the pandemic was parametrised. The traffic pattern is 
discussed, and air mass clustering and pollution polar plots are used to analyse the distribution of long- and short- 
range sources, respectively. The percentage change from the baseline (PCfB) of the average of UM dimensions is 
then assessed against that of deweathered PM2.5 level to investigate the impact of UM on the PM2.5 level. Our 
analysis shows a strong correlation between urban mobility and roadside PM2.5 levels and a weaker relationship 
with urban PM2.5 levels. The profile of long-range emission sources was consistent over the study period, with 
more than 61% of the modelled air masses that arrived in Kampala first passing over Kenya and Tanzania. 
Overall, the COVID-19 pandemic reduced PM2.5 levels in Kampala by about 10%, which is relatively small 
compared to many other cities that have been studied around the world.   

1. Introduction 

The health and environmental drawbacks of air pollution are docu-
mented in a wide body of research, see for example (Brunekreef and 
Holgate, 2002; Patel et al., 2021, etc.). Urban mobility in terms of road 
transportation is a key source of air pollutants, including fine particulate 
matter PM2.5 (particulate matter with aerodynamic sizes smaller than 
2.5 μm). For example, in Seoul, the capital of South Korea, it was argued 
that 21% of the ambient PM2.5 concentration in 2016 came from urban 
road transport ((Kumar et al., 2015b)). Karagulian et al. (2015) show 
that traffic contributes to the level of PM2.5 by 24%, 37%, and 16.5% in 
the US, India, and China, respectively. In the Chinese cities of Beijing, 
Shanghai, Guangzhou, and Xi’an, an average of 7% of the ambient level 
of PM2.5 in January 2013 originated from traffic (Huang et al., 2014). In 
central Europe, in the cities of Warsaw in Poland, and Hamburg in 
Germany, urban transport contributes 21% and 18% to PM2.5 exposure, 

respectively (Juda-Rezler et al., 2020; Ramacher et al., 2020). In Tehran, 
the capital of Iran, vehicle emissions contribute to 38%, 44%, 19%, and 
21% of ambient PM2.5 levels in the spring, summer, autumn, and winter 
of 2018, respectively (Ghaffarpasand et al., 2020a). 

While research on PM2.5 monitoring and the source apportionment 
to urban mobility is widespread in the Global North, many regions and 
cities of the world remain unmonitored, and/or most monitoring ini-
tiatives have had very limited scope. For example, the paucity of air 
quality (AQ) data in African cities is a challenge. Over 85% of air 
pollution-related deaths and damages across the globe are reported in 
developing countries, including those in Africa (Roy, 2016; Landrigan 
et al., 2018; WHO, 2018, 2021) and yet effective air quality manage-
ment/improvement programmes need reliable AQ data and assessments 
(Agbo et al., 2021). The deployments of AQ stationary stations and 
corresponding networks are challenging, especially in low and 
middle-income countries (LMICs). The stations, as well as the required 
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logistics, infrastructure, maintenance, and services, are expensive assets, 
hence they are usually not viewed as major priorities for local govern-
ments (Baldasano et al., 2003; Petkova et al., 2013; Makoni, 2020; 
Okure et al., 2022). 

The advances in low-cost sensor technologies present affordable al-
ternatives to conventional AQ stationary stations, especially in areas 
with a lack of AQ data (Kumar et al., 2015; Coker et al., 2021; Okure 
et al., 2022). The application, performance evaluation, calibrating 
techniques, trends, and challenges of low-cost sensors are studied in the 
review papers of Morawska et al. (2018), Kang et al. (2021), and Liang 
(2021). In the past few years, they have been widely used to monitor PM 
concentrations in urban environments, see for example Crilley et al. 
(2018); Pope et al. (2018); Bousiotis et al. (2021), McFarlane et al. 
(2021), Giordano et al. (2021), and Raheja et al. (2023). 

Although low-cost sensors resolve to some extent the problem of AQ 
data shortage, there is still a lack of knowledge about the contribution of 
major emission sources to local air pollution (source apportionment) in 
LMICs. Typically, source apportionment is achieved using regulatory- 
grade equipment which is often lacking in LMICs. Many source appor-
tionment and elemental characterisation methods are also developed to 
determine the contribution of major emission sources to the ambient 
particulate matter (PM), see for example (Osei et al., 2021; Ghaffarpa-
sand et al., 2020b). Recently, Bousiotis et al. (2021, 2022) and Hagan 
et al. (2019) have evaluated low-cost PM sensors for source identifica-
tion and apportionment. However, these approaches need more 
pollutant information than what is currently available in many African 
cities such as Kampala. 

