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Abstract
Adrenocortical carcinoma (ACC) is an aggressive malignancy with limited treatment options. Polo-like kinase 1 (PLK1) 
is a promising drug target; PLK1 inhibitors (PLK1i) have been investigated in solid cancers and are more effective in 
TP53-mutated cases. We evaluated PLK1 expression in ACC samples and the efficacy of two PLK1i in ACC cell lines 
with different genetic backgrounds. PLK1 protein expression was investigated by immunohistochemistry in tissue 
samples and correlated with clinical data. The efficacy of rigosertib (RGS), targeting RAS/PI3K, CDKs and PLKs, and 
poloxin (Pol), specifically targeting the PLK1 polo-box domain, was tested in TP53-mutated NCI-H295R, MUC-1, and 
CU-ACC2 cells and in TP53 wild-type CU-ACC1. Effects on proliferation, apoptosis, and viability were determined. PLK1 
immunostaining was stronger in TP53-mutated ACC samples vs wild-type (P = 0.0017). High PLK1 expression together 
with TP53 mutations correlated with shorter progression-free survival (P = 0.041). NCI-H295R showed a time- and 
dose-dependent reduction in proliferation with both PLK1i (P < 0.05 at 100 nM RGS and 30 µM Pol). In MUC-1, a less 
pronounced decrease was observed (P < 0.05 at 1000 nM RGS and 100 µM Pol). 100 nM RGS increased apoptosis in 
NCI-H295R (P < 0.001), with no effect on MUC-1. CU-ACC2 apoptosis was induced only at high concentrations (P < 0.05 
at 3000 nM RGS and 100 µM Pol), while proliferation decreased at 1000 nM RGS and 30 µM Pol. CU-ACC1 proliferation 
reduced, and apoptosis increased, only at 100 µM Pol. TP53-mutated ACC cell lines demonstrated better response to 
PLK1i than wild-type CU-ACC1. These data suggest PLK1i may be a promising targeted treatment of a subset of ACC 
patients, pre-selected according to tumour genetic signature.
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Figure 1

Schematic representation of the interplay 
between Polo-Like Kinase 1 (PLK1) and other cell 
cycle-related pathways, such as CDK families (i.e. 
CDK1 and CDK4), p53, RAS/PIK3, and mTOR. The 
inhibitory effects of the two investigated PLK1 
inhibitors (multi-targeting rigosertib, RGS, and 
PBD-PLK1 specific poloxin, Pol) are highlighted.
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Introduction

Adrenocortical carcinoma (ACC) is a rare yet highly 
aggressive endocrine malignancy with generally poor 
prognosis (1). Treatment options for ACC are scarce, 
with the only potential curative therapy being complete 
resection (2). However, post-surgical recurrence rate 
is high and associated with dismal clinical outcomes. 
The adrenolytic mitotane is the only approved drug 
for treatment of patients with advanced disease (3), 
while cytotoxic chemotherapies such as etoposide–
doxorubicin–cisplatin (EDP) and gemcitabine plus 
capecitabine represent alternative options, but all show 
low response rates and frequent adverse effects (4, 5). 
Although our understanding of ACC’s heterogeneous 
pathogenesis has improved through pan-genomic 
molecular studies, targeted therapies are not yet 
available. Previous molecular screenings provided 
some promising insight into potential pharmacological 
targets (6, 7, 8, 9) and the efficacy of available inhibitors 
was investigated in small clinical studies. Nevertheless, 
results have been largely unsatisfactory (reviewed in 
(10, 11)). Linsitinib, a dual inhibitor of the insulin-like 
growth factor 1 receptor (IGF1R) and insulin receptor 
(IR), is the only targeted drug to have entered a phase 
III trial for ACC patients (OSI-906) but also yielded 
disappointing results (12).

In a recent study, we performed targeted gene expression 
profiling of ACC tumour samples and identified 
up-regulated genes and pathways, including cyclin-
dependent kinase (CDK) and polo-like kinase (PLK) 
families (9), whose inhibition may represent promising 
treatment options. In particular, PLK1 is an important 
regulator of mitotic entry and progression, involved 
in the feedback loop that activates CDK1 by promoting 
CDC25 activation. PLK1 also inhibits p53-dependent 

transcriptional activation and pro-apoptotic activity,  
and, in turn, p53 represses PLK1 expression itself  
(Fig. 1) (13). Overexpression of PLK1 at gene level has 
been reported to be associated with worse clinical 
outcome, as shown in a previous study that merged 
available expression data from microarray studies (14) 
with those reported by Demeure et al. (15). Of note, also 
in the TCGA cohort, PLK1 overexpression was significantly 
associated with unfavourable outcome (16, 17).

