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Abstract
Technoscientific transformations in molecular genomics have begun to influence 
knowledge production in education. Interdisciplinary scientific consortia are seek-
ing to identify ‘genetic influences’ on ‘educationally relevant’ traits, behaviors, and 
outcomes. This article examines the emerging ‘knowledge infrastructure’ of edu-
cational genomics, attending to the assembly and choreography of organizational 
associations, epistemic architecture, and technoscientific apparatuses implicated in 
the generation of genomic understandings from masses of bioinformation. As an 
infrastructure of datafied knowledge production, educational genomics is embedded 
in data-centered epistemologies and practices which recast educational problems in 
terms of molecular genetic associations—insights about which are deemed discover-
able from digital bioinformation and potentially open to genetically informed inter-
ventions in policy and practice. While scientists claim to be ‘opening the black box 
of the genome’ and its association with educational outcomes, we open the black 
box of educational genomics itself as a source of emerging scientific authority.  
Data-intensive educational genomics does not straightforwardly ‘discover’ the bio-
logical bases of educationally relevant behaviors and outcomes. Rather, this knowl-
edge infrastructure is also an experimental ‘ontological infrastructure’ supporting 
particular ways of knowing, understanding, explaining, and intervening in educa-
tion, and recasting the human subjects of education as being surveyable and predict-
able through the algorithmic processing of bioinformation.
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Introduction

The genetic sciences have evolved historically alongside advances in data technolo-
gies. From the nineteenth-century origins of genetics as a statistical data practice 
(Porter 2018), it was later reconfigured in the mid-twentieth century through devel-
opments in information theory, cybernetics, and computer sciences, which recon-
ceptualized life as ‘codes,’ ‘programming,’ and ‘information’ (Koopman 2020). As 
‘big data’ became available for the computational formats of molecular research 
that emerged in the 2000s, genetics became a ‘genomic’ science utilizing computa-
tional systems and databases to interrogate DNA (Cambrosio et al. 2014). Since the 
human genome was sequenced, scientists in molecular genomics have utilized bio-
statistics methods and bioinformatics software to reconfigure understandings about 
the molecular structures and functions of living human bodies (Stevens 2013). The 
convergence of scientific practices with computational instruments in complex 
technoscientific infrastructures has made collecting and analyzing genomic data 
feasible, reshaping how research problems are identified and addressed, and ren-
dering certain genetic conditions visible and knowable (Chow-White and García-
Sancho 2012).

Genomic infrastructures are also being applied to psychological, behavioral, 
and social scientific research problems and public policy domains. Claims con-
necting genes to social, economic, and behavioral outcomes circulate widely 
within and beyond the fields of behavior genetics and ‘sociogenomics’ (Panofsky 
2014; Bliss 2018). Social and behavior genomics studies of the purported genetic 
substrates of behaviors and social outcomes, and gene-environment interactions 
(Koellinger and Harden 2018), have been described by investigators as highly 
dependent upon the ‘rapid computational and technological progress’ made dur-
ing the ‘big data revolution’ (Mills and Tropf 2020: 557). On this technologi-
cal basis, scientists in social and behavior genomics aim ‘to open the black box 
of heritability’ using advanced computational methods (Harden and Koellinger 
2020: 569), or ‘finally open the black box of the genome’ and ‘delve into the 
biological mechanisms and come up with a better understanding of the pathways 
from cells to society’ (Conley and Fletcher 2017: 35).

A principal public policy area targeted by social and behavior genomics is edu-
cation. Social and behavior genomics scientists study what are framed as ‘genetic 
influences’ on educational outcomes, as signified by the interdisciplinary synthesis 
referred to by some as ‘educational genomics’ (Kovas et al. 2016) and characterized 
as a ‘genomic revolution for education research and policy’ (Morris et al. 2022: 1). 
By surveying genetic data, educational genomics attempts to predict how a person’s 
genotype—their unique, complete set of genetic material—influences a phenotype, 
or traits, behaviors, and outcomes that are considered to be educationally relevant 
(Thomas et al. 2015). Genomic analysis has been applied to the study of phenotypes 
including educational attainment, cognitive ability, school achievement, and vari-
ous other traits, abilities, and behaviors (Sabatello 2018; Visscher 2022). Genomics 
is also promoted in educational policy discussions, particularly in the UK (Asbury 
et al. 2022; Government Office for Science 2022).
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The application of genomics in research on educational matters is also the sub-
ject of significant scientific and bioethical controversy. There are ongoing contests 
over, for instance, the scientific practicality of distinguishing genetic influences from 
environmental influences (Burt 2023a), and the risks that using genetic information 
may lead to forms of biological reductionism, discrimination, stigmatization, and rac-
ism, as well as distracting from other forms of intervention (Parens and Meyer 2023). 
Education genomics research has thus been criticized both on scientific grounds for 
lacking ‘biologically realistic’ explanatory power and on socio-political lines for 
privileging somatic explanations over social structural analyses (Burt 2023b: 63).

While educational genomics aims to ‘open the black box’ of complex genetic 
associations with education, the aim of our analysis is to open the black box of edu-
cational genomics itself. We seek to better understand the scientific infrastructure—
the organizational associations, epistemic architecture, and technoscientific appara-
tuses—that supports this field and its imaginaries, contributing to recent research 
examining the critical issues arising from syntheses of biology and education (e.g., 
Panofsky 2015; Gillborn 2016; Gulson and Baker 2018; Martschenko, Trejo, and 
Domingue 2019; Youdell and Lindley 2018; Pickersgill 2020; Martschenko 2021), 
especially their convergence with computational analysis (Gulson and Webb 2018; 
Williamson 2021; Means et al. 2022). Educational genomics research, and the dis-
course surrounding it, has potential to reshape how educational outcomes and prob-
lems are investigated, understood, and explained in terms of genetic influences and 
propensities, as well as to influence policy and practice interventions.