Without field measurements, source apportionment can be deter-
mined using numerical methods. For example, air quality models such as 
the ADMS-urban model, which require an extensive amount of raw in-
formation and a high capacity for processing, are proposed to model the 
dispersion of pollutants across urban environments and estimate the 
contribution of emission sources to the ambient pollution level (Dėdelė 
and Mǐskinytė, 2019; Mallet et al., 2018). However, these proprietary 
models are not readily accessible for LMICs in terms of the logistical 
implications including high acquisition costs, expert human resources, a 
wide variety of information and processing capacity for numerical 
methods, and established laboratory infrastructures for experimental 
practices. Hence, many regions still lack a reliable estimation of the role 
of urban mobility in air pollution. Systematic reviews by Karagulian 
et al. (2015) and Hopke et al. (2020) highlight the lack of knowledge 
about PM sources in the global South, especially in Africa and South 
Asia. 

The response of the AQ levels towards interventions can provide an 
understanding of the role of perturbed emission sources in the ambient 
level of air pollution. Interventions can be planned, such as clean air 
zones, or unplanned, such as international/national conflicts, civil wars, 
natural disasters, pandemics, etc. Interventions provide unique oppor-
tunities to investigate the contribution of urban mobility/transport to 
local air pollution, especially in regions with less-developed AQ 
infrastructure. 

A significant amount of research has been conducted on the effects of 
planned and unplanned interventions on air pollution. For instance, 
Uprety et al. (2019) analyzed the impact of the 2015 Nepal earthquake 
(7.8 Richter) on air pollution in Kathmandu. The results indicate an 
improvement in local air quality, particularly in relation to sulphur di-
oxide. It was attributed to the severe damage to man-made emission 
sources such as industries and buildings. Balasooriya et al. (2022) con-
ducted a study on the impact of the Black Saturday bushfires (BSB) in 
2009 on air pollution and public health in Australia. BSB was one of the 
largest bushfires in Australian history, emitting approximately four 
million tonnes of CO2 into the atmosphere. The results indicate a sig-
nificant impact of the increased level of air pollutants on public health. 
Meng et al. (2023) investigated the impact of the Russia-Ukraine war on 
air quality in several European cities. The results indicate that the levels 
of PM2.5 and NO2 increased by an average of around 10%. Akilan et al. 

(2023) investigated the impact of volcanic emissions from the 
Andaman-Sumatra region on air and ocean pollution in Delhi in October 
2016. The study found that the toxic materials released during the 
volcanic eruptions significantly increased the levels of pollution in the 
air and sea. 

The COVID-19 pandemic was one of the worst interventions human 
societies have faced in the last century. It significantly affected human 
activities across the world, some of which have been postulated as 
anthropogenic sources of air pollution (Agbo et al., 2021; Bray et al., 
2021). Although many published studies report a reduction of 30–60% 
in the PM2.5 and other air pollutant concentrations in many metropol-
itan urban areas such as Delhi, Los Angles, Sao Paolo, Seoul, Wuhan, and 
Lahore, there are considerable debates around the real impact of the 
response to the intervention on air quality (Rodríguez-Urrego and 
Rodríguez-Urrego, 2020). Ignoring the existing links between the AQ 
and meteorology has been recognized as the major caveat in almost all 
those assessments. It has been argued that meteorology could influence 
to some extent the relevance of the likely changes in emission sources 
and AQ levels (Grange et al., 2018; Grange and Carslaw, 2019; Shi et al., 
2021; Yumin et al., 2021). Grange and Carslaw (2019) used a machine 
learning-based technique named random forest (RF) to decouple the 
effect of emission variations from methodology (deweathering the AQ 
data). In the context of COVID-19 lockdown restrictions, Shi et al. 
(2021) applied the same approach to discussing the impact of COVID-19 
lockdowns on the AQ level of 11 metropolitan areas around the world 
and argued that the air quality improvements were notably more limited 
than some earlier published studies. Although the COVID-19 crisis has 
dramatically affected urban mobility around the world and could be 
considered a good opportunity to study the role of urban mobility, 
especially in under-analyzed regions, to the best of the authors’ 
knowledge, it has not been yet used for such purposes. The lack of a 
precise and definitive approach to extracting the role of urban mobility 
by analyzing the response to the intervention is perhaps the main 
reason. 