PLK1 is highly expressed in many solid malignancies; 
hence, several PLK1 inhibitors (PLK1i) have been 
evaluated in clinical trials (18, 19, 20, 21, 22, 23, 24, 25, 
26). These PLK1i included first-generation BI-2536, 
second-generation ATP-competitive BI-6727 (volasertib), 
and non-ATP-competitive ON 01910.Na (rigosertib), 
targeting the RAS/PI3K pathway and CDKs besides PLK. 
Interestingly, PLK1 inhibition seems to be more effective 
in TP53-mutated tumours (16, 27, 28, 29). Recently, 
promising new-generation PLK1i specifically targeting 
the PLK1 polo-box domain (PBD), which is important 
for subcellular localisation, molecular mediation, and 
targeting of PLK activity towards specific subcellular 
domains (i.e. bringing the kinase domain in proximity 
with its substrates), have been tested in preclinical 
studies (26).

In ACC, PLK1 has been shown to be frequently 
overexpressed (9, 16, 17) and associated with shorter 
patient survival (16, 17). Moreover, the first-generation 
inhibitor BI-2536 has been demonstrated to reduce cell 
viability and induce apoptosis in standard ACC cell lines 
(NCI-H295R and SW13).

The aim of this study was to test the potential role of 
targeting PLK1 for individualised treatment of patients 
with advanced ACC. To this end, we investigated the 
relationship between PLK1 expression and clinical 
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Table 1 Demographic, clinical, and histopathological characteristics of the 104 patients with adrenocortical carcinoma 
evaluated for PLK1 immunohistochemistry.

Parameter Value

Demographic and clinical parameters
Sex (M/F) 45/59
Age – years (median, range) 49 (18–87)
Initial ENSAT tumour stage (n)
 1–2 56
 3 27
 4 22
Pre-operative steroid secretion (n)
 Cortisol 23
 Other single steroids (androgens, mineralocorticoids, or oestrogens) 9
 Mixed steroids 21
 Inactive 25
Histopathological parameters
Ki67 index – % (median, range) 15 (1–90)
Resection status (n)
 R0 73
 RX 16
 R1 5
 R2 8
 Unknown 3
Tumour localisation (n)
 Primary surgery 86
 Local recurrence 8
 Distant metastasis 10
Post-surgical pharmacological treatment
 Adjuvant mitotane (n) 38
 Palliative mitotane (n) 38
 Cytotoxic chemotherapy 63

ENSAT, European Network for the Study of Adrenal Tumors; F, female; M, male; n, number of patients; R0, complete resection; R1, microscopic incomplete 
resection; R2, macroscopic incomplete resection; RX, uncertain resection.
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outcome in a large cohort of well-characterised 
ACC tissue samples and evaluated the efficacy of 
two PLK1i on four ACC cell lines with different  
genetic backgrounds.

Materials and methods

Analysis of PLK1 mRNA expression in 
existing datasets
We first re-evaluated PLK1 gene expression levels in 
three previously published ACC data sets, including 
i) series from Giordano and colleagues (14) (n = 65 
snap-frozen samples, i.e. 10 normal adrenal glands 
(NAG), 22 adrenocortical adenomas (ACA) and 33 ACCs  
investigated by microarrays), ii) series from The Cancer 
Genome Atlas (TCGA) cohort (30) (n = 79 snap-frozen 
samples examined by whole transcriptome RNA-
sequencing, RNA-seq) and iii) our published series of 
40 formalin-fixed paraffin-embedded (FFPE) samples 
investigated by targeted gene expression profile (9).  

We focused on the relationship between expression 
levels of PLK1 and other cell cycle-related genes  
(i.e. CDKs, RAS, PI3K, topoisomerase, etc.).

Patient cohort and clinical data
A total of 104 patients with histologically confirmed 
ACC, available targeted DNA sequencing data (8) and  
FFPE tumour specimens from whole tissue blocks, 
collected between 2002 and 2016, were included.  
Baseline clinical and histopathological characteristics 
(i.e. sex, age, adrenal hormone pattern, initial  
European Network for the Study of Adrenal Tumors 
(ENSAT) tumour stage, resection status of primary 
tumour, Ki67 proliferation index), as well as  
follow-up information, survival data and details  
about pharmacological treatment (i.e. mitotane  
and/or cytotoxic chemotherapies) were collected 
through the ENSAT registry (https://registry.ensat.org//) 
and patients’ records. These details are summarised  
in Table 1.
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The clinical outcome of patients with ACC was assessed 
by overall survival (OS) and progression-free survival 
(PFS) (see statistical analysis for definitions).

The study protocol was approved by the local ethics 
committee (University Hospital of Wuerzburg, #88/11) 
and written informed consent was obtained from all 
subjects prior to study enrolment.

