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ARTICLE

Genomic attributes of airway commensal bacteria
and mucosa
Leah Cuthbertson1,21, Ulrike Löber 2,3,4,5,21, Jonathan S. Ish-Horowicz1,6,21, Claire N. McBrien1,

Colin Churchward1, Jeremy C. Parker1, Michael T. Olanipekun 1, Conor Burke7, Aisling McGowan7,

Gwyneth A. Davies8,9, Keir E. Lewis9,10, Julian M. Hopkin9, Kian Fan Chung 1, Orla O’Carroll7, John Faul7,

Joy Creaser-Thomas9, Mark Andrews10, Robin Ghosal10, Stefan Piatek 1, Saffron A. G. Willis-Owen1,

Theda U. P. Bartolomaeus2,3,4,5, Till Birkner 2,3,5, Sarah Dwyer1, Nitin Kumar 11, Elena M. Turek1,

A. William Musk12,13,14, Jennie Hui12,13, Michael Hunter 12,13, Alan James12,14,15,

Marc-Emmanuel Dumas 1,16,17,18, Sarah Filippi6, Michael J. Cox 19, Trevor D. Lawley 11,

Sofia K. Forslund 2,3,4,5,20✉, Miriam F. Moffatt 1,22✉ & William. O. C. Cookson 1,22✉

Microbial communities at the airway mucosal barrier are conserved and highly ordered, in

likelihood reflecting co-evolution with human host factors. Freed of selection to digest

nutrients, the airway microbiome underpins cognate management of mucosal immunity and

pathogen resistance. We show here the initial results of systematic culture and whole-

genome sequencing of the thoracic airway bacteria, identifying 52 novel species amongst 126

organisms that constitute 75% of commensals typically present in heathy individuals.

Clinically relevant genes encode antimicrobial synthesis, adhesion and biofilm formation,

immune modulation, iron utilisation, nitrous oxide (NO) metabolism and sphingolipid sig-

nalling. Using whole-genome content we identify dysbiotic features that may influence

asthma and chronic obstructive pulmonary disease. We match isolate gene content to

transcripts and metabolites expressed late in airway epithelial differentiation, identifying

pathways to sustain host interactions with microbiota. Our results provide a systematic basis

for decrypting interactions between commensals, pathogens, and mucosa in lung diseases of

global significance.
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The mucosal surfaces of the airways and lungs are extensive
and constantly challenged by inhaled microorganisms1–3.
Overt respiratory infections are the leading cause of death

in developing countries, resulting in 4 million lost lives annually4.
Asthma and COPD each affect more than 300 million people
worldwide and acute exacerbations of both diseases are driven by
respiratory infections5. Two-thirds of individuals exposed to
COVID-19 in their home6 and half of subjects directly challenged
with COVID-197 do not develop infections because of unknown
resistance factors.

Upper and lower airways contain a characteristic microbiome8

that is essential to respiratory health9. The commensal microbiota
regulates immunity in the respiratory mucosa through multiple
mechanisms10–12 that appear within the first days of life13.

The nose, oropharynx, and the intrathoracic airways form a
contiguous tract. The nasopharyngeal mucosa differs histologi-
cally and functionally from lower sites14, as does its resident
microbiota15. Common pulmonary diseases including asthma,
COPD, bronchopneumonia, cystic fibrosis and lung cancer arise
in the intrathoracic airways, whose commensal microbiota are
similar to those of the oropharynx8,16,17. Up and downward
microbial movement occurs between sites17. Respiratory patho-
bionts such as Streptococcus pneumoniae, Haemophilus influen-
zae, and Neisseria meningitidis are commonly carried in the nose
and throat without symptoms. The oro-pharyngeal microbiota
does not vary greatly between individuals and is organised into
co-abundance networks that may share similar niches18. Micro-
bial community dysbiosis with overgrowth of pathobionts
accompanies asthma, COPD, pneumonia, and other pulmonary
disorders9,19.

The airway microbiota encompasses viruses, fungi, and
bacteria20. A variable viral microbiome (excluding phage) is well
described at the molecular level20,21. Oro-pharyngeal fungi such
as Candida and Aspergillus spp. are commonly cultured from
asthmatics, confounded by therapy with inhaled corticosteroids.
Although important in cystic fibrosis and bronchiectasis22, fungi
have very low biomass in the lower airways of healthy
individuals23. Airway commensal bacteria from healthy subjects
have not previously been systematically cultured or sequenced.
This lack has limited the structured study of interactions between
bacteria, viruses, fungi, and mucosal immunity in clinical samples
or in model systems. In this paper we describe such systematic
exploration, substantially extending what is known about core
constituents of airway bacterial communities.

Our study design is summarised in Supplementary Fig. 1. We
have used mucin-enriched media to culture and sequence novel
taxa that account for 75% of the abundance of airway commensal
bacteria. Functional characterisation, evolutionary analyses, and
comparison with amplicon sequencing in representative human
samples extend the scope of these results.

Results
Culture collection and isolate novelty. Lower airway bacteria
were cultivated from bronchoscopic brushings from two asth-
matics and three healthy individuals from the Celtic Fire Study
(described below). We used a limited range of media with and
without 0.5% mucin, followed by incubation in a standard
atmosphere or an anaerobic workstation to capture 706 isolates.
Those without overlapping 16S rRNA gene sequences were
transferred to the Wellcome Sanger Institute and the whole-
genome sequenced with assembly using Bactopia (v 1.4.11).

We cultured 651 isolates, 256 of which were successfully
whole-genome sequenced. Of these, five sequences appeared
mixed and were excluded. After removing duplicates on a 99.5%
nucleotide identity threshold, 126 unique strains remained. The

Bactopia quality report for the genome assemblies is reported in
Supplementary Data 1. Forty-four isolates were annotated to
species level in accordance with MIGA24 (TypeMat and
NCBIProk) and with GTDBtk. A further 30 species were
identified by either MIGA (TypeMat and NCBIProk) or GTDBtk.
The genome completeness and the contamination percentage
were tested within the MIGA pipeline aligning 106 bacterial core
genes25 (Supplementary Data 2).

All isolates were assigned to genera in the TypeMat or NCBI
prokaryotes database with P < 0.05. Among these samples, we
classified 49 Streptococcus, ten Veillonella, nine each of Gemella
and Rothia, eight Prevotella, six each of Neisseria, Micrococcus
and Pauljensenia, five each of Haemophilus and Staphylococcus,
three Granulicatella, two each of Actinomyces, Cutibarterium and
Fusobacterium and one Cuprividis, Leptotrichia, Microbacterium
and Niallia, respectively (Fig. 1a).

We defined a ‘new species’ when isolates could not be assigned
to known species in reference databases24. We classified isolates
as ‘putatively novel species’ when they exhibited no close relation
to any species in the TypeMat or NCBI Prokaryotic Databases,
determined by the MIGA tool with a P-value threshold of 0.05
and an incongruent species assignment indicated by gtdbtk.

Fifty-two isolates could not be assigned with P < 0.05 to known
species in the reference databases24 (Fig. 1b). Twenty-eight of the
putative novel species were contained within the Streptococcus
genus, six within Pauljensenia (not previously recognised to be
prevalent in the airways), and four each within Neisseria and
Gemella (Fig. 1c and Supplementary Data 1).

Comparison of the entire sequences of our streptococcal
isolates with 2477 public Streptococcus spp. sequences showed
that the organisms were widely distributed amongst S. infantis,
S. oralis, S. mitis, S. pseudopneumoniae, S. sanguinis,
S. parasanguinis, and S. salivarius (Supplementary Fig. 2).