In this paper, we propose a new approach to analysing the impact of 
urban mobility on air pollution by examining the response of the 
ambient PM2.5 levels to the COVID-19 pandemic. The city of Kampala 
presents a unique test case here because of an established network of 
calibrated low-cost sensors (Adong, et al.,; Sserunjogi et al., 2022). We 
study the impact of the COVID-19 response on the local PM2.5 level of 
the city to investigate the role of urban mobility upon the PM2.5 level. 
We analyse the air masses that arrived at the city during the study period 
to determine the impacts of regional and long-range emission sources 
located far from the city, i.e., transboundary pollution. In addition, 
pollution rose analysis provides a more nuanced understanding of the 
likely local and short-range profiles of key emission sources and their 
impact on the PM2.5 level over the study period. 

In addition to the novelty of the proposed approach and the discus-
sions provided, this study sheds light on the potential impact of urban 
mobility interventions on local air pollution, particularly PM levels. A 
large body of research has demonstrated the dramatic impact of urban 
mobility on PM levels in LMICs, see for example Rajé et al., (2018); Toe 
et al. (2021). The health effects of air pollution in LMICs, and particu-
larly in Uganda and Kampala, have been demonstrated by many previ-
ous researchers, see for example Coker et al. (2020) and Woolley et al. 
(2020). 

2. Material and methods 

2.1. The study area 

The study area is Kampala (N 0◦19′ and E 32◦25’), the capital of 
Uganda. Kampala (presented in Fig. 1) is located north of Lake Victoria 
and has an average altitude of 1200 m above sea level (asl). Over the 
past four decades, the city has undergone rapid urbanisation and has 
expanded to an estimated area of approximately 190 km2. The resident 
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population has increased by around 3.5 times, from about 458,503 in 
1980 to 1,650,800 in 2019 (Uganda Bureau of Statistics UBOS, 2020). 
Kampala, the largest city in Uganda, experiences high levels of air 
pollution, up to 11 times the recommended health guidelines. The main 
driver of this issue is transport-attributed pollution, as noted by (ICF, 
2009; Kirenga et al., 2015; Green et al., 2022; Singh et al., 2021). 

Road transport is the most widely used and accessible mode of 
transportation in Uganda, accounting for over 95% of total traffic 
(Sheldon et al., 2022). This includes a mix of private vehicles, motor-
cycles (largely two-stroke), minibuses (locally known as taxis), and 
buses. According to the most recent statistical abstract (Uganda Bureau 
of Statistics UBOS, 2022), Uganda registered over 900,000 vehicles 
between 2017 and 2021, with 60% being motorcycles, and 15% being 
public vehicles over the five-year period. The fleet size has been steadily 
growing, however, it mainly comprises pre-owned vehicles that are 
often poorly maintained. According to (Uganda Bureau of Statistics 
UBOS, 2022), over 50% of the vehicles in operation are estimated to be 
in the Greater Kampala Metropolitan Area, and the national average 
fleet age is more than 15 years. Gasoline and diesel remain the primary 
transport fuels (Uganda Bureau of Statistics UBOS, 2022). Evidently, the 
infrastructure to support mass mobility is inadequate, resulting in longer 
transit times for commuters due to increased traffic flows (MoWT, 2009; 
JICA, 2010, Green et al., 2022; Uganda Bureau of Statistics UBOS, 
2022). Meanwhile, previous studies demonstrate a consistent upward 
trend in traffic-related pollution levels, particularly along major roads. 

Kampala has a tropical rainforest climate, typical of sub-Saharan 
African cities. The city experiences two wet seasons, from March to 
May (MAM) and September to November (SON), and two dry seasons, 
from December to February (DJF) and June to August (JJA). Supporting 
Information includes Fig. S1 and Fig. S2, which represent the windrose 
and time variation of the daily average meteorological parameters of 
Kampala. 

2.2. COVID-19 timelines and related lockdown restrictions in Kampala 

Uganda instituted the first lockdown on March 18, 2020, less than a 
week after the declaration of COVID as a global pandemic. The lock-
down restrictions, which resulted in reduced mobility, closely mirrored 
those implemented in many cities around the world. There were two 
lockdown phases in Uganda between 18th March to August 8, 2020 and 
10th May to June 22, 2021 following the outbreak of the second wave of 
infections. For purposes of this paper, the study period is defined as 
March 2019 to May 2021, covering the period before, during and after 
the first COVID-19 imposed lockdown restrictions. Further details of the 

lockdown restrictions in Kampala can be found in Green et al. (2022). 

