
 
 

University of Birmingham

Privacy-Aware Energy Consumption Modeling of
Connected Battery Electric Vehicles using
Federated Learning
Yan, Sen; Fang, Hongyuan; Li, Ji; Ward, Tomas; O’Connor, Noel ; Liu, Mingming

DOI:
10.1109/TTE.2023.3343106

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Yan, S, Fang, H, Li, J, Ward, T, O’Connor, N & Liu, M 2023, 'Privacy-Aware Energy Consumption Modeling of
Connected Battery Electric Vehicles using Federated Learning', IEEE Transactions on Transportation
Electrification. https://doi.org/10.1109/TTE.2023.3343106

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
S. Yan, H. Fang, J. Li, T. Ward, N. O’Connor and M. Liu, "Privacy-Aware Energy Consumption Modeling of Connected Battery Electric
Vehicles using Federated Learning," in IEEE Transactions on Transportation Electrification, doi: 10.1109/TTE.2023.3343106.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 13. May. 2024

https://doi.org/10.1109/TTE.2023.3343106
https://doi.org/10.1109/TTE.2023.3343106
https://birmingham.elsevierpure.com/en/publications/325641e1-048b-411a-ba12-40cd3a19002f


Privacy-Aware Energy Consumption Modeling of Connected Battery
Electric Vehicles using Federated Learning

Sen Yan, Graduate Student Member, IEEE, Hongyuan Fang, Ji Li, Member, IEEE,
Tomas Ward, Senior Member, IEEE, Noel O’Connor, Member, IEEE, and Mingming Liu, Senior Member, IEEE

Abstract— Battery Electric Vehicles (BEVs) are increasingly
significant in modern cities due to their potential to reduce air
pollution. Precise and real-time estimation of energy consumption
for them is imperative for effective itinerary planning and opti-
mizing vehicle systems, which can reduce driving range anxiety
and decrease energy costs. As public awareness of data privacy
increases, adopting approaches that safeguard data privacy in
the context of BEV energy consumption modeling is crucial.
Federated Learning (FL) is a promising solution mitigating the
risk of exposing sensitive information to third parties by allowing
local data to remain on devices and only sharing model updates
with a central server. Our work investigates the potential of
using FL methods, such as FedAvg, and FedPer, to improve BEV
energy consumption prediction while maintaining user privacy.
We conducted experiments using data from 10 BEVs under
simulated real-world driving conditions. Our results demonstrate
that the FedAvg-LSTM model achieved a reduction of up to
67.84% in the MAE value of the prediction results. Furthermore,
we explored various real-world scenarios and discussed how FL
methods can be employed in those cases. Our findings show that
FL methods can effectively improve the performance of BEV
energy consumption prediction while maintaining user privacy.

Index Terms—Federated Learning, Electric Vehicles, Energy
Consumption Modelling, Edge-Cloud Computing, Digital Twin,
Privacy Awareness
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I. INTRODUCTION

The transition from conventional internal combustion engine
vehicles to Electric Vehicle (EV) has emerged as a major
global initiative due to increasing concerns related to the
environment and public health. Governments worldwide are
introducing policies, laws, and regulations to promote EVs.
For instance, the Members of the European Parliament recently
approved regulations to encourage the production of zero-
and low-emission vehicles, such as EVs and plug-in hybrids1.
In Ireland, the Zero Emission Vehicles Ireland office has
been established with a goal of switching an expected 30%
of the private car fleet to electric by 20302. Furthermore,
numerous studies have indicated a significant reduction in air
pollution, noise pollution, and dependence on fossil fuels [1]–
[3] resulting from the adoption of EVs.

Energy modeling is essential for policymakers to assess
the impact on the grid, identify necessary infrastructure re-
quirements based on vehicle-to-grid technology, and inform
energy policy to support the transition to clean transportation
to enhance the overall driving experience while mitigating
transportation’s environmental impact [4], [5]. It is beneficial
to automakers and companies in understanding the perfor-
mance of EVs and optimizing the energy usage patterns,
leading to improved battery management and energy efficiency
[6], [7]. Besides, accurate predictions of energy consumption
can enable drivers to make informed decisions regarding trip
planning, route selection, and charging strategies [8], [9].

To this end, various methods have been applied in this
research field, ranging from system dynamics models to sta-
tistical and data-driven models [10]–[16]. However, with the
increasing volume of data generated by connected vehicles,
conventional energy modeling methods often lack the capacity
to efficiently manage the produced data. Specifically, these
methods often require data collection from various sources
to create and train a centralized model. This centralized

1https://www.europarl.europa.eu/news/en/press-room/20230210IPR74715/f
it-for-55-zero-co2-emissions-for-new-cars-and-vans-in-2035

2https://www.gov.ie/en/campaigns/18b95-zero-emission-vehicles-ireland/
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approach can introduce challenges in data management, such
as data transfer and the risk of data leakage. Instead, Federated
Learning (FL) offers a promising solution that enables vehicles
to share local models rather than raw data [17] in a decentral-
ized manner for better data privacy, security and scalability.
While FL-based methods may demand increased computa-
tional resources and more robust communication infrastructure
[18], their superior learning capabilities can generally lead
to improved model performance in accuracy, precision, and
generalizability for many real-world applications [19]–[25].

In our preliminary study [26], FL methods show great
potential to deal with privacy issues of connected vehicles.
Edge-cloud computing is believed to be the key to meeting all
challenges in big transportation data [27]–[30]. Based on these
foundations, our research aims to achieve energy consumption
modeling for EVs based on FL methods and investigates the
effectiveness of models together with edge-cloud computing
techniques. By evaluating and comparing the performance of
different models for Battery Electric Vehicle (BEV) energy
consumption prediction with various configurations, we pro-
vide recommendations for their practical implementation in
different real-world scenarios. The main contributions of our
work are outlined below:

• An extensive review of existing methods employed in pre-
vious research focusing on energy consumption modeling
for EVs.

• A comparative study is conducted on five local model
candidates and five FL algorithms to identify the optimal
combination for BEV energy consumption modeling.

