

University of Birmingham

A Practical Human Labeling Method for Online Just-
in-Time Software Defect Prediction
Song, Liyan; Minku, Leandro; Teng, Cong; Yao, Xin

DOI:
10.1145/3611643.3616307

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Song, L, Minku, L, Teng, C & Yao, X 2023, A Practical Human Labeling Method for Online Just-in-Time Software
Defect Prediction. in S Chandra, K Blincoe & P Tonella (eds), ESEC/FSE 2023: Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering.
FSE: Foundations of Software Engineering, Association for Computing Machinery (ACM), pp. 605–617, 31st
ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, San Francisco, California, United States, 3/12/23. https://doi.org/10.1145/3611643.3616307

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 02. May. 2024

https://doi.org/10.1145/3611643.3616307
https://doi.org/10.1145/3611643.3616307
https://birmingham.elsevierpure.com/en/publications/b3f84075-d8db-40c4-8875-de0398abc39c

A Practical Human Labeling Method for Online Just-in-Time
So�ware Defect Prediction

Liyan Song
songly@sustech.edu.cn

Southern University of Science and Technology
Shenzhen, China

Leandro Lei Minku∗

l.l.minku@bham.ac.uk
The University of Birmingham

Birmingham, UK

Cong Teng
12132358@mail.sustech.edu.cn

Southern University of Science and Technology
Shenzhen, China

Xin Yao∗

xiny@sustech.edu.cn
Southern University of Science and Technology

Shenzhen, China

ABSTRACT

Just-in-Time Software Defect Prediction (JIT-SDP) can be seen as
an online learning problem where additional software changes
produced over time may be labeled and used to create training
examples. These training examples form a data stream that can
be used to update JIT-SDP models in an attempt to avoid mod-
els becoming obsolete and poorly performing. However, labeling
procedures adopted in existing online JIT-SDP studies implicitly
assume that practitioners would not inspect software changes upon
a defect-inducing prediction, delaying the production of training
examples. This is inconsistent with a real-world scenario where
practitioners would adopt JIT-SDP models and inspect certain soft-
ware changes predicted as defect-inducing to check whether they
really induce defects. Such inspection means that some software
changes would be labeled much earlier than assumed in existing
work, potentially leading to different JIT-SDP models and perfor-
mance results. This paper aims at formulating a more practical
human labeling procedure that takes into account the adoption of
JIT-SDP models during the software development process. It then
analyses whether and to what extent it would impact the predictive
performance of JIT-SDP models. We also propose a new method
to target the labeling of software changes with the aim of saving
human inspection effort. Experiments based on 14 GitHub projects
revealed that adopting a more realistic labeling procedure led to
significantly higher predictive performance than when delaying the
labeling process, meaning that existing work may have been under-
estimating the performance of JIT-SDP. In addition, our proposed
method to target the labeling process was able to reduce human
effort while maintaining predictive performance by recommending

∗Liyan Song, Cong Teng, and Xin Yao (Corresponding Author) are with Research
Institute of Trustworthy Autonomous Systems, Southern University of Science and
Technology, Shenzhen, China and Guangdong Provincial Key Laboratory of Brain-
inspired Intelligent Computation, Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, China.
Leandro Lei Minku (Corresponding Author) is with School of Computer Science, the
University of Birmingham, Edgbaston, Birmingham, UK

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616307

practitioners to inspect software changes that are more likely to
induce defects. We encourage the adoption of more realistic human
labeling methods in research studies to obtain an evaluation of
JIT-SDP predictive performance that is closer to reality.

CCS CONCEPTS

• Software and its engineering→Riskmanagement; Software

defect analysis; • Computing methodologies→ Online learn-

ing settings; Classification and regression trees; Bagging.

KEYWORDS

Just-in-time software defect prediction, online learning, verification
latency, waiting time, human labeling, human inspection

ACM Reference Format:

Liyan Song, Leandro Lei Minku, Cong Teng, and Xin Yao. 2023. A Practical
Human LabelingMethod for Online Just-in-Time Software Defect Prediction.
In Proceedings of the 31st ACM Joint European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering (ESEC/FSE

’23), December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3611643.3616307

1 INTRODUCTION

Just-in-Time Software Defect Prediction (JIT-SDP) is a type of SDP
specialized at the code change level with the aim of predicting
whether or not a software change is defect-inducing at commit
time (just-in-time) [19, 20]. It is of practical relevance as a decision
supporting tool for improving software quality by automatically
alerting developers of potential defects at a very early stage, as
soon as a software change is produced, and at a relatively fine
granularity compared to module-based SDP. As such, it has been
attracting increasing interest from both academia [54] and industry
[29, 38, 48]. From the machine learning viewpoint, JIT-SDP can
be seen as a binary classification problem for which models are
constructed based on training examples labeled as defect-inducing
(class 1) or clean (class 0) that can then be used to predict whether
or not new software changes would induce defects.

In practice, training examples corresponding to software changes
arrive sequentially in order over time and thus JIT-SDP should be
taken as an online learning task, where JIT-SDP models are updated
with new incoming training examples [4, 27, 45]. Existing litera-
ture has revealed that updating JIT-SDP models with such training
examples (so that the models can capture the latest data generation

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

605

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-1172-8825
https://orcid.org/0000-0002-2639-0671
https://orcid.org/0009-0001-5857-6243
https://orcid.org/0000-0001-8837-4442
https://doi.org/10.1145/3611643.3616307
https://doi.org/10.1145/3611643.3616307
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616307&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song, Leandro Lei Minku, Cong Teng, Xin Yao

status) can lead to better predictive performance compared to mod-
els built with obsolete training examples [27]. Updating JIT-SDP
models over time is particularly important given the existence of
concept drift, which are changes taking place in the code defect gen-
eration process. Concept drift has been shown to occur in JIT-SDP
[3, 4] and may significantly deteriorate predictive performance of
JIT-SDP models if they are not updated over time [27].

Dealing with concept drift in JIT-SDP is nevertheless particularly
challenging as the actual labels of software changes only become
available long after their commit time, an issue referred to as veri-
fication latency in machine learning [9, 11, 24, 43]. This can delay
the model updates, potentially affecting the ability of such models
to react to concept drift. In particular, a training example can only
be labeled as a clean software change after enough time has passed
from its commit time for one to be confident on its clean status, or
as a defect-inducing training example when a defect is found to be
associated to this change, whichever is shorter [4]. Such labeling
process is referred to as the waiting time method and has been
adopted in recent online JIT-SDP studies [3, 4, 42].

However, such labeling process implicitly assumes that practi-
tioners would not inspect software changes upon a defect-inducing
prediction. This is inconsistent with a real-world scenario where
developers adopt JIT-SDP models during the software development
process. Specifically, when a JIT-SDP model predicts a new soft-
ware change to be defect-inducing, the developer who has just
completed the change may inspect the change to check whether
or not it really induces any defect. Ignoring such inspection means
assuming that practitioners would always completely ignore the
warnings given by the JIT-SDP model and wait until defects are
found much later, when the defect is more difficult to be fixed. In
other words, it means completely ignoring the main point of using
JIT-SDP models in practice, which is to inspect software changes
predicted as defect-inducing at (or close to) commit time, in an
attempt to eliminate their defects when the code change is still
fresh in the developers’ minds. This may in turn negatively impact
the evaluation of predictive performance of JIT-SDP models, as it
results in a delay in the labeling process that is larger than the delay
that would likely occur in practice, potentially preventing JIT-SDP
models from reacting to concept drift in a more timely manner.

Therefore, a more realistic labeling procedure that takes into
account the adoption of JIT-SDP models during the software de-
velopment process and the resulting human inspection of software
changes predicted as defect-inducing should also be taken as an im-
portant part of the JIT-SDP process. This paper aims at formulating
such labeling procedure and investigating whether and to what ex-
tent it would impact the predictive performance of JIT-SDP models.
We refer to this labeling procedure as Immediate Human Labeling
for Software Changes Predicted as Defect-Inducing (HumLa). To-
gether with the delayed waiting time method, it forms a labeling
process that is closer to the reality that would be adopted in practice
when JIT-SDP models are used during the software development
process. It is noteworthy that the term “immediate" in our paper
does not mean that the developers has to give up all other work
that they had planned in their schedule to immediately inspect the
software change. What we mean is that the developer will label the
change as part of the process of inspecting this change at an early
stage (which is inherent from the adoption of JIT-SDP), and this is

a more immediate labeling than the waiting time procedure. More-
over, the process of inspecting a change predicted as defect-inducing
is the same as the labeling process. In other words, if a developer
opts for inspecting a change predicted as defect inducing as part
of the adoption of JIT-SDP in their project/organization, labeling
this software change does not increase this effort further. That
said, inspecting all software changes that are predicted as defect-
inducing as part of the adoption of JIT-SDP could result in high
inspection/labeling effort. So, we also propose a human labeling
method to save human labeling costs by helping practitioners to tar-
get their inspection effort towards specific defect-predicted changes,
called Effort-Conservative Human Labeling (ECo-Humla).

Our study answers the following Research Questions (RQs):

RQ1 How to formulate a JIT-SDP labeling method with immediate
human labeling of changes predicted as defect-inducing?

RQ1.1 How does this labeling method affect the JIT-SDP predic-
tive performance compared to the delayed waiting time
method for JIT-SDP?

RQ1.2 To what extent the quality of human labels impacts the
predictive performance when using this method?

RQ1.3 How does the amount of human effort affect the predictive
performance when using this method?

RQ2 How can we target the labeling process towards specific
software changes to reduce the amount of required human
inspection effort?

RQ2.1 How does this labeling method affect the JIT-SDP predic-
tive performance?

RQ2.2 How much human effort can this method save?
RQ2.3 How helpful is this method in encouraging defects to be

found when saving effort?

The main contributions of this paper are listed below:

• We are the first to formulate the immediate human labeling
method (HumLa) into JIT-SDP, being closer to the reality
that would be adopted in practice (RQ1).
• We show based on experiments with 14 datasets that this
practical labeling method can significantly benefit predictive
performance of JIT-SDP when the human label quality and
quantity are above a given threshold (RQ1.1-1.3). Studies
that do not take such labeling process into account may thus
be underestimating the predictive performance of JIT-SDP
models that would be obtained in practice.
• We propose an effort-conservative human labeling method
(ECo-HumLa) to prioritize the most confidently defect-pre-
dicted software changes for practitioners to inspect (RQ2).
• We show experimentally that ECo-HumLa can substantially
reduce human effort by around 50% while maintaining JIT-
SDP predictive performance (RQ2.1-2.2). ECo-HumLa en-
courages a higher number of defects to be found through
inspection than a baseline effort reduction method (RQ2.3).