Our central argument is that data-intensive educational genomics do not straight-
forwardly ‘discover’ the biological bases of educationally relevant behaviors, traits, 
and phenotypes from data-mining bioinformation, or produce ‘biologically realistic’ 
or causal explanations of the genetic influences on educational outcomes, as its pro-
ponents suggest (Harden and Koellinger 2020). Rather, the scientific infrastructure 
being constructed and operationalized to enable and support educational genom-
ics is also an experimental ‘ontological infrastructure’ (Jensen and Morita 2017). 
The distinctive ontology of educational genomics, in which genetic data processed 
in computers are taken as biologically realistic representations of biological matter, 
is therefore ‘the consequence of infrastructural arrangements’ (Jensen and Morita 
2017: 618–619) (emphasis original). The ‘gene-centric worldview’ characteriz-
ing many efforts to identify ‘genetic influence’ in social and behavioral genomics 
research (Burt 2023b: 60) privileges biologically realistic explanations for highly 
complex, context-dependent social influences and outcomes. We reverse engineer 
this ontology by foregrounding the role of infrastructure in mediating and shaping 
the scientific knowledge produced by educational genomics research.

Crucially, we argue, educational genomics proceeds from a correlational ontol-
ogy grounded in algorithmic associations (Kotliar and Grosglik 2023), rather than 
causal explanations of biological mechanisms (Matthews and Turkheimer 2022). 
The experimental infrastructure of educational genomics supports a ‘data-centric’ 
mode of research (Leonelli 2016) and shapes ways of knowing, understanding, 
explaining, and intervening in education. In the genetic sciences, computational and 
informational conceptions of human life have become characteristic of an ‘infor-
mation-centric epistemology’ that links genetic codes to computer codes and treats 
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‘physiochemical reality’ as ‘information transfers’ (Koopman 2020: 9). Genetic sci-
ences ultimately construct a human who can be known ‘from the statistical residue 
of [their] genome’ as a calculable and ‘statistical body’ (Stevens 2013: 221–222; 
van Baren-Nawrocka et al. 2020).

In contrast to claims that educational genomics can ‘discover’ a ‘realistic’ biologi-
cal explanation of the genetic pathways from somatic substance to school outcomes, 
educational genomics instead calculates statistical correlations as part of its ‘ontolog-
ical experimentation’ (Jensen and Morita 2017: 620) related to the human subjects of 
education. Therefore, just as genomics has begun to define and ‘format’ human bod-
ies ‘as subjects of genetic data,’ and therefore to enable interventions that are based 
on genetic data and informational understandings of biology (Koopman 2020: 10), 
then educational genomics has begun formatting bioinformational subjects that may 
be identified and intervened upon from their rendering as genetic data. Such genetic 
formatting constitutes ontological experimentation in the analysis and definition of 
the biological correlates of educationally relevant behaviors and outcomes in educa-
tional genomics.

In other words, educational genomics formats a bioinformational substitute of 
the human subject as the potential basis for interventions in education policy and 
practice: a human subject whose genome may be data-mined, making educational 
outcomes legible and predictable from statistical correlations in bioinformation, 
and whose educational trajectory may then be shaped by genetically informed inter-
ventions. This surveyable and predictable bioinformational proxy is the product of 
ongoing efforts to construct and activate a scientific infrastructure of educational 
genomics. In the following analysis, we elaborate on how the construction of an 
infrastructure for educational genomics research enables these forms of ontological 
experimentation. First, though, we situate our analysis in conceptual research on sci-
entific knowledge infrastructures, outline our methodological approach, and briefly 
summarize the historical precursors of contemporary educational genomics.

Infrastructuring Genomics

Like other scientific domains of investigation and knowledge production, educa-
tional genomics is constituted through an accumulating sociotechnical ‘knowledge 
infrastructure’ consisting of people and organizations, epistemologies and practices, 
and technologies and methods (Edwards et al. 2013). As the following analysis dem-
onstrates, the scientific knowledge infrastructure of educational genomics is cur-
rently taking shape through an imbrication of associations, architectures, and appa-
ratuses. First, educational genomics is performed by large-scale, sometimes densely 
networked organizational and interpersonal associations, representing a consortia-
driven ‘big biology’ mode of knowledge production. Second, educational genomics 
deploys a specific epistemic architecture for understanding biological influences on 
educationally relevant outcomes and behaviors. Third, methodological apparatuses, 
which heavily emphasize bioinformatic data mining and algorithmic discovery 
methods, are mobilized for data-intensive knowledge production.
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These interacting and reciprocal associations, architectures, and apparatuses consti-
tute educational genomics as a ‘science-in-the-making’ in which scientific instruments 
‘actively mediate how reality becomes present to—and is treated by—scientists’ (de 
Boer, te Molder, and Verbeek 2021: 392). As such, educational genomics is not a  
settled or autonomous field of investigation, but a site of ongoing ‘infrastructuring’ 
that involves a complex accumulation of social, scientific, technical, material, politi-
cal, and economic relations into a stabilized infrastructure of knowledge production 
(Blok et al. 2016: 5). ‘Infrastructuring’ highlights that ways of acting towards, know-
ing about, and valuing the objects of scientific investigation are inextricably bound up 
with the social, technical, and organizational practices and scientific instruments of 
large-scale computer-enabled information systems, which have to be designed, made, 
implemented, and maintained in order to allow scientific knowledge to be produced 
(Meckin 2020).

Transnational knowledge infrastructures and their instruments also embed particu-
lar assumptions and politics, which impact engagements with them and their epistemic 
and ontological affordances. Scientific ‘infrastructures include and exclude, and they 
enable certain kinds of knowledge and action rather than others’ as well as enabling 
attempts at ‘exercising control’ over the objects and subjects they are built to analyze 
(Blok et al. 2016: 6). Scientific knowledge infrastructures therefore function as ‘exper-
imental systems’ consisting of interrelated devices, forms of practice and organiza-
tion, and conceptual frames that facilitate the making of scientific knowledge, thus 
constituting ‘ontological experiments’ in how objects and subjects of investigation are 
conceived, interpreted, and explained (Jensen and Morita 2017).

