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From text to tech: Shaping the future of physics-based simulations with 
AI-driven generative models 
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A B S T R A C T   

This micro-article introduces a method for integrating Large Language Models with geometry/mesh generation 
software and multiphysics solvers, aimed at streamlining physics-based simulations. Users provide simulation 
descriptions in natural language, which the language model processes for geometry/mesh generation and 
physical model definition. Initial results demonstrate the feasibility of this approach, suggesting a future where 
non-experts can conduct advanced multiphysics simulations by simply describing their needs in natural lan-
guage, while the code autonomously handles complex tasks like geometry building, meshing, and setting 
boundary conditions.   

1. Introduction 

Generative AI, particularly Large Language Models (LLMs), have 
shown impressive capabilities in various domains, demonstrating an 
advanced understanding of natural language and complex problem- 
solving skills [1]. However, despite their sophistication, these models 
do not inherently possess an understanding of physics principles. 
Therefore, they cannot replace specialized simulation software used in 
fields like Computational Fluid Dynamics and multiphysics. 

Physics-based simulations are crucial in diverse fields, ranging from 
engineering [2–4] to medicine [5–7]. They enable the analysis of com-
plex physical phenomena and the optimization of designs with high 
accuracy. However, setting up these simulations – creating geometry, 
computational meshes, and configuring parameters – is often a laborious 
and time-consuming task. Normally, these jobs are carried out by highly 
skilled computational engineers, who specialize in running these types 
of simulations. 

Now, imagine a world where these two powerful tools are combined. 
You simply provide a text description, like ‘produce a simulation of a 
standard 20-tooth bicycle gear subjected to a torque of 40 Nm, and 
analyse the stress distribution across the gear teeth during a full rotation. 
This is all that would be required from the user, and an AI model would 
take care of the rest. It would create the geometry, set up the mesh, 
define material properties, apply the boundary conditions, and run the 
simulation. Then, the AI system provides you with detailed results and 

visualizations of the stress distribution across the gear teeth, all with 
minimal input. 

This micro-article discusses how this objective can be achieved. It 
provides preliminary results from our research group and outlines a 
roadmap for further developments. We anticipate a future in simulation 
technology where its accessibility extends beyond specialized compu-
tational engineers, enabled by AI to be useable by a broader range of 
professionals and enthusiasts. 

2. Previous work 

A few papers explore the use of LLMs in the context of physics-based 
simulations. FLUID-GPT [8] and MYCRUNCHGPT [9] develop new ar-
chitectures that incorporate or utilize LLMs as alternatives to traditional 
physics-based solvers. In contrast, our work uses LLMs not to replace, 
but to facilitate the use of existing physics-based solvers for non-expert 
users. Expanding upon the concept from Verdizco et al. [10], who 
employ ChatGPT for generating input files for molecular dynamics, we 
programmatically integrate OpenAI, Gmsh, and Elmer APIs. This inte-
gration creates a comprehensive solution that seamlessly transforms 
user text input into a complete simulation workflow. 

3. Three steps and one roadmap 

We propose to integrate the APIs of LLM models with geometry/ 
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meshing software and multiphysics solvers, as illustrated in Fig. 1. This 
strategy is envisioned in three distinct steps, each representing a higher 
level of integration between LLMs and simulation technology. 

3.1. Level 1 - prompt engineering 

Prompt engineering with LLMs can be approached in two ways. The 
first is a user-friendly, non-technical method, suitable for general use but 
limited in scalability and flexibility. The second, which is central to our 
project, is the programmatic method. This approach utilizes tools like 
the OpenAI API [11] or the Hugging Face Transformers library [12] for 
more sophisticated interactions with LLMs via programming. 

3.2. Level 2 - model fine-tuning 

Prompt engineering is a straightforward approach but using LLMs 
‘as-is’ often leads to suboptimal performance for specific tasks. In fact, 
for specialized tasks, the sheer size of these models, with billions of 
parameters, does not necessarily equate to better performance. Step 2 
focuses on fine-tuning pre-trained models to enhance their effectiveness 
for our particular simulation needs. 