Isolate characteristics
Kegg Orthology of isolate genomes. We used the eggNOG (evo-
lutionary genealogy of genes, Non-supervised Orthologous
Groups) mapper tool (as previously for large-scale systematic
genome annotations26) to assign by transfer 5,531 Kegg Ontology
(KO) annotations for the 126 isolates. We encoded these in a
binary matrix indicating presence or absence (Supplementary
Data 3) and constructed an isolate phylogeny after removing 254
zero-variance KOs (either present or absent in all isolates) and
reducing identical KO presence/absence to single examples before
hierarchical clustering with the Manhattan distance metric and
complete linkage. The Dynamic Tree Cut algorithm27 identified
15 clusters of isolates that recovered known phylogenetic rela-
tionships (Fig. 2a). Based on the observed 16 S rRNA gene
sequence similarity, we further divided one Streptococcus cluster
into two (Strep I and Strep II, Fig. 2a). Relative KO enrichment
was estimated for each of the 16 clusters by contingency table
analysis.

Annotation for the 5277 informative KOs (including duplicates
removed during clustering) (Supplementary Data 4) identified
247 uncharacterised proteins (Supplementary Data 4). Features of
particular interest among the known genes are summarised
below.

Biofilms. Biofilm formation is a feature of respiratory pathogens,
archetypically Pseudomonas spp. in patients with cystic fibrosis.
Biofilm-associated genes were also common in the commensal
collection (Supplementary File 4b). Ninety genes were annotated
with “biofilm” in their KO pathway descriptions, with cysE (serine
O-acetyltransferase), vpsU (tyrosine-protein phosphatase), luxS
(S-ribosylhomocysteine lyase), trpE (anthranilate synthase
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component I) and PYG (glycogen phosphorylase) present in
>75% of isolates. Amongst the most abundant organisms,
Haemophilus and Prevotella spp. had distinctive profiles of other
biofilm pathway genes (Supplementary Data 4).

Antimicrobial resistance and virulence. Many of our isolates
contained known genes for antimicrobial resistance (AMR)
against tetracyclines and macrolides. Staphylococcus, Prevotella
and Haemophilus spp. also possessed beta-lactam resistance
(Fig. 1a and Supplementary Data 4). Virulence factors and toxins
were concentrated in Streptococcus, Staphylococcus, Haemophilus,
and Neisseria spp. (Fig. 1a and Supplementary Data 4). Although
these annotations neither guarantee that the genes in question are
expressed nor that they drive clinically relevant AMR or viru-
lence, they do indicate such potential.

Antibiotic and toxin synthesis. Competition between bacteria is
fundamental to maintaining stable communities28. Genes with a
KO pathway annotation for antibiotic synthesis (n= 33) were
present in many genera (Supplementary Data 4). Arachin bio-
synthetic genes included acpP (acyl carrier protein) which was
present in 120 isolates and auaG in seven (mostly Staphylococcus
spp); rifB (rifamycin polyketide synthase) present in 20 (Veillo-
nella and Staphylococcus spp.); BacF (bacilysin biosynthesis
transaminase) present in 12 (Staphylococcus and Gemella spp.);
and sgcE5 (enediyne biosynthesis protein E5) present in 12, mostly
Haemophilus spp. Bacteriocin exporter genes blpB and blpA were
present in 35 and 31 isolates respectively, predominately Strepto-
coccus and Pauljensenia spp. (Supplementary Data 4).

Toxins and antitoxin genes were common in the collection
(Supplementary Data 4), without distinctive enrichment in

Fig. 1 Genomic characteristics of airway mucosal bacteria. a Culture collection phylogeny based on average nucleotide identities between genomes with
1000 bp fragment length. Putatively novel species are highlighted in red (indicating that it is not related to any species in the TypeMat DB or NCBI Prok DB
(P < 0.05) when assessed using MIGA and not assigned to a known species or incongruent species assignment using gtdbtk). Greyed-out isolates are not
fully supported by MIGA and gtdbtk. Genome completeness and contamination are displayed as a bar chart. AMR finder was used to identify antimicrobial
resistance genes at the protein level (red panel). Virulence factors were identified using the VFDB and Ariba databases and binned into 15 categories
(heatmap). The asthma status of the host is indicated in the black asthma/control panel. Cultivation conditions are indicated in green circles for selected
growth media, blue rectangles for aerobic, and white rectangles for anaerobic cultivation. Positive Gram staining for GNB, GNC, GPB, GPC, and other Gram
staining is shown in black circles. The neuraminidase activity was tested if a blue star was present and was filled for the positive test and white for a
negative test. b Taxonomic novelty as calculated by MIGA using TypeMat reference. The scatterplot shows support (P-value, vertical axis) for each taxon
relative to complementary hypotheses that this taxon is a previously known one (red markers) or a novel one (cyan markers) at each taxonomic level
(horizontal axis). Many of the isolate collections constitute novel species within known genera. c Composition of bacteria isolated and cultivated from five
subjects. Counts are shown for all lineages from species level (outer circle) to phylum level (inner circle) in squared brackets. The ETE3 toolkit was used to
fetch taxonomic lineages for all genera of cultured isolates101. The number of unique species was summed up and visualised along with their lineages using
Krona tools102.
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particular genera. They included homologues of antitoxin YefM
(57 isolates); exfoliative toxin A/B eta, (57 isolates); toxin YoeB
(51isolates); antitoxins HigA-1 (31) and HigA (30); antitoxin PezA
(26); toxin RtxA (15); antitoxin HipB (14); toxin YxiD (13);
antitoxin CptB (12); antitoxin Phd (11); and toxin FitB (10).
These have not been previously recognised in commensal
organisms and differ from the toxin spectrum of known airway
pathogens29. They may have significant influences on the mucosa
as well as other organisms.

Nitric oxide. Nitric oxide (NO) is a central host signalling
molecule in the airways, where it mediates bronchodilation,
vasodilation, and ciliary beating30. NO exhibits cytostatic or
cytocidal activity against many pathogenic microorganisms31 and
NO elevation in exhaled breath is used as a clinical marker for
lower airway inflammation. Many isolate genes encoded NO
reductases (Supplementary Data 4), including norB (27 isolates);
norV (11), norQ (5), norC (1) and norR (1). The hmp gene,
encoding a NO dioxygenase, was present in 39 organisms. These
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Fig. 2 Ecology and structure of airway microbial communities. a Mapping of the 50 most abundant OTUs onto 126 novel airway isolates. Isolates are
grouped into 16 clusters according to the distance and branching order of their inferred Kegg Ontology (KO) gene content. OTU/isolate nt identity is
shown as 95–97% (light blue), 97–99% (medium blue), and 100% (dark blue). The complex relationship between OTUs and isolates reflects multiple
copies of the 16S rRNA gene in different taxa, but in general, captures KO phylogenetic structures. b Comparison of abundance (left) and prevalence right)
of bacterial OTUs in populations from northern (CELF) and southern (BUS) hemispheres. The species distribution is similar between the CELF and BUS
studies. c Comparison of abundance (left) and prevalence right) of bacterial OTUs in the posterior oropharynx (ptOP) and the left lower lobe (LLL) in CELF
subjects. The relative abundance of organisms in ptOP is very similar to those in the LLL, although absolute abundance is an order of magnitude lower in
the LLL. Lower abundance OTUs in the CELF dataset are more prevalent in the upper than lower airways. d Spearman correlations between the abundance
of organisms in the CELF ptOP samples, showing a high degree of positive and negative relationships between OTUs that is the basis of WGCNA network
analysis. Common phyla are colour coded at the top of the matrix, and WGCNA modules (named for the most abundant membership) are at the bottom.
Network module membership may be dominated by a single phylum (e.g., the Haemophilus or Streptococcus modules) or contain mixed phyla (e.g., the
Veillonella module).
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enzymes may mitigate the antimicrobial activities of NO or affect
host bronchodilation and mucus flow.