2 RELATED WORK

2.1 JIT-SDP

Early studies usually modeled JIT-SDP as an offline learning task,
assuming that all training examples are available beforehand and
no further adjustment or evaluation of the JIT-SDP models would

606

A Practical Human Labeling Method for Online Just-in-Time So�ware Defect Prediction ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

happen over time. A landmark study is that of Kamei et al., who
summarized 14 features extracted from commits and bug reports
and showed them to be good indicators for yielding high predictive
performance in JIT-SDP [19]. Many later studies were conducted
based on these features [17, 28]. Various learning machines have
been investigated for (JIT-)SDP, among which tree-based methods
were shown to have potential in yielding good performance [13, 17,
18, 25, 46, 51]. Techniques such as oversampling and undersampling
[33] have also been adopted to deal with the class imbalance issue
usually suffered by JIT-SDP, where the defect-inducing (clean) class
is typically the minority (majority).

However, studies on offline JIT-SDP disregard the chronology of
software changes that arrive sequentially over time in practice. Tan
et al. showed that overlooking chronology can result in deceptively
higher predictive performance than the prediction models could
achieve in practice, posing serious threats to validity in JIT-SDP
studies [45]. Later studies [3, 4, 27] further found that predictive
performance of JIT-SDP models can deteriorate over time as a
result of concept drift. Therefore, JIT-SDP approaches being able to
learn over time and reduce drops in predictive performance that are
potentially caused by concept drift have been proposed [3, 4, 44, 45].

2.2 Chronology-Preserving Labeling Procedures

When taking chronology into account in JIT-SDP, one also needs
to consider the issue of verification latency when labeling training
examples, as explained in Section 1. In particular, Tan et al. [45]
adopted a labeling procedure where a full batch of software changes
is labeled after a pre-defined amount of time, so that there is an
increased chance that defects associated to software changes would
have been found to produce defect-inducing training examples.
However, this procedure does not consider that defect-inducing
training examples could be produced as soon as defects are found to
be associated to them, which potentially happens before the end of
this pre-defined period of time. Therefore, this labeling procedure
can unnecessarily delay the training process of JIT-SDP models,
potentially slowing down reaction to concept drift.

Cabral et al. [4] proposed a method that overcomes this issue.
It makes use of a pre-defined parameter called waiting time that
defines how long one would wait after a software change is commit-
ted to label it as clean. If no defect is found within this waiting time,
a clean training example is produced at the end of the waiting time.
If a defect is found to be associated to this software change within
the waiting time, a defect-inducing training example is produced at
the moment when this is found. If a defect is found after the waiting
time for a change that had been previously labeled as clean, a new
defect-inducing training example is produced for this change.

Such waiting time strategy has been used as a labeling method
for an online JIT-SDP learning procedure as illustrated in Figure 1(a).
Consider an initial JIT-SDP modelM0 (·) that has been produced
with existing data. When a new software change -C is committed
at test time step C , where -C ∈ R

3 denotes a 3-dimensional feature
vector representing the software change, the latest modelMC−1 (·)
is adopted to predict whether -C would be defect-inducing (class 1)
or clean (class 0), formulated as ~̂C =MC−1 (-C). Once that is done,
new training examples are produced based on the waiting time
method until a new software change arrives to be predicted. Such

(a) JIT-SDP with the waiting time method adopted in recent online JIT-SDP studies.

(b) JIT-SDP with HumLa proposed in this paper.

Figure 1: JIT-SDP with different labeling methods.

training examples are used to produce an updated JIT-SDP model
MC (·). When the new change arrives to be predicted, the procedure
is repeated for test time step C ← C +1. This iterative test-then-train
process based on the waiting time method continues throughout
the process of JIT-SDP. Several other studies have adopted this
procedure with the waiting time method [3, 40, 42].

However, all previous studies have overlooked the fact that prac-
titioners would be inspecting software changes predicted as defect-
inducing at commit time when JIT-SDP is adopted in practice, to
check if they are really associated to a defect. Even though a waiting
time is necessary for labeling software changes predicted as clean
by a JIT-SDP model, changes predicted as defect-inducing would
likely be labeled much earlier. Therefore, this more immediate hu-
man labeling procedure should be taken as an important part of
the JIT-SDP process to formulate a labeling procedure that is closer
to the reality that would be adopted in practice.

3 IMMEDIATE HUMAN LABELING IN JIT-SDP

3.1 HumLa

Figure 1(b) illustrates the procedure of ImmediateHuman Labeling
for Software Changes Predicted as Defect-Inducing (HumLa), for-
mulated to answer RQ1. In HumLa, if a software change is predicted
as defect-inducing, this change will be more immediately labeled by
humans; whereas a change predicted as clean is labeled following
the waiting time labeling procedure [4] explained in Section 2.2.

In particular, when a test example -C ∈ R
3 is predicted as

defect-inducing (class 1) at test time step C , formulated as [~̂C =

MC−1 (-C)] == 1, the developer who has just produced the code
change is requested to immediately inspect the code while it is
still fresh in their mind, and to decide whether or not this change
really contains any defect. This process produces a training label
H(-C) immediately after C , where H(·) represents the practical
human labeling procedure. Meanwhile, the waiting time labeling
procedure is still used to label any software changes that have been
previously predicted as clean and that are now ready to be labeled
due to the end of their waiting time. When -C is predicted as clean
(class 0), formulated as [~̂C =MC−1 (-C)] == 0, there is no need for
developers to immediately inspect this change. Therefore, only the
waiting time procedure is used.

607

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song, Leandro Lei Minku, Cong Teng, Xin Yao

The immediate training example (-C ,H(-C)) that is possibly
created by HumLa, and any delayed training example(s) that were
possibly created by thewaiting timemethod at test step C are all used
to update the JIT-SDP model following their labeling chronological
order. The latest model available before a new software change
needs to be predicted is denoted asMC (·). It is worth noting that
when no software change has been labeled before a new software
change arrives to be predicted, the modelMC (·) remains the same
as the one in the prior test step asMC−1 (·), i.e.,MC (·) =MC−1 (·).
When a new software change arrives to be predicted, the time step
C is incremented as C ← C + 1, such that the most up-to-date model
used for its prediction is now referred to asMC−1 (·).

The HumLa procedure makes the modeling of JIT-SDP closer
to the reality. As more immediate human labeled examples could
better capture recent concepts of the defect-generation process in
JIT-SDP, this labeling procedure could be potentially beneficial to
predictive performance especially when concept drift occurs and
as long as the quality of human labeling is not poor. The benefit of
HumLa to predictive performance is investigated in RQ1.1. How-
ever, two issues need to be considered when investigating HumLa.
The first is that developers may make mistakes when labeling the
defect-predicted examples. Therefore, it is important to investigate
the impact of such human label noise on predictive performance of
JIT-SDP when adopting HumLa. This is done in RQ1.2 and is fur-
ther explained in Section 3.1.1. The second issue is that developers
may consider the effort to inspect and label all changes predicted
as defect-inducing as too high. To save resources and reduce hu-
man effort, developers may want to inspect only part of, not all,
defect-predicted examples. Therefore, it is of particular interest to
investigate the extent to which the amount of human effort would
affect predictive performance when adopting HumLa. This is done
in RQ1.3 and is further explained in Section 3.1.2.

It is worth noting that, since only defect-predicted software
changes would be immediately inspected by humans, the current
underlying data generating process would likely be represented
mostly by examples of the defect-inducing class. However, since the
defect-inducing class is usually the minority in JIT-SDP [45], such
distribution bias towards this minority class would probably not be
detrimental to predictive performance of JIT-SDP models compared
to the benefits gained by the more recent training examples pro-
duced by HumLa [3]. Indeed, our experimental studies in Section 6
show that HumLa can typically lead to significant improvement in
predictive performance.

3.1.1 Human Label Noise. When adopting HumLa, defect-pre-
dicted examples may be mislabeled as clean by humans, who may
fail to find the defect induced by the software change. When devel-
opers do find a defect-predicted software change to induce a defect,
it is assured that the change should really be defect-inducing, i.e.,
such label would be unlikely to be noisy. Therefore, mislabeling
of defect-predicted examples is one-sided [40]. That being said, a
change that is truly defect-inducing may be manually mislabeled
as clean, but a change that is truly clean would be highly unlikely
to be manually mislabeled as defect-inducing.

Therefore, the practical human labeling processH(-) of a soft-
ware change described by the feature vector - and predicted as
defect-inducing by the most up-to-date model can be formulated as

H(-) =

0, if ~ = 0

0, if ~ = 1& with the probability U
1, if ~ = 1& with the probability 1 − U

(1)

where ~ is the true label of - , U ∈ [0, 1] denotes a pre-defined
human label noise corresponding to the probability that - would
be mislabeled by human. This formulation ofH(·) will be used to
analyze the impact of different amounts of one-sided human label
noise U ∈ {0, 0.1, · · · , 0.9, 1.0} on the predictive performance of
JIT-SDP when adopting HumLa to answer RQ1.2 in Section 6.1.2.
In this paper hereafter, we refer to such formulation as HumLa at

U-human noise, and for the sake of simplicity, HumLa at 0-human
noise is adopted as the default setting unless otherwise specified.

3.1.2 Human Effort of HumLa. In this section, we formulateHumLa
considering that some software changes predicted as defect-inducing
would not be inspected by developers to save effort. Given a ran-
dom variable following the uniform distribution] ∼ * [0, 1], we
decide whether humans would inspect and label a software change
- predicted as defect-inducing based on the following

1(-) =
{

1, if] ≤ V

0, if] > V
(2)

where V ∈ [0, 1] denotes a pre-defined human labeling percent-

age corresponding to the percentage of defect-predicted examples
that developers opt for inspecting over the total number of defect-
predicted examples, and 1(·) is the indicator function deciding
whether (value 1) or not (value 0) the developer opts for inspecting
this change to produce a training example with human labelH(-)
as in Eq. (1). Larger V allows for more defect-predicted examples to
be inspected by developers, usually requiring more human effort.

We will analyze the impact of different amounts of human effort
in terms of the labeling percentage V ∈ {1, 0.9, · · · , 0.1} on predic-
tive performance of JIT-SDP for answering RQ1.3 in Section 6.1.3. In
this paper hereafter, we refer to it as HumLa at V-human effort, and
for the sake of simplicity, HumLa at 100%-human effort is adopted
as the default setting, unless otherwise specified. It is also worth
noting that JIT-SDP at 0%-human effort is equivalent to the waiting
time method.