3.3. Level 3 - custom large language model 

While the initial phases of prompt engineering and model fine-tuning 
cover a wide spectrum of applications, commercial ventures often 
necessitate independence from open-source models and third-party 
APIs. In such instances, creating a custom LLM from scratch becomes 
a viable option. This process involves building new LLMs from the 
ground up, demanding extensive data collection and significant 
resources. 

4. Results and discussion 

In this section, we present preliminary results achieved within Level 
1 of our roadmap. We have developed a code that integrates LLMs from 
the OpenAI API library [11] with Gmsh [13,14] for geometry creation 
and mesh generation, and with Elmer [15,16] for physics-based simu-
lations. The choice of Gmsh and Elmer is due to their open-source na-
ture, while the OpenAI library is among the most advanced in its field. 
This section illustrates user interactions with the code, demonstrating 
how simple textual inputs can describe the desired geometry and 
simulation type, enabling the code to autonomously execute complete 
physical simulations. All files related to the examples in this article are 

available as supplementary material in Jupyter notebook format. 
In the notebooks, the GPT-4 1106-preview model is utilized through 

the OpenAI API within the chat_with_bot () function. To guide the LLM 
in generating outputs, we use two prompt files: system_geo.txt for ge-
ometry creation and system_sif.txt for simulation parameters and con-
ditions. These prompt files are also included in the supplementary 
materials. 

4.1. Basic geometries 

In the first example, the user requests a simulation of a simple ge-
ometry and analyse its elastic deformation under a transverse load 
(Fig. 2). 

The LLM’s output is then processed through the extrac-
t_and_save_geo_file () and extract_and_save_sif_file () functions. The 
workflow is completed by interacting with the Gmsh’s API for meshing 
and by executing external system commands within the Python envi-
ronment, specifically !ElmerGrid and !ElmerSolver, to process the mesh 
and run the simulations (Fig. 3). 

4.2. Composite geometries 

When handling requests for more complex geometries, the LLM may 
initially make some errors (Figs. 4 and 5a). However, once these mis-
takes are identified, the LLM is capable of self-correcting and subse-
quently providing the correct. geo file (Figs. 4 and 5b). 

With basic geometries, the LLM effectively utilizes Gmsh’s built-in 
kernel. However, for composite geometries, this approach resulted in 
numerous errors. To address this, we directed the LLM to switch to the 
OpenCASCADE kernel, which simplifies geometry creation. The draw-
back is that OpenCASCADE does not automatically create surfaces that 
can be assigned as boundary conditions, requiring manual intervention 
in Gmsh to define these surfaces. While this step is not excessively 
burdensome, it deviates from our objective of enabling users to run 
simulations without any prior knowledge of geometric modelling soft-
ware or computational simulation software. 

To achieve full automation, we experimented with PyGmsh, a Py-
thon interface for Gmsh. Here, the LLM is tasked with generating Python 
scripts that in turn create the. geo file, rather than directly producing 
the. geo file itself. However, this method also encountered challenges in 
boundary definition. To address these issues, we are considering two 
approaches: fine-tuning the LLM, as outlined in level 2 of our roadmap, 
or developing custom PyGmsh functions specifically designed to be 
more intuitive for the LLM. These custom functions would be structured 

Fig. 1. The user provides a text description detailing the desired geometry and simulation. The LLM processes this input, splitting it into two distinct streams: one 
directed to geometry/mesh generation software for creating the geometry and mesh, while the other stream feeds into a multiphysics solver, defining the physical 
model and necessary parameters. The outputs from the mesh generation and model specification are then integrated to execute the physics-based simulation, ul-
timately yielding the simulation results. 
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in a way that makes them easier for the LLM to learn and use correctly, 
facilitating more accurate script generation. The latter approach in-
dicates a potential shift in software development, leaning towards the 
creation of tools that are better suited for LLM interaction, as opposed to 
traditional human-centric usability. 