Iron and haem. Iron is an essential nutrient for humans and
many microbes and is a catalyst for respiration and DNA
replication32. Host regulation of iron distribution through many
mechanisms serves as an innate immune mechanism against
invading pathogens (nutritional immunity)32.

We identified 47 genes with “iron” in their KO name
(Supplementary Data 2f). Those found in >75% of isolates were
afuC (iron (III) transport system ATP-binding protein), ABC.-
FEV.P (iron complex transport system permease protein),
ABC.FEV.S (substrate-binding protein), and ABC.FEV.A (ATP-
binding protein). A further 19 genes were identified as members
of “haem” pathways (Supplementary Data 4).

Haemophilus spp. require haem for aerobic growth and possess
multiple mechanisms to obtain this essential nutrient. These genes
may play essential roles in Haemophilus influenzae virulence33. In
our isolate collection sitC and sitD (manganese/iron transport
system permease proteins) and fieF (a ferrous-iron efflux pump)
were only found in Haemophilus spp., as were ccmA, ccmB, ccmC,
ccmD (haem exporter proteins A, B, C and D) and hutZ (haem
oxygenase). These are potential therapeutic targets.

Sphingolipids. The sphingolipids constitute an important class of
bioactive lipids and include ceramide and sphingosine-1-
phosphate (S1P). Ceramide is a hub in sphingolipid metabolism
and mediates growth inhibition, apoptosis, differentiation, and
senescence. S1P is a key regulator of cell motility and
proliferation34.

Sphingolipids play significant roles in host antiviral
responses35,36 and resistance to intracellular bacteria37. Their
importance in humans is exemplified by a major childhood
asthma susceptibility locus that upregulates ORMDL3
expression38. ORMDL3 protein acts as a rate-limiting step in
sphingolipid synthesis39 and the ORMDL3 locus greatly increases
the risk of HRV-induced acute asthma40.

De novo synthesis of sphingolipids is recognised in human
bowel bacteria41 and maintains intestinal homoeostasis and
microbial symbiosis42. In the skin, commensal S. epidermidis
sphingomyelinase makes a crucial contribution to skin barrier
homoeostasis43. Based on KO annotations, we did not find
obvious SPT homologues in our isolates but identified 12 genes
with putative roles in sphingolipid metabolism (Supplementary
Data 4). Of these, SPHK (sphingosine kinase, present in 12
isolates) which metabolises sphingosine to produce S1P; and
ASAH2 (neutral ceramidase, present in seven isolates) have
potential roles in modifying host inflammation and repair.
These may interact with the ORMDL3 disease risk alleles
described above.

Immune inhibition. Several genes present in the isolates may
directly affect host immunity. These were enriched in Prevotella
spp. (Supplementary Data 4) and included immune inhibitor A
(ina), a neutral metalloprotease secreted to degrade antibacterial
proteins; Spa (immunoglobulin G-binding protein A), sbi
(immunoglobulin G-binding protein Sbi); omp31 (outer mem-
brane immunogenic protein); blpL (immunity protein cagA); and
impA (immunomodulating metalloprotease).

A conserved commensal antigen, β-hexosaminidase (HEXA_B),
has a major role in induction of anti-inflammatory intestinal T
lymphocytes44, and is present in 59 of our isolates with enrichment
in Prevotella, Streptococcus and Pauljensenia spp.

Autoantigens. Systemic lupus erythematosus (SLE) and Sjögren
syndrome are chronic autoimmune inflammatory disorders with

multiorgan effects. Lung involvement is common during the
course of the disease45. Our Neisseria isolates contain a 60 kDa
SS-A/Ro ribonucleoprotein (Supplementary Data 4) that is an
ortholog to the human RO60 gene, a frequent target of the
autoimmune response in patients with SLE and Sjögren’s
syndrome.

Other bacterial genomes contain potential Ro orthologs46, and
a bacterial origin of SLE autoimmunity has been suggested47.
Here, the abundance of Neisseria spp. in human airways and their
close proximity to the mucosa are of interest, as is a recent report
that the lung microbiome regulates brain autoimmunity48, and an
earlier observation that T cells become licensed in the lung to
enter the central nervous system49.

It is relevant that products of cognate microbial-immune
interactions in the airways have direct access to the general
arterial circulation through the left side of the heart, whereas
molecules and cells carried in venous blood from the gut undergo
extensive filtration and metabolism in the liver before accessing
more distant sites.

CRISPR genes. Most respiratory viruses, including SARS2-Cov-19,
have RNA genomes, and RNA-targeting CRISPR vectors have the
potential to prevent or treat viral infections50. Type III RNA-
targeting system elements (such as cas10, cas7, csm2 and csm5)51

are present in our isolates (particularly Fusobacteria and Pre-
votella spp.), as is the Type II system element cas9 (Supplemen-
tary Data 4).

Isolates in the context of airway communities
Community coverage. We sought context for our culture collec-
tion within the ecological variation of different geographic and
anatomical locations. We studied airway microbial communities
in 66 asthmatics and 44 normal subjects recruited from centres in
Dublin (48 subjects), Swansea (46 subjects) and London
(16 subjects) (collectively known as the Celtic Fire Study (CELF)).
Swabs were taken from the posterior oropharynx (ptOPs) and
bronchoscopic brushings from the left lower lobe (LLL) in all
subjects. When tolerated, the left upper lobe (LUL) was also
brushed in 52 subjects. We compared the European CELF
microbial communities to 527 ptOP samples from an adult
population sample in Busselton, West Australia (BUS)18.
Operational Taxonomic Units (OTUs) were identified by
sequencing the 16 S rRNA gene amplicon and compared with the
assembled genomes from our culture collection.

In the CELF ptOP samples, 17 operational taxonomic units
(OTUs) covered >70% of the abundance and 41 OTUs covered
>85% (Supplementary Data 5). Coverage was less in LLL and LUL
samples (respectively 64% and 50% at the 70% threshold), due to
the expansion of H. influenzae (OTU Haemophilus_14694) and
Tropheryma whipplei (OTU Glutamicibacter_5653) in the
pulmonary samples, particularly those from asthmatics (Supple-
mentary Data 5).

Fifteen of the 17 most abundant OTUs were mapped to at least
one isolate using a 99% nucleotide (nt) identity, and eleven of the
next 24 OTUs were mapped to a cultured organism. Genera of
moderate abundance (2.8%-0.4% of the total) yet to be cultivated
include Fusobacterium, Selenomonas, Alloprevotella, Porphyromo-
nas, Leptotrichiaceae, Megasphaera, Lachnospiraceae, Solobacter-
ium, and Capnocytophaga.

OTUs corresponding to isolates for Staphylococcus, Micro-
coccus and Cupriavidus spp. had minimal representation in the
community OTU analyses, although Staphylococcus aureus is a
recognised lung pathogen. Their appearance in the isolates may
represent oral or skin contamination or assertive growth in
culture.
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Mapping of the 50 most abundant OTU sequences onto the
126 isolates revealed complex relationships that reflect multiple
copies of the 16 S rRNA gene in different taxa52 (Fig. 2a). In
general, however, OTU assignment reflected the principal KO
phylogenetic structures and referencing of OTU communities to
our isolate genomes may still inform on community functional
capabilities.

The 16 S rRNA gene sequences poorly detected the extensive
diversity of Streptococcus spp. in airways, as noted previously18.
However, combinations of OTUs can be seen to form “barcodes”
(Fig. 2a) that may refine Streptococcus spp. identification into
their three main KO phylogenetic groups.

Biogeography and community structure. The taxa defined by
OTUs and their relative abundances were similar in CELF ptOP
and CELF LLL samples and to the normal population in BUS
ptOP (Fig. 2b, c). Other than the most abundant organisms, the
prevalence of most OTUs was lower in the LLL than in the ptOP
(Fig. 2c). The mean bacterial burden was much higher in ptOP
samples from CELF than in the LLL (log10 mean 7.86 ± 0.07 vs
5.06 ± 0.05), consistent with previous studies8,16,17.