Studies of data-centric biology have thus attended to how genomic knowledge 
production is interdependent with complex infrastructures of computational tech-
nologies and methodologies, which are reconfiguring how human biology is under-
stood in terms of statistical correlations and patterns in large datasets (Chow-White 
and García-Sancho 2012; Stevens 2013; Leonelli 2016). Genomics ‘is ultimately 
a statistical exercise that depends on the analytic software itself and the informa-
tion that goes into the statistical software’ (Fujimura and Rajagopalan 2011: 15). It  
consists of specific scientific sites and experts, epistemologies and practices, and 
methods and technologies of knowledge production and circulation, which gener-
ate datafied objects of attention that can move within and beyond research settings 
(Cruz 2022). We likewise approach educational genomics as a sociotechnical site of 
ongoing infrastructuring, paying careful attention to the associations, architectures, 
and apparatuses constitutive of this emerging domain of knowledge production and 
its claims to potential policy relevance.

For the analysis of associations, we identified core clusters of individual actors, 
institutions, and their interconnections, by conducting detailed web searches surfac-
ing relevant details about the organizations and actors and their associations with 
research centers, projects, collaborators, conferences, and funders.1 Informed by the 

1 We used social network graphing methods to map the social relations and organizational associa-
tions that characterize educational genomics, and annotated the data using the graph database man-
agement system Neo4j, visualizing educational genomics as a single map of social and organizational 
relationships. We used the annotated social graph of educational genomics as the basis for producing 
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mapping of associations, we compiled an archive of more than 100 texts relevant to 
educational genomics, including research articles, books, reports, conference papers, 
and media articles published in English between 2005 and 2023.2 Concentrating 
particularly on a sample of texts produced by key nodal actors from the analysis of 
associations, observations were made of the repeated approaches, ideas, and claims 
common to the discourse of educational genomics, conceiving these as a conceptual 
architecture underpinning such research.

To examine the technological apparatuses, we produced characterizations of key 
technologies used in educational genomics, entailing close attention to the meth-
odological appendices of published papers, and the following-up of references to 
bioinformatics applications. In concert with the conceptual architecture of biosci-
entists, bioinformatics apparatuses may have ontological effects, structuring par-
ticular ways of understanding human bodies, behaviors, or outcomes (Chow-White 
and García-Sancho 2012; de Boer et al. 2021). We further analyzed the discourses 
that frame such technologies; for example, what one prominent behavior geneticist 
refers to as their ‘visionary big-science’ capacity to ‘discover’ genetic differences 
and ‘transform’ scientific understanding of human behaviors (Plomin 2018: 123). 
Seven subsequent interviews with scientists involved in educational genomics con-
solidated our understanding of its infrastructural composition and implications. We 
now briefly survey the recent history of genetics and genomics in education, before 
moving to a substantive analysis of the associations, architectures, and apparatuses 
comprising educational genomics.

Genetics and Genomics in Education

Genetics has a long history in education that has anticipated the recent emergence of 
educational genomics. Even before genetics was named as a field of inquiry, schools 
for so-called feeble-minded children collected numerical data to inform early stud-
ies of heredity, prefacing the late nineteenth-century co-development of statistics 
and eugenics (Porter 2018). The eugenics movement exerted significant influence 
on education during the twentieth century in the UK and the USA (Mazumdar 
1992; Chitty 2007), especially through the use of intelligence quotient (IQ) testing 
and mathematical techniques to differentiate individuals according to genetically 

2 For the textual analysis, we searched electronic catalogues for published research articles, reports, and 
media articles which used, reviewed, or critically analyzed using genomics methods to explore educa-
tional issues, covering the period 2005–2023, and compiled these texts using the bibliographic software 
Zotero. In particular, we searched for publications produced by research groups and individual scholars 
identified through the network mapping. We manually checked references and citations from the most 
recent and highly cited sources to ensure inclusion of relevant previous studies. These searches produced 
a corpus of over 100 research articles, as well as media articles, four full book-length treatments, and 
three relevant policy reports. Web searches also surfaced conference paper proceedings and video record-
ings, podcasts, and media appearances, which supplemented the textual dataset.

Footnote 1 (continued)
descriptions of the key nodal organizations and individuals, and their interorganizational and interper-
sonal associations.
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determinist claims about cognitive ability (Lowe 1980, 1998). Such intelligence 
tests constituted early psychometric attempts to ‘format’ students in terms of the 
biological correlates or causes of measurable mental aptitudes (Koopman 2020). In 
the postwar years, behavior genetics established itself as a research field dedicated  
to examining the impact of genetics on behaviors, despite ongoing controversies 
over its eugenic legacy (Panofsky 2014). Subsequently, from the 1960s onwards, 
behavior genetics produced a large body of research on the heritability of purport-
edly educationally relevant traits, including intelligence, attention, and other cogni-
tive and noncognitive abilities, largely from methodological innovations in quantita-
tive genetics (Plomin et al. 2007).