• The performances are evaluated for the models with
different setups, including the number of iterations, data
splitting ratio, and input data size.

• By leveraging distributed data sources and federated
learning, the proposed method offers the potential to
overcome data privacy concerns and enhance the accuracy
and efficiency of EV energy modeling.

• The proposed method is discussed in two centralized
and decentralized edge-cloud computing structures for
BEV energy consumption modeling. This enables more
accurate predictions of EV energy consumption in various
real-world scenarios.

The structure of this paper is as follows. In Section II, we
provide a review of the relevant literature on EV energy con-
sumption modeling and FL algorithms and their applications.
The research question and object are explained in detail in
Section III. Section IV describes the methodology employed
in our work, and Section V provides the description and
analysis of our dataset. Section VI presents the experiment
setups and corresponding results, and relevant discussions and
analysis are included in Section VII. Finally, we conclude our
work in Section VIII and discuss future plans and potential
improvements.

II. LITERATURE REVIEW

In this section, a comprehensive overview of the literature
on energy consumption modeling for EVs is provided at first.

Secondly, an introduction to FL algorithms is presented with
some applications. The unique advantage of FL algorithms in
addressing privacy concerns is discussed at the end.

A. Energy Consumption Modeling

The literature on estimating EV energy consumption models
has used three distinct categories of methods: white box, grey
box, and black box. This section aims to provide a brief
introduction to white and grey box methods while focusing
primarily on black box methods.

1) White Box Methods: Methods that integrate physical
constraints into their modeling process, known as white box
methods, are invariably built upon theories of vehicle dynam-
ics. These approaches typically estimate energy consumption
by employing vehicle dynamics principles with data obtained
from a single vehicle. For instance, [31] explores power
relationships with velocity, acceleration, and road grade for
EVs through statistical analysis and an analytical model based
on vehicle dynamics principles. The data used in this study,
including battery status, speed, acceleration, and position, was
collected from a single test vehicle. For readers interested in
further exploration of this topic, we recommend referring to
the studies in [32]–[38].

2) Grey Box Methods: Researchers have applied grey box
methods to estimate EV energy consumption by combining
physical knowledge with data fitting techniques. These meth-
ods, capable of handling larger datasets through data fitting
techniques, primarily focus on the input and output of models
using data collected from individual vehicles. For example, the
authors of [39] investigated energy consumption modeling for
EVs using data collected from a custom-designed EV. Their
approach blends physics-based equations with empirical data,
resulting in a hybrid power model that offers improved power
consumption estimations and addresses range anxiety con-
cerns. Furthermore, statistical techniques such as the Monte
Carlo method [40], multinomial logistic regression [41], and
Gaussian process regression [42] have been utilized for similar
purposes. For those interested in further exploring this topic,
we recommend referring to the studies mentioned in [43]–[46].

3) Black Box Methods: Instead of physical knowledge,
black box methods use data fitting techniques, such as Ma-
chine Learning (ML) models, due to their capacity to make
predictions and analyses of datasets. Some classic ML models,
such as Support Vector Machine [14], Decision Tree and
Random Forest (RF) [12], have been applied and estimated in
previous relevant work. Furthermore, deep learning methods
such as Artificial Neural Networks (ANN) [13] and Convo-
lutional Neural Networks (CNN) have also been employed to
solve the same problem. Methods mentioned above are widely
used to estimate EV energy consumption based on clustered
data collected from multiple vehicles. For instance, in [10],
the authors employed eXtreme Gradient Boosting (XGB) to
forecast energy consumption based on the real-world data
collected from 55 electric taxis from 2017 to 2018 in Beijing,
China. The method demonstrated an impressive performance
with a Root Mean Squared Error of 0.159 kWh. For further



information, we refer interested readers to the explanations
included in [10]–[16].

B. Privacy-Aware in Transportation Data

The utilization of transportation data has gained significant
traction in both research and industry applications. However,
the integration of transportation data without due consideration
for privacy can give rise to various risks and consequences.
Recent scholarly investigations [27]–[30] have elucidated and
examined the potential risks associated with the usage of
big transportation data, including privacy infringement, data
breaches, misuse, and the erosion of user trust. For instance,
direct usage of source data may expose sensitive information.
[30] highlighted how the divulgence of origin-destination
information of individual users can compromise their privacy,
allowing malevolent actors to deduce their residential or
workplace locations. Another pertinent issue related to big
transportation data exists in open datasets. As outlined in [27],
by cross-referencing publicly available datasets from the New
York City Taxi and Limousine Commission, the cash tips paid
by celebrities could be discovered and released easily. The
perception of data vulnerability and the potential for misuse
or privacy breaches can undermine user trust, resulting in
a hesitancy to share data or participate in related research
endeavours.

Simultaneously, the studies referenced above have also
highlighted the advantages of incorporating privacy-aware
methodologies in the context of transportation data. These
benefits can be summarized as follows:

• From the users’ perspective, the implementation of
privacy-aware approaches is paramount to safeguarding
user data, ensuring that sensitive information such as
personal identities, location data, and behavioral patterns
are adequately protected. By prioritizing privacy, users
can have greater confidence in sharing their data and
engaging in various services and platforms.

• From the operators’ standpoint, adopting privacy-
conscious practices is instrumental in building trust and
cultivating a positive reputation among users. This, in
turn, can foster increased user participation, collaboration,
and support for initiatives that prioritize privacy protec-
tion. Operators who prioritize user privacy are more likely
to attract and retain a loyal user base.

• In terms of privacy regulations and ethical considera-
tions, adhering to privacy-aware practices is crucial for
organizations to comply with relevant privacy laws and
regulations. By implementing robust privacy measures,
organizations demonstrate their commitment to respecting
individuals’ rights to privacy and autonomy. Aligning
with ethical principles promotes a responsible and trust-
worthy environment for data collection and usage.