2.3. Low-cost air quality data and meteorology 

PM concentrations are obtained from a network of low-cost monitors 
(AirQo monitors) installed over several locations within the city of 
Kampala. Sensors are located close to the roads and in residential areas. 
The locations of the roadside and residential stations and the boundaries 
of the city of Kampala are shown in Fig. 1. The network of low-cost 
devices is deployed and managed by AirQo (www.airqo.africa), and 
comprises custom-built devices optimised to measure PM2.5 and PM10 
concentrations (Coker et al., 2021; Okure et al., 2022). The devices are 
routinely calibrated against Federal Reference Monitors (FRM) (BAM 
1020 & BAM1022) in Kampala using machine learning models with 
collocation datasets from permanent low-cost to reference monitor 
collocation sites (Green et al., 2022; Adong, et al.,). The sensor locations 
are collaboratively determined to incorporate the citywide air quality 
monitoring needs and selection is enhanced by an AI-enabled sensor 
optimisation tool. 

Raw sensor datasets from the network are streamed via GSM (Global 
System for Mobile Communication) module in near-real-time to a cloud- 
based IoT platform where machine learning-enabled pre-processing and 
quality assurance take place. Corresponding meteorological data (tem-
perature and humidity) are obtained from the nearest meteorological 
station through public API (Application Programming Interface) to 
support calibration processes (Adong, et al.,; Sserunjogi et al., 2022). A 
schematic picture of the data pipeline is represented in Fig. 2. 

For this analysis, the hourly meteorological parameters (Met data) 
including ambient temperature, relative humidity, atmospheric pres-
sure, wind speed, and wind direction, were utilised. Additional meteo-
rological data were also obtained from the nearest meteorological 
observational site from the National Oceanic and Atmospheric Admin-
istration (NOAA) Integrated Surface Database (ISD) using the ‘World-
Met’ R package (Carslaw, 2023). 

2.4. Google’s Community Mobility Reports (CMR) and urban mobility 
variations 

Urban mobility statistics are extracted from Google’s global Com-
munity Mobility Reports (CMR) prepared by Google LLC and available 
through the Google CMR (https://www.google.com/covid19/mobility/ 
). Google used telematics data of the users to analyse the mobility trends 
over different urban areas to assess the response of urban mobility to-
ward the COVID-19 crisis over the world (Ghaffarpasand et al., 2022). 

Fig. 1. Locations of residential, roadside and meteorological stations and the boundaries of the city of Kampala, the capital of Uganda.  
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Fig. 2. Air quality data pipeline for the low-cost sensors in Uganda (From Adong, et al., and Sserunjogi et al., 2022).  

Fig. 3. The Percentage change from baseline (PCfB) for the (a) urban mobility dimensions and (b) deweathered PM2.5 level in different areas.  
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Each CMR is broken down by location and displays the change in visits 
to places like grocery stores and parks. Google determines urban 
mobility by five dimensions which are.  

I. Retail and recreation, representing the mobility trends for places 
such as malls, restaurants, libraries, theatres, etc.,  

II. Grocery and pharmacy, representing the mobility trends for places 
such as groceries, supermarkets, food warehouses, farmers mar-
kets, food shops and pharmacies.  

III. Park, representing the mobility trends for resort places such as 
national parks, beaches, parks, public gardens, country parks, etc.  

IV. Public transport, representing mobility trends for places that are 
public transport hubs such as bus stations, terminals, un-
dergrounds, trains and metro stations, Workplace, representing 
mobility trends for places of work  

V. Residential, representing the mobility trends for places of 
residence. 

It then provides a percent change from baseline (PCfB) for the period 
from 15th February to December 31, 2020. The relative percentage 
changes are estimated against the baseline days, which represent a 
normal value for that day of the week. The baseline day is the median 
value for the day-of-the-week of interest over the five weeks from 3rd 
January to February 6, 2020. PCfB of all urban mobility dimensions is 
illustrated in Fig. 3(a). All urban mobility dimensions changed to some 
extent due to the COVID-19 pandemic (mainly during the first lock-
down) and then returned close to the baseline status. 