By the late 1980s, genetic explanations were becoming ‘particularly appealing 
in school systems pressed by demands for efficiency and accountability,’ leading to 
advocacy for strategies of genetic screening, prediction, and preventive intervention 
(Nelkin and Tancredi 1991: 51). Strategies of genetic screening and preventive inter-
vention were advocated in relation to so-called problems arising within the class-
room, with some predicting genetic tests could become ‘part of the standard testing 
regime in schools,’ as ‘objective assessments that have predictive value’ for ‘tailored 
regimes of learning’ (Rose 2007: 119–120). Inspired by emerging genomic under-
standings of ‘genetic polymorphism’ derived from molecular methods in the 1990s 
and 2000s, proposals circulated for a ‘genomics-education merger’ and new roles 
for ‘educogeneticists’ in schools, emphasizing interventions based on the ‘pattern of 
genetic variants’ in children’s genomes, which ‘should lead to improved individual 
learning outcomes and the maximization of the learning potential for every child’ 
(Grigorenko 2007: 24). As such, the early 2000s saw the foundations being laid for 
an infrastructure of educational genomics research that, animated by advances in 
molecular genomics, would proceed from the direct analysis of genetic data (Kovas 
et al. 2016).

Technoscientific developments in genomic methodologies have been promoted as 
a ‘genomic revolution’ for educational research and policy since around 2010 (Morris  
et  al. 2022). Using data-intensive instruments and methods, behavior geneticists 
have begun studying what are taken to be traits and outcomes relevant to educa-
tion (Malanchini et  al. 2020), including cognitive ability, intelligence, educational 
attainment, achievement, and noncognitive skills (Selzam et al. 2017; Rimfeld et al. 
2018; Demange et  al. 2021). Sociogenomics research, which combines genomics 
and quantitative social sciences, and genoeconomics, the application of genomics 
in economics (Benjamin et  al. 2012; Freese 2018; Braudt 2018; Mills and Tropf 
2020), have extended genomic data analysis to a growing range of socio-economic 
outcomes and public policy areas like education (Domingue et  al. 2015; Belsky 
et al. 2016; Cesarini and Visscher 2017). For some, contemporary genomic meth-
ods appear to make it possible to ‘personalize’ education around the individual’s 
genome, in a model termed ‘precision education’ and modelled after the biomedical 
approach of ‘precision medicine’ (Shakeshaft et al. 2013; Plomin 2018; Sokolowski 
and Ansari 2018; Shero et al. 2021).

The prospect of embryo selection and genetic editing based on DNA testing of 
educational potential has even become an area of bioethical debate in social and 
behavioral genomics (Meyer et al. 2023), signalling how ‘biodigital’ augmentations 
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produced through genetic editing technologies have become a site of speculation in 
relation to education (Gulson and Webb 2018; Reader 2022). During this period, 
then, behavior genetics, sociogenomics, and genoeconomics have developed a major 
research agenda on genetics and education. This entails distinctive ways of conceiv-
ing the biological correlates of educational outcomes and has become possible due 
to the construction of a technoscientific infrastructure for data collection, analysis, 
and knowledge production.

The research enabled by the emerging infrastructure of educational genomics, the 
discourse supporting it, and claims of the relevance of its findings for education, has 
animated growing policy interest. This is notable in, for instance, the UK. Policy-
facing agencies and scientific societies have begun circulating educational genomics 
evidence and proposals, particularly for genetic screening in the early years (Asbury 
et al. 2022). The UK Government Office for Science (2022: 136), for example, syn-
thesized social and behavioral genetics research findings on education, highlight-
ing how scientists have capitalized on medical genomics infrastructures to produce 
‘insight into the biological architecture of learning and education processes,’ and 
suggesting its potential to ‘inform more beneficial interventions to improve pupils’ 
educational outcomes.’

Critics, however, argue that existing datasets and associated results are not repre-
sentative across different populations (Herd et al. 2021), reinforce racialized catego-
rizations and discriminatory outcomes (Roberts and Rollins 2020), produce nega-
tive self-fulfilling prophecies (Matthews et al. 2021), and are easily appropriated to 
support regressive and racist political agendas (Martschenko et al. 2019). Methodo-
logical controversies over measurement, prediction, and identification of genotype-
phenotype mechanisms persist in social and behavior genomics too (Matthews and 
Turkheimer 2022), while ideas about ‘precision education’ are contested on prac-
tical, ethical, and scientific grounds (Sabatello et  al. 2021). Indeed, these meth-
odological and bioethical controversies are sources of ongoing debate and innova-
tion within social and behavior genomics in both the UK and USA (Morris et  al. 
2022; Burt 2023a; Parens and Meyer 2023), highlighting how educational genomics 
remains enmeshed in a contested terrain of research while simultaneously extending 
its claims to biological authority on educational matters, as we now examine.

Associations

In this first step of our analysis, we conceptualize the infrastructuring of educational 
genomics as a process of ‘harmonization’ (Ackerman et al. 2016), in which scien-
tific institutions and individuals are interconnected by and cohere around genetic 
databases. Educational genomics depends on assembling relations between various 
research centers, institutions, associations, project teams, and individual scientists, 
as well as epistemic frames and sociotechnical apparatuses. As introductory remarks 
to a 2018 workshop entitled ‘Genes, Schools, and Interventions That Address Edu-
cational Inequality’ put it, the participants represented ‘overlapping Venn diagrams 
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of social networks.’3 Researchers across social and behavior genomics have back-
grounds in psychology, economics, sociology, political science, demography, epide-
miology, behavior genetics, and quantitative genetics, as well as computer science, 
data science, biostatistics, and bioinformatics (Conley and Fletcher 2017). Consist-
ent with the ‘big data,’ ‘big team,’ and ‘big funding’ character of genomics, social 
and behavior genomics is an interdisciplinary, multisector, and network-based sci-
entific endeavor (Mills and Rahal 2019). Moreover, as in genomics, educational 
genomics is organized around large bioinformational databases, which consti-
tute and sustain associations between researchers, teams, and epistemic programs 
(Chow-White and García-Sancho 2012), and reconfigure knowledge production in 
relation to educational matters as a ‘big biology’ enterprise (Vermeulen 2016).