Strong correlations and anti-correlations were present between
the abundances of OTUs in data from each site (exemplified for
CELF ptOP samples in Fig. 2d, and previously shown for the BUS
ptOP results18). We used WGCNA analysis to find networks
(named arbitrarily with colours) within these correlated taxa.
Network structures were consistent in the CELF and BUS ptOP
communities (Supplementary Figs. 3 and 4), but less distinct in
the lower airway samples where taxa were less diverse and of
lower abundance (Supplementary Fig. 5).

Networks often contained closely related species but also
extended beyond phylogenetically related organisms (Fig. 2d and
Supplementary Fig. 6). For example, in the CELF ptOP networks
(Fig. 2d and Supplementary Fig. 6) there are phylogenetically
homogeneous modules of Streptococci (blue, red and green-
yellow), Gemella (magenta), Haemophilus (black and pink) and
Granulicatella (purple).

Of interest is the brown module in the CELF ptOP samples,
which contains multiple Prevotella and Veillonella spp. of high
abundance. The presence of biofilm elements in Prevotella spp.
described above supports a hypothesis that these organisms may
adhere to form a basic “commensal carpet” of the airways18.

Both the CELF ptOP and BUS ptOP networks recovered the
phylogenetic relationships found in the KO analysis amongst
Streptococcus isolates. The three clusters of Streptococcus isolates
(Strep. I-III) map to distinct sets of OTUs using sequence
similarity (Fig. 2a), and this similarity is also uncovered in the
WGCNA network modules in both ptOP networks (Supplemen-
tary Fig. 7).

Dysbiosis. Subtle alterations in bacterial community composition
(“dysbiosis”53) are recognised in many diseases with microbial
components. Community instability and inflammation in the
presence of mild viral infections5 should be added to the recog-
nised features of loss of diversity and pathobiont expansion in
asthma and COPD. We, therefore, sought insights into airway
dysbiosis in our subjects from genomic sequencing of the com-
mensal organisms.

We explored underlying components of airway communities
by using Dirichlet-Multinomial Mixtures (DMM)54 on all
samples from the BUS and CELF subjects, finding that samples
formed predominantly into two clusters (Airway Community
Type 1 and 2: ACT1 and ACT2) (Fig. 3a). The main drivers for
the two pulmotype clusters were identified as Streptococcus,
Veillonella, Prevotella and Haemophilus spp. in descending order
of relative abundance across all samples. ACT1 was dominated by

Streptococcus, Veillonella and Prevotella in 410 samples; whilst
ACT2 was dominated by Streptococcus, Veillonella and Haemo-
philus in 478 samples (Fig. 3a). Principal coordinates analysis
based on Bray-Curtis-distance (β-diversity) of the airway
microbiota confirmed significant overall compositional differ-
ences between the two community type clusters (PERMANOVA
P-value > 0.001) (Fig. 3b).

Congruence analysis of CELF samples (Fig. 3c) confirmed
consistency in assignment for samples coming from the same
donor (χ² < 0.005) or the same sampling site (χ² < 0.005).

We performed univariate analysis to investigate the association
between CELF subject metadata and potential indicators of
dysbiosis, specifically, evenness and richness (Fig. 3d), and
bacterial abundance at the phylum level (Fig. 3e). Features
describing clinical phenotypes and sample origin were often
strongly collinear. We, therefore, assessed found associations in
turn for retained significance with each potential confounder,
using a nested rank-transformed mixed model test55 and
considering repeated sampling of patients as a random effect.

We saw pervasive effects both on alpha diversity and phylum
level of the tested predictors (Fig. 3d, e). Importantly, the
Shannon index and richness were significantly decreased with
asthma status and severity (MWU false-discovery rate (FDR) <
0.1) (Fig. 3d).
We found an increase (although not significant) of the

Proteobacteria Phylum associated with asthma status (Fig. 3e),
in line with the taxonomic profile of patients with asthma vs.
healthy controls (Fig. 3g). This is consistent with many reports of
Proteobacteria excess in asthmatic airways8,9,56. Type 2 commu-
nities were enriched in subjects with positive asthma status in all
sample sites and in CELF subjects overall (Fig. 3f).

We examined the impact of the study, asthma status, and
sampling site on the distribution of community types in the CELF
thoracic samples, using logistic regression models with sex and
age as control variables. The results indicated significant
differences in ACT proportions across different sampling sites:
LUL vs. OTS: odds ratio 95% confidence interval 0.135–0.444 (p-
val: 3.1e-07); LLL vs. OTS: 0.049–0.249 (P-val: 5.0e-10). Statistical
significance was more marked for the left upper lobe (FDR q-
value < 0.001) than the left lower lobe (q < 0.10).

We extrapolated metabolic activities from binning 16S rRNA
gene abundance onto the isolate KOs using PICRUSt57, revealing
metabolite profiles that distinguished measures of diversity and
location within upper or lower airways (Fig. 3h), as well as
distinctive features of asthma and dysbiosis.

Mucosal factors. In order to relate our mapped microbiome to its
ecosystem, we sought host components of the microbial-mucosal
interface by serial measurements of global gene expression and
supernatant metabolomics during full human airway epithelial
cell (HAEC) differentiation in an air-liquid interface (ALI) model.
We hypothesised that the transition from monolayer to ciliated
epithelium over 28 days would be accompanied by the pro-
gressive expression of genes and secretion of metabolites for
managing the microbiota.

HAEC from a single donor were grown in triplicate and
harvested on days 0, 2, 3, 7, 14, 21 and 28. Trans-epithelial
resistance (TEER) rose from 7.4 ± 0.3 on day 0 to 1551 ± 113 on
day 28, and MUC5AC mRNA production rose 30-fold over the
same period (Supplementary Fig. 8), indicating full epithelial
development.

We found 2553 significantly changing transcripts organised
into eight core temporal clusters of gene expression (Limma,
3.22.7) (Fig. 4a and Supplementary Data 6). Late peaks of
expression were found in four clusters, three of which (CL2, CL4
and CL5) contained many genes likely to interact with the
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microbiome (Supplementary Data 6). Transcripts in the other
upgoing cluster (CL3) were elevated early and late in differentia-
tion and were enriched for genes mediating cell mobility and
localisation. Genes of particular interest in the other upgoing
clusters are as follows.

Mucins and ciliary development. Mucosal mucins are central to
mucosal function and integrity, providing a source of nutrients
and sites for tethering of commensals58, whilst restricting the
density of organisms through upward flow by beating cilia59.
Interactions of mucins with microbiota play an important role in
normal function58, and direct cross-talk between microbes and
mucin production is likely59.

In our ALI model, progressive up-regulation of the major secreted
respiratory mucins MUC5AC and MUC5B in CL2 was accompanied
by the membrane-associated MUC20 (Supplementary Data 6). In
contrast, CL5 contained three membrane-associated mucins (MUC13,
MUC15, MUC16). These mucins do not form gels and are anchored
to the apical cell surface, where they present a glycoarray for selective
interactions with the microbial environment58.

Within CL5 we also found 17 gene families and 175 genes with
putative roles in ciliary function, ciliogenesis, or spermatogenesis
(Supplementary Data 6). Mutations in many of these genes are
known to cause primary ciliary dyskinesia (PCD)60, which results
in recurrent pulmonary infections. Other genes in this list are
candidates for mutation in cases of PCD without known cause.

Immune-related genes. The most significant effects (top hits) in
CL2 included ENPP4 (which promotes haemostasis); ALOX15
(which generates bioactive lipid mediators including eicosanoids);
GLIPR2 (which enhances type-I IFNs); MPPED2 (a metallopho-
sphoesterase active in infection); INSR (insulin receptor); and
MIR223 (an inhibitor of neutrophil extracellular trap (NET)
formation in infection) (Supplementary Data 6).