C. Federated Learning

To reduce the computational complexity and enhance the
privacy preservation of the centralized approach, FL was
developed and recently it has received considerable attention

due to its ability to enable multiple data holders, such as
EVs, to collaboratively train models without the need to share
their underlying data, thereby providing a natural safeguard
against data privacy breaches [47]. As a subfield of ML,
FL methods bring revolutionary changes to the conventional
system identification process. Instead of processing the data
which is previously collected from a single vehicle or clustered
from multiple vehicles, FL methods enable each EV to collect
data and train the individual model locally without raw data
sharing, so it is unnecessary to anonymize the data as what
conventional methods did. Besides, the capability of FL meth-
ods to deal with large-scale data make it possible to update
the trained model and make the decision in time rather than
optimize the system performance after another round of data
clustering, processing and model training.

In the seminal paper [48], the Federated Stochastic Gra-
dient Descent (FedSGD) and Federated Averaging (FedAvg)
algorithms were first proposed. A recent study [49] employed
CNN and bidirectional Long Short-Term Memory (LSTM)
networks as local models and implemented FedAvg for global
optimization. The study revealed that the performance of
the model improved compared to the original local model.
In another study [50], the authors proposed the Federated
Proximal (FedProx) framework, which aims to address the
challenges posed by statistical and system heterogeneity in
the context of FL.

The domain of EVs is characterized by significant variability
in data distribution across different devices. Recent research
has proposed novel approaches such as Federated Personal-
ization (FedPer) [51] and Federated Representation Learning
(FedRep) [52] to address the challenges arising from this
statistical heterogeneity. These methods introduce the concept
of dividing the model into standardized layers, which perform
weight sharing across the devices, and personalized layers,
which are responsible for generating the final personalized
output based on the local data of each device. These methods
represent a promising strategy for mitigating the negative
impacts of statistical heterogeneity in FL for EVs. Several
survey papers, including [53] and [54], have listed various
comparative experiments where different FL approaches (e.g.,
FedAvg and FedPer) with diverse local models, such as LSTM
and Gated Recurrent Unit (GRU), have been implemented and
compared.

Among the five FL algorithms previously discussed, i.e.,
FedSGD, FedAvg, FedProx, FedPer, and FedRep, each ex-
hibits unique strengths within this domain. While some studies
have compared specific pairs of these algorithms, a compre-
hensive comparison of all five is still warranted to offer a
more thorough understanding of their respective advantages
and limitations.

III. SYSTEM MODEL

In this section, we present our research object in terms of
the research problem statement, the specification of vehicles,
and the introduction of energy consumption calculation. The
problem statement part provides a comprehensive overview



of the research objectives, while the vehicle specification
outlines the parameters of the vehicles used in the experiment.
Additionally, the last part talks about the benchmark for
calculating the energy consumed in transit.

A. System Setup

We consider a scenario where a BEV company wishes
to improve its customers’ satisfaction and convenience in
the aspect of battery capacity management by enhancing the
performance of its energy consumption prediction model while
respecting the customers’ privacy (e.g., without sharing their
trip detail data such as location, time, speed, or the status of the
remaining charge of the vehicle battery). Thus, the aim of our
research is to implement and improve the energy consumption
prediction by keeping the collected private dataset locally but
updating the ML models globally with the help of different FL
methods. To do this, we assume that each BEV in the system
is equipped with an onboard computing/communication unit,
which is connected to our sensor group including various
sensors capturing different trip attributes (e.g., velocity, trip
distance, temperature and road slope) and is able to process the
data collected, train a local machine-learning model accord-
ingly and communicate and transfer data with other sections.

Similar to the model setup presented in our previous work
[26], we now formulate the BEV energy consumption predic-
tion as follows. Let N be the number of BEVs in our system
and N := {1, 2, 3, . . . , N} be the set for indexing these BEVs.
For a vehicle i ∈ N, we assume the number of its trip records
is K and denote its jth trip by Ti,j where j ∈ {1, 2, . . . ,K}.
If our sensor group capture the trip features M times in trip
Ti,j , the trip features will be divided into M sets accordingly.
Thus, at a given sampling moment t ∈ {1, 2, . . . ,M}, the
feature set is represented by f t

i,j and consequently, the trip
Ti,j could be defined based on its feature sets as:

Ti,j = [f1
i,j , f

2
i,j , . . . , f

M
i,j ] (1)

Assuming that the length of the trip feature set is L, we
could denote the feature set at the sampling moment t in the
trip Ti,j by:

f t
i,j = [f t

i,j(1), f
t
i,j(2), . . . , f

t
i,j(L)] (2)

where each f t
i,j(k) represents the kth feature in the feature

set f t
i,j , so accordingly, all the K historical trip records of the

vehicle i could be defined as a collection of all trips during
the day as:

Di = [Ti,1,Ti,2, . . . ,Ti,K ] := [Di(1),Di(2), . . . ,Di(L)] (3)

where Di(k) is a column vector of Di where only the kth

feature of the trip data is included. Assuming that the last
feature, i.e., Di(L), represents the energy consumption data
Ei of the vehicle i, we could use the other columns in Di

as the input feature F i for training the local model for the
vehicle i, which could be defined as:

F i := [Di(1),Di(2), . . . ,Di(L− 1)] (4)

and output label data, i.e., the energy consumption data of the
vehicle i (Ei), could be defined as:

Ei := Di(L) (5)

Finally, for a given time t, we define the past m observations
from the input and output sets as F i

t−m+1:t and Ei
t−m+1:t,

respectively. The output vector has a dimension of m, repre-
senting the energy consumption, while the input matrix has a
dimension of m× (L−1), representing the feature set at each
given time point with the past m steps in standard time units.
Here, we consider the overall energy consumption data during
the m steps instead of the point-wise data of the vector, so
we define the overall energy consumption within the past m
observations as:

Êi
t−m+1:t := 1T · Ei

t−m+1:t ∀t ∈ K (6)

where 1 ∈ Rm is the column vector with all entries equal to
1, and K := {m,m+ 1, . . . } is a feasible indexing set.