2.5. Data analysis 

2.5.1. Software package 
Data analysis was conducted here using ‘openair’ package in R lan-

guage (Carslaw and Ropkins, 2012). The pollution rose plots are created 
using the openair pollutionRose function. The 48-h backward meteoro-
logical trajectories arriving at the city of Kampala for the studied period 
were then calculated using the Hybrid Single-Particle Lagrangian Tra-
jectory (HYSPLIT) model (Draxler and Rolph, 2010). The starting height 
was set as 500 m to ensure that the receptor was aloft but remained 
through the boundary layer for the considered period. We then 
employed TrajStat, a GIS-based software package, to perform cluster 
analysis. Trajsat is developed by (Wang, et al., 2009) and used by many 
previous investigators, such as Cui et al. (2020). 

2.5.2. Deweathering and the impact of COVID-19 upon PM2.5 level 
To assess the impact(s) of external interventions upon air quality, the 

role of variables such as weather conditions or seasonality on the air 
pollution level should be excluded. We deweather the PM2.5 concen-
trations using a machine-learning-based algorithm of random forest (RF) 
which has been proposed previously by Grange et al. (2018), and Grange 
and Carslaw (2019). Deweathering decouples the effects of the variation 
of meteorological parameters such as ambient temperature, relative 
humidity, atmospheric pressure, wind speed and wind direction, sea-
sonality, rush/non-rush hour and weekday-weekend effects. During 
that, an RF model was developed for the PM2.5 data considered for the 
analysis. 70% of the original data were then randomly selected to 
develop the model and then evaluated against the rest of the 30% of the 
dataset. These calculations were conducted using ‘rmweather’ R pack-
age available at https://github.com/davidcarslaw/deweather. 

Model performance for each set of selected stations is presented in 
Fig. S3. The performance of the model is at an acceptable level, better 
than that of regression models. This technique was previously used by 
Shi et al. (2021) to assess the impact of the COVID-19 pandemic upon air 
quality across several cities of the world. We use the same strategy to 
assess the impact of the pandemic on the PM2.5 level in the city of 
Kampala, whereby the average concentrations of PM2.5 in the second 
and third weeks before the first lockdown for the years 2019 and 2020 

are considered as the baseline values. The average concentrations of the 
days starting in the second week after the first lockdown are then 
assessed against the corresponding baseline values and the average 
relative differences are introduced as the impact of the COVID-19 re-
strictions on PM2.5 levels. In this approach, the weeks immediately 
before and after the first lockdown are assumed/considered as transition 
weeks, for which they were excluded from the calculations. 

2.5.3. The role of urban mobility in the PM2.5 level 
The role of urban mobility to the PM2.5 levels is studied here using a 

stepwise approach. Firstly, the Google method (described in detail in 
section 2.4) was applied to estimate the percentage change from base-
line (PCfB) for PM2.5 levels after de-weathering. The period considered is 
the same as for the Google method, i.e., from 15th February to the end of 
December 2020. The percentage change from baseline in the deweath-
ered PM2.5 level (PM2.5 PCfB) in different areas of the city is shown in 
Fig. 3(b) for the same period as in the Google report. Clear similarities 
between Fig. 3(a) and (b) can be observed. To understand the interaction 
between urban mobility and PM2.5 concentration, the percentage 
change from the baseline of the deweathered PM2.5 level (PM2.5 PCfB) 
was regressed against the percentage change from the baseline of urban 
mobility (UM PCfB) during the lockdown period where huge changes in 
urban mobility were observed. 

3. Results and discussions 

3.1. The impact of COVID-19 lockdown restrictions on PM2.5 levels 

The variations of observed and deweathered PM2.5 concentrations 
across the city of Kampala for the studied period are represented in Fig. 4 
(a) and (b), respectively, for the whole studied period (March 2019 to 
May 2021). We split the data into two subsets before and after March 
2020. March 2020 to the end of May 2021 is the period when the world 
was struggling with the COVID-19 pandemic, see section 2.2 for more 
details. Fig. 4 shows that the COVID-19 lockdown restrictions during the 
period considered likely reduced the average hourly level of PM2.5. The 
deweathered PM2.5 (Fig. 4(b)) suggests the reductions were approxi-
mately 5.5%. It should be noted that, while the reduction appears much 
lower than the results from our previous work i.e. Green et al. (2022); 
our current analysis did not consider the data from the weeks immedi-
ately before and after the lockdown period, and instead considered the 
‘transition’ period in the current analytical framework. 