3.2 ECo-HumLa

This section proposes an Effort-Conservative Human Labeling
(ECo-Humla) method for RQ2 to save human effort in labeling
defect-predicted examples while maintaining predictive perfor-
mance of JIT-SDP. As software changes to be labeled correspond to
those that are inspected by practitioners at commit time in an at-
tempt to find potential defects at an early stage, it is also important
for ECo-HumLa to prioritize the labeling of software changes that
are more likely to contain defects.

Given a software change - , JIT-SDP predicts whether or not this
software change would be defect-inducing (class 1) or clean (class
0) based on the latest modelM(·). Besides the class prediction as
~̂ = M(-), many predictive models can also provide prediction
probabilities. In the case of ensembles of models, the prediction
probabilities can be computed as the mean predicted class prob-
abilities of the base learners in the ensemble [30]. We use 21 (-)
and 20 (-) to denote the prediction probability that - belongs to

608

A Practical Human Labeling Method for Online Just-in-Time So�ware Defect Prediction ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

class 1 and class 0, respectively, where 0 ≤ 20 (-), 21 (-) ≤ 1 and
21 (-) + 20 (-) = 1. A predicted label is typically determined as

~̂ =

{
1 if 21 (-) > 20 (-)
0 if 21 (-) ≤ 20 (-) .

Based on these notations, we define the prediction confidence of
test example - based on the JIT-SDP modelM(·) as

d (-) = |21 (-) − 20 (-) |, (3)

where d (·) ∈ [0, 1] and | · | denotes the absolute value. This metric
can measure how much confidence the model has in predicting
the software change - , and larger d indicates higher confidence
upon this prediction. For JIT-SDP, a defect-predicted example with
larger d means that this change has higher chances of inducing
a defect and thus the developer would be strongly recommended
to inspect this change at commit time, producing an immediately
labeled example.

Given a random variable uniformly distributed as] ∼ * [0, 1],
practitioners can heuristically decide whether to inspect and label
a defect-predicted example - according to a probability equal to
the prediction confidence d (-). This ECo-HumLa process can be
formulated as

1(d (-)) =
{

1, if] ≤ d (-)
0, if] > d (-) (4)

where 1(·) is the indicator function deciding whether (value 1) or
not (value 0) practitioners opt for inspecting the change to produce
an immediately labeled training example. It is worth noting that,
similar to HumLa, ECo-HumLa only deals with defect-predicted
examples. There is no need for humans to immediately inspect
clean-predicted examples, as this would lead to a large amount of
effort for inspecting changes that are unlikely to induce defects.

Based on this formulation, the higher the confidence d (·), the
more strongly practitioners are encouraged to inspect and label
the software change, and the more likely practitioners are to really
label it. However, as this procedure is stochastic, there is still some
chance that practitioners would (would not) label a given change
that was predicted as defect-inducing with low (high) confidence.
ECo-HumLa could also be used in a deterministic way by setting
a fixed threshold to replace g in Eq. (4). However, we encourage
the use of this stochastic process to avoid the strict assumption
that practitioners would have to label all changes above a certain
threshold and cannot label any of the changes below the threshold.

We illustrate how to conduct the ECo-HumLa procedure as fol-
lows. Given test example -1 and -2, suppose that the model pro-
duces prediction probability 20 (-1) = 0.68 and 21 (-1) = 0.32 for
-1 and 20 (-2) = 0.32 and 21 (-2) = 0.68 for -2, individually. As
21 (-1) < 20 (-1), we have ~̂1 = 0 and it is unnecessary for humans
to inspect -1. As 21 (-2) > 20 (-2), we have ~̂2 = 1 and its predic-
tion confidence is further computed as d (-2) = |0.68− 0.32| = 0.36.
This means that -2 has the probability of 36% to be inspected by
human to immediately obtain its training label.

The procedure of ECo-HumLa is consistent with the real-world
process where practitioners would favor inspecting the most con-
fident predictions as defect-inducing to find as many defects as
possible while saving inspection effort. However, it relies on the
assumption that the most confident defect predictions correspond
to software changes that are more likely to be defect-inducing, so

that the number of defects that practitioners would miss to find at
commit time is not large. It is also unclear how much the reduction
of effort is obtained through this procedure and how it would af-
fect the predictive performance of the resulting JIT-SDP models.
These three points will be investigated as part of the experiments
to answer RQ2.1, RQ2.2 and RQ2.3, respectively.

Another possible setup for ECo-HumLa could be the opposite,
where practitioners would be recommended to prioritize inspect-
ing those least confident predictions, so that the most informative
training samples [1, 26] for the JIT-SDP model can be produced
during the human labeling process. This could possibly contribute
the most to the performance improvement of the JIT-SDP model.
We have confirmed this conjecture through experiments which
have shown that human labeling the least confident predictions
did outperform the proposed ECo-HumLa in terms of achieving
significantly better predictive performance and conserving much
more human effort. However, the least confident defect-inducing
predictions may be more likely to correspond to software changes
that are actually clean than the more confident defect-inducing
predictions. If we recommend developers to prioritize inspecting
(and thus labeling) these changes, they would waste effort in in-
specting changes that may be clean, and miss several defects by
not inspecting the changes that are more likely defect-inducing.
Therefore, while such alternative setup makes sense from a model
predictive performance perspective, it would be unsuitable as a
practical approach to JIT-SDP.

4 DATASETS

This paper uses 14 GitHub open source projects as in previous work
[40, 42] to investigate the proposed human labeling methods for
JIT-SDP, as summarized in Table 1 of the supplementary material.
Twelve metrics have been used as input features following previous
work [19], as explained in Section 1 of the supplementary material.

The Commit Guru [37] tool was used to collect the data with
input features and labels of software changes. The tool is based on
the SZZ algorithm [39] to decide actual labels of software changes,
which are defect-inducing (class 1) or clean (class 0). As SZZ is
known to lead to label noise [16, 20, 34–36], we have conducted a
manual inspection of a random sample of changes of each project
to investigate its data quality. Four experts with at least 4 years
of programming experience have been asked to work in pairs to
label these changes. Each pair was asked to discuss each of the
software changes to decide on their labels, leading to two sets of
human-generated labels (Pair 1 and Pair 2). Following existing work
[16, 27], human annotators were asked to label software changes
as defect-fixing or non-defect-fixing, instead of labeling software
changes as defect-inducing or clean directly. This is because it
would be extremely time-consuming, if even possible at all, for a
software developer who had not worked on a given project to man-
ually check whether a software change is defect-inducing or clean
directly on this project based on (e.g.) codes and/or commit mes-
sages. Fixes are used by SZZ to identify defect-inducing software
changes. Therefore, a high level of noise in the SZZ identification of
changes as defect-fixing and non-defect-fixing means a high level
of noise in the SZZ labels of defect-inducing and clean. Note that
noise arising from git blame within Commit Guru is not included
in this manual inspection process and could lead to additional noise

609

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song, Leandro Lei Minku, Cong Teng, Xin Yao

Table 1: Kappa scores

Dataset
(1) SZZ (2) SZZ Average of (3) Pair 1
vs Pair 1 vs Pair2 (1) and (2) vs Pair2

Brackets 0.5384 0.4722 0.5053 0.7083
Broadleaf 0.7101 0.6522 0.6812 0.7867
Camel 0.4376 0.5604 0.4990 0.6330
Fabric8 0.6418 0.8056 0.7237 0.6620
jGroups 0.5070 0.5303 0.5187 0.9045
Nova 0.5550 0.5639 0.5594 0.7085
Tomcat 0.5740 0.6840 0.6290 0.7451
Corefx 0.7573 0.6291 0.6932 0.6835
Django 0.7791 0.8739 0.8265 0.7387
Rails 0.4324 0.5556 0.4940 0.7258
Rust 0.5935 0.4804 0.5370 0.4804

Tensorflow 0.8584 0.8052 0.8318 0.7973
VScode 0.8750 0.8095 0.8423 0.8750

wp-Calypso 0.8751 0.7746 0.8249 0.7101

Median 0.6176 0.6407 0.6551 0.7180

[2, 35]. A sample of 100 changes (50 defect-fixing and 50 non-defect-
fixing) was drawn from each project and sorted in random order
to circumvent bias during the human annotation process. If the
commit message did not contain an issue ID within it, then only
the commit message itself was checked to determine whether the
software change is defect-fixing or not. Otherwise, both the commit
message and the issue were used. In particular, if a commit message
is addressing an issue identified by a given ID corresponding to a
bug, this change was labeled as a defect-fixing change.

The Kappa scores [7] (1) between SZZ and Pair 1, (2) between
SZZ and Pair 2, and (3) between Pair 1 and Pair 2 are shown in Ta-
ble 1. Following Hall et al. [15], we interpret Kappa score as follows:
[−1, 0] less than chance agreement; [0.01, 0.20] slight agreement;
[0.21, 0.40] fair agreement; [0.41, 0.60] moderate agreement; [0.61,
0.80] substantial agreement; and [0.81, 0.99] almost perfect agree-
ment. We can see that the Kappa scores (1) and (2) indicate at least
moderate agreement for all datasets. In four datasets (Broadleaf,
Fabric8, Tomcat, and Corefx), the average of (1) and (2) indicates
a substantial agreement and in other four (Django, Tensorflow,
VScode, and wp-Calypso) it indicates almost perfect agreement.
Moreover, the median Kappa scores across datasets between human
annotators and SZZ (average of (1) and (2)), and between human
annotators themselves (3) both indicate a substantial agreement,
showing that the level of agreement between human annotators
and SZZ is in line with the level of agreement between humans
themselves. This suggests that the labels provided by SZZ were in
general unlikely to be worse than the labels given by humans.

Kappa scores indicate the level of label noise associated to cor-
rectly distinguishing defect-fixes from non-defect-fixes, which are
in turn used to identify defect-inducing changes by SZZ. However,
if a given fix has not yet been implemented, SZZ would be unable
to link this fix to a defect-inducing change, even if its ability to
distinguish defect-fixes from non-defect-fixes is perfect. A previ-
ous study [42] showed that, if we use the first 10k changes of the
projects in our study, there is at least an estimated 99% confidence
level that the fixes corresponding to these changes have already
been reported. Therefore, we use the first 10k software changes of
each project in the experiments to increase data quality.

5 EXPERIMENTAL SETUP

To investigate the impact of the labeling processes that take into
account the human labeling conducted through inspection of defect-
predicted software changes, the predictive performance of JIT-SDP
models with and without immediate human labeling will be com-
pared. Our labeling approaches can be adopted with different ma-
chine learning algorithms. In our experiments,Oversampling-based
Data Streaming bagging withConfidence (ODaSC) using Hoeffding
trees [40] are adopted whenever JIT-SDP models need to be cre-
ated/updated. This is a recent online learning algorithm for JIT-SDP.
Being an online algorithm, it updates JIT-SDP models using each
training example individually upon arrival, and then discards it,
without the need for retraining on past examples. ODaSC is chosen
for being the state-of-the-art online JIT-SDP model. It deals with
label noise resulting from verification latency by estimating the
confidence in the labels assigned to training examples [40]. It was
shown to be more robust to noise than OOB [40], which in turn
was shown to be better than sliding window approaches [4].