Immunohistochemistry
Protein expression levels of PLK1 in ACC samples and 
their relationship with genetic background, clinical/
histopathological parameters and clinical outcome  
were evaluated. Immunohistochemistry (IHC) was 
performed on standard full sections of 104 ACC  
specimens and 11 benign ACAs. A total of five NAGs 
were used as negative controls. After deparaffinisation,  
antigen retrieval was achieved by heating the slides 
for 13min in the pressure cooker in 10 mM citric acid 
monohydrate buffer (pH 6.5). Unspecific binding 
sites were blocked with 20% human AB serum at 
room temperature (RT) for 1h and slides were then 
incubated at RT for 1h with specific antibodies  
against PLK1 (anti-mouse monoclonal PLK1 antibody 
13E18 by ThermoFisher: dilution 1:50) or N-Universal 
Negative Control anti-mouse (Dako, Golstrup, Denmark). 
Antibody binding was detected by means of the 
En-Vision System Labelled Polymer-HRP and developed 
for 10min with DAB Substrate Kit (Vector Laboratories, 
Burlingame, CA, USA). Nuclei were counterstained  
with Mayer’s haematoxylin.

Evaluation of stained slides was performed by two 
independent operators blinded to the results and 
clinical information (R.L. and S.St.) using the Scope A1  
microscope (Carl Zeiss AG). Intensity of nuclear 
staining and percentage of positive cells was graded 
as 0 (negative), 1 (low), 2 (medium), and 3 (high). The 
proportion of positive tumour cells was calculated for 
each slide and scored 0 if 0% were positive, 0.1 if 1% 
to 9% were positive, 0.5 if 10% to 49% were positive, 
and 1 if ≥ 50% were positive. A semi-quantitative 
H-score was then calculated by multiplying the staining  
intensity grading score with the proportion score 
(31, 32). In case of discrepancies, slides were jointly 
assessed by both investigators and a final score was 
developed by consensus. The Spearman’s correlation 
for interobserver agreement for each staining  
was high (r > 0.85). Representative examples of 
nuclear weak and strong PLK1 staining are shown  
in Supplementary Fig. 1 (see the section on 
supplementary materials given at the end of this article).

ACC cell lines and culturing
We evaluated the potential anticancer activity of  
PLK1i in four different ACC cell line models. These  
included the standard ACC cell line NCI-H295R (33) 
and more recently developed MUC-1 (34), CU-ACC1 

and CU-ACC2 cells (35). NCI-H295R cells were cultured 
in Dulbecco’s modified eagle medium (DMEM)/F12, 
HEPES media) (Gibco, 11330032), supplemented with 
2.5% Nu-Serum growth media supplement (Corning, 
355100), 1% insulin, human transferrin, and selenous 
acid (ITS) Premix (Corning, 354352) and 1% penicillin–
streptomycin (Pen-Strep) (Gibco, 15070063). NCI-H295R 
were authenticated by Short Tandem Repeat (STR) 
analysis. Their doubling time is 25 h. MUC-1 cells were 
cultured with Advanced DMEM/F12 media (Gibco, 
12634010) supplemented with 10% heat-inactivated 
fetal bovine serum (FBS) (Gibco, 10500064), and 1%  
Pen-Strep (34). Their doubling time is 60 h (36). 
CU-ACC1 and CU-ACC2 cells were cultured in media 
consisting of three parts F-12 Nutrient Mixture (Gibco, 
11765054) to one part DMEM high glucose, pyruvate 
(Gibco, 11995065), supplemented with 10% FBS, 
0.8% hydrocortisone (Sigma, H0888), 0.1% insulin 
(Sigma, I6634), 0.05% adenine (Sigma, A2786), 0.01% 
epidermal growth factor (Gibco, PHG0311), and 0.0084%  
cholera toxin (Sigma, C9903) (35). Their doubling time 
is 35 h and 29 h, respectively (35). Cell passages were 
comprised between 14 and 42.