Immune-related genes significantly expressed in CL5 included
complement factor 6 (C6) which forms part of the membrane
attack complex. C6 deficiency is associated with Neisseria spp.
infections. CD38 was also highly expressed, and its product is an
activator of B-cells and T-cells.

Detoxification and transportation. Top hits in CL4 include
ADH1C, an alcohol dehydrogenase; GSTA2 with a known role in
the detoxification of electrophilic carcinogens, environmental tox-
ins and products of oxidative stress by conjugation with glu-
tathione; ACE2, the SARS2-Cov-19 binding site which cleaves
angiotensins; and PIK3R3 which phosphorylates phosphatidylino-
sitol to affect growth signalling pathways (Supplementary Data 6).

CL4 contains five members of the cytochrome P450 families
with potential roles in the detoxification of microbial products,
including CYP2F1 (which modifies tryptophan toxins and
xenobiotics); CYP4X1 (unknown substrates); CYP4Z1 (benzyl
esters); CYP4F3 (Leukotriene B4); and CYP2C18 (sulfaphena-
zole). Also in CL4 were transporters SLC10A5 (substrate bile
acids); SLC27A2 (fatty acids); SLC1A1 (glutamate); SLC4A11
(borate); SLC25A4 (ADP/ATP in mitochondria); SLC45A4
(sucrose); SLC25A28 (iron); and SLC39A11 (zinc).

Enrichment of genes for detoxification and transport was also
present within CL2, which included CYP4B1 (substrate fatty acids
and alcohols); CYP4V2 (fatty acids); CYP2A13 (nitrosamines);
CYP2B6 (xenobiotics); CYP26A1 (retinoids); and CYP4F12
(arachidonic acids). Transporters included SLC40A1 (iron);
SLC13A2 (citrate); SLC15A2 (small peptides); SLC12A7 (KCl
co-transporter); and SLC35A5 (nucleoside sugars).

Neuronal development. The bronchial mucosa is innervated with
vagal sensory unmyelinated fibres that detect airway luminal
substances and mediate smooth muscle tone, mucus secretion,
and cough61. Airway sensory nerves are directly involved in

Fig. 3 Microbial features of airway dysbiosis. a Main drivers of Dirichlet-multinomial model-based airway communities. b Beta diversity based on Bray-
Curtis dissimilarity principal coordinate analysis showing separation of the two communities. c Consistency of airway community assignment between
samples of the same and different donors (left) and sampling sites (right). d Alpha diversity measures and correlations. e Univariate associations of CELF
16S samples binned on phylum level to metadata. f Proportion of community assignments between ptOP samples of different study origins, sampling sites
and disease groups. g relative abundance of most abundant genera based on CELF samples 16S rRNA. h Univariate metabolite associations based on
binning of CELF 16S rRNA sequences onto isolate annotation.
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Fig. 4 Gene and metabolite abundance during airway epithelial development. a Global gene expression was measured 7 times over 28 days in an air-
liquid model of epithelial differentiation (monolayer to ciliated epithelium). A total of 2,553 transcripts, summarised by 8 core temporal profiles, showed
significant variation in abundance during mucociliary development. Hallmark functional roles are shown for each cluster. Clusters CL2, CL3, CL4 and
CL5 show late peaks of expression and contain genes that can interact with the microbiome. Upregulated chemokines and immune-function genes are also
noted within the clusters. bMetabolites (square) measured in the supernatant of the fully differentiated airway cells were linked to genes (circle) identified
in bacterial isolates. Arrows indicate if the reactions were reversible or irreversible, with metabolites as substrates and products. These networks were built
based on KEGG pathways. c Binary heatmap displaying the presence (1) or absence (0) of genes (columns) identified in the genomic sequences of
bacterial isolates (rows). Bacterial isolates are organised into Kegg Ontology phylogeny clusters (see Fig. 2). Gene annotations (top) indicate the frequency
of the gene: ‘frequent’ for genes in >75% of isolates, ‘intermediate’ for genes in 25–75% of isolates and ‘rare’ for those in <25% of isolates.
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immune or inflammatory responses, themselves releasing proin-
flammatory molecules (“neurogenic inflammation”)62,63. Neu-
roinflammation can change receptors, ion channels,
neurochemistry, and fibre density64. It contributes to the dis-
abling syndrome of cough hypersensitivity and chronic cough65.

A basis for innervation can be seen in top hits from CL2, which
included ENPP5 and HECW2, which have putative roles in the
development of airway sensory nerves (Supplementary Data 6).
Interestingly, CL2 and CL4 together contained ten members of
the protocadherin beta gene family (PCDHB2, PCDHB3,
PCDHB4, PCDHB5, PCDHB10, PCDHB12 and PCDHB18P in
CL2; PCDHB13, PCDHB14, and PCDHB15 in CL4). Interactions
between protocadherin beta extracellular domains specify self-
avoidance in specific cell-to-cell neural connections66, and their
abundant presence here may regulate singular neural-mucosal cell
coherence.

Intersection of mucosal and microbial metabolomic pathways.
Metabolites are central to biological signalling, and so we used the
same time-series model of AEC differentiation to measure levels
of metabolites released into the culture media of the cells (Sup-
plementary Data 7).

We then mapped the ALI culture metabolites to enzymes in
matching bacterial pathways identified within the KO of isolate
genomes (Fig. 4b), based on direct reactions, as substrates or
products. Notable interactions include amino acids, nucleotides
and compounds involved in energy metabolism. The metabolite-
related KOs exhibited distinctive patterns within the isolate
phylogeny (Fig. 4c).

Enrichment of these KOs onto global human and bacterial KO
pathways with iPath67 is shown in Supplementary Figs. 9 and 10.
These suggest folate biosynthesis is ubiquitous amongst airway
organisms, valine, leucine and isoleucine metabolism to be of
intermediate importance and alanine, aspartate and glutamate
metabolism to be rare functions amongst the isolates.

Discussion
Our results describe the systematic culture, isolation and
sequencing of the respiratory commensal bacteria. Although the
principal airway phyla are well known through OTU studies of
whole communities, previous attempts at culture have been
limited to patients with Cystic Fibrosis (CF)68–70, a disease in
which CFTR mutations induce major changes in the airway
mucosal fluid and host environment. Anaerobic species cultured
from these studies include the genera Actinomyces, Atopobium,
Micrococcus, Neisseria, Prevotella, Rothia, Streptococcus, and
Veillonella69, and may be similar to our isolates. Nevertheless,
systematic commensal sequencing has not previously been carried
out, and 40% of our isolates are novel species. Their gene content
indicates a wide range of previously undocumented capacities to
interact with other organisms and the airway mucosa.

Streptococcus species showed the greatest novelty, with 60% of
isolates not previously found in public databases. These are in
phylogenetic clusters distinct from known respiratory commen-
sals such as S. salivarius and S. parasanguinis. Their abundance in
the oropharynx and lower airways suggests important functions
that are yet to be explored.

Our findings mean that it is now possible to investigate sys-
tematically the effects of individual bacteria and their combina-
tions on airway inflammation and infection. Therapies derived
from heathy microbial communities are established for inflam-
matory and metabolic bowel diseases, through faecal transplan-
tation, bacteriotherapy with specific organisms71, and bacterial
metabolites72. Inhibition of inflammation in airway epithelial cell

models has recently been shown for Rothia, Prevotella and
Streptococcus spp. grown from children with CF69,70.

cRich microbial environments are well known to protect
against asthma in schoolchildren73 and adults74, although the
responsible organisms have not been identified in airway com-
munities. We have previously found reduced numbers of Sele-
nomonas, Megasphaera and Capnocytophaga spp., in asthmatic
ptOP samples18. Despite their moderate abundance (0.4-2.8% of
the total) we have not managed to culture them. Future isolation
is desirable to test if they are indicator species or direct con-
tributors to respiratory health.