We use Geometric Mean of Recall 0 and Recall 1 (G-Mean) [23]
to evaluate predictive performance of JIT-SDP models with and
without immediate human labeling. Different from accuracy or
precision, G-mean is known to be robust against class imbalance,
which is particularly important for studies suffering from class
imbalance evolution such as JIT-SDP [4, 42, 49]. We have also
adopted Matthews Correlation Coefficient (MCC) [6, 55] as it has
become popular in the area of JIT-SDP [21, 22, 56]. We use C?

to denote true positives (the number of defect-inducing software
changes that are predicted correctly), 5 = to denote false negatives
(the number of defect-inducing software changes that are erro-
neously predicted as clean), C= to denote true negatives (the num-
ber of clean software changes that are predicted correctly) and 5 ?

to denote false positives (the number of clean software changes
that are erroneously predicted as defect-inducing). Based on them,

G-Mean =

√
C?

C?+5 = ·
C=

C=+5 ? ∈ [0, 1]. As the false positive rate is de-
fined as 1−C=/(C=+ 5 ?), G-mean takes into account the trade-off be-
tween true positives and false positives; larger G-Meanmeans better

performance. MCC =

C? ·C=−5 ? ·5 =√
(C?+5 ?) · (C?+5 =) · (C=+5 ?) · (C=+5 =)

∈ [−1, 1]
takes all 4 elements of the confusion matrix into consideration and
thus provides high scores only if the predictions return good rates
for all 4 entries of the confusion matrix [5, 6]. G-Mean and MCC are
computed in a sequential way based on a fading factor to track the
changes in predictive performance over time as recommended in
the online learning scenario [14]. Fading factor \ ∈ [0, 1] controls
how much emphasis one would like to place on past evaluation
examples compared to the new one and larger/smaller values for
\ places more emphasis on the past/present model performance
status. The fading factor \ = 0.99 is used in this paper following
previous JIT-SDP studies [4, 40, 44], enabling a good trade-off be-
tween rapidly tracking performance changes and preventing wild
variations. When computing the average predictive performance,
an average of the sequential performance was used.

We used a grid search to choose the best parameter setting for
each project. ODaSC has three parameters: the ensemble size (# Ho-
effding trees) ∈ {5, 10, 20, 30, 40}, the decay factor of class imbalance
∈ {0.9, 0.95, 0.99, 0.999} and the resampling threshold ∈ {0.8, 0.9}.

610

A Practical Human Labeling Method for Online Just-in-Time So�ware Defect Prediction ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

We adopt the parameter settings that can achieve the best average
G-Means across 30 runs based on the first 500 software changes
in the data stream of each project. Hoeffding trees use the default
parameters provided in the python package scikit-multiflow [30],
following previous JIT-SDP studies [3, 40, 42].

To investigate to what extent the proposed ECo-HumLa can
encourage defects to be found when saving human effort, we need
to formulate two additional metrics. The first metric is human

recall-1 that is the ratio of defect-inducing changes (~ = 1) that
were predicted as defect-inducing (~̂ = 1) and that developers were
asked to label (H(-)). Given a human labeling process, this metric
can be formulated as

'1H =

#[~̂ = 1,H(-), ~ = 1]
#[~ = 1] , (5)

where #(·) denotes the number of software changes satisfying the
inside condition(s). We can see that '1H is the ratio of defect-
inducing changes that we asked developers to inspect / label. A
higher value means that developers are being asked to inspect more
software changes that are really defect-inducing, potentially uncov-
ering more defects. The second metric is human false alarm that is
the ratio of clean software changes (~ = 0) that were predicted as
defect-inducing and that developers were asked to label. Given a
human labeling processH(·), this metric can be formulated as

�0;B4�;0A<H =

#[~̂ = 1,H(-), ~ = 0]
#[~ = 0] . (6)

We can see that �0;B4�;0A<H is the ratio of clean changes that we
asked human to inspect / label. A higher value means that more
human inspection effort is wasted.

Predictive performance of online learning methods with the best
parameter settings is evaluated based on the rest 500∼10,000 soft-
ware changes of the project. Comparisons between JIT-SDP with vs
without the practical human labeling method are conducted based
on the mean predictive performance across 100 runs to account of
ODaSC’s stochasticity. We report the results corresponding to the
waiting time of 15 days, following previous related studies [40]. In
particular, this waiting time was found to lead to JIT-SDP models
with better predictive performance than other values as they offer
a better trade-off between one-sided label noise and the ability
to tackle concept drift [40, 42]. Friedman tests [10] will be per-
formed for statistical comparisons between more than two JIT-SDP
methods across datasets. The null hypothesis (H0) states that all
methods perform similar; the alternative hypothesis states that they
have statistically significant difference. Given the rejection of H0,
we will further perform pairwise comparisons using the Conover
post hoc tests. Two-tailed pairwise Wilcoxon signed rank tests at
significance level 0.05 [10] will be performed whenever statistical
comparisons between two methods across datasets are needed.

To analyze human effort, in addition to considering the human
labeling percentage mentioned in Section 3.1.2, we will also analyze
its corresponding code churn, which is a popular metric of human
inspection effort in the defect prediction literature [19, 31, 52, 53].
The code churn of a software change is defined as (!� + !�)/2,
where !� is the number of lines added and !� is the number of
lines deleted by the software change.

Table 2: RQ1.1 – Performance comparisons between HumLa

at 0%-human noise and 100%-human effort (the default setup)

and the waiting time method in terms of G-Mean and MCC.

Dataset
G-Mean MCC

Waiting time HumLa Imp% Waiting time HumLa Imp%
Bracket 0.643 0.639 [-b] -0.48 0.300 0.297 [-m] -0.97
Broadleaf 0.607 0.663 [b] 9.34 0.292 0.347 [b] 18.63
Camel 0.669 0.681 [b] 1.82 0.356 0.378 [b] 6.30
Fabric8 0.653 0.661 [b] 1.13 0.320 0.333 [b] 4.25
jGroup 0.568 0.600 [b] 5.68 0.193 0.242 [b] 25.68
Nova 0.682 0.688 [b] 0.85 0.380 0.391 [b] 3.01
Tomcat 0.613 0.638 [b] 4.05 0.282 0.309 [b] 9.36
Corefx 0.639 0.636 [-s] -0.50 0.362 0.360 [-*] -0.41
Django 0.690 0.698 [b] 1.21 0.413 0.430 [b] 3.93
Rails 0.562 0.623 [b] 10.77 0.214 0.296 [b] 38.54
Rust 0.584 0.586 [*] 0.32 0.250 0.248 [-*] -0.75

Tensorflow 0.691 0.678 [-b] -1.87 0.389 0.394 [b] 1.27
VScode 0.527 0.527 [*] 0.12 0.276 0.302 [b] 9.43

wp-Calypso 0.551 0.622 [b] 12.98 0.256 0.293 [b] 14.68

ave-rank 1.75 1.25 - 1.79 1.2 -

“Imp%" denotes the improvement ratio of HumLa over the waiting time (control)
method. Symbols [*], [s], [m], and [b] denote insignificant, small, medium, and large
A12 [47], respectively. Presence/absence of the sign “-" in A12 means that HumLa was
worse/better than the waiting time method. The A12 effect size of performance
differences for each dataset was typically large. The last row reports the average ranks
across datasets for the two methods, which were found to be statistically significantly
different both in terms of G-Mean and MCC. Smaller ranks are better ranks.

6 EXPERIMENTAL RESULTS

6.1 RQ1: JIT-SDP with HumLa

We complete our answer to RQ1 in this section by investigating the
impact of HumLa on predictive performance of JIT-SDP compared
to the waiting time method, and with respect to different human
label quality and levels of human effort.

6.1.1 RQ1.1 – Predictive Performance. Table 2 shows the perfor-
mance comparison between HumLa and the waiting time method.
Performance tables using other metrics are reported in the supple-
mentary material for space consideration. We can see that HumLa
leads to significant difference in predictive performance in terms
of both G-Mean and MCC across datasets. Two-tailed pairwise
Wilcoxon signed rank tests found significant difference with ?-
values 0.0208 and 0.0016 in terms of G-Mean and MCC, respectively.
This means that a more practical labeling procedure would lead to
significant differences in performance compared to the less practi-
cal waiting time method. Thus, it is important to evaluate JIT-SDP
methods with a labeling procedure that is closer to the reality.

We can also see from Table 2 that HumLa usually improves
predictive performance of JIT-SDP compared to the waiting time
method inmost datasets except for Bracket with a negative improve-
ment ratio -0.48%, Corefx with -0.50% and Tensorflow with -1.87%
in terms of G-Mean, and Bracket with -0.97%, Corefx with -0.41%
and Rust with -0.75% in terms of MCC, respectively. While such
negative effects are of a small magnitude, the benefit to predictive
performance of JIT-SDP can be substantial: the improvement ratios
are 9.34% (18.63%) in Broadleaf, 10.77% (38.54%) in Rails and 12.98%
(14.68) in wp-Calypso in terms of G-Mean (MCC). This is in line
with the statistical test, which found significant benefit to the per-
formance. Such improvements also mean that exiting studies may
be underestimating predictive performance of JIT-SDP methods.

611

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song, Leandro Lei Minku, Cong Teng, Xin Yao

(a) Average ranks in G-Mean. (b) Average ranks in MCC

Figure 2: RQ1.2 – Performance of HumLa at different hu-

man noise. Bar plots report average ranks of methods across

datasets. The waiting time method is chosen as the control

method (framed in red). Methods significantly better (worse)

than the control method are filled in light orange (green).

6.1.2 RQ1.2 – HumLa at Different Human Noise. When labeling
software changes predicted as defect-inducing through HumLa,
humans may mislabel some software changes, leading to noisy
training examples. Different persons and organizations may have
different human annotation error rates. Determining the typical
human annotation error rate associated to software engineers is
not possible as the ground truth labels are unknown. In particular,
neither humans nor algorithms such as SZZ are currently able to
provide fully reliable ground truth labels for this purpose. Therefore,
we provide a detailed analysis to investigate the impact of various
amounts of human annotation error rates, which we refer to as
human noise in this section for brevity.