Molecular characterisation of ACC cell lines
Sequencing data for the four cell lines available from 
the literature demonstrate that they differ in genetic 
background (9, 34, 35). In particular, NCI-H295R  
carries a TP53 deletion in addition to a CTNNB1  
activating missense mutation and an RB1 loss, MUC-1 
a frameshift TP53 and MEN1 mutation, CU-ACC2 a 
missense TP53 mutation and MSH2 deletion and  
CU-ACC1 as the only TP53 wild-type cell line (with 
CTNNB1 activating missense mutation). Additionally,  
we used a targeted gene expression profile  
containing 84 known drug targets (Cancer Drug 
Targets RT2 profiles, Qiagen) (9), to investigate the  
expression of drug targetable cell cycle-related genes in 
all four cell lines. We isolated RNA using the Maxwell 
RSC simplyRNA Tissue Kit (Promega) according to 
manufacturer’s instructions. Samples were transcribed 
with the RT2 First Strand Kit (Qiagen) according to the 
manufacturer’s protocol. Expression of a panel of 84 
drug targetable genes as well as five housekeeping  
genes (ACTB, B2M, GAPDH, HPRT1, RPLP0) and seven 
positive control genes was evaluated by the Human 
Cancer Drug Targets RT2 Profiler PCR Array (PAHS-
507Z, Qiagen). The reaction was performed with the RT2  
SYBR Green qPCR Master Mix (Qiagen) and all cell lines 
were run in triplicate. Cycling conditions were 95◦C for 
10min followed by 40 cycles of 95◦C for 15 s, 60◦C for 1 
min. Fold change (FC) was calculated with the 2∧(-∆∆CT) 
formula normalised to five housekeeping genes and 
with a pool of five NAG from snap-frozen specimens 
as reference by the Qiagen GeneGlobe Data Analysis  
Center (https://geneglobe.qiagen.com/de). An FC of 
≥2.0 was defined as high expression and an FC of ≥10.0 
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was defined as very high. The genetic and molecular 
characterisation of the four cell lines is shown in the 
Supplementary Fig. 2.

Anticancer activity of PLK1 inhibitors
We evaluated the potential anti-cancer role of two 
different PLK1i: multi-targeting rigosertib (RGS) and 
new-generation PBD-specific poloxin (Pol). In order 
to test the efficacy of the drugs in a dose-dependent 
manner, increasing drug concentrations were used. 
Experiments were run for 72 h and results compared to 
a vehicle control consisting of media and DMSO. Based 
on review of previous literature, the following drug 
concentrations were selected for use in this project: 10, 
30, 100, 300, 1000, and 3000 nM for RGS, and 1, 3, 10, 30, 
and 100 μM for Pol (37).

Cell proliferation was analysed using CyQUANT® 
Cell Proliferation Assay (Thermofisher, C7026), which 
quantifies cell proliferation using fluorescence-
based techniques. Cell proliferation (reported as  
fluorescence relative to baseline) was measured  
after 72 h addition of PLKi to the cell and compared 
to control values for vehicle-treated cells. Rates of 
cell apoptosis were measured by Caspase-Glo® 3/7 
Assay (Promega, G8091) after 72 h exposure to each 
PLKi, which detects caspase activity via luminescent 
signalling. CellTiter-Glo® Luminescent Cell Viability 
Assay (Promega, G7570) was used to assess cell  
viability after 72 h exposure to each PLKi using 
luminescence-based techniques corresponding to the 
amount of ATP present, a marker of metabolically  
active, hence viable, cells.

Statistical analysis
Fisher’s exact or chi-square test was used to investigate 
dichotomic variables, while a two-sided t-test or non-
parametric Mann–Whitney test was used to compare 
two groups of continuous variables as appropriate. 
A non-parametric Kruskal–Wallis test followed by 
Bonferroni post hoc test, was used for comparison  
among several groups for non-normally distributed 
variables. Correlations and 95% confidence intervals 
(95% CI) between different parameters were  
evaluated by linear regression analysis. For the data 
analysis related to the TCGA ACC dataset, RNASeq files 
(illuminahiseq_rnaseqv2-RSEM_genes_normalized) 
were downloaded from Firebrowse.org. Clinical  
data files (ACC merged_clinical) were also downloaded 
from the same source. Raw data for RNA-Seq was 
normalised by Log2 transformation and correlation 
curves generated. OS was defined as the time from 
the date of primary surgery to specific death or last 
follow-up, while PFS was defined as the time from 
the date of complete tumour resection to the first 

radiological evidence of disease relapse, progress or 
disease-related death. Survival curves were obtained 
by Kaplan–Meier estimates and the differences between 
two or more curves were investigated by the log-rank 
(Mantel–Cox) test. A multivariate regression analysis, 
including parameters with P-values below 0.1 at 
univariate analysis, was performed by Cox proportional 
hazard regression model to identify factors that  
might independently influence survival.

For cell line results a one-way ANOVA followed by a 
Tukey’s post-test was performed to compare data to 
relevant vehicle treated controls. Data was normally 
distributed as confirmed via the Kolmogorov–Smirnov 
normality test. All statistical analysis was performed 
with GraphPad Prism software 9.0 (GraphPad Software 
Inc.) or SPSS software (IBM SPSS statistics, version 
29). P-values below 0.05 were considered statistically 
significant.