Given the notation above, a local model training process
for vehicle i can be defined to find a local hypothesis function
Hi(·) which is able to address the following problem:

min
Hi

∑
t∈K

∣∣∣Êi
t−m+1:t − Ẽi

t−m+1:t

∣∣∣
s.t. Ẽi

t−m+1:t = Hi(F
i
t−m+1:t)

(7)

B. Research Object

The studied vehicles are considered the same type of
passenger BEVs as shown in Fig. 1. It is equipped with an
electric motor of a maximum of 102 kW at 3000 rpm and
a battery pack with 120s5p cells for a total usable energy
of 45 kWh and a maximum power of 160 kW. In order to
maximize reliability, vehicle models are constructed through
the industrial development software AVL Cruise M.

Fig. 1. Vehicle architecture.

In this model, battery management and electric motor con-
trol systems are involved to ensure that the vehicle works
under safe conditions, i.e., the power limitation of the battery
pack and a current limit for the e-motor to match the battery



limitation. The most used functionalities of velocity-dependent
regenerative braking, electrical-mechanic parallel braking and
battery current limitation are also represented. By modifying
the cockpit output signals, the electric drive control calculates
the e-motor load signal in both traction and recuperation
conditions. If the braking effect of the electric motor torque
is below the driver’s request in terms of equivalent brake
pressure, then the service brakes are supplied with pressure.

C. Energy Consumption Calculation

The model setup has been introduced in the previous
sections, while here we present the method used to calculate
energy consumption as the benchmark of our work based on
the introduction in our previous work in [55]. The energy
consumption of the studied EV is all generated from its battery
pack. In the model of the battery pack, battery cell current and
voltage are applied in iterative calculations to simulate the
battery cell dynamics. Starting from each iteration, the battery
cell current Ibc needs to be calculated firstly by the following
formula:

Ibc =
Pbp

nbc · Vbc
(8)

where Pbp is the power of the battery pack, nbc is the number
of battery cells and Vbc is the terminal voltage of the battery
cell. Here, a standard Resistor-Capacitor equivalent battery
model is employed to expose the current-voltage dynamics
of a lithium-ion battery cell. The battery’s voltage dynamics
must obey:

Vbc = Voc(SoC)− Vp1 −R0(SoC)Ibc

Cp1(SoC) · dVp1

dt
= Ibc −

Vp1

Rp1(SoC)

(9)

where Voc is open circuit voltage, which is a function of the
battery cell’s State of Charge SoC; Vp1 represents the transient
voltage; R0 and Rp1 indicate the effective series resistance and
the transient resistance; and each of them is a function of the
battery cell’s SoC; Cp1 indicates the transient capacity, which
is a function of the SoC as well. The SoC of the battery cell
is calculated by:

SoC = SoC0 −
∫ t

0

Ibc
Qbc

dt (10)

where SoC0 is the initial SoC of battery cells and Qbc is
quantity of electric charge of battery cells. The battery cell
data and calibrated model parameters are soured from AVL
Cruise M.

This work simplifies the battery package computational
complexity by not considering the unbalance between cells in
the battery pack as their overall EV range will not be affected.
So far, the energy consumption of each cell J used in the
studied EV can be calculated as:

J =

∫ t

0

(Voc(SoC) · Ibc) dt (11)

IV. RESEARCH METHODOLOGY

In this section, we briefly introduce centralized and decen-
tralized FL structures, specify the ML models used as our
local model candidates and provide a comprehensive overview
of some FL optimization algorithms which have been widely
employed in a variety of domains.

A. Federated Learning Structures
In general, FL methods can be implemented in both cen-

tralized and decentralized structures, which are tailored to
various real-world conditions. Specifically, a centralized FL
implementation is illustrated in Fig. 2, where each local
model is trained on private data collected from a BEV and
transmits the requisite information to the centralized server.
After calculating and updating the global model, the unique
information is sent back to each BEV to update its local model.
In this scenario, a powerful centralized server is indispensable,
and the requirement for BEV computing units is relatively low.

Fig. 2. Centralized FL architecture.

In contrast, for a decentralized FL structure, as demonstrated
in Fig. 3, BEVs share essential information and perform
local model calculation and updating independently instead
of relying on a server. In this case, the requirement for BEV
computing units is greater, but the need for a centralized server
is eliminated.

Fig. 3. Decentralized FL architecture.

B. Local Model Selection
Several basic ML algorithms are adopted and compared to

obtain the best candidate as our local model. As discussed
in Section II, we selected traditional ML algorithms, e.g., RF
and XGB, and deep learning algorithms, e.g., GRU and LSTM.
The implementation of these models and their performance are
provided in the following sections.



C. Federated Learning Algorithms

We apply different FL optimization algorithms in our
prediction model section and compare their results to find
the best-performing algorithm as our basic design together
with the local candidate model. As introduced in Section II,
FedSGD, FedAvg, FedProx, FedRep and FedPer are widely
used in similar systems, so these federated methods are
adopted and their definitions are introduced in this part.

FedSGD: the direct transposition of stochastic gradient
descent to the federated setting. The gradients are averaged by
the server proportionally to the number of training samples on
each node and used to make a gradient descent step. The pseu-
docode for the FedSGD algorithm is shown in Algorithm 1.

Algorithm 1 FedSGD for BEVs
Notations:

The V BEVs are indexed by v; the initial global gradient
is g0, the global gradient in the tth round is gt and the
local gradient for vehicle v in the tth round is gvt , the
number of data points on vehicle v is nv , the total number
of data points is n, the loss function is Loss(·), and the local
learning rate is η.

Server executes:
initialize g0
for each round t = 1, 2, . . . do

for each BEV v ∈ V in parallel do
gvt+1 ← SgdOpt(v, gt)

end for
gt+1 ← gt − η

∑V
v=1

nv

n · g
v
t+1

end for

SgdOpt(v, g):
// run on vehicle v
g ← ▽Loss(g)
return g

FedAvg: a generalization of FedSGD, which enables local
nodes to perform more than one batch update on local data and
exchanges the updated weights rather than the gradients. The
pseudocode for the FedAvg algorithm is shown in Algorithm 2.