Infrastructuring educational genomics therefore requires the harmonization of 
various disciplines and laboratory settings around the capacities of bioinformational 
databases. The work performed by these harmonizing agencies to infrastructure edu-
cational genomics is consequential to the kinds of research that can be performed, 
and thus to the forms of knowledge produced and the bioinformational configuration 
of the human subjects of education such studies entail. The Social Science Genetic 
Association Consortium (SSGAC) is the most established center in social genomics 
research related to education and plays a significant role as an infrastructural har-
monizer and facilitator of such studies by bringing together multidisciplinary exper-
tise, aggregating and making available data for analysis, developing computational 
methods, and solving logistical and sociolegal problems with data storage and secu-
rity. As a ‘research infrastructure’ and a ‘multi-institutional, international research 
group,’ SSGAC operates as a distributed network across institutions and disciplines 
in a variety of principally high-income countries, most notably Australia, the Neth-
erlands, and the USA, with team members also associated with organizations includ-
ing the RAND Corporation and the National Bureau of Economic Research.4

SSGAC was founded with US National Science Foundation funding in 2011 by 
behavioral economists and genoeconomists as a research consortium to develop a 
large-data approach to social science genetics (Beauchamp et al. 2011). Further fund-
ing for its activities has been granted by major national science funding agencies and 
philanthropic foundations, including the US National Institute of Health, European 
Research Council, Swedish Research Council, Russell Sage Foundation, Open Philan-
thropy Project, and the Pershing Square Fund of the Foundations of Human Behavior. 
SSGAC specializes in meta-studies involving very large samples of data on pheno-
types/traits, including attitudes, behaviors, economic preferences, and socioeconomic 
outcomes, as well as compiling, harmonizing, and sharing datasets publicly for re-use 
by others (Benjamin et al. 2012). Such ‘harmonization’ of both datasets and ‘harmo-
nious scientists’ by multi-sited consortia is integral to accomplishing quantification 
standards and molecular precision in genomics (Ackerman et al. 2016: 194).

The consortium connects an even more distributed international network of 
researchers and centers that manage DNA banks associated with large genetic cohort 

3 See https:// cehd. uchic ago. edu/? page_ id= 1400. Accessed 18 December 2023.
4 See https:// www. thess gac. org/. Accessed 18 December 2023.

https://cehd.uchicago.edu/?page_id=1400
https://www.thessgac.org/
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studies.5 Data from more than 100 sources have been harmonized by SSGAC, with 
the largest provided by UK Biobank and the Silicon Valley personal genomics com-
pany 23andme (Becker et al. 2021). This has enabled SSGAC to produce four stud-
ies of educational attainment with escalating samples, most recently featuring more 
than 3 million genotyped individuals (Okbay et al. 2022). The materiality of these 
databases and the sociolegal and logistical processes that allow data sharing and 
co-analysis consequently have ontological effects in shaping the field in particular 
ways. Through generating and sharing DNA databases in such a coordinated and far-
reaching fashion, educational genomics would not—in its current form—be imagi-
nable and operable without the harmonizing research infrastructure of the SSGAC.

In this sense, SSGAC performs the significant function of not only harmonizing 
data, but also formatting it in ways that make it amenable to further analysis by other 
scientists. Its huge sample studies also provide benchmarks for how educational 
genomics studies can and should be performed, have become highly cited reference 
points that animate a wide range of follow-up studies, and provide evidentiary sup-
port to discourses promoting the potential of genetic analysis in educational practice 
and policy.

One well-known collaborator with SSGAC members is KP Harden of the Devel-
opmental Behavior Genetics lab, University of Texas, Austin. Harden is a highly 
cited behavior geneticist whose recent research primarily uses sociogenomics meth-
ods, with funding from the Templeton Foundation, Jacobs Foundation, and the US 
National Institute of Child Health and Human Development. She is closely associ-
ated with a range of other actors and institutions relating to educational genomics. 
In part, her traction relates to the wide publicity received for her popular science 
book The Genetic Lottery (Harden 2021). This, in turn, has generated wider interest 
in educational genomics, cultivated through explicitly ‘progressive’ opinion pieces 
and media interviews aimed at wider public and policy audiences (Lewis-Krause 
2021). Indeed, by advocating what has been called a ‘new synthesis’ of social and 
genetic sciences (Jopling 2023), by synthesizing study findings by the SSGAC and 
others into accessible form, and by seeking to highlight how genetic information can 
be used to progressive ends of addressing social inequalities, The Genetic Lottery 
is itself a significant infrastructural connector. It has animated public, media, and 
political interest in the potential of genetic discovery and genetically informed inter-
ventions in education.

Other significant research nodes linked to SSGAC and Harden are based in the 
Netherlands and the UK. At Vrije Universiteit Amsterdam, sociogenomics research-
ers from economics and biological psychology departments received over €1.8 
million funding from the European Research Council for the project ‘The molec-
ular genetic architecture of educational attainment and its significance for cogni-
tive health’ (Koellinger and Harden 2018). Various UK teams conduct behavioral 
and social genomics research. Most closely focused on education is the behavior 
genetics team at the Social Genetic and Developmental Psychology Centre, King’s 
College London, led by Robert Plomin. The center’s core funding is from the UK 

5 See https:// www. thess gac. org/ parti cipat ing- cohor ts. Accessed 18 December 2023.

https://www.thessgac.org/participating-cohorts
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Medical Research Council, having received over £26 million since 1994, with other 
funders including the ERC, US National Institute of Health, British Academy, and 
Templeton Foundation.