To be able to compare the Kampala data with other global cities 
studied by Shi et al. (2021), see section 2.5.2, we used the same com-
parison periods as they did. It is noted that these periods are much 
shorter in timescale than that shown in Fig. 4. The percentage changes 
are shown in Table 1. Over the shorter comparison period of the Shi et al. 
(2021) method, Kampala shows relatively small reductions compared to 
some cities, for example Beijing and New York. It is noted that some 
cities, such as London showed increases in PM2.5 during the same period. 

Because traffic and road emissions are known sources of PM2.5 
pollution (Ghaffarpasand et al., 2020), the hourly variation of the PM2.5 
concentrations, especially at roadside locations, could be used as a proxy 
of traffic patterns. The heatmaps of the hourly observed PM2.5 level over 
the roadside and urban stations of the city of Kampala are illustrated in 
Fig. 5. In 2019 (pre-COVID year), morning and evening rush hours are 
easy to discern. Typically, the PM2.5 concentrations in the evening rush 
hours are higher than that in the morning rush hours. Meanwhile, a 
slight shift toward the late evening time is observed, especially in the 
evening rush hours, which could be due to the weather pattern in the 
second half of the year. December and January have the highest evening 
(rush hour) PM2.5 concentrations, which could be attributed to the 
prevailing weather conditions (Okure et al., 2022). Urban monitoring 
sites (Fig. 5(b)) had lower PM2.5 concentrations compared to the road-
side ones (Fig. 5(a)). In Fig. 5, pronounced ‘rush hours stains’ in the 
pre-COVID period almost disappeared after the first lockdown in March 
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2020 and then started to appear in June and July when the lockdown 
was gradually being eased, implying that the public compliance and 
response to the crisis resilience policy at the time could have been a 
primary factor. This phenomenon was first discussed in an earlier paper 
that explores PM2.5 variations for the same period in greater Kampala 
(Green et al., 2022). It is noted that Kampala shows seasonal behaviour 
in PM2.5 due to wet and dry seasons. Two interesting aspects are 
observed in the post-COVID-19 heatmaps: firstly, heatmaps in the 

roadside and urban areas have similar patterns, and then the traffic 
patterns did not return to the pre-COVID-19 status even in 2021. It is 
worth noting that the easing of the lockdown was gradual and some 
sectors of the economy were only allowed to resume operations in the 
following year (2022); although this cannot be the sole explanation, it 
could have compounded the behavioural and mobility dynamics within 
the city. 

Fig. 4. Time variation of the averaged (a) observed and (b) deweathered PM2.5 level for all measurement locations in the city of Kampala for the studied period 
(March 2019 to May 2021). 
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3.2. The likely impacts of long- and short-range sources 

We now investigate the contribution of likely long-range sources to 
Kampala’s air quality. For the studied years before and after the COVID- 
19 crisis, the air masses arriving at the city of Kampala are classified into 
six clusters which are represented in Fig. 6(a) and (b), respectively, see 

section 2.5.1. The distribution of the air masses arriving in Kampala did 
not change significantly between the years. In the periods before and 
after the pandemic, the air masses with longer transport distances arrive 
from the southeast and contributed to over 61% of the total air masses 
arriving in Kampala. They passed over Kenya (including the capital 
Nairobi), and Tanzania. Clusters passing over Lake Victoria and arriving 
at the city from the west and southwest made up for 13.4% and 17.7% of 
air masses in the years before and after the COVID-19 crisis, respec-
tively. The rest of the air masses, in both time periods, pass over Uganda 
and arrive at the city from the northeast. 

Polar plots of the mean PM2.5 (observed) concentration can provide 
useful information on local (short-range) sources. (Grange et al., 2016) 
used polar plots of the mean PM2.5 concentration to discuss the local 
source apportionment around one of the London AQ stations. Polar plots 
of the mean PM2.5 concentration for the three periods of pre-lockdown, 
lockdown, and post-lockdown for the two groups of the studied stations, 
i.e., roadside and residential stations, are represented in Fig. 7. The 
dominant winds in the studied period are low-speed winds. The elevated 
PM2.5 concentration at low-speed winds also suggests the presence of 
locally-sourced PM in the city of Kampala. Low wind speed values and 
the dominant contribution of short-range emission sources to the polar 
plot of Kampala PM2.5 level were also previously observed by Singh et al. 
(2020). 