Figure 2 shows average Friedman ranks of HumLa in terms of
G-Mean and MCC at different amounts of human noise against
the waiting time method across datasets. Plots of the performance
over time and tables of overall performance using several metrics
are reported in the supplementary material for space considera-
tions. Friedman tests with the significance level 0.05 reject H0 with
?-values 8.61E-19 and 2.12E-17 in terms of G-Mean and MCC, re-
spectively, meaning that different human noise leads to significant
difference in predictive performance of JIT-SDP. The waiting time
method is then chosen as the control method to conduct Conover
post-hoc tests, whose results are also illustrated in Figure 2.

We can see that HumLa at 0%-human noise can significantly
improve predictive performance of JIT-SDP compared to thewaiting
time method; when the human label noise is no worse than 10%
(40%) in terms of G-Mean (MCC), such beneficial impact produced
by HumLa would be significant. Therefore, even when there is
human label noise, adopting a labeling procedure closer to reality
can have positive impact on predictive performance of JIT-SDP
compared to the waiting timemethod. In other words, existing work
adopting waiting time may be underestimating the performance
that can be achieved in practice especially when adopting MCC as a
performance metric. In addition, HumLa can obtain similar or better
ranking than the waiting time method so long as the human label
noise is no higher than 80% (90%) in G-Mean (MCC). This means
that producing labels earlier leads to similar or better predictive
performance, unless the amount of noise in the human labels is
extremely high. Therefore, delaying the production of labels for
changes predicted as defect-inducing is not recommended.

6.1.3 RQ1.3 – HumLa at Different Human Effort. Figure 3 shows
performance comparisons between HumLa at different amounts of

(a) Average ranks across datasets in G-Mean. (b) G-Mean comparison.

(c) Average ranks across datasets in MCC. (d) MCC comparison.

Figure 3: RQ1.3 – Predictive performance of HumLa at differ-

ent amounts of human effort. Bar plots report average ranks

of each method across datasets. The waiting time method

is equivalent to HumLa at 0-human effort and is chosen as

the control method (framed in red). Methods that perform

significantly better than the control method are filled in light

orange. No method was worse than the control. Radar plots

show performance comparisons of HumLa at a particular

human effort against the control method.

human effort in terms of G-Mean and MCC, respectively. Perfor-
mance tables using other metrics are reported in the supplementary
material for space consideration. Friedman tests at the significance
level 0.05 run across datasets reject H0 with ?-values 1.576E-05 and
3.159E-12 in terms of G-Mean and MCC, respectively. Therefore,
different amounts of human effort lead to significant difference in
predictive performance of JIT-SDP. Given the rejection of H0, the
waiting time method (HumLa at 0%-human effort) is chosen as the
control method to conduct Conover post-hoc tests, whose results
are illustrated in Figures 3(a) and 3(c).

We can see from these figures that larger human effort is in
general beneficial to the predictive performance. In addition, when
practitioners randomly label 60% (40%) defect-predicted test ex-
amples, HumLa significantly improves predictive performance of
JIT-SDP compared to the waiting time method in terms of G-Mean
(MCC). Indeed, so long as the amount of human effort is no less
than 60% (40%) in terms of G-Mean (MCC), HumLa would have sig-
nificant benefit to predictive performance compared to the control
method. Moreover, HumLa achieves similar ranking as the waiting
time method when using only 10% of the effort in terms of human
labeling percentage. As the key difference between HumLa and the
waiting time method is the earlier labeling of training examples, the
positive impact of HumLa on predictive performance is due to the
ability to update JIT-SDP models earlier. This in turn may enable
JIT-SDP to react to concept drift faster, even when the amount of
immediately labeled data is not large. Figures 3(b) and 3(d) show
that HumLa at 60%(40%)-human effort can indeed usually attain
performance improvement compared to the control method in most

612

A Practical Human Labeling Method for Online Just-in-Time So�ware Defect Prediction ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Figure 4: RQ1.3 – Relationship between the human label-

ing percentage and the cumulative code churn on random

datasets for HumLa at varying amounts of human effort. Re-

sults of other datasets showed the same pattern and were

omitted for space reasons.

datasets, whereas for the datasets where there is no improvement,
the magnitude of the differences in performance is very small (-
0.02% for Bracket, -0.35% for Corefx and -0.70% for Tensorflow in
terms of G-Mean, and -2.95% for Corefx in terms of MCC).

Figure 4 shows the relationship between cumulative code churn
and the human labeling percentage on 6 random datasets. Plots
of other datasets showed the same pattern and were reported in
the supplementary material for space restrictions. We can see that
higher human labeling percentage almost always accounts for larger
value of the cumulative code churn, showing a good correlation
between these two metrics. Therefore, given a project for which
practitioners may be interested in creating a JIT-SDP model, reduc-
ing the inspection rate is really likely to correlate with a decrease
in churn for this project. Table 3 contains the code churn values for
all datasets. We can see that, for example, HumLa at 40%- and 60%-
human effort would reduce around up 40% and 60% code churns,
respectively, being consistent to the human labeling percentages.

These results are particularly relevant and of practical signifi-
cance as they indicate that when practitioners allow for a relatively
low cost of human effort in randomly labeling a small portion
(e.g., 10%) of defect-predicted test examples, HumLa already begins
to have beneficial impact; when HumLa allows for a moderately
large human effort such as 60%, it would perform significant better
performance compared to the waiting time method.
Answer to RQ1: HumLa would not only model the practical JIT-
SDP process to be closer to the reality but also leads to significant
difference in predictive performance compared to the less practi-
cal waiting time method. Even when there is human label noise,
adopting HumLa can usually have positive impact on predictive
performance, indicating that existing work adopting the waiting
time method is likely underestimating the predictive performance
that can be achieved in practice especially in terms of MCC. HumLa
allowing for higher amounts of human effort generally attain better
performance and when the allowance for human effort is beyond a
moderately large value such as 60%, HumLa would produce signifi-
cantly better performance compared to the waiting time method.

6.2 RQ2: JIT-SDP with ECo-HumLa

This section completes our answer to RQ2 to evaluate the proposed
ECo-HumLawith respect to howwell it can save human effort while
maintaining predictive performance and avoiding a large number
of defect-inducing software changes to be missed by practitioners.

(a) Average ranks across datasets in G-Mean. (b) G-Mean comparison.

(c) Average ranks across datasets in MCC. (d) MCC comparison.

Figure 5: RQ2.1 – Performance comparisons between ECo-

HumLa vs HumLa at different amounts of human effort. Bar

plots report average ranks of each method across datasets.

HumLa at 100%-human effort is chosen as the controlmethod

(framed in red) and methods that perform significantly in-

ferior to the control method are filled in light green. ECo-

HumLa is framed in orange to facilitate visualization. Radar

plots show performance comparisons between ECo-HumLa

and HumLa at 100%-human effort for each dataset.

6.2.1 RQ2.1 – Retained Performance. Figure 5 shows performance
comparisons between ECo-HumLa and HumLa at different amounts
of human effort in terms of G-Mean and MCC. Performance values
using several metrics are reported in the supplementary material
for space consideration. Friedman tests at significance level 0.05
reject H0 with ?-values 2.65E-05 and 5.10E-10 in terms of G-Mean
and MCC, respectively, meaning that ECo-HumLa and HumLa with
different amounts of effort achieve significantly different perfor-
mance. Given the rejection of H0, HumLa at 100%-human effort is
chosen as the control method to conduct Conover post-hoc test,
whose results are illustrated in Figures 5(a) and 5(c).

We can see from these figures that statistical tests found no
significant difference between the performance of ECo-HumLa
and HumLa at 100%-human effort across datasets, in terms of both
G-Mean and MCC. This indicates the capability of ECo-HumLa
in retaining predictive performance compared to HumLa at 100%-
human effort, despite labeling less software changes. We can also
see that ECo-HumLa’s ranking is in between HumLa at 40%∼50%-
human effort in terms of both G-Mean and MCC. Further post-hoc
comparison using ECo-HumLa as the control method cannot find
significant difference between these three methods, indicating them
to have similar performance when compared across datasets.

Figures 5(b) and 5(d) show that ECo-HumLa’s performance is
usually below that achieved by HumLa at 100%-human effort in
most datasets as onewould expect, but the inferiority ratio is usually
of small magnitude: in terms of G-Mean, the inferiority ratio is

613

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song, Leandro Lei Minku, Cong Teng, Xin Yao

Table 3: RQ2.2 – Saved human effort of ECo-HumLa against

HumLa at different human effort in terms of human labeling

percentage and cumulative code churn (in kilo).

Dataset
Human effort (in kilo) of HumLa Eco-HumLa Human effort (in kilo) of HumLa
100% 90% 80% 70% 60% auto human% 50% 40% 30% 20% 10%

Bracket 664.8[b] 593.2 530.4 466.0 403.9 371.0 55.51% 331.5 261.1 223.2 137.9 74.3
Broadleaf 2715.4[b]2418.22171.91884.01612.62162.6 46.60% 1326.41002.0 777.2 506.9 258.2
Camel 913.3[b] 818.0 727.8 633.0 553.6 578.2 54.57% 455.0 360.5 271.8 177.9 87.6
Fabric8 2099.6[b]1941.01733.71528.71297.51165.2 46.85% 1071.2 844.6 651.0 403.9 214.5
jGroup 302.8[b] 276.2 255.3 224.4 203.8 200.0 45.55% 174.8 147.8 118.6 83.4 35.6
Nova 612.7[b] 555.1 488.5 434.7 380.4 332.7 62.09% 338.5 267.1 199.3 134.2 73.1
Tomcat 564.9[b] 510.0 450.8 386.8 329.3 373.2 58.01% 273.5 214.7 156.0 104.1 50.5
Corefx 4486.7[b]4129.23631.03382.02904.63305.1 51.95% 2384.01913.41450.3985.9 512.4
Django 867.6[b] 793.3 711.8 605.3 509.1 499.8 71.28% 426.5 321.5 255.6 171.3 79.6
Rails 940.6[b] 834.8 733.1 619.4 500.5 359.1 47.07% 416.2 317.9 195.5 93.6 38.5
Rust 547.8[b] 479.8 418.9 356.6 323.1 234.2 40.73% 289.7 241.7 179.0 130.7 55.0

Tensorflow 1140.3[b]1106.21058.1 979.3 902.2 900.4 55.94% 796.3 655.1 506.2 328.5 164.5
VScode 286.1[b] 262.6 232.6 206.7 170.2 203.4 48.64% 144.4 123.8 83.4 57.5 35.6

wp-Calypso 301.9[b] 273.5 245.8 211.6 178.9 187.8 51.41% 145.3 114.4 82.6 52.1 24.0

median 766.2 693.3 621.1 535.7 452.2 372.1 51.68% 377.3 292.5 211.3 136.1 73.7

For HumLa at 100%-human effort, the A12 effect size [47] of differences in saved
human effort for each dataset was always large ([b]) than Eco-HumLa. Effect sizes
for other levels of human effort are in the supplementary material.

below 3.6% in Broadleaf and wp-Calypso; in terms of MCC, most
of the inferiority ratios are around below 5% except for 9.21% in
jGroup and 14.31% in Rails. This is in line with the results of the
above mentioned Conover tests, which found no difference between
ECo-HumLa and HumLa at 100% human effort across datasets.