Results

PLK1 gene expression in ACC samples 
(literature datasets)
In the transcriptome dataset from Giordano et al. 
(14), PLK1 expression levels were higher in ACC than 
in both NAG and ACA (Fig. 2A, P < 0.005). Moreover, 
in our previously published cohort of 40 FFPE ACC 
samples (Liang et al., 2020), PLK1 mRNA levels were  
significantly correlated with several known anti-
cancer drug targets, i.e. negatively with AKT2, BIRC5, 
CDC25A, CDK2, CDK5, CDK7, CDK8, ESR1, FLT1, and 
GRB2 and positively with HDCA1, HDCA2, HDCA4, 
HRAS, KIT, NFKB1PIK, PARP1, PIK3C2A, PLK4, TOP2A, 
TOP2B, and TXN. The strongest and/or most biologically 
relevant correlations are shown in Supplementary 
Fig. 3. To further confirm these findings, we looked 
for the most significant correlations also in the TCGA 
RNA-seq dataset. Here, PLK1 expression also positively  
correlated with CDK8, CDC25A, PLK4, and TOP2A 
(Supplementary Fig. 4), suggesting that these four gene 
targets may be of interest when considering PLK1 
inhibition in ACC.

PLK1 protein expression in adrenocortical 
tumour FFPE samples
In our cohort of 104 FFPE ACC samples, the median 
percentage of cells with positive nuclear staining 
was 30% (ranging from 5 to 80%) while the median 
H-score was 1.5. PLK1 nuclear immunostaining was  
present in 84.6% of cases (H-score ≥ 0.2) and considered 
high (i.e. H-score ≥ 1) in 60%. There was no significant 
difference in nuclear staining intensity or percentage  
of positive cells among primary tumours, local 
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recurrences or distant metastasis. When compared 
to ACA and NAG, PLK1 staining showed a trend of  
increased expression in ACC, even if this did not 
reach statistical significance (Fig. 2B). Furthermore, 
PLK1 protein expression positively correlated with 
mRNA expression levels (n = 40 ACC samples) for both 
percentage of positive cells (P < 0.001, R = 0.55, Fig. 2C) 
and H-score levels (P < 0.001, Fig. 2D).

For all 104 ACC cases, targeted DNA sequencing was 
available from a previous publication (8). Of note, 
PLK1 protein expression levels were higher in cases 
with somatic mutations affecting the TP53 gene (n = 24) 
compared to wild-type tumours (n = 80) (P = 0.0045 
by Mann–Whitney test) and all samples with TP53  
variants presented positive PLK1 nuclear staining 
compared to 80% of TP53-WT (H-score ≥1, P < 0.0001  
by chi-square test, Fig. 2E).

PLK1 protein expression in ACC samples and 
association with clinical outcome
We did not observe any significant correlation between 
PLK1 protein levels and clinical or histopathological 
parameters, including initial ENSAT tumour stage, 
steroid secretion pattern and Ki67 proliferation index.

Looking at the clinical outcome, there was a trend to 
a shorter PFS in patients with positive PLK1 nuclear 

staining (median survival 7.5 vs 17 months, P = 0.091, 
HR 1.66, 95% CI 0.98–2.83, Fig. 3A); however, this  
was not confirmed for OS (P = 0.89, HR 1.05, 95% CI 
0.53–2.06, data not shown). Interestingly, patients with 
both positive PLK1 protein expression and somatic 
TP53 mutations (n = 24) had a significantly shorter  
PFS compared to those TP53-WT with high PLK1 (n = 64) 
or low/absent PLK1 expression (n = 16) (median survival 
4.5 vs 10.5 vs 10 months, P = 0.025 by log-rank test for 
trend, Fig. 3B). However, at multivariable analysis 
including clinical and pathological parameters, only 
ENSAT tumour stage and resection status remained 
significantly associated with PFS (P = 0.004, HR 1.60, 
95%CI 1.16–2.21; and P = 0.036, HR 1.48, 95% CI 1.03–2.14 
by Cox regression analysis), while ENSAT tumour stage 
and combined TP53 status-PLK1 expression showed 
only a trend (P = 0.087, HR 1.33, 95% CI 0.96–1.85; and 
P = 0.170, HR 1.30, 95% CI 0.89–1.88).