The flagship Twins Early Development Study (TEDS) is based at the center 
and has likewise been running since 1994. TEDS data have been combined with 
SSGAC data to link educational attainment with cognitive measures of intelligence 
(Allegrini et  al. 2019). Its methods encompass traditional twin studies as well as 
social genomics focusing predominantly on intelligence and cognitive develop-
ment (Malanchini et al. 2020). Further, it is the institutional setting for ideas about 
genetically informed ‘precision education,’ as promoted in Plomin’s popular science 
book Blueprint (Plomin 2018), and proposals for ‘genetically sensitive schooling’ 
developed collaboratively with University of York academics studying behavioral 
genetics and education (Asbury and Plomin 2013; Plomin and von Stumm 2018). 
However, such proposals are largely contested by others working on educational 
genomics studies due to genetic data being deemed only weakly predictive and their 
potential to lead to deleterious outcomes (Parens and Meyer 2023). Nonetheless, 
these contested proposals serve to incite public and media interest and demonstrate 
how the harmonized data and findings of the SSGAC have been mobilized to sup-
port aims beyond the association’s own claims to agnosticism regarding the use of 
genetic information for policy or practice interventions.6

Other UK teams using social genomics methods are based at the universities of 
Bristol and Oxford. Researchers in the MRC Integrative Epidemiology Unit have 
investigated the genomics of education and economic outcomes with funding from 
the MRC, Economic and Social Research Council, Wellcome Trust, and Norwegian 
Research Council, and contribute datasets and advisory work to the SSGAC (Morris 
et al. 2018, 2020, 2022). The Leverhulme Centre on Demographic Science, funded 
with over £10 million by the Leverhulme Trust, develops sociogenomics methods 
and research (Mills and Tropf 2020), with relevant projects also funded by the ERC 
and the ESRC. Its lead researchers are also connected to the aforementioned teams 
in the USA, the Netherlands, and Australia. The Centre is a member of the European 
Social Science Genetics Network, along with seven other institutions, which estab-
lished an EU-funded doctoral training network in 2022 to provide training ‘in state-
of-the-art computational and bioinformatics methods for analyzing big data and in 
statistical techniques for empirical research’ for social genomics.7 Infrastructuring 
educational genomics is thus dependent on pedagogies of methodological training 
in bioinformatics and socialization of researchers into its knowledge community as 
well as investment in computing facilities and financial support through large-scale 
grant funding.

Besides formal institutional connections and networks, researchers applying 
genomics to education interact through a social infrastructure of conferences and 
workshops. These function as ‘community-making devices’ (Molyneux-Hodgson 
and Meyer 2009: 140), helping to propel epistemic developments and the promissory 

6 See https:// www. thess gac. org/ faqs. Accessed 18 December 2023.
7 See https:// eurax ess. ec. europa. eu/ jobs/ 857404. Accessed 18 December 2023.

https://www.thessgac.org/faqs
https://euraxess.ec.europa.eu/jobs/857404
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discourses that power these (Pickersgill 2023). Key conferences include the Integrat-
ing Genetics and the Social Sciences conference, hosted annually since 2010 at the 
University of Colorado, Boulder, the international Behavior Genetics Association 
annual conference, and the European Social Science Genetics Network annual con-
ference established in 2022, as well as an annual SSGAC Summer Institute. Another 
is a series of conferences on genetics and social science at the University of Chicago 
Center for the Economics of Human Development in 2016, 2018, and 2021 with 
themes on polygenic prediction, genoeconomics, and educational interventions.

A series of workshops in the UK, coordinated on behalf of the Early Intervention 
Foundation (part of the UK government’s ‘What Works Network’) in 2020–2021, 
focused on generating policy advice on genetics for early years intervention, and 
included participation from the SSGAC, Plomin, Harden, and many others from both 
the UK and USA (Asbury, McBride, and Rimfield 2021). Its report was intended 
to generate and mobilize evidence and policy recommendations, and proposed the 
potential of ‘genetically informed social policy-making’ in the UK (Asbury et  al. 
2022: 8)—later leading to media coverage in the UK education press (Asbury 2023). 
A series of events hosted by the US bioethics research institute the Hastings Center, 
and co-directed by a bioethicist from the SSGAC, involved many social and behav-
ioral genomics participants, leading to a ‘consensus report’ on the bioethical impli-
cations of such work (Parens and Meyer 2023).

Such reports and events not only support community-making among social and 
behavior genetics scientists, but function as translational techniques to turn complex 
scientific knowledge into publicly accessible artifacts that may circulate in media 
and policy spaces and potentially produce conviction in the idea that genetic data 
can be mobilized in social policy areas like education.

In sum, the application of genomics to education exemplifies a form of net-
worked, consortia-driven science that advances through institutional and interper-
sonal associations across genomic, psychological, economic, social, and computer 
science disciplines and national borders, and which commonly converges around 
DNA databases (Chow-White and García-Sancho 2012). The associations that 
constitute educational genomics are characterized by processes of harmonization, 
consensus-building, translation, disciplinary synthesis, community-making, and the 
social and pedagogic practices that such connections entail. These harmonious rela-
tions materialize in large-scale ‘collective’ projects that resemble the composition 
of ‘big biology’ in the wider genomics field (Vermeulen 2016), characterized by 
disciplinary cross-fertilization of concepts and methods, large funding grants, pub-
lications with extensive authorship teams, and the creation and circulation of digital 
bioinformation via powerful computing infrastructure (Cambrosio et al. 2014).

As such, educational genomics would not be possible without the kind of har-
monizing associations, networks, syntheses, and underpinning computing and data 
resources that characterize data-intensive genomics. Moreover, the associations 
responsible for constructing an infrastructure of educational genomics center digital 
bioinformation as a source for conceptualizing educational problems and proposing 
solutions. Harmonization of data is thus integral to the kinds of ontological experi-
ments enacted by educational genomics research, and to its underpinning scientific 
epistemologies.
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Architectures

The networks and associations that constitute the infrastructure of educational 
genomics embed and enable a distinctive epistemic framework for conceptualiz-
ing the human subjects of education. The second step in our analysis is therefore to 
examine the epistemic architecture or conceptual framework of educational genom-
ics, which we argue foregrounds a molecularized definition of educational outcomes 
and subjects that is possible only owing to the availability of high-powered comput-
ing instruments for processing genetic bioinformation.