An important question is then how much effort ECo-HumLa can
save compared to other methods that obtained similar performance.
This is investigated in Section 6.2.2.

6.2.2 RQ2.2 – Saved Human Effort. Table 3 shows that the median
human effort of ECo-HumLa across datasets is 372.1k in terms of
the cumulative code churn. Compared to the median cumulative
code churn 766.2k of HumLa at 100%-human effort, ECo-HumLa
can generally conserve around 50%-human effort in checking the
lines of code being changed, demonstrating the effectiveness of ECo-
HumLa in saving human effort. We can also see that the median
human labeling percentage of ECo-HumLa across datasets is 51.68%,
in-between HumLa at 50%∼60%-human effort, also showing that
ECo-HumLa saves around half of human effort.

Combining with the observation in Section 6.2.1, we can con-
clude that ECo-HumLa achieved similar performance of HumLa at
100%-human effort while requiring only around half of the inspec-
tion effort in terms of human labeling percentage and code churn.
Therefore, we would recommend practitioners to inspect and label
all defect-predicted software changes when the human cost is al-
lowable, as the inspection used to label defect-predicted examples
is the same as the inspection needed to find and fix any defects that
the change may induce. Therefore, inspecting these changes may
help practitioners to find more defects at an early stage. However,
if the cost of inspecting all defect-predicted software changes is too
high, inspecting only around half of the defect-predicted software
changes through ECo-HumLa will not lead to worse predictive per-
formance of the resulting JIT-SDP models. In this sense, it would
be acceptable to reduce labeling effort through ECo-HumLa.

6.2.3 RQ2.3 – Finding Defects. Based on the previous sections,
ECo-HumLa requires similar effort and leads to similar predictive
performance as HumLa at 50%-human effort. However, ECo-HumLa
was designed to direct practitioners’ inspection effort towards soft-
ware changes that are more likely to contain defects, so that the

Table 4: RQ2.3 – Recall 1 and False alarm for humans between

ECo-HumLa vs HumLa at 50%-human effort that perform

similarly to ECo-HumLa at the cost of similar amount of

human effort as found in RQ2.2.

Dataset
Recall 1 for humans False alarm for humans

ECo-HumLa HumLa-50% ECo-HumLa HumLa-50%
Bracket 0.4039 0.3338 [-b] 0.1631 0.1787 [-b]
Broadleaf 0.2854 0.2793 [-s] 0.0885 0.1168 [-b]
Camel 0.4253 0.3612 [-b] 0.1815 0.1900 [-b]
Fabric8 0.3488 0.3380 [-m] 0.1434 0.1704 [-b]
jGroup 0.2995 0.2544 [-b] 0.1159 0.1527 [-b]
Nova 0.4246 0.3330 [-b] 0.1573 0.1366 [b]
Tomcat 0.3684 0.3044 [-b] 0.1639 0.1567 [b]
Corefx 0.2932 0.2322 [-b] 0.0734 0.0788 [-m]
Django 0.4745 0.3116 [-b] 0.1026 0.1016 [s]
Rails 0.3038 0.3203 [b] 0.1417 0.1906 [-b]
Rust 0.2208 0.2489 [b] 0.0851 0.1190 [-b]

Tensorflow 0.4446 0.3886 [-b] 0.1627 0.1902 [-b]
VScode 0.1924 0.1538 [-b] 0.0551 0.0511 [b]

wp-Calypso 0.2555 0.2531 [-*] 0.0910 0.1075 [-b]

ave-rank 1.14 1.86 1.29 1.71

Symbols [*], [s], [m] and [b] denote insignificant, small, medium, and large A12, resp-
ectively. Presence/absence of the sign “-" in A12 means that HumLa at 50%-human
effort was worse/better than ECo-HumLa. Effect size of differences in performance
for each dataset were typically large. The last row reports the average ranks across
datasets for the two methods, which were found to be statistically significantly
different both in terms of Recall 1 and False Alarms. Smaller ranks are better ranks.

reduction in effort does not come at the cost of practitioners missing
a too large number of defects in the code. So, a question remains
on whether ECo-HumLa can really encourage a larger number of
defects to be found than HumLa at 50%-human effort (RQ2.3).

Table 4 reports the human recall 1 that is formulated in Eq. (5)
and the human false alarm that is formulated in Eq. (6) between
Eco-HumLa and HumLa at 50%-human effort. We can see that in
terms of the human recall 1, practitioners can usually detect more
defects (with the improvement ratio of up to 52.27% for Django
and around 26% for Nova, Corefx, and VScode) in software changes
when they opt for ECo-HumLa compared to HumLa at 50%-human
effort, and such superiority is statistically significant according to
two-tailed pairwise Wilcoxon signed rank tests at significance level
0.05 (?-value 4.03E-03). In the meantime, practitioners can have
lower (better) human false alarm (with the improvement ratio of
around 25% for Broadleaf, jGroup, Rails and Rust) compared to
HumLa at 50%-human effort, and such superiority is significant
according to two-tailed pairwise Wilcoxon signed rank tests at
significance level 0.05 (?-value 0.0166). Such results are of practical
significance as it means that although ECo-HumLa can get similar
predictive performance at similar human cost compared to HumLa
at 50%-human effort, this targeted human labeling approach can
help practitioners inspect changes that are more likely truly defect-
inducing, encouraging them to find defects at an early stage.
Answer to RQ2: The proposed ECo-HumLa can save around 50%-
human effort in terms of both the human labeling percentage and
the cumulative code churn while still retaining predictive perfor-
mance of JIT-SDP compared to HumLa at 100%-human effort. More-
over, when adopting ECo-HumLa, practitioners would be encour-
aged to find more detects and achieve a lower false alarm rate than
when randomly deciding which changes to inspect based on HumLa
at 50%-human effort.

614

A Practical Human Labeling Method for Online Just-in-Time So�ware Defect Prediction ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

7 THREATS TO VALIDITY

Internal Validity. One potential issue for HumLa is that developers
may take a while to decide actual labels of defect-predicted exam-
ples, resulting in verification latency of the “immediate” human
labeling procedure. However, such time delay would be negligi-
ble compared to that in the waiting time labeling procedure. Also,
as such human delay is disregarded, the HumLa labeling proce-
dure will not produce training examples exactly in chronological
order. Nevertheless, it still leads to a more realistic labeling and
model training procedures than the ones adopted in existing liter-
ature when the true time taken to label defect-inducing software
changes is unknown. Future work could further investigate the
length and impact of such time delay. Similar to previous work that
has adopted the same datasets [4, 40, 42], other threats to internal
validity include various types of noise arising from SZZ [16, 20, 34–
36] including noise stemming from the git blame command used
in Commit Guru that were not captured by our manual Kappa anal-
ysis in Section 4. The data were collected based on the original
SZZ algorithm [39], which was shown to lead to JIT-SDP models of
similar predictive performance to models created based on the most
recent SZZ algorithm [12], which applies the largest number of
noise filters in comparison to several other SZZ variants [8, 32, 50].
We also adopted the waiting time that was shown to lead to a good
trade-off between label noise and the obsolescence of the trained
models [40, 42]. To mitigate threats related to the randomness of
ODaSC, our results are based on 100 runs on each dataset.

Construct Validity. G-Mean, Recall 0 and Recall 1 are unbiased
metrics suitable for class imbalanced problems such as JIT-SDP.
We have also adopted MCC, a popular metric in the SDP literature,
which uses all entries of the confusion matrix. A fading factor is
adopted to enable tracking the fluctuations in predictive perfor-
mance over time, as recommended for online learning [14].

External Validity. We have investigated 14 open source projects,
covering a wide range of data characteristics as explained in Sec-
tion 4. However, as with any study involving machine learning,
experimental results may not generalize well to other projects. We
investigate the proposed methods based on ODaSC with Hoeffding
trees, which have been previously opted for online JIT-SDP [40, 42].
Other online machine learning models could lead to different re-
sults. However, it is worth noting that machine learning approaches
are in general expected to struggle more to adapt to a concept drift
if there is no labeled data coming from the new underlying data
distribution than if they had access to such labeled data. Our label-
ing procedures can thus act as enablers for learning approaches to
adapt to concept drift more promptly, possibly benefiting predictive
performance of other learning algorithms. When investigating the
impact of human effort within (Eco-)HumLa, zero human noise was
assumed, facilitating a focused analysis of human effort without be-
ing affected by human noise. In practice, a non-zero and unknown
level of human noise would be associated with (Eco-)HumLa, which
could lead to different conclusions. Following standard practice in
the JIT-SDP literature, we have used the main branch of open source
repositories to collect software changes and their labels. Therefore,
only software changes that have been accepted in the main branch
(possibly after code review) have been used in our evaluation. The
results may not generalize to predicting rejected changes.

8 CONCLUSIONS

We have conducted the first study on how to consider the effect of
adopting JIT-SDP during the software development process in the
labeling procedure of software changes for online JIT-SDP, leading
to the HumLa procedure. The impact of HumLa on the predictive
performance of JIT-SDP was investigated at different levels of noise
and human effort. We have also proposed ECo-HumLa to save
human effort by targeting the inspection process towards software
changes predicted as defect-inducing with higher confidence.

Our experiments showed that adopting a labeling procedure
closer to reality leads to a significant impact on the predictive per-
formance of JIT-SDP, with generally better performance than the
delayed labeling method with waiting time even when human label-
ing contained a certain level of noise. As an implication to research,
this shows the importance of adopting labeling methods such as
HumLa that are closer to what would be adopted in practice, when
conducting studies to evaluate JIT-SDP models. As an implication
to practice, it shows the importance of not delaying the inspection
of software changes to achieve better performing JIT-SDP models.

We also showed that it is possible to save around 50% of in-
spection effort through ECo-HumLa while maintaining predictive
performance compared to HumLa at 100%-human effort and encour-
aging a larger number of defects to be found thanwhen saving effort
through HumLa at 50%-human effort. As an implication to research,
this shows that effort-aware strategies can be designed to work in
an online manner, encouraging further research on online effort-
aware JIT-SDP. Researchers may also analyse the performance of
their models under different labeling efforts through ECo-HumLa.
As an implication to practice, these results show that if practitioners
are unable to inspect all defect-predicted software changes due to
the inspection effort, we recommend to target the inspection effort
based on the confidence of the predictions through ECo-HumLa
rather than randomly deciding which changes to inspect. If they can
afford the higher effort or are dealing with safety-critical systems,
it is still recommended to use HumLa to find more defects.