FedProx: a modified algorithm based on FedAvg, charac-
terized by two modifications. Firstly, partial models that have
not been fully trained are allowed, and all partial models
participating in the training are integrated regardless of their
accuracy. Secondly, the objective function of the local model
is composed of the loss function plus the proximal term.
The pseudocode for the FedProx algorithm is shown in Al-
gorithm 2.

FedPer: a federated learning optimization method based
on SGD which requires activating all clients and aggregating
only the base layer parameters into individual personalized
models. The pseudocode for the FedPer algorithm is shown in
Algorithm 3.

Algorithm 2 FedAvg and FedProx for BEVs
Notations:

The V BEVs are indexed by v; the initial global weight is
w0, the global weight in the tth round is wt and the local
weight for vehicle v in the tth round is wv

t , the number
of data points on vehicle v is nv , the total number of data
points is n, the loss function is Loss(·), the local data of
vehicle v is Dv , the local minibatch size is B, the number
of local epochs is E, and the local learning rate is η.

Server executes:
initialize w0

for each round t = 1, 2, . . . do
Vt ← (Full or partial set of V BEVs)
for each BEV v ∈ Vt in parallel do
wv

t+1 ← AvgOpt(v, wt) or ProxOpt(v, wt, wt−1)
end for
wt+1 ←

∑V
v=1

nv

n · w
v
t+1

end for

AvgOpt(v, w):
// run on vehicle v
B← (split Dv into batches of size B)
for each local epoch e from 1 to E do

for batch b ∈ B do
w ← w − η▽Loss(w; b)

end for
end for
return w

ProxOpt(v, wt, wt−1):
// run on vehicle v; µ is the proximal term coefficient
B← (split Dv into batches of size B)
for each local epoch e from 1 to E do

for batch b ∈ B do
wt ← wt − η▽(Loss(w; b) + µ

2 ∥w
t − wt−1∥2)

end for
end for
return wt

FedRep: a federated learning optimization method based
on SGD which requires activating all clients and focuses
on learning a shared representation of the data, rather than
learning individual models for each device. The pseudocode
for the FedRep algorithm is shown in Algorithm 3.

V. DATA & DATASET

This section presents the data in our dataset with both text
descriptions and figure visualizations, followed by explana-
tions of data pre-processing and feature selection in detail.

A. Description & Analysis

The dataset used in our work is generated based on Vehi-
cle Energy Dataset (VED), a real-world dataset collected in



Algorithm 3 FedPer and FedRep for BEVs
Notations:

The V BEVs are indexed by v; the initial standardized
layer weight matrix for vehicle v is W v,0

S , the standardized
layer weight matrix for vehicle v in the tth round is W v,t

S ,
the initial personalized layer weight matrix for vehicle v
is W v,0

P , the personalized layer weight matrix for vehicle
v in the tth round is W v,t

P , the number of data points on
vehicle v is nv , the total number of data points is n, the
loss function is Loss(·), and the local learning rate is η.

Server executes:
// for FedPer: WS are base layers, WP are head layers;
// for FedRep: WS are head layers, WP are base layers.
initialize W 0

S := {W 1,0
S ,W 2,0

S , . . . }
initialize W 1,0

P ,W 2,0
P , . . .

for each round t = 1, 2, . . . do
for each BEV v ∈ V in parallel do
(W v,t+1

S ,W v,t+1
P )← Opt(v, W v,t

S , W v,t
P )

end for
W t+1

S ←
∑V

v=1
nv

n ·W
v,t+1
S

end for

Opt(v, W v
S , W v

P ):
// run on vehicle v
(W v

S , W v
P )← (W v

S , W v
P )− η▽Loss((W v

S , W v
P ))

return (W v
S , W v

P )

Michigan, USA [56]. We filtered 10 trips from VED with a
duration longer than 1,800 seconds. We then extracted their
GPS coordinates and the altitude data as the input for our
vehicle model introduced in Section III, with the speed data
set as the desired velocity of our vehicle model. The output,
consisting of multiple trip attributes such as temperature,
actual speed and trip distance, is then used as our dataset.
In other words, our dataset is a collection of 10 tables of trip
information for all 10 vehicles. Each table includes 1,800 rows
and 12 columns, representing different attributes respectively.

We have explored the data for 10 vehicles and have discov-
ered a correlation between their average speed and the total
amount of energy consumed during a 60-second interval. For
example, the relationship between average speed and energy
consumption for Vehicle 1 is shown in Fig. 4. It is evident
that there is a slight delay in the change of the average speed
relative to the energy usage. Following our analysis, we have
determined that this delay is approximately 23 seconds.

The energy consumption values in 60-second intervals have
a wide range from a minimum of -28.15 Wh to a maximum
of 283.38 Wh. The data analysis results revealed the distinct
statistical features of individual vehicles, which suggests that
they have been exposed to different road conditions and other
circumstances in the 1,800 seconds of observation. Addition-
ally, Fig. 5 indicates that there are a number of outliers in the
data of Vehicle 1 and Vehicle 5, all of which are valid and

cannot be disregarded.

B. Pre-processing

As introduced above, we found a strong connection between
energy consumption and the average speed in a certain Time
Step (TS), which makes it highly possible to predict energy
consumption based on other features. Thus, we divide the data
in each 60-second interval Ii as follows:

Ii := {F i
t−59, F

i
t−58, . . . , F

i
t−1, F

i
t } = F i

t−59:t (12)

where F i
t is the set of trip features at time t for Vehicle i.

With a full length of 1,800 seconds, the trip record data of
one vehicle is divided into 1741 intervals.

Moreover, standardization of the data is implemented to
shift the distribution such that the mean is zero and the stan-
dard deviation is one. This preserves the essential information
regarding the outliers, making the algorithm less susceptible
to them, in comparison to Min-Max normalization.

C. Feature Selection

As discussed in Section II, most researchers working on
similar research problems used speed, distance, acceleration
and altitude as their features. Accordingly, we adopted these
trip attributes and employed Principal Component Analysis
and RF Regression to select features generated by mathemat-
ical transformations (e.g., square, logarithm, and exponent),
and based on the results, we selected acceleration a, speed v,
the square root of speed

√
v, the cube of speed v3 and the

square root of the distance moved in each second
√
∆d as the

features for model training.