Contemporary genomic sciences are characterized by a ‘molecular style of 
thought,’ which involves shared modes of ‘thinking, seeing, and practicing’ accord-
ing to scientific consensus on the relevant objects of analysis, methods of inquiry, 
appropriate technical systems for data processing, and ways of identifying argu-
ments and explanations (Rose 2007: 12). Such a molecular style of thought typi-
fies educational genomics. Educational phenomena are conceptualized, investigated, 
and explained in terms of molecular genetic processes and interactions with other 
social and environmental factors (Koellinger and Harden 2018; Morris et al. 2022). 
Even where gene-environment interactions are highlighted, as in other domains 
of genomic science, phenomena are often ‘re-defined in terms of their molecular 
components,’ with research directed to ‘go into the body’ and ‘turn from efforts 
to understand social and environmental exposures outside the body, to quantifying 
their effects inside the body’ (Darling et al. 2016: 51).

This quantitative way of understanding and explaining the molecular basis of 
learning outcomes operates as an overarching epistemic architecture, or a conceptual  
and cognitive schema, that patterns and organizes knowledge production in educa-
tional genomics. The significance here is that a molecular epistemology, and the  
way it conceives and formats subjects, is inseparable from the computational instru-
ments that format data and thereby make educational outcomes and behaviors vis-
ible, legible, and knowable from looking ‘into the body.’

This distinctive epistemic architecture derives from the so-called laws of behavior 
genetics infusing social and behavior genomics research, which state that all human 
behavior is heritable; environmental effects are smaller than the effect of genes; and 
substantial variation in behavioral traits is not accounted for by either genes or fami-
lies (Turkheimer 2000). A ‘fourth law’ was proposed in 2015 by SSGAC and associ-
ated sociogenomics scientists ‘on the basis of molecular studies that have measured 
DNA variation directly,’ stating that ‘a typical human behavioral trait is associated 
with very many genetic variants, each of which accounts for a very small percent-
age of the behavioral variability’ (Chabris et al. 2015: 305). This attempt to create 
ongoing ‘laws’ grounded in emerging biological data contributes to a discourse of 
novelty and import associated with educational genomics, framing it as a field in 
evolution that demands ongoing definitional dialogue, while simultaneously assert-
ing its authority as an epistemic architecture (Pickersgill 2021).

The fourth law was characterized on the basis of studies seeking patterns and asso-
ciations among a multiplicity of genetic variants known as single nucleotide polymor-
phisms (SNPs). SNPs are tiny building blocks in human DNA, regarded as each having 
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minuscule effects that function ‘additively’ through ‘polygenic’ associations to influence 
complex traits or outcomes; the search for and ‘discovery’ of these associations through 
genomic methods ostensibly makes it possible to produce a complete understanding of 
the underlying ‘genetic architecture’ of a phenotypic trait or outcome (Timpson et al. 
2018). The search for SNPs is based on early 2000s conceptualizations of ‘genetic poly-
morphism’ whereby many genotypic variants were deemed to contribute to a phenotypic 
outcome or behavioral trait, and are critical objects of attention in behavior genetics, 
sociogenomics, and genoeconomics (Benjamin et  al. 2012; Belsky et  al. 2016). They 
form, for instance, a biological basis for educational genomics wherein ‘educational 
attainment’ is conceptualized as ‘a phenotype affected by thousands of undiscovered 
genetic variants, each responsible for a minuscule fraction of individual differences’ 
(Chabris et al. 2015: 305).

Accordingly, for educational genomics, the ‘appropriate response to the Fourth 
Law’ has been asserted to be ‘research strategies suited to the reality that most 
genetic effects on behavioral traits are very small,’ which are deemed to necessitate 
‘much larger samples’ and new methods to identify polygenic associations (Chabris 
et al. 2015: 308). Through such claims-making, the ‘bigness’ of educational genom-
ics sample sizes of the kind choreographed through the logistical infrastructure of 
SSGAC is justified and catalyzed. These variations have been identified in recent 
SSGAC research from studying sample sizes ‘from tens of thousands to millions,’ 
utilizing ‘growing statistical power to detect tiny effects on highly polygenic traits’ 
and the ‘associations of specific genetic markers with social scientific outcomes’ 
(Harden and Koellinger 2020: 569). The most recent SSGAC study of educational 
attainment included analysis of around 2.5 million SNPs, although its authors argue 
that ‘even larger samples will enable other analyses that have not yet been ade-
quately powered’ (Okbay et al. 2022).

Genotyped SNP differences have thus become the basis of increasingly ‘high-
powered’ educational genomics studies seeking the polygenic, molecular-level deter-
minants of educationally relevant behavioral phenotypes and outcomes (Morris et al. 
2022). Via the normative force of a legalistic framing structuring behavior genetics 
more broadly, educational genomics directs researchers to go into the body to dis-
cover SNPs and then combine them into models of the ‘genetic architecture’ that 
underpins educational achievement.

However, the expertise of educational genomics does not only discover polygenic 
SNP associations as molecular-architectural explanations for educational outcomes. 
It also actively assembles them as objects of analysis through the scientific infra-
structure for measuring digitalized bioinformation. SNPs and polygenicity were 
historically conceptualized through technological and methodological develop-
ments in the late twentieth and early twenty-first centuries, the result of efforts by 
the biotechnology industry and genomics consortia to accelerate and automate DNA 
analysis (Kragh-Furbo et al. 2016; Rajagopalan and Fujimura 2018). The epistemic 
architecture educational genomics is, therefore, interdependent with methodologi-
cal-technical innovations in bioinformation collection, storage, and analysis, with its  
knowledge claims actively mediated by large-scale bioinformatics apparatuses (de 
Boer et al. 2021).
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These bioinformatics instruments function to format genetic data related to edu-
cation: concretely, by enumerating the SNPs associated with educational outcomes, 
and then aggregating these SNPs into genetic architectures of educational phenom-
ena such as attainment and achievement. They thus constitute powerful ways of 
defining educational outcomes and subjects by mining genetic bioinformation. Inso-
far as such studies ‘go into the body,’ they also delve into the bioinformatized proxy 
bodies that have been made surveyable and mineable in databases. Claims regard-
ing the architectural polygenicity of educational outcomes are, then, not only an 
expression of a molecular style of thought associated with the extension of genom-
ics knowledge into education, but artifacts of incorporating data science methods 
and genomic technologies into educational investigations. The molecular-biological 
epistemology of educational genomics, in other words, is also a data- or informa-
tion-centric epistemology associated with big data technologies, as examined next.