Molecular characterisation of ACC cell lines
The genetic background of all four ACC cell 
lines is known from available literature (34, 35)  
(Supplementary Fig. 2). We characterised the gene 
expression of known anti-cancer drug targets using 
the same methods used for ACC tissue samples 
(Supplementary Fig. 2). Within cell cycle-related genes, 

Figure 2

PLK1 gene and protein expression in adrenal tumour samples. (A) PLK1 gene expression in a dataset of 33 adrenocortical carcinomas (ACCs), 22 
adenomas (ACAs), and 10 normal adrenal glands (NAGs) from Giordano et al. (14). (B) Nuclear PLK1 staining evaluated by H-score in our cohort of 104 
ACCs, 11 adrenocortical adenomas (ACAs), and 6 NAGs. P for trend = 0.697. (C) Relationship between PLK1 protein expression (percentage of positive 
nuclei) and gene expression levels in our cohort of 40 ACC samples. Statistics by linear regression analysis. (D) Relationship between PLK1 protein 
expression (H-score) and PLK1 gene expression levels in our cohort of 40 ACC samples. ****P < 0.0005. (E) Relationship between PLK1 protein expression 
(H-score) and presence of somatic mutations in TP53 gene (n = 104 ACC samples). ***P < 0.001.
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BIRC5, CDC25A, CDK1, PLK4, and TOP2A were the 
homogenously highest expressed across all cell lines, 
followed by CDK2 and PLK1. In particular, CU-ACC1 cells 
presented the highest expression (9.23-fold) of PLK1, 
while this was lower in MUC-1 cells (2.21-fold). A similar 
pattern was reflected with IGF2 expression, though 
in this case, expression was very high in CU-ACC1  
(136.08-fold), while it was under-expressed in MUC-1 
cells (0.17-fold). Of note, CU-ACC1 cells presented some 
differences compared to other cell lines, i.e. higher 
expression of CDK8, CDK9, and TERT and a lower 
expression of PLK2.

Effects of PLK1 inhibitors on ACC cell lines
As our data as well as previous literature suggest 
PLK1 may play a pathogenic role in ACC, we examined 
the ability of two PLK1i (multi-targeting RGS and 
PBD-specific Pol) to block ACC cell proliferation and  
survival. RGS reduced NCI-H295R proliferation by 

50% (P < 0.001), 44% (P < 0.05), and 43% (P < 0.05) at 
100, 300, and 3000 nM (P < 0.001), respectively, after 
72 h treatment (Fig. 4A). RGS also caused an increase 
in caspase3/7 activity in NCI-H295R cells (P < 0.001)  
(Fig. 4B). At 100 nM, 300 nM, 1000 nM, and 3000 nM,  
RGS caused a 6.7-, 6.3-, 5.4-, and 5.7-fold increase  
in caspase 3/7 activity respectively. Furthermore,  
NCI-H295R cell viability was significantly  
reduced with doses above 100 nM RGS treatment 
(P < 0.001) (Fig. 4C).

In MUC-1 cells, RGS had much less impact on  
proliferation and cell viability. At the high doses of  
1000 nM and 3000 nM, RGS lowered MUC-1 proliferation  
by 17.0% and 19.5%, respectively, after 72 h (P < 0.05),  
although this was only a modest slowing of cell  
growth compared to control (Fig. 4A). Indeed, when 
apoptosis and viability were examined in these cells,  

Figure 3

Relationship between PLK1 protein expression and clinical outcome 
evaluated as progression-free survival (PFS) in 104 adrenocortical 
carcinomas (ACC). (A) Kaplan–Meier curves for PLK1 protein expression 
(positive if H-score ≥ 1). (B) Kaplan–Meier curves for PLK1 protein 
expression and TP53 gene mutations (WT, wild type). Statistical analysis 
by log-rank test.

Figure 4

The effect of RGS on (A) cell proliferation, (B) caspase 3/7 activity and (C) 
cell viability in NCI-H295R, MUC-1, CU-ACC1, and CU-ACC2. Data represent 
a range of doses of RGS treatment after 72 h, n = 3–5 ± s.d. Statistical 
analysis is a one-way ANOVA followed by a Tukey’s post-test. *P < 0.05, 
**P > 0.01, ***P < 0.001 compared to the cell lines vehicle control (Veh).
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RGS was not effective at increasing caspase 3/7 activity 
(Fig. 4B) or lowering cell viability, other than a slight 
decrease at 1000 nM (Fig. 4C).

We further tested RGS in the more recently established 
CU-ACC1 and CU-ACC2 cell lines. In CU-ACC1, RGS slowed 
proliferation at 1000 nM; however, this reduction 
was not significant (Fig. 4A). At the higher doses of 
1000 nM and 3000 nM, RGS caused a 3.4- and 3.3-fold  
increase in caspase 3/7 activity (P < 0.01), with a clear 
trend towards an increase at 300 nM (Fig. 4B). Viability 
of CU-ACC cells mimicked the proliferation data, with 
RGS having no significant effect on viability after 72 
h treatment; however, there was a trend towards 
decreased cell viability in these studies (Fig. 4C). The 
effects of RGS in CU-ACC2 cells were more promising 
than in CU-ACC1. RGS reduced cell proliferation by 
17.7% (P < 0.05) and 19.5% (P < 0.05) at 1000 nM and 

3000 nM, respectively (Fig. 4A). This is supported by  
apoptosis results, which show that 3000 nM RGS 
increased caspase 3/7 activity by 3.8-fold compared 
to control (P < 0.01) (Fig. 4B). RGS at 1000 nM and  
3000 nM also significantly lowered CU-ACC2 cell  
viability (P < 0.05 and P < 0.01, respectively) (Fig. 4C).