Futurework includes investigatingHumLa and ECo-HumLawith
other JIT-SDP models, datasets, and input features such as high-
level latent representations of a deep neural network; proposing
novel effort-aware online JIT-SDP approaches to further improve
on ECo-HumLa; analyzing the verification latency of the human in-
spection process; investigating (ECo-)HumLa with JIT-SDP models
for predicting pre-code review changes; investigating the impact
of git blame used by SZZ in the label quality of the investigated
datasets; and investigating the impact of various levels of human
effort under various levels of human noise for (Eco-)HumLa.

DATA AVAILABILITY STATEMENT

A replication package is available in [41]. The source code is avail-
able under a GNU GPL v3.0 license.

ACKNOWLEDGMENTS

This workwas supported byNational Natural Science Foundation of
China (NSFC) under Grant Nos. 62002148 and 62250710682, the Pro-
gram for Guangdong Introducing Innovative and Enterpreneurial
Teams under Grant No. 2017ZT07X386, Guangdong Provincial Key
Laboratory under Grant No. 2020B121201001 and Research Institute
of Trustworthy Autonomous Systems (RITAS).

615

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song, Leandro Lei Minku, Cong Teng, Xin Yao

REFERENCES
[1] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mo-

hammadGhavamzadeh, Paul Fieguth, XiaochunCao, Abbas Khosravi, U. Rajendra
Acharya, Vladimir Makarenkov, and Saeid Nahavandi. 2021. A Review of Uncer-
tainty Quantification in Deep Learning: Techniques, Applications and Challenges.
Information Fusion 76 (2021), 243–297. https://doi.org/10.1016/j.inffus.2021.05.008

[2] Peter Bludau and Alexander Pretschner. 2022. PR-SZZ: How pull requests can
support the tracing of defects in software repositories. In IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
IEEE, Munich, Germany, 1–12. https://doi.org/10.1109/SANER53432.2022.00012

[3] George Gomes Cabral and Leandro L. Minku. 2023. Towards Reliable Online Just-
in-time Software Defect Prediction. IEEE Transactions on Software Engineering
49, 3 (2023), 1342–1358. https://doi.org/10.1109/TSE.2022.3175789

[4] George G. Cabral, Leandro L. Minku, Emad Shihab, and Suhaib Mujahid. 2019.
Class Imbalance Evolution and Verification Latency in Just-in-Time Software
Defect Prediction. In International Conference on Software Engineering. Monteal,
Canada, 666–676. https://doi.org/10.1109/ICSE.2019.00076

[5] Davide Chicco and Giuseppe Jurman. 2020. The Advantages of the Matthews Cor-
relation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification
Evaluation. BMC Genomics 21 (2020). https://doi.org/10.1186/s12864-019-6413-7

[6] Davide Chicco, Matthijs J. Warrens, and Giuseppe Jurman. 2021. The Matthews
Correlation Coefficient (MCC) is More Informative Than Cohen’s Kappa and Brier
Score in Binary Classification Assessment. IEEE Access 9 (2021), 78368–78381.
https://doi.org/10.1109/ACCESS.2021.3084050

[7] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educational
and Psychological Measurement 20, 1 (1960), 37–46. https://doi.org/10.1177/
001316446002000104

[8] Daniel Alencar da Costa, Shane McIntosh, Weiyi Shang, Uira Kulesza, Roberta
Coelho, and Ahmed E. Hassan. 2017. A framework for evaluating the results of
the SZZ approach for identifying bug-introducing changes. IEEE Transactions
on Software Engineering 43, 7 (2017), 641–657. https://doi.org/10.1109/TSE.2016.
2616306

[9] Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi, and Gi-
anluca Bontempi. 2018. Credit Card Fraud Detection: A Realistic Modeling and
a Novel Learning Strategy. IEEE Transactions on Neural Networks and Learning
Systems 29, 8 (2018), 3784–3797. https://doi.org/10.1109/TNNLS.2017.2736643

[10] Janez Demšar. 2006. Statistical Comparisons of Classifiers over Multiple Data
Sets. The Journal of Machine Learning Research 7 (2006), 1–30.

[11] Karl Dyer, Robert Capo, and Robi Polikar. 2014. COMPOSE: A Semisupervised
Learning Framework for Initially Labeled Nonstationary Streaming Data. IEEE
Transactions on Neural Networks and Learning Systems 25 (2014), 12–26. https:
//doi.org/10.1109/TNNLS.2013.2277712

[12] Yuanrui Fan, Xin Xia, Daniel Alencar da Costa, David Lo, Ahmed E. Hassan,
and Shanping Li. 2021. The Impact of Mislabeled Changes by SZZ on Just-in-
Time Defect Prediction. IEEE Transactions on Software Engineering 47, 8 (2021),
1559–1586. https://doi.org/10.1109/TSE.2019.2929761

[13] Takafumi Fukushima, Yasutaka Kamei, Shane McIntosh, Kazuhiro Yamashita, and
Naoyasu Ubayashi. 2014. An Empirical Study of Just-in-Time Defect Prediction
Using Cross-Project Models. In Working Conference on Mining Software Reposito-
ries (Hyderabad, India). 172–181. https://doi.org/10.1145/2597073.2597075

[14] Joao Gama, Raquel Sebastiao, and Pedro Pereira Rodrigues. 2013. On Evaluating
Stream Learning Algorithms. Journal of Machine Learning 90, 3 (2013), 317–346.
https://doi.org/10.1007/s10994-012-5320-9

[15] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. 2014. Some Code Smells Have a
Significant but Small Effect on Faults. ACM Transactions on Software Engineering
and Methodology 23, 4 (2014). https://doi.org/10.1145/2629648

[16] Steffen Herbold, Alexander Trautsch, Fabian Trautsch, and Benjamin Ledel. 2022.
Problems with SZZ and Features: An Empirical Study of the State of Practice of
Defect Prediction Data Collection. Empirical Software Engineering 27, 2 (2022).
https://doi.org/10.1007/s10664-021-10092-4

[17] Yasutaka Kamei, Takafumi Fukushima, Shane Mcintosh, Kazuhiro Yamashita,
Naoyasu Ubayashi, and Ahmed E. Hassan. 2016. Studying Just-in-Time Defect
Prediction Using Cross-project Models. Empirical Software Engineering 21, 5
(2016), 2072–2106. https://doi.org/10.1007/s10664-015-9400-x

[18] Yasutaka Kamei, Shinsuke Matsumoto, Akito Monden, Ken-ichi Matsumoto,
Bram Adams, and Ahmed E Hassan. 2010. Revisiting Common Bug Prediction
Findings Using Effort-aware Models. In IEEE International Conference on Software
Maintenance. 1–10. https://doi.org/10.1109/ICSM.2010.5609530

[19] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. 2013. A Large-Scale Empirical Study of
Just-in-Time Quality Assurance. IEEE Transactions on Software Engineering 39, 6
(2013), 757–773. https://doi.org/10.1109/TSE.2012.70

[20] Sunghun Kim, E. James Whitehead, and Yi Zhang. 2008. Classifying Software
Changes: Clean or Buggy? IEEE Transactions on Software Engineering 34, 2 (2008),
181–196. https://doi.org/10.1109/TSE.2007.70773

[21] Masanari Kondo, Daniel MGerman, OsamuMizuno, and Eun-Hye Choi. 2020. The
Impact of Context Metrics on Just-In-Time Defect Prediction. Empirical Software
Engineering 25 (2020), 890–939. https://doi.org/10.1007/s10664-019-09736-3

[22] Masanari Kondo, Yutaro Kashiwa, Yasutaka Kamei, and Osamu Mizuno. 2022
(in press). An Empirical Study of Issue-Link Algorithms: Which Issue-Link
Algorithms Should We Use? Empirical Software Engineering 27, 6 (2022 (in press)).
https://doi.org/10.1007/s10664-022-10120-x

[23] Miroslav Kubat, Robert Holte, and Stan Matwin. 1997. Learning When Negative
Examples Abound. In European Conference on Machine Learning. 146–153. https:
//doi.org/10.1007/3-540-62858-4_79

[24] Ludmila I. Kuncheva and J. Salvador Sánchez. 2008. Nearest Neighbour Classifiers
for Streaming Data with Delayed Labelling. In IEEE International Conference on
Data Mining. 869–874. https://doi.org/10.1109/ICDM.2008.33

[25] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch. 2008.
Benchmarking Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings. IEEE Transactions on Software Engineering 34, 4
(2008), 485–496. https://doi.org/10.1109/TSE.2008.35

[26] Minlong Lin, Ke Tang, and Xin Yao. 2013. Dynamic Sampling Approach
to Training Neural Networks for Multiclass Imbalance Classification. IEEE
Transactions on Neural Networks and Learning Systems 24, 4 (2013), 647–660.
https://doi.org/10.1109/TNNLS.2012.2228231

[27] Shane McIntosh and Yasutaka Kamei. 2018. Are Fix-Inducing Changes a Moving
Target? A Longitudinal Case Study of Just-In-Time Defect Prediction. IEEE
Transactions on Software Engineering 44, 5 (2018), 412–428. https://doi.org/10.
1145/3180155.3182514

[28] Ayse Tosun Misirli, Emad Shihab, and Yasukata Kamei. 2016. Studying High
Impact Fix-Inducing Changes. Empirical Software Engineering Journal 21, 2 (2016),
605–641. https://doi.org/10.1007/s10664-015-9370-z

[29] Audris Mockus and David M. Weiss. 2000. Predicting Risk of Software Change.
Bell Labs Technical Journal 5, 2 (2000), 169–180. https://doi.org/10.1002/bltj.2229

[30] Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem. 2018. Scikit-
Multiflow: A Multi-output Streaming Framework. Journal of Machine Learning
Research 19, 72 (2018), 1–5.