VI. EXPERIMENT & RESULTS

This section outlines our experimental cases, which encom-
pass various experimental settings along with their correspond-
ing results. By default, we assumed an input of the data from
all vehicles would result in the best performance.

Case 1: Local Model Comparison

Setups: In this section, we applied various ML models and
compared their performance as the candidates of our local
model deployed on each BEV. Here we implemented and
evaluated RF, XGB, ANN, GRU and LSTM models.

Machine Learning Models: We initially applied the RF and
XGB to implement the BEV energy consumption prediction
on decentralized datasets, which were separately split into a
training set and a test set with a ratio of 3 : 1. In the setup of
the RF model, 16 estimators were applied with a maximum
tree depth of 9 to run 16 jobs in parallel, while for the XGB
model, the regressor from the XGB library with a gradient-
boosted tree booster was used to run 50 jobs in parallel.

Deep Learning Models: We adopt a similar structure for all
the deep learning models in our work (i.e., ANN, GRU and
LSTM) and replace the hidden layers with specific modules
(i.e., dense layers, GRU layers and LSTM layers respectively).
The deep learning model was set up based on three hidden



Fig. 4. Effect of average speed on energy consumption in Vehicle 1.

Fig. 5. Box and violin plot of energy consumption for each vehicle.

layers containing 40, 32 and 16 neurons respectively with
hyperbolic tangent as the activation function and the dropout
layer was applied with a rate of 0.10 and 0.20 between
the first and second and the second and third hidden layers
separately. Coming from a dense layer, the model output of the
model is a single value that by default captures the vehicle’s
overall energy consumption over the past 60 seconds. The
loss function was chosen as the Mean Absolute Error (MAE)
which represents the average difference between the actual
energy consumption of a BEV during a trip and the energy
consumption predicted by the model. A lower MAE indicates
that the model is better at predicting energy consumption and
that the vehicle is likely to be more efficient, which can lead
to reduced driving range anxiety and lower energy costs. The
model was optimized by the Adam optimizer with the default
learning rate, i.e., 1e−3. Each local dataset was split into
batches with a size of 70 with 65 epochs.

Results: In Table I, a comparative analysis of the credible
and competitive results of these models is presented. The value
in each row of this table represents the average value of the
MAE for the model trained on the corresponding vehicle’s
training set and tested on all vehicles’ test sets.

Evaluations: As observed in Table I, the LSTM model
demonstrates the best performance in terms of MAE. It
is noteworthy, however, that different datasets with varying
attributes may result in different best-performing models. As
such, in our study, we selected the LSTM model as the local

TABLE I
LOCAL MODEL PERFORMANCE (MAE) ON EACH VEHICLE (WH).

ID RF XGB ANN GRU LSTM

V1 9.5375 9.0951 6.9207 5.3355 5.1759
V2 10.4122 9.7776 8.3997 6.8031 6.7997
V3 10.1580 9.4953 7.2892 6.3033 4.4117
V4 8.9370 8.6519 7.8394 6.6888 4.6765
V5 10.7788 10.6958 8.6680 5.6422 6.1466
V6 9.2424 8.8490 8.2999 4.9306 5.8707
V7 11.5519 10.5905 7.0247 5.3347 4.9729
V8 8.9563 9.0859 9.0698 7.5178 5.7530
V9 12.1133 11.5608 11.0439 10.7237 8.6670
V10 9.0282 8.8239 11.7233 7.1755 8.1254

model for our FL framework. Nonetheless, we acknowledge
the need for adjusting the selection of the local model based
on the prevailing conditions and characteristics of the dataset
in future applications.

Case 2: Federated Learning Algorithm Comparison

Setups: As reviewed in Section IV, five algorithms, i.e.,
FedSGD, FedAvg, FedProx, FedPer and FedRep, were imple-
mented and evaluated at this stage. It is evident that these
algorithms share a similar structure and basic logic, with the
exception of FedSGD, which calculates the gradient rather
than weights, and FedPer and FedRep, which employ an ad-
ditional parameter, namely the number of personalized layers.



The performances of the different local model candidates, as
shown in Table I, led to the selection of LSTM due to its
lowest MAE scores. Given the low complexity of the model,
only one personalized LSTM unit was set, with the other layers
being standardized.

Results: The comparative analysis of different FL algo-
rithms is presented in Table II. The value in each row of this
table represents the average value of the MAE for the model
trained on the corresponding vehicle’s training set and tested
on all vehicles’ test sets.

TABLE II
FL METHOD PERFORMANCE (MAE) ON EACH VEHICLE (WH).

ID FedSGD FedAvg FedProx FedPer FedRep

V1 5.4300 4.0245 4.9574 3.8197 4.4066
V2 6.3252 4.8791 6.8512 4.8160 5.6075
V3 4.3714 3.8117 4.4467 3.6836 4.1196
V4 4.2921 3.4877 4.4171 3.3153 3.9459
V5 4.9364 4.5298 6.4715 4.6095 5.5250
V6 5.1704 3.7653 5.5837 3.8582 4.3317
V7 4.5819 4.1943 5.2512 4.3598 4.9148
V8 5.1873 4.3449 6.0334 4.1380 5.1330
V9 7.5800 7.4539 9.9346 7.5819 9.5547
V10 8.9892 7.5734 7.7679 7.6032 7.5043

Evaluations: As observed in Table II, FedAvg and FedPer
exhibit comparable performances on the dataset utilized in the
study. As discussed in Section II, the efficacy of personalized
FL approaches is highly reliant on the personalized layers
selected. Hence, the reason for FedPer and FedRep failing
to surpass the performance of FedAvg could be attributed to
the relatively low complexity of the local models employed
in the study. Notwithstanding the comparable performances
of FedAvg and FedPer, the time cost associated with both
methods must be carefully considered. Taking into account
the time required to complete 15 Iterations (ITR) of FedAvg
and FedPer, i.e., around 49 and 58 minutes respectively, we
ultimately decided to adopt FedAvg as the global FL method
for the subsequent experiments.