Next, we tested the PLK1-specific inhibitor Pol on the 
same group of ACC cell lines. In NCI-H295R cells, Pol,  
at the high dose of 30 μM, caused a significant 48.8% 
reduction in proliferation over 72 h (P < 0.01) (Fig. 
5A). However, at all doses tested, Pol did not affect  
caspase 3/7 activity (Fig. 5B) or NCI-H295R cell viability 
(Fig. 5C). In MUC-1 cells, 100 μM Pol treatment showed 
a 91.3% reduction in cell proliferation (P <0.001)  
(Fig. 5A). Caspase 3/7 activity was also entirely  
reduced by 100 μM Pol (P < 0.001) (Fig. 5B). MUC-1  
cell viability was completely lost by 100 μM Pol  
treatment (P < 0.001) (Fig. 5C).

In CU-ACC-1 cells, Pol reduced proliferation by 77.9%  
only at the highest dose of 100 μM (P < 0.001); all other 
doses had no effect (Fig. 5A). When caspase 3/7 was 
examined, Pol caused a modest but significant 2.3-
fold increase in activity at 100 μM only (P < 0.05), with  
all other doses showing no effect (Fig. 5B). Despite these 
results, no effect was seen on CU-ACC-1 cell viability  
at any dose (Fig. 5C). In CU-ACC-2 cells, Pol slowed 
proliferation by 63.6% and 64.0% at 30 μM and  
100 μM, respectively (P < 0.001) (Fig. 5A). Caspase 3/7 
activity was increased by 3.6 fold after 100 μM Pol 
treatment compared to control (P < 0.001) (Fig. 5B). 
However, no dose of Pol affected viability of CU-ACC-2 
cells (Fig. 5C).

Discussion

In this study, we have demonstrated that PLK1  
represents a potential treatment target in ACC. Our 
findings might be of clinical relevance, given that 
ACC remains an aggressive malignancy with an  
urgent unmet need for molecular-targeted 
pharmacological therapies.

PLK1 represents an ideal anti-cancer drug target 
considering its role in mitotic regulation, interplay 
with the Rb/p53 pathway (38) and its overexpression 
in multiple solid tumours (26). Moreover, multiple 
PLK1i, including first-, second-, and third-generation 
drugs, have been investigated in vitro, in vivo and in 
clinical trials in other cancer types (reviewed in (13, 
39)). Of note, it has been demonstrated that PLK1i 
are more efficacious in tumours harbouring variants  
in the TP53 gene (16, 27, 28, 29, 40, 41). This is of  
interest, given that TP53 mutations are present in 
approximately 30% of sporadic ACC cases (8, 30).

Concerning ACC, high PLK1 mRNA expression has been 
reported in multiple studies (9, 16, 17, 30) and clearly 
linked to worse clinical outcomes (16, 17).

Figure 5

The effect of Pol on (A) cell proliferation, (B) caspase 3/7 activity and (C) cell 
viability in NCI-H295R, MUC-1, CU-ACC1, and CU-ACC2 cells. Data represent 
a range of doses of Pol treatment after 72 h, n = 3–4 ± s.d. Statistical 
analysis is a one-way ANOVA followed by a Tukey’s post-test. *P <0.05, **P 
>0.01, ***P <0.001 compared to the cell lines vehicle control (Veh).
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In this study, we investigated for the first time  
PLK1 expression at the protein level with 
immunohistochemistry in a large cohort of 104 ACC 
samples, showing that PLK1 is highly expressed in 
60% of cases. We did not observe any significant  
relationship between PLK1 staining and clinical 
parameters or survival data. However, similar to 
many previous studies, our analysis is limited by 
its retrospective nature, as well as the potential  
influence of multiple systemic and local treatments  
after initial surgery. Importantly, we found a more  
evident trend to a poor prognosis when considering 
TP53 mutation status in conjunction with PLK1 
expression levels. Specifically, patients with both 
TP53 mutations and high PLK1 expression had the  
shortest progression-free survival.