Lower respiratory tract infections are the fourth most common
cause of death globally. In the UK alone 16 million UK patients
with respiratory infections are treated with antibiotics annually75,
a major driving force in antimicrobial resistance (AMR)75,76.
Genomic sequences from our isolates and the negative abundance
correlations in airway communities indicate the presence of
“natural” antimicrobial factors that can now be systematically
identified with therapeutic intent.

The large number of novel Streptococcus spp. in our isolates
and the poor OTU discrimination of Streptococcus spp. confirm
that 16S rRNA gene sequences fail to identify much of the
diversity in this genus18,77, which is expanded in severe asthma78

and in heavy smokers18. OTU analyses have also failed to identify
abundant novel species identified as Pauljensenia by our genomic
sequences, assigning them instead to Actinomyces spp. Our iso-
lates will support the detailed investigation of these poorly
understood genera.

Metagenomic and metatranscriptomic sequencing has been very
informative in understanding bowel microbial activities in health
and disease. In contrast, non-purulent airway secretions typically
contain <5% microbial DNA79 and are difficult to access. Purulent
secretions, such as sputum, are often heavily contaminated with
upper airway and oral flora20. Consequently, metagenomic
sequencing of respiratory samples has so far identified only the
most abundant pathogens and commensals, with limited func-
tional resolution20,79,80. By extending available airway genome and
gene catalogue data as we have here, sequenced reads too sparse to
reliably assemble per sample can be mapped to our gene and
genome assemblies. This will provide a scaffold for metagenome
analyses as well as for the selection of marker genes and primers
adapted for targeted amplicon sequencing of specific airway
microbiota. As shown above, the gene content of airway commu-
nities can also be inferred by mapping genome sequences to OTU
results. Thus, through the present collection, taxonomic and
functional characterisation of airway communities is facilitated.

We have studied HAEC from a single donor, and it is to be
expected that multiple genetic and epigenetic factors will influ-
ence different components of the pathways we have identified.
Such factors may in the future be systematically investigated by
knockdown and knock-in in model systems and by the culture of
HAEC from subjects with and without airway diseases81. It is
already clear that the co-culture of pathogens and commensals in
such models will reveal many further pathways underpinning
host-microbial interactions69,70.

Microbial community dysbiosis with diversity loss and over-
growth of pathobionts is recognised in asthma, COPD and other
pulmonary disorders9,19. HRV infections are the major pre-
cipitant of acute exacerbations of asthma82,83 and of COPD84,85

yet have trivial effects in most individuals. Here we have found
networks of interacting bacteria that are attenuated in the lower
airways, possibly presaging loss of stability86. The hypothesis can
now be tested that microbial community instability predisposes to
dysregulation of inflammatory processes during acute exacerba-
tions of lung disease.
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Methods
Microbial culture. After sampling, bronchial brushes for exten-
ded culture were immediately placed in 15ml centrifuge tubes
with 2 ml sterile saline solution (0.9% w/v) and immediately
transported to the laboratory for processing. Samples were mixed
on a vortex mixer twice for 5 s. On duplicate plates, 100 μl of the
saline was plated on Columbian blood agar (5% horse blood),
chocolate agar, or minimal agar with 0.5% (w/v) mucin. One set
of plates was incubated at 37 °C in a standard atmosphere while
the other set was incubated at 37 °C in an anaerobic workstation
(Don Whitley DG250). Colonies were selected from 24 h to 168 h
by appearance, streaked out on their corresponding media and
incubated for a minimum of 48 h. Plates were then colony-
selected again and Gram-stained. Aerobic isolates were tested for
oxidase and catalase activity. DNA was extracted from brain heart
infusion broth for aerobes and sodium thioglycollate media for
the anaerobes. Isolates that failed to grow in liquid medium were
grown on solid medium and an inoculation loop was used to
scrape growth off the surface of the agar prior to DNA extraction.

Whole-genome sequencing bacterial isolates. Whole-genome
sequencing was carried out at the Wellcome Sanger Institute,
using the HiSeq X platform and generating paired-end read
lengths of 151 bp. Genomes were de novo assembled using
Bactopia87 (v 1.4.11). Taxonomic classification and quality con-
trol were performed using MiGA (http://microbial-genomes.org/)
with the TypeMat database. Isolates appearing to contain multiple
genomes were discarded.

For all assemblies, the average nucleotide identity was
computed using fastANI88 (v 1.3) with a fragment length of
500 bp and clustered on 99.5% average nucleotide identity. For
every cluster, sequencing data of every entity (isolate) were pooled
and processed using Bactopia (v 1.4.11) with default settings.
Taxonomic annotation and novelty scores were computed using
MiGA with the TypeMat database as well as the NCBI Prokaryote
genome database for comparison. Functional annotation was
performed using prokka (v 1.14.6) as implemented in Bactopia;
and eggnog-mapper89 (v emapper-1.0.3-40-g41a8498) using
diamond (v 0.9.24) for the alignments, reducing the search space
to the domain of bacteria. Antimicrobial resistances were
annotated using amrfinder (v 3.8.4) and ARIBA (v 2.14.5) using
the CARD database (v 3.0.8). Virulence factors were computed
using the VFdb core dataset (v) and binned into higher functional
entities using a custom perl script.

Phylogenetic analysis of the isolates was performed using the
Bacsort pipeline (https://github.com/rrwick/Bacsort). First, fas-
tANI distances were computed with a fragment length of 1,000 bp
and a maximum distance of 0.2. A phylogenetic tree was
constructed using as implemented in the R-package ape90 (v 5.6-
2). The tree was visualised using the Interactive Tree of Life
(iTol)91. Small ribosomal subunits were extracted from assembled
genomes using Metaxa2 and aligned with CELF OTUs using
BLAST with 100% percentage nucleotide identity, e-value= 1e-
10, and length ≥ 206 bp.

Kegg Ontology and isolate phylogeny. From the eggnog-mapper
output, we derived 5531 Kegg Ontology (KO) annotations for the
126 isolates which we encoded in a binary matrix indicating
presence/absence. We removed 254 zero-variance KOs (that were
either present in all or no isolates) and performed hierarchical
clustering of the isolates with the 5023 remaining KOs using the
Manhattan distance metric and complete linkage. The distance
matrix was calculated after removing 2313 KOs that had identical
presence/absence to at least one other isolate. The distance matrix
was calculated after removing 2313 KOs that had identical

presence/absence to at least one other isolate. The Dynamic Tree
Cut algorithm27 identified 15 clusters of isolates that recovered
known phylogenetic relationships (Fig. 2a). These 15 clusters
were then mapped to the OTUs using the 16S rRNA gene
sequence similarity (Fig. 2a). Based on OTU similarities, one
Streptococcus cluster was split into two additional clusters,
resulting in a final set of 16.

We then identified characteristic KOs that were over- or
under-represented in each cluster relative to all other clusters. We
scored cluster i and KO j using a 2 × 2 contingency table, where a:
number of isolates in cluster i containing KO j; b: number of
isolates in cluster i without KO j; c: number of isolates not in
cluster i containing KO j and d: number of isolates not in cluster j
without KO j; from which we calculated odds ratios (ORs) using
ad/bc. 0.5 was added to cells with zero counts (the Haldane-
Anscombe correction). Log10(OR) was used as a summary
statistic to rank the KOs by importance for a given cluster. The
2313 duplicate KOs were assigned the same score as their
duplicated counterpart used to construct the distance matrix.