Case 3: Impact of Iteration

Setups: To investigate the impact of iteration numbers, the
performances of the models with ITR of 15, 30, 45 and 60
were examined based on the LSTM-FedAvg structure. These
results were compared to the performance of the local models
(i.e., with 0 ITR), which served as the baselines.

Results: Table III presents the impact of iteration on the
model performance. The value in each row of this table
represents the MAE value of the model trained and tested
on the corresponding vehicle’s training and test sets.

Evaluations: As demonstrated in Table III, an increase in
the number of ITR is accompanied by a decrease in the MAE
for half of the objects (Vehicles 3, 5, 7, 8, and 9), indicating
an improved model performance. However, for four objects
(Vehicles 2, 4, 6, and 10), the best model performance occurred
after 45 ITR. Vehicle 1 had the lowest MAE after 30 ITR.

TABLE III
ITR ON MODEL PERFORMANCE (WH).

ID LSTM 15 ITR 30 ITR 45 ITR 60 ITR

V1 2.0949 1.0118 0.6384 0.7127 0.6771
V2 1.4466 0.7181 0.5268 0.3533 0.3961
V3 1.5723 0.5057 0.5268 0.5463 0.3087
V4 1.6571 0.8222 0.8466 0.4838 0.6151
V5 1.1317 0.5640 0.5039 0.5823 0.2765
V6 2.2842 0.9905 0.6548 0.5882 0.8435
V7 1.4967 0.7576 0.5935 0.4758 0.4244
V8 1.7994 0.8203 0.8849 0.6794 0.4169
V9 1.3155 0.6690 0.5529 0.3905 0.2754
V10 2.2864 0.9877 0.7184 0.5738 0.7174

This trend can be attributed to the unique nature of the local
data. Furthermore, while the model performance improved
for some vehicles, the training process’s time requirements
increased. Specifically, executing 15, 30, 45, and 60 ITR
required approximately 49, 98, 148, and 197 minutes, respec-
tively, which implies that each iteration took about 49 minutes.
After careful consideration of both model performance and
time requirements, we chose to execute 15 ITR for this study.

Case 4: Impact of Data Split Ratio

Setups: Based on the LSTM-FedAvg structure, we con-
ducted a comparative analysis of model performance across
varying train-validation-test splitting ratios, i.e., 4:1:5, 5:1:4,
6:1:3, 7:1:2, and 8:1:1 to investigate the impact of data split
ratio.

Results: The impact of data-splitting ratios on model per-
formance is reported in Table IV. The value in each row of
this table represents the MAE value of the model trained and
tested on the corresponding vehicle’s training and test sets.

TABLE IV
IMPACT OF SPLITTING RATIO ON MODEL PERFORMANCE (WH).

ID 4:1:5 5:1:4 6:1:3 7:1:2 8:1:1

V1 1.3546 1.3068 1.0626 0.7437 1.0118
V2 0.7424 0.6625 0.8641 0.6374 0.7181
V3 1.0652 0.9029 0.7644 0.7448 0.5057
V4 1.2096 1.0056 1.0278 0.7597 0.8222
V5 0.9935 0.7111 0.6575 0.7352 0.5640
V6 1.2573 1.4778 1.1662 1.1626 0.9905
V7 1.0656 0.9155 0.6053 0.5805 0.7576
V8 1.2109 1.0480 1.0135 0.9522 0.8203
V9 0.7191 1.1471 0.9642 0.7911 0.6690
V10 1.6850 1.2798 1.6003 1.0928 0.9877

Evaluations: Based on the results presented in the table, it
can be observed that a data splitting ratio of 7:1:2 or 8:1:1
tends to yield the best performance on our dataset compared
to the other ratios. In particular, a ratio of 8:1:1 demonstrates
superior performance across all metrics. This indicates that an
increase in the quantity of training data facilitates enhanced
learning from the input under our experimental conditions.



Consequently, in this work, we have selected a data splitting
ratio of 8:1:1 due to its superior overall performance.

Case 5: Impact of Input Data Size

Setups: Concerning the input data sizes, we utilized data
inputs with varying TS of 60, 90, 120, 150, and 180 times-
tamps to train the model based on LSTM-FedAvg, with the
subsequent performance evaluation.

Results: The results of the experiments are presented in Ta-
ble V. The value in each row of this table represents the MAE
value of the model trained and tested on the corresponding
vehicle’s training and test sets.

TABLE V
IMPACT OF INPUT DATA SIZE (TS) ON MODEL PERFORMANCE (WH).

ID 60 TS 90 TS 120 TS 150 TS 180 TS

V1 1.0118 2.0234 2.4310 3.4794 7.2946
V2 0.7181 1.0923 1.2904 1.7201 3.9600
V3 0.5057 1.5067 1.6543 2.4812 3.4214
V4 0.8222 1.5299 2.0712 2.9217 3.2603
V5 0.5640 1.1884 1.4450 2.1414 2.4692
V6 0.9905 1.5533 1.7502 2.6796 3.7042
V7 0.7576 1.1970 1.6349 1.7855 2.5312
V8 0.8203 1.6027 1.7615 2.6084 3.5714
V9 0.6690 0.9991 0.9454 1.5623 1.6180
V10 0.9877 2.0208 2.2899 3.8614 8.7896

Evaluations: As can be seen in the table, the increase in
input data size is typically associated with an increase in
MAE, indicating poorer model performance. This result may
be attributed to the decrease in the number of windows due to
the increase in window size, resulting in a reduction of training
data and consequent degradation of model performance.