Once the. geo file is finalized, the subsequent creation of the. sif file 
and execution of the simulation proceeds without any further issues. The 

user’s input for this phase is not shown here, but it is provided in the 
supplementary material; the outcome of the simulation is illustrated in 
Fig. 5c. 

5. Conclusions 

In this article, we have primarily shown solid mechanics simulations. 

Fig. 2. The LLM actively interacts with the user, seeking additional details if necessary and filtering out irrelevant information. Once it accumulates sufficient 
information, it generates a text response that describes the geometry in the syntax used for. geo files and the simulation in the syntax used for. sif files (not shown in 
Fig. 2, but available with the supplementary material). 

Fig. 3. From the user’s initial textual input (Fig. 2), the LLM triggers an automated process where the Gmsh API generates the mesh (a) and Elmer conducts the 
simulation (b), requiring no further user intervention. 
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However, they can be easily extended to other physical models in Elmer, 
such as fluid mechanics, heat transfer, or electrostatics. Currently, our 
focus has been on relatively simple geometries, but as we advance to the 
second phase of our roadmap, we aim to fine-tune LLMs to handle more 
complex scenarios. Our initial results were achieved using the OpenAI 
API. For future work, we plan to integrate the Hugging Face Trans-
formers library, primarily due to its open-source nature and cost-free 

access. We have also explored the capabilities of GPT-4-Vision, a 
model that merges GPT-4’s language processing with image recognition. 
This integration enables the generation of computational geometries 
from photographed hand drawings, moving beyond traditional text-only 
descriptions. While these results are not presented here, they will be 
instrumental in the subsequent stages of our project. 

In our current setup, various aspects, including meshing options and 

Fig. 4. Initially, the LLM generates an incorrect geometry (Fig. 5a). Upon the user highlighting this error, the LLM provides the correct geometry (Fig. 5b).  

Fig. 5. Initial wheel and axle geometry incorrectly generated (a), revised geometry following user feedback (b), and simulation results depicting deformation of the 
wheel and axle structure under a 5 GN force along the z-axis (c). 
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the choice of numerical schemes for solving the physical model, default 
to the standard parameters provided by Gmsh and Elmer. Looking 
ahead, our goal is to refine the system to not only offer users a wider 
selection of options but also to utilize the LLMs for providing intelligent 
recommendations when a chosen technique fails to deliver accurate 
results. 

The findings presented in this paper could suggest a future trend 
where physics-based simulation software will be augmented with 
dedicated LLM-powered chatbots. These chatbots will assist users in 
simulation setup, making the process more intuitive and accessible. In 
this evolving landscape, developers of proprietary simulation software, 
such as COMSOL or ANSYS, might opt for custom-built LLMs that would 
enable them to provide integrated chatbot assistance while maintaining 
independence from open-source models or third-party APIs. 

Finally, we address a concern raised by observers of our preliminary 
work: the potential for these AI-driven technologies to redefine, or even 
possibly replace, traditional roles in computational engineering. We 
believe that this innovation will not render computational engineers 
obsolete. In history, numerous scientific and technological revolutions 
have unfolded, and the AI revolution is likely just another chapter. 
Technological unemployment did not begin with the Industrial Revo-
lution. In medieval and even ancient times, technological advancements 
led to shifts in employment, sparking cycles of disruption and adaptation 
[17]. And every time, history seems to repeat itself. On one side are the 
‘Luddites,’ who fear the new technology; on the other, the ‘Tech-
no-cultists,’ who pretend to be its prophet. Yet, the narrative invariably 
follows familiar paths: the initially disruptive technology creates new 
industries and opportunities; the ‘Techno-cultists’ of yesterday become 
the ’Luddites’ of tomorrow; and humanity advances one step further on 
the staircase of our collective progress. 
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