Due to the low values of wind speeds in the polar plots, it can be 

Table 1 
Percentage change (%) due to COVID-19 in deweathered PM2.5 levels for 
different places around the world. The results of other places than Kampala are 
extracted from the study of (Shi et al., 2021).  

Area Kampala, 
Roadside 

Kampala, 
Residential 

Kampala, 
Entire 

Beijing 

Change, 
(%) 

− 14.2 ± 2.2 − 8.3 ± 0.7 − 10.4 ± 1.1 − 19.3 ±
9.6 

Area Paris London New York Los 
Angeles 

Change, 
(%) 

+16.5 ± 10.7 +8.6 ± 8.3 − 21.5 ± 2.6 − 18 ± 5.4  

Fig. 5. Heat maps of the hourly averaged observed PM2.5 level over (a) road-
side and (b) residential stations. 

Fig. 6. Cluster analysis of the averaged 48-h air mass back-trajectories arriving 
at the city of Kampala for a year (a) before (2019) and (b) after (2020) the 
COVID-19 pandemic. 
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deduced that local sources such as urban mobility/transport are the 
predominant emission sources. Other characteristic local emission 
sources in the region such as domestic combustion, dust, etc. often with 
localised effects have been discussed in earlier studies including Gaita 
et al. (2014), Kirenga et al. (2015), Pope et al. (2018); Singh et al. 
(2020), Okure et al. (2022), Green et al. (2022), and others. Futhermore, 
in the current study, we deliberately omitted data from the ‘transition 
window’ (the first two weeks of the lockdown) which should account for 
the difference in the percentage PM2.5 reduction compared to our 
previous analysis (Green et al., 2022). This difference advances the ev-
idence and findings from previous works on localised pollution dy-
namics in the region. The highest PM2.5 concentrations were 
experienced with north-westerly low-speed winds both during and after 
the COVID-19 crisis. The activity of the short-range sources dramatically 
deteriorated after the pandemic and during the lockdown period. Fig. 7 
also suggests higher impacts of the COVID-19 crisis upon the emission of 
local emission sources in the roadside stations compared with residential 
ones. It should be noted that polar plots were not produced for the 
deweathered AQ data, whereby the likely role of seasonality on the 
observed reduction in PM concentration level should not be ignored. 

The scatter plot of observed PM2.5 and PM10 for the studied period 
(Fig. 8) shows a high level of correlation between the two particle size 
fractions. In essence, there is no obvious indication that different source 
types contribute to the overall scatter of points. Meanwhile, there is no 
significant variation in the mean ratio between PM2.5 and PM10 for all 
the studied cases here; the mean ratio between PM2.5 and PM10 was 
around 0.74, as determined by the ordinary least-squares linear 
regression model and it explained over 93% of the variation. 

3.3. Urban mobility impact on the PM2.5 level 

Google’s Community Mobility Reports (CMR) provides a percentage 
change from baseline (PCfB) for each urban mobility (UM) dimension, 

see section 2.4. A similar approach is used here to estimate the PCfB of 
deweathered PM2.5 concentrations. As was observed in Fig. 3, the PCfB 
profiles of the deweathered PM2.5 concentrations correlate with the 
urban mobility dimensions. The Pearson correlation coefficients be-
tween the PCfB profiles of UM dimensions and PM2.5 levels in the 
different studied areas are reported in Table 2. PCfB profiles of PM2.5 
levels at roadside stations have the highest correlations with the UM 
dimensions. Among the PCfB profiles of the UB dimensions, grocery & 
pharmacy, park, retail & recreation have the highest correlation co-
efficients with that of PM2.5 level. The PCfB profile of ‘residential’ is 
negatively correlated with that of PM2.5 level, whereby with increasing 
residential activity decreasing PM2.5 levels in all study areas. 

It should be remembered that the CMR results were developed using 
the location data collected from GPS-based devices and may not fully 
represent the entire dynamics by the population in the study areas. The 
increase in residential activity for the COVID period (seen earlier in 
Fig. 3(a)) is mainly attributed to the quarantines and related restrictions, 
people stayed in their homes and commuted nearby. However, resi-
dential activity levels did not return to normal before the pandemic 
(Fig. 3(a)). This may be attributed to changes in lifestyle, e.g. working 
from home, which was also observed in the PM2.5 hourly level pattern in 
Fig. 6. 