Case 6: Decentralized Approaches

Setups: In order to incorporate various real-world scenarios,
experiments were conducted based on the chosen FL approach
in a decentralized setup. Using results from LSTM-based local
models, we selected Vehicles 3, 4, and 6 as the top three
performers (G), and Vehicles 2, 9, and 10 as the three weakest
performers (W) to investigate the performance of decentralized
FL approaches. From these 6 models, different test groups
were formed based on the number of weaker performers as
below:

• Three weak performers (0G+3W)
• One good performer with two weak performers (1G+2W)
• Two good performers with one weak performer (2G+1W)
• Three good performers (3G+0W)
Results: The findings are presented in Table VI.
Evaluations: The results indicate that after 15 ITR using the

FedAvg algorithm, the performance of all local models in each
case improved, demonstrating the efficacy of decentralized FL
methods in enhancing BEV energy consumption modeling.
However, an increase in the number of good performers
does not always equate to an improvement in performance.
Specifically, the MAE value of Vehicle 10 increased when

TABLE VI
PERFORMANCE (MAE) OF DECENTRALIZED FEDAVG METHOD (WH).

ID LSTM 0G+3W 1G+2W 2G+1W 3G+0W

V1 (W) 2.0949 0.2403 - - -
V2 (G) 1.4466 - - - 0.1956
V5 (G) 1.1317 - 0.1929 0.1892 0.2687
V6 (W) 2.2842 0.3488 0.2770 - -
V9 (G) 1.3155 - - 0.1413 0.2301

V10 (W) 2.2864 0.2815 0.3700 0.3106 -

interacting with Vehicles 5 and 6 (1G+2W) compared to being
aggregated with two weak performers (Vehicles 1 and 6).
Conversely, the interaction among good performers does not
always result in the most suitable setup for an individual
vehicle model. For example, the best model performance
for Vehicle 2 occurs when interacting with Vehicles 9 and
10 (2G+1W), but it becomes worse when aggregated with
Vehicles 5 and 9 (3G+0W).

VII. DISCUSSIONS

This section presents a comprehensive discussion of the ex-
periment results in terms of the performance of a decentralized
structure and FL applications in the real world.

A. Decentralized Aggregation

In the experiments presented in Section VI, it was observed
that the aggregation results of models trained on separate
private data were not directly affected by the number or
percentage of good performers, but rather a suitable group
for aggregation is more crucial for individual models. For
instance, for two good performers, Vehicle 5 and 9, the results
from interacting with Vehicle 10 were significantly better
than those with Vehicle 2. This suggests that the similarity
and dissimilarity of data attributes are crucial factors, and
exploring the similarity of user behaviours and driving patterns
is necessary for achieving better aggregation results.

B. Real-World Application

FL methods are well-suited to edge-cloud computing frame-
works. We propose the application of our work in a real-
world edge-computing-based system, the framework of which
is illustrated in Fig. 6. The top layer comprises a cloud data
center, the middle layer consists of multiple edge infrastruc-
tures and the bottom layer is composed of base stations and
BEVs. Different methods of data transmission and calculation
have been considered and marked with different colours to
accommodate various communication situations and hardware
conditions. We now provide details of the four blocks from
left to right in this framework:

• The first block in yellow illustrates the classic centralized
method, wherein data provided by BEVs is transferred to
the edge server through the base station and then passed
to and calculated by the cloud server. This approach does
not necessitate BEVs to calculate, but they can request
the edge server to calculate the weights in local models.



• The subsequent block in red depicts the fully decentral-
ized method, wherein BEVs communicate with each other
directly. This necessitates that the data computing and
transmission capabilities of BEVs be highly robust and
reliable.

• The third block in blue represents cloud computing,
wherein data provided by BEVs is sent to the cloud server
directly through the base station, without the requirement
of edge infrastructures.

• Lastly, the block in green indicates that data is only
transmitted to the edge server, thus requiring the edge
server to possess a high capability to calculate and deploy
the data.

Fig. 6. System framework based on edge computing.

VIII. CONCLUSION & FUTURE WORK

This paper aims to establish a privacy-aware energy con-
sumption modeling framework for connected BEVS. To
achieve that, we investigated the performance of various FL
algorithms in BEV energy consumption modeling. Based on
comparative experimental results and relevant discussions in
the previous section, we initially identified the superiority of
LSTM and FedAvg as the local model and FL algorithm for
our dataset. Subsequently, we examined the impact of ITR,
data splitting ratios, and input data sizes on model perfor-
mance. Through the linear correlation between the number of
ITR and time spent, and considering the corresponding model
performances, we recommend the application of 15 ITR in
our task. Regarding the model performance based on different
data splitting ratios, we found that 8:1:1 is a suitable choice for
datasets similar to ours. Furthermore, we observed a decrease
in model performance corresponding to the increase in input
data size, indicating that a TS of 60 timestamps leads to
relatively good results. After conducting our experiments, we
observed a significant reduction in the MAE of our prediction
results. Specifically, we achieved a reduction of up to 67.84%
(from 1.5723 to 0.5057 for Vehicle 3) by performing 15
ITR. The average MAE value for all vehicles was around
0.7847, indicating that the mean error for predicting energy
consumption within one minute is approximately 0.8 Wh.

In addition, we explored decentralized FL approaches for
BEV energy consumption modeling by testing the selected FL

framework on the three best and three worst performers. The
results demonstrated the effectiveness of FL methods in this
prediction task. Moreover, we provided a detailed description
of how to apply FL methods with an edge-cloud computing
framework with various setups. We believe that the explo-
rations and relevant analysis we conducted are meaningful
and beneficial for future researchers, business operators, and
policymakers.

Notwithstanding our extensive experiments and analyses,
there are still some potential avenues for improvement. Firstly,
the scope of our study could be extended by including a
wider range of local model candidates and FL methods.
Additionally, in this paper, we made certain assumptions to
simplify the presence of cell heterogeneity, which could be
addressed by absorbing and analyzing extensive datasets in
our future work. Furthermore, augmenting the size of our
dataset could help us design better models that enable us
to explore personalized FL further. Besides, investigating the
performance of models trained on simulated data on a real-
world dataset is another aspect that can be explored in future
work. Addressing these limitations would contribute to a more
comprehensive understanding of FL methods for BEV energy
consumption modeling.
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[28] P. López-Aguilar, E. Batista, A. Martı́nez-Ballesté, and A. Solanas,
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