PLK1 is a potent oncogene and, therefore, an  
ideal drug target for anti-cancer therapy (42). In the 
present study, we investigated the efficacy of two  
types of PLK1 inhibition (multi-targeting RGS  
and small molecule PBD-specific Pol) in multiple 
ACC cell models. RGS was most effective against  
NCI-H295R cell growth and viability, but also had 
significant effects against CU-ACC2 cell proliferation  
and viability, and triggered increased apoptosis. It is 
unclear why RGS had less impact on MUC-1 and almost 
no effect on CU-ACC1 cells. It is possible that observed 
effects relate to RGS’s multi-targeting properties, i.e. 
inhibition of PLK1, CDK, and Ras (43). However, the 
CDK1/2 and KRAS expression profiles of MUC-1 and 
CU-ACC1 are similar to NCI-H295R and CU-ACC2 cells  
(see Supplementary Fig. 2), suggesting CDK is not 
underlying the difference in response to RGS’s effects. 
Instead, the fact that β-catenin is phosphorylated 
by Nek2 and subsequently by PLK1, and may itself 
be phosphorylated by PLK1 directly, may explain  
why NCI-H295R was more sensitive to PLK1 inhibition 
than other cell lines (44).

In clinical trials, despite its favourable pharmacokinetic 
profile, RGS showed limited success due to  
poor specificity, resulting in dose-limiting toxicity 
(45, 46). Therefore, PLK1i with stronger potency 
and higher selectivity have been developed and 
are currently under investigation in early phase 
trials (42, 47), i.e. third-generation PLK1i PCM-075 
(onvansertib) and PLK1 siRNA TKM-080301 (21, 48) 
(https://clinicaltrials.gov/). Moreover, small-molecule 
PBD-specific PLK1i, such as Pol, have emerged as a 
novel, alternative class of inhibitors demonstrating 
proof of concept of in vivo efficacy (47). Therefore, to 
compare with the multi-targeting effects of RGS, we also  
tested Pol’s effects.

Pol was effective at blocking cell growth in all  
cell lines when tested at the highest dose of 100 μM. 
Interestingly, and similarly to our RGS findings, Pol 
also significantly impacted proliferation of NCI-H295R  
and CU-ACC2 cells at the slightly lower dose of 30 μM. 

When considering the molecular profiles of our ACC  
cell lines, again our results may suggest that PLK1 
inhibition is more effective in ACC cells with  
specific TP53 variants. In fact, NCI-H295R and CU-ACC2 
cells harbour a TP53 deletion or missense mutation, 
respectively, and were more sensitive to Pol treatment. 
MUC-1 cells also have a TP53 deletion, however their 
PLK1 expression is less than in H295R and CU-ACC2, 
which may explain Pol’s reduced effect in them. In 
addition, the results observed in MUC-1 cells treated 
with high Pol concentrations (i.e. undetectable caspase 
3/7 activity, below that of the normal MUC-1 turnover 
rate) may be explained by the cells entering a quiescent 
state, rather than dying.

CU-ACC1 cells were the least responsive to both RGS 
and Pol treatment. This cell line is TP53 wild-type and, 
in our hands, were the slowest growing cells. This may 
be reflective of the fact that CU-ACC1 cells are not as 
reliant on the PLK1 pathway for early trigger of the 
G2/M transition. Further work is needed to examine 
which compounds or combinations could be effective at 
targeting non-TP53 mutated ACC.

Overall, our cell data suggests that targeting PLK1 
may be an effective treatment in a subset of patients 
with ACC. In fact, cell lines harbouring TP53 variants 
demonstrated greater response to PLK1i than 
TP53 wild-type CU-ACC1, with the most impressive  
efficacy being recorded in NCI-H295R cells. It is 
noted that, in our experiments, high doses of both 
RGS and Pol were used. Considering that maximum  
plasma RGS concentrations in published clinical trials 
are reported in the range of 0.20–5.93 μg/mL (29, 49),  
and clinically achievable concentrations of Pol are  
not yet known, replicating the dosages presented  
in this study in vivo may not be attainable.  
Nevertheless, our data are a proof-of-concept study, 
which suggest a potential role for PLK1 inhibition  
as a therapeutic target for ACC and provide a starting 
point for the development or identification of 
more efficacious compounds targeting PLK1. While 
not definitively providing evidence for use of Pol,  
we suggest more potent PLK1 inhibitors may be 
used against ACC in the future. Moreover, further  
studies on potential combination of PLK1i and other 
drugs targeting related pathways (i.e. CDK, mTOR  
or p53) are required. A depiction of known interplays 
between PLK1 and other potential additional drug 
targetable pathways and genes is shown in Fig. 1.

Conclusion

In conclusion, we demonstrate that new-generation 
PLK1 inhibitors are effective in a subgroup of ACC cell 
lines with a specific genetic background. Therefore, we 
propose PLK1i as a promising targeted treatment of a 
subset of ACC patients that may be pre-selected according 
to their tumour’s molecular signature.
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