Human study populations. Samples included in this study were
collected from two study populations, The microbial pathology of
asthma study (Celtic Fire, CELF) and the Busselton Health Study,
a long-running epidemiological survey in South-Western Aus-
tralia (BUS).

The CELF study was a multicentre, cross-sectional study of
asthmatic adults and healthy controls. Participants were recruited
from 3 UK centres, Connolly Hospital, Dublin; The Royal
Brompton Hospital, London; and Swansea University Medical
School, Swansea. Ethical approval for the study was granted by
the London-Stanmore Research Ethics Committee (reference
14/LO/2063). All subjects provided written informed consent.
Subject groups were: healthy subjects (non-smokers and current
smokers; asthmatic patients taking short-acting beta-agonists
only (BTS Step 1); asthmatics on moderate dose of inhaled
corticosteroid (ICS) (up to 800 μg/day of beclomethasone
propionate (BDP equivalent) ± long-acting β-agonist LABA
(BTS Step 2/3); asthmatics on high dose ICS (ICS dose
>=1600 μg/day)+ LABA ± other controllers (theophyllines,
LTRA, LAMA) (BTS Step 4); and asthmatics on high dose ICS
(ICS dose >=1600 μg/day)+ LABA ± other controllers+ oral
prednisolone ± anti-IgE treatment (BTS Step 5). Severe asthma
was defined as BTS step 4 or 5. Exclusion criteria were: Asthmatic
subjects must be non-smokers or ex-smokers with <5 pack-years
smoking; BMI > 35; diagnosis of rheumatoid arthritis, allergic
bronchopulmonary aspergillosis, or Churg-Strauss syndrome;
drug therapy with beta-blockers, ACE inhibitors, anti-asthma
immune modulators other than steroids; antibiotics within
4 weeks of study; acute exacerbations of asthma within past
4 weeks; history of an upper or lower respiratory infection
(including common cold) within 4 weeks of baseline assessments;
confounding occupations (such as baking); and significant vocal
cord disorder.

Participants were invited to initial assessments prior to
bronchoscopy. A posterior oro-pharyngeal (ptOP) swab was
taken from each participant immediately before the broncho-
scopy commenced. During bronchoscopy, two bronchial brush-
ings were taken from the left lower lobe (LLL) of each subject. If
tolerated, two further brushes were taken from the left upper lobe
(LUL). An additional bronchial brush from the left lower lobe of
five study participants from The Royal Brompton Hospital were
processed for extended bacterial culture (described above). Scope
control washes were taken at each bronchoscopy.

All non-biopsy samples were stored at −80 °C within 1 h of
collection. Those harvested at The Royal Brompton Hospital were
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transported and stored directly at the Asmarley Centre for
Genomic Medicine (ACGM) at the same site. Samples at other
sites were stored locally at −80 °C for a maximum of 6 months
prior to transport to the ACGM on dry ice.

Investigation of the BUS subjects was as previously described18.
ptOP swabs were collected with the same protocols as CELF from
527 individuals. After local storage at −80 °C, ptOP swabs were
transported on dry ice to the ACGM for further processing.

DNA extraction and quantification. Microbial DNA extraction
from Celtic Fire samples was carried out using a hexadecyl-
trimethylammonium bromide (CTAB) and bead-beating double
extraction using phase lock tubes. Bacterial isolates were extracted
using a single extraction method. Full details of extraction protocols
for each sample type are outlined in https://doi.org/10.17504/
protocols.io.bf28jqhw (Protocols.io). Busselton ptOP swabs were
extracted using the MPBio DNA extraction kit for Soil, as pre-
viously described18. DNA was stored at −20 °C until processing.
Microbial DNA quantification was carried out using a SYBR green
16S rRNA gene qPCR92.

Within a Class 2 biological safety cabinet, each bronchial
brushing was transferred directly into an LME tube. To control
for contamination an empty LME tube (i.e., an extraction control)
was added to each batch. The extraction control underwent the
entire extraction process along with the samples. Eighteen two
randomly selected Scope Control Washes (SCWs) also underwent
DNA extraction.

Microbial 16S rRNA analyses. 16 S rRNA gene sequencing was
performed on the Illumina MiSeq platform using dual barcode
fusion primers and the V2 500 cycle sequencing kit. Sequencing was
performed for the V4 region of the 16 S rRNA gene as previously
described18,92. Sampling and extraction controls, PCR negatives and
mock communities were included in all sequencing runs.

All samples and controls from both the Celtic Fire and BUS
datasets were included in this analysis and were processed
through the QIIME 2.0 analysis pipeline.

Sequences were quality trimmed to 200 bp using trim-galore
(Version 0.6.4) and joined with a maximum of 10% mismatch
and a minimum of 150 base pair overlap using joined_pair-
ed_ends.py (Version 1.9.1). Data was quality-checked using
FASTX Toolkit (Version 0.0.14) prior to de-multiplexing.

Reads were dereplicated and open reference OTU clustering
was performed in QIIME 2.0. Chimeric sequences were identified
and removed, leaving borderline calls in the analysis. Phylogeny
was aligned using mafft followed by consensus taxonomic
classification. The Biom file, tre file, and taxa identifications were
exported for further analysis.

Processed data was transferred to R (Version 3.6.3) and uploaded
into Phyloseq (Version 1.3). Reads unassigned or assigned to
Archaea at the kingdom level were removed before further analysis
along with reads identified as Chloroplast or Mitochondria. All
OTUs with less than 20 reads (reads present in less than <2% of the
samples (n= 1174)) were removed from further analysis.

Contaminant OTUs were identified using Spearman’s correla-
tion between bacterial biomass and with number of reads per
sample. OTUs were considered to be contaminants with a
Benjamini–Hochberg corrected P-value of <0.05 and a correlation
value of >0.2.

Due to the nature of the differences in the extraction and
sequencing protocols between BUS and CELF studies, contami-
nants were investigated in the whole dataset and in CELF and
BUS separately. OTUs identified using the individual datasets
were removed from further analysis. The “Prevalence” method in
Decontam (Version 1.6) with a threshold of 0.1 and controlling

for study, identified a further 55 OTUs contaminant OTUs
associated with negative controls. All OTUs identified were
checked and found to be consistent with contamination93.

Community analyses of 16S rRNA sequences. OTU counts were
rarefied to the size of the smallest retained sample (discarding
samples with too few reads) to obtain the relative abundances of
the microbiota in each sample accounting for read depths.

Univariate analysis was done using metadeconfoundR (https://
github.com/TillBirkner/metadeconfoundR), relative abundances
were tested for univariate associations with clinical variables,
requiring Benjamini–Hochberg adjusted FDR < 0.1 and the
absence of any clear confounders. Only major taxa and OTUs
detected after rarefaction in at least 10% of samples were used.

Within metadeconfoundR, non-parametric tests were used for
all association tests as the data was not normally distributed55.
For discrete predictors, the Mann–Whitney test (two categorical
variables) or the Kruskal–Wallis analysis of variance (more than
two categorical variables) were used. For pairs of continuous
variables, a non-parametric Spearman correlation test was used.
Benjamini–Hochberg false-discovery rate control (FDR) was
applied to control for multiple testing controlling the family-
wise error rate at 10%.

Hierarchical clustering on the relative abundance profiles was
used to establish grouping patterns of the different study samples,
including an updated adaptation of the approach used to define
“enterotypes” in the human gut, this so-called pulmotyping was
performed using the Dirichlet Multinominal package, fitting a
Dirichlet-multinomial model on the count matrix of genus relative
abundance to classify genus abundance based on probability. Each
count x in the matrix corresponds to a feature (of n features in total)
in the composition observed in the replicate sample. Replicates are
grouped into k groups. This parameterisation of the Dirichlet
distribution for k parameters corresponds to the expected
proportions of each of the features (e.g., a particular taxon) in
group k, and is an intensity that is shared among all features. The
hyperprior for the k parameters at the ‘topmost’, or most inclusive,
level of the model hierarchy is another Dirichlet distribution with
equal prior probability for each feature within the composition.
These distributions together form a hierarchical model for relative
abundances among samples used to cluster all samples into
different pulmotypes. The chi-square test implemented in base R
was used to test for significant differences in the resulting
pulmotype distribution between samples grouped by disease status.