[31] Nachiappan Nagappan and Thomas Ball. 2005. Use of Relative Code Churn Mea-
sures to Predict System Defect Density. In International Conference on Software
Engineering (ICSE). 284–292. https://doi.org/10.1145/1062455.1062514

[32] Edmilson Campos Neto, Daniel Alencar da Costa, and Uirá Kulesza. 2018. The
impact of refactoring changes on the SZZ algorithm: An empirical study. In
International Conference on Software Analysis, Evolution and Reengineering. 380–
390. https://doi.org/10.1109/SANER.2018.8330225

[33] Hien M. Nguyen, Eric W. Cooper, and Katsuari Kamei. 2011. Online Learning
from Imbalanced Data Streams. In International Conference of Soft Computing
and Pattern Recognition. 347–352. https://doi.org/10.1109/SoCPaR.2011.6089268

[34] Yusuf Sulistyo Nugroho, Hideaki Hata, and Kenichi Matsumoto. 2020. How
different are different diff algorithms in Git? Use–histogram for code changes.
Empirical Software Engineering 25 (2020), 790–823. https://doi.org/10.1007/
s10664-019-09772-z

[35] Christophe Rezk, Yasutaka Kamei, and Shane McIntosh. 2022. The Ghost Commit
Problem When Identifying Fix-Inducing Changes: An Empirical Study of Apache
Projects. IEEE Transactions on Software Engineering 48, 9 (2022), 3297–3309.
https://doi.org/10.1109/TSE.2021.3087419

[36] Gema Rodríguez-Pérez, Meiyappan Nagappan, and Gregorio Robles. 2022. Watch
Out for Extrinsic Bugs! A Case Study of Their Impact in Just-In-Time Bug Predic-
tion Models on the OpenStack Project. IEEE Transactions on Software Engineering
48, 4 (2022), 1400–1416. https://doi.org/10.1109/TSE.2020.3021380

[37] Christoffer Rosen, Ben Grawi, and Emad Shihab. 2015. Commit Guru: analytics
and risk prediction of software commits. In International Symposium on the
Foundations of Software Engineering. 966–969. https://doi.org/10.1145/2786805.
2803183

[38] Emad Shihab, Ahmed E. Hassan, Bram Adams, and Zhen Ming Jiang. 2012. An
Industrial Study on the Risk of Software Changes. In International Symposium on
the Foundations of Software Engineering. 1–11. https://doi.org/10.1145/2393596.
2393670

[39] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When Do
Changes Induce Fixes? ACM SIGSOFT Software Engineering Notes 30, 4 (2005),
1–5. https://doi.org/10.1145/1082983.1083147

[40] Liyan Song, Shuxian Li, Leandro L. Minku, and Xin Yao. 2022. A Novel Data
Stream Learning Approach to Tackle One-Sided Label Noise From Verification
Latency. In International Joint Conference on Neural Networks (IJCNN). 1–8. https:
//doi.org/10.1109/IJCNN55064.2022.9891911

[41] Liyan Song, Leandro Minku, Cong Teng, and Yao Xin. 2023. Artifact and Data
for “A Practical Human Labeling Method for Online Just-in-Time Software Defect
Prediction". https://doi.org/10.5281/zenodo.8272293

[42] Liyan Song and Leandro L. Minku. 2023. A Procedure to Continuously Evalu-
ate Predictive Performance of Just-In-Time Software Defect Prediction Models
During Software Development. IEEE Transactions on Software Engineering 49, 2
(2023), 646–666. https://doi.org/10.1109/TSE.2022.3158831

[43] Vinicius M.A. Souza, Diego F. Silva, Gustavo E.A.P.A. Batista, and João Gama.
2015. Classification of Evolving Data Streams with Infinitely Delayed Labels. In
International Conference on Machine Learning and Applications (ICMLA). 214–219.
https://doi.org/10.1109/ICMLA.2015.174

616

https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1109/SANER53432.2022.00012
https://doi.org/10.1109/TSE.2022.3175789
https://doi.org/10.1109/ICSE.2019.00076
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1109/ACCESS.2021.3084050
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1109/TSE.2016.2616306
https://doi.org/10.1109/TSE.2016.2616306
https://doi.org/10.1109/TNNLS.2017.2736643
https://doi.org/10.1109/TNNLS.2013.2277712
https://doi.org/10.1109/TNNLS.2013.2277712
https://doi.org/10.1109/TSE.2019.2929761
https://doi.org/10.1145/2597073.2597075
https://doi.org/10.1007/s10994-012-5320-9
https://doi.org/10.1145/2629648
https://doi.org/10.1007/s10664-021-10092-4
https://doi.org/10.1007/s10664-015-9400-x
https://doi.org/10.1109/ICSM.2010.5609530
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/TSE.2007.70773
https://doi.org/10.1007/s10664-019-09736-3
https://doi.org/10.1007/s10664-022-10120-x
https://doi.org/10.1007/3-540-62858-4_79
https://doi.org/10.1007/3-540-62858-4_79
https://doi.org/10.1109/ICDM.2008.33
https://doi.org/10.1109/TSE.2008.35
https://doi.org/10.1109/TNNLS.2012.2228231
https://doi.org/10.1145/3180155.3182514
https://doi.org/10.1145/3180155.3182514
https://doi.org/10.1007/s10664-015-9370-z
https://doi.org/10.1002/bltj.2229
https://doi.org/10.1145/1062455.1062514
https://doi.org/10.1109/SANER.2018.8330225
https://doi.org/10.1109/SoCPaR.2011.6089268
https://doi.org/10.1007/s10664-019-09772-z
https://doi.org/10.1007/s10664-019-09772-z
https://doi.org/10.1109/TSE.2021.3087419
https://doi.org/10.1109/TSE.2020.3021380
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/2393596.2393670
https://doi.org/10.1145/2393596.2393670
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1109/IJCNN55064.2022.9891911
https://doi.org/10.1109/IJCNN55064.2022.9891911
https://doi.org/10.5281/zenodo.8272293
https://doi.org/10.1109/TSE.2022.3158831
https://doi.org/10.1109/ICMLA.2015.174

A Practical Human Labeling Method for Online Just-in-Time So�ware Defect Prediction ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[44] Sadia Tabassum, Leandro L. Minku, Danyi Feng, George G. Cabral, and Liyan
Song. 2020. An Investigation of Cross-Project Learning in Online Just-in-Time
Software Defect Prediction. In International Conference on Software Engineering.
554–565. https://doi.org/10.1145/3377811.3380403

[45] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. Online Defect Pre-
diction for Imbalanced Data. In International Conference on Software Engineering.
99–108. https://doi.org/10.1109/ICSE.2015.139

[46] Alexander Tarvo, Nachiappan Nagappan, Thomas Zimmermann, Thirumalesh
Bhat, and Jacek Czerwonka. 2013. Predicting Risk of Pre-Release Code Changes
with Checkinmentor. In International Symposium on Software Reliability Engi-
neering. 128–137. https://doi.org/10.1109/ISSRE.2013.6698912

[47] Andras Vargha and Harold D. Delaney. 2000. A Critique and Improvement
of the “CL" Common Language Effect Size Statistics of McGraw and Wong.
Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132. https:
//doi.org/10.3102/10769986025002101

[48] Zhiyuan Wan, Xin Xia, Ahmed E. Hassan, David Lo, Jianwei Yin, and Xiaohu
Yang. 2020. Perceptions, Expectations, and Challenges in Defect Prediction.
IEEE Transactions on Software Engineering 46, 11 (2020), 1241–1266. https:
//doi.org/10.1109/TSE.2018.2877678

[49] Shuo Wang, Leandro L. Minku, and Xin Yao. 2018. A Systematic Study of Online
Class Imbalance Learning With Concept Drift. IEEE Transaction on Neural Net-
works and Learning Systems 29, 10 (2018), 4802–4821. https://doi.org/10.1109/
TNNLS.2017.2771290

[50] ChaddWilliams and Jaime Spacco. 2008. SZZ Revisited: Verifying When Changes
Induce Fixes. In Proceedings of the 2008 Workshop on Defects in Large Software

Systems. 32–36. https://doi.org/10.1145/1390817.1390826
[51] Limin Yang, Xiangxue Li, and Yu Yu. 2017. Vuldigger: A Just-In-Time and Cost-

Aware Tool for Digging Vulnerability-Contributing Changes. In IEEE Global
Communications Conference. 1–7. https://doi.org/10.1109/GLOCOM.2017.8254428

[52] Xingguang Yang, Huiqun Yu, Guisheng Fan, Kai Shi, Liqiong Chen, and Emiliano
Tramontana. 2019. Local versus Global Models for Just-In-Time Software Defect
Prediction. Scientific Programming 2019 (2019), 1–13. https://doi.org/10.1155/
2019/2384706

[53] Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu,
Baowen Xu, and Hareton Leung. 2016. Effort-Aware Just-in-Time Defect Predic-
tion: Simple Unsupervised Models Could Be Better than Supervised Models. In
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE). 157–168. https://doi.org/10.1145/2950290.2950353

[54] Y. Zhao, K. Damevski, and H. Chen. 2023. A Systematic Survey of Just-in-
Time Software Defect Prediction. Comput. Surveys 55, 10 (2023), 201.1–201.35.
https://doi.org/10.1145/3567550

[55] Qiuming Zhu. 2020. On the Performance of Matthews Correlation Coefficient
(MCC) for Imbalanced Dataset. Pattern Recognition Letters 136 (2020), 71–80.
https://doi.org/10.1016/j.patrec.2020.03.030

[56] Xiaoyan Zhu, Chenyu Yan, E James Whitehead Jr, Binbin Niu, Lei Zhu, and Long
Pan. 2022. Just-In-Time Defect Prediction for Software Hunks. Software: Practice
and Experience 52, 1 (2022), 130–153. https://doi.org/10.1002/spe.3001

Received 2023-02-02; accepted 2023-07-27

617

https://doi.org/10.1145/3377811.3380403
https://doi.org/10.1109/ICSE.2015.139
https://doi.org/10.1109/ISSRE.2013.6698912
https://doi.org/10.3102/10769986025002101
https://doi.org/10.3102/10769986025002101
https://doi.org/10.1109/TSE.2018.2877678
https://doi.org/10.1109/TSE.2018.2877678
https://doi.org/10.1109/TNNLS.2017.2771290
https://doi.org/10.1109/TNNLS.2017.2771290
https://doi.org/10.1145/1390817.1390826
https://doi.org/10.1109/GLOCOM.2017.8254428
https://doi.org/10.1155/2019/2384706
https://doi.org/10.1155/2019/2384706
https://doi.org/10.1145/2950290.2950353
https://doi.org/10.1145/3567550
https://doi.org/10.1016/j.patrec.2020.03.030
https://doi.org/10.1002/spe.3001

	Abstract
	1 Introduction
	2 Related Work
	2.1 JIT-SDP
	2.2 Chronology-Preserving Labeling Procedures

	3 Immediate Human Labeling in JIT-SDP
	3.1 HumLa
	3.2 ECo-HumLa

	4 Datasets
	5 Experimental Setup
	6 Experimental Results
	6.1 RQ1: JIT-SDP with HumLa
	6.2 RQ2: JIT-SDP with ECo-HumLa

	7 Threats to Validity
	8 Conclusions
	Acknowledgments
	References