4. Conclusions, limitations and future research directions 

This study presents a novel method for examining the impact of 
urban mobility (UM) on air pollution. The city of Kampala is used as a 
case study, and the COVID-19 pandemic is employed as a practical 
experiment due to its significant effects on UM. The study period was 
from March 2019 to May 2021, and PM2.5 is used as an indicator of air 
pollution. 

The hourly measurements of PM2.5 provide a detailed view of the 
role of the pandemic on the traffic pattern in different areas of the city. A 

Fig. 7. Polar plots of the mean concentration of PM2.5 for the studied periods at (a) roadside and (b) residential stations.  
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mahine learning algorithm (random forest) is used to exclude the role of 
the meteorological parameter variations from the PM2.5 level and the 
impact of the crisis is then determined by the method proposed by (Shi 
et al., 2021). Clustering analysis of the air masses arriving at the city and 
pollution roses for the studied period are used to analyse the role of 
likely long- and short-range emission sources. Further, the PCfB value of 
the average of UM dimensions and deweathered PM2.5 level is calculated 

by the method proposed by the Community Mobility Reports (CMR) 
prepared by Google LLC. The variations of PCfB value of the average of 
UM dimensions assess against that of the deweathered PM2.5 level to 
estimate the contribution of UM to the PM2.5 level. The following con-
clusions can be outlined from the combination of the multiple meth-
odologies used in this study.  

1. The COVID-19 crisis improved air quality in Kampala by reducing 
mobility and hence PM2.5 mass concentrations.  

2. The COVID-19 crisis significantly affected the traffic pattern across 
the city, with a return to business as usual not occurring until May 
2021.  

3. The profiles of the air masses arriving at the city were not changed 
for the studied years; over 61% of the arrived air masses originated 
from long distance areas and passed over Tanzania and Kenya.  

4. The PM2.5 concentrations in roadside areas were more affected by 
the COVID-19 crisis response than in residential areas.  

5. The analyses of the PM2.5 polar plots shows that the activity of short- 
range emission sources located in the northeast of the city was 
significantly attenuated by the COVID-19 crisis. 

Fig. 8. Scatter plot of observed PM2.5 and PM10 for the studied period at (a) roadside and (b) residential stations.  

Table 2 
Pearson correlation coefficients between the PCfB profiles of the urban mobility 
dimensions and deweathered PM2.5 levels over the different sets of stations for 
the studied period (from 15th February to December 31, 2020).   

Area 

Roadside Urban Entire 

Urban Mobility 
Dimension 

Retail & Recreation 0.67 0.35 0.49 
Grocery & 
Pharmacy 

0.69 0.41 0.55 

Parks 0.68 0.38 0.53 
Public transport 0.55 0.25 0.41 
Workplaces 0.53 0.27 0.36 
Residential − 0.58 − 0.3 − 0.43 
Average 0.64 0.35 0.48  
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6. Positive correlations are observed between the UM dimensions of 
retail & recreation, grocery & pharmacy, and park, and PM2.5 level, 
especially at the roadside areas.  

7. This paper also underscores the role of meteorological parameters in 
assessing city-level air pollution. 

The paper advances the evidence on the contribution of local emis-
sion sources in Kampala and the East African region as highlighted by 
previous studies including Gaita et al. (2014), Singh et al. (2020), Okure 
et al. (2022), and 

Green et al. (2022). 
The unplanned interventions such as global health risks can be used 

to deepen the existing understanding of the role of major emission 
sources in urban air pollution. The trends and behaviours in response to 
such a catastrophic event should be used to train intelligent algorithms 
to move resilient human societies to reduce the damage of similar future 
events. Therefore, using such trends to train learning algorithms is the 
certain future research direction of this study. 

The work is not without limitations, it is acknowledged that the work 
is limited to the months associated with the COVID-19 lockdown and 
associated mobility disruptions. Therefore to understand all time pe-
riods, further investigation is required in a non-pandemic scenario. 
Additionally, the low-cost sensors used in this study were only able to 
monitor PM2.5 and PM10 levels, providing information only on short- 
range (local) emission sources. However, recent studies by Bousiotis 
et al. (2021, 2022), and Hagan et al. (2019) have developed source 
apportionment techniques to estimate particulate matter sources. 
Therefore, future work should include extended measurements and 
analysis to investigate the effects of long-range transboundary pollution 
across different seasons, including other anthropogenic drivers such as 
wildfires. 
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