Redundancy-reduced isolate abundance/sample (from 16 S)
and annotation isolate to KEGG KOs were used to generate a
sample to KO projection. The projection was mapped to KOs
involved in generating the metabolites highlighted by the ALI
experiments57, by multiplying taxon abundances with the KO
presence/absence matrix to yield functional potentials and a
proxy for expected metabolite turnover. MetadeconfoundR
analysis of this matrix was then carried out together with clinical
metadata accompanying the OTU abundance analysis.

Airway epithelial cell culture. Primary normal human bronchial
epithelial (NHBE) cells (Promocell, Germany) derived from a 26-
year old adult were grown on collagen-coated flasks using the
Airway Epithelial Cell Growth Medium Kit (Promocell, Ger-
many) supplemented with bovine pituitary extract (0.004 ml/ml),
epidermal growth factor (10 ng/ml), insulin (recombinant
human) (5 μg/ml), hydrocortisone (0.5 μg/ml), epinephrine
(0.5 μg/ml), triiodo-L-thyronine (6.7 ng/ml), transferrin, holo
(human) (10 μg/ml) & retinoic acid (0.1 ng/ml) (Promocell,
Germany) and Primocin (Invivogen, France).
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At passage 3, NHBE cells were seeded onto 12mm Transwell
inserts with 0.4 μm pore polyester membranes at a density of
2.5 × 105 cells/insert. Cells were maintained in ALI medium, a 50:50
mixture of ALI x2 media (Airway Epithelial Cell Basal Medium with
2 supplement packs added (without triiodo-L-thyronine and retinoic
acid supplements) and 1ml BSA (3 μg/ml)) and DMEM supple-
mented with retinoic acid (15 ng/ml) (Sigma Aldrich, Gillingham,
UK). Cells were fed apically and basolaterally until 100% confluent,
after which they were fed exclusively basolaterally with apical media
removed. This was defined as ‘Day 0’, the start of the ALI culture.
Media was changed three times a week for 28 days, at which stage
full differentiation had occurred. At seven points during culture we
performed trans-epithelial electrical resistance (TEER) measure-
ments, took apical washings for ELISA measuring MUC5AC,
harvested triplicate wells for gene expression microarray analysis and
qPCR for MUC5AC mRNA as well as harvested quadruplicate wells
and culture supernatants for metabolomics analysis. NHBE cell
pellets and 200 μl basolateral supernatants were snap-frozen in liquid
nitrogen and stored at −80 °C for metabolomic analysis.

All cell culture experiments were regularly tested for
mycoplasma contamination using PCR Mycoplasma Test Kit I/
C (Promokine, Germany).

Metabolomics analysis. Metabolic profiling performed by Meta-
bolon Inc (NC, USA) followed their standard protocols and used
LC-MS and GC-MS methods. All samples were given unique
identifiers and bar-coded for tracking throughout the analysis
pipeline. The Metabolon LIMS system was used to extract raw
data, identify peaks and process QCs. Metabolites were identified
by comparing retention times, m/z and chromatographic data to
library entries of purified standards and recurrent unknown enti-
ties. All library matches were confirmed with interpretation soft-
ware and the assigned compounds were curated. Missing values,
below the limit of detection, were imputed with the lowest detected
value for the corresponding variables for subsequent analysis.

Analyses were performed using R (version 4.1.1). The
MetaboSignal package94 was utilised to link media metabolites
to KOs via their shortest paths, according to KEGG pathways.
These pathways were filtered to display only direct reversible and
irreversible reactions. Metabolites and KOs were mapped to
human and microbial metabolic pathways using iPath 3.0
(https://pathways.embl.de/)67.

Transcriptomics of NHBE. Approximately 200 ng total RNA
(with one exception in which 100 ng total RNA was used) was
prepared for whole transcriptome microarray analysis using the
Ambion WT Expression kit. Purified cRNA yield was assessed using
an Agilent 2100 Bioanalyzer and then taken forward for reverse
transcription to yield sense-strand cDNA. A total of 5.5 μg of sense-
strand cDNA was fragmented and labelled using the Affymetrix
GeneChip WT Terminal Labelling Kit prior to hybridisation to the
GeneChip ST2.1 Array. Microarray libraries were hybridised,
washed, stained and imaged using the Affymetrix Genetitan.

Analyses were carried out in R (version 3.1.0). Raw data was
imported into R and quality control was carried out using
arrayQualityMetrics (version 3.20.0), detecting outlier arrays that
are likely to skew data upon normalisation. Any outlier arrays
were excluded and the corresponding samples were re-processed
and run on arrays until all samples had successfully passed quality
control. QC-passed arrays were normalised by Robust Multichip
Average (RMA) using Affymetrix Power Tools (version 1.12.0).
Probe sets that had below-median levels of expression in all arrays
were removed. Differential expression was determined using
linear modelling of the time-course using the Limma package
(version 3.20.0)95. All P-values are corrected for multiple testing;

using a method derived from Benjamini and Hochberg’s method
to control the false-discovery rate96.

Transcripts were clustered based on their expression patterns over
the time-course using a soft-clustering approach (MFUZZ)97. Gene
ontology was determined by the HOMER (Hypergeometric
Optimisation of Motif EnRichment, version 4.7) programme98.
Fold-change per gene ontology term was determined by: (number of
target genes in term / total number of target genes) / (total number
of genes in term / total number of genes in background list).

Temporal variation in gene expression was assessed by fitting a
temporal trend using a regression spline with 3 df (Limma, 3.22.7).
P-values were adjusted for multiple testing, controlling the false-
discovery rate (FDR) below 1%. TC annotations were compiled
from NetAffx (access date 30/06/2020) and hugene21sttranscript-
cluster.db (8.5.0). Common temporal expression patterns were
sought amongst differentially expressed genes using the unsuper-
vised classification technique Mfuzz (2.26.0), informed by the
minimum distance between cluster centroids (Dmin).

Network analysis. Co-abundance networks were constructed
using Weighted correlation network analysis (WGCNA)99. We
constructed WGCNA co-abundance networks separately using
the CELF ptOP, CELF LLL and BUS ptOP samples, including any
OTUs that appeared in 20% of samples in at least one of these
four subsets (646 OTUs). Spearman correlation was used to
construct the WGCNA adjacency matrices. OTU reads were
transformed using log(x+ 1) prior to WGCNA analysis.

Statistics and reproducibility. Statistical tests and their inter-
pretation are described in the context of individual methods above.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Raw sequence data for the bacterial isolates have been deposited in the European
Nucleotide Archive at the European Bioinformatics Institute under accession number
ERP110629. Assembled genomes are available with the number PRJNA578828. The raw
OTU data for the Celtic Fire study is available with the accession number PRJEB40753,
and that from the Busselton study with the accession number PRJEB29091. The gene
expression data for airway epithelial differentiation is deposited at the EGA Archive with
the ID: EGAS00001006689. The source data for Fig. 3a, e, g is available at https://figshare.
com/articles/dataset/Genomic_attributes_of_airway_commensal_bacteria_2023/
24901788. Source data for Supplementary Fig. 8 is available at https://figshare.com/
articles/dataset/GENOMIC_ATTRIBUTES_OF_AIRWAY_COMMENSAL_
BACTERIA_AND_MUCOSA-_Supplementary_figure_8/24983193.

Code availability
All data analysis scripts are available online at https://zenodo.org/records/10466935
(reference100).
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