Apparatuses

While educational genomics depends on network associations and a conceptual 
architecture foregrounding molecular polygenicity, it also relies reciprocally on 
technoscientific instruments and apparatuses adopted and adapted from biomedi-
cal genomics. The third stage of our analysis consequently engages more fully with 
the instrumentation of educational genomics and the forms of experimentation and 
knowledge production it enables. Building the infrastructure of educational genom-
ics to incorporate molecular technologies thus activates a particular configuration of 
a surveyable bioinformational subject as the potential basis for educational investi-
gation and intervention.

In biomedical genomics, knowledge co-evolves with the invention of technical 
and methodological infrastructures of data collection, analysis, and communication 
(Chow-White and García-Sancho 2012). Genomics knowledge claims are, then, the 
products of particular convergences of technical and methodological instruments, 
along with distinctive modes of conceptualization that emerge in specific organi-
zational and material situations (Leonelli 2016; de Boer et  al. 2021). Central to 
genomics has been the development of bioinformatics, the synthesis of biological 
inquiry with computerized statistical techniques (Bartlett et  al. 2017), resulting in 
‘the reconfiguration of biology as a data-driven information science’ (Parry and 
Greenhough 2018: 6). Bioinformatics has enabled ways of aggregating and handling 
data that have reworked the settings, practices, and conceptual approaches of biolog-
ical knowledge production (Cambrosio et al. 2014; Mackenzie 2003; Stevens 2013). 
Algorithmic instruments and apparatuses for data analysis, storage, sorting, search-
ing, prediction, and more have therefore participated in the imagining and opera-
tions of genomics as a science dealing with exponentially increasing sample sizes 
and complexity of molecular associations (Reardon 2017).

Social and behavioral genomics scientists involved in education-focused research 
refer to the ‘powerful toolboxes’ of ‘statistical genetics’ as the methodological and 
technical underpinnings of their ‘genetically informed study designs’ (Harden and 
Koellinger 2020: 574). This includes proposals to genotype children and predict 
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genetic influence on their outcomes. Such analyses require significant computing 
power ‘since genomic data are truly big data’: ‘computational demands are high and 
generally demand moving to a cluster computing environment and arranging consid-
erable storage’ (Mills and Tropf 2020: 563). The specific algorithms and technolo-
gies selected and used by scientists shape how researchers perceive and understand 
their objects of study, ‘the kinds of questions and answers that genome biologists 
pose and attempt to answer’ (Stevens 2016: 353). Ultimately, such technologies and 
attendant techniques of investigation are enrolled into educational genomics to the 
extent that they make straightforward claims like this not only utterable but logi-
cal: ‘molecular genetic research, particularly recent cutting-edge advances in DNA-
based methods, has furthered our knowledge and understanding of cognitive abil-
ity, academic performance and their association’ (Malanchini et al. 2020: 229–230). 
Three instruments adapted from biomedical genomics are especially significant 
in underpinning such claims in educational genomics: microarrays, biobanks, and 
polygenic data-mining software.

Microarray Chips

The first instrument underpinning educational genomics is ‘DNA microarray chips’ 
(also known as ‘SNP chips’ or ‘labs-on-a-chip’). DNA microarray chips, originat-
ing in medical genetics in the mid-2000s, were created and are manufactured by 
global biotechnology companies to identify variation between genotyped individu-
als (Rajagopalan and Fujimura 2018), consistent with how commercial genotyping 
and bioinformatics companies have historically entered into and shaped genomic 
knowledge discovery (Stevens 2021). Microarrays are small glass slides imprinted 
with DNA fragments; when a dissolved sample of DNA flows across the slide, it 
binds with complementary fragments, generating an optical signal at certain wave-
lengths of light for measurement by a detection instrument. Microarray scanners, 
or automated ‘laboratory robots’ capable of analyzing thousands of arrays, can 
then genotype an individual in terms of how they differ from a group or population 
across very large samples (Kragh-Furbo et al. 2016). Behavior geneticists involved 
in education-focused studies claim microarrays represent a ‘breakthrough in DNA 
research,’ making it possible ‘to genotype inexpensively and quickly the most com-
mon type of inherited DNA difference’ (von Stumm et al. 2020: 3).

Genotyping microarray platforms used for educational genomics studies are part 
of complex bioeconomic arrangements, multisector partnerships, and subcontract-
ing agreements that constitute the contemporary technoscientific field of genomics 
(Birch 2017). Methodological innovations in social and behavior genomics have 
been argued to be the result of ‘radical drops in the cost of genome sequencing and 
growth in computational power,’ which ‘precipitated an unprecedented explosion 
of data, novel methods, applications, and results’ (Mills and Tropf 2020: 554). The 
apparatuses of genotyping SNP chips and scanners, which include international bio-
technology organizations like Illumina and 23andme, represent key sociotechnical 
elements of the infrastructure of knowledge production in educational genomics. 
Researchers have argued DNA chips can be used ‘to predict strengths and weakness 
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for individual pupils’ (Asbury and Plomin 2013: 12). ‘Gene chips’ have been specu-
latively invoked as a source of ‘individual genetic information to help children in 
school settings,’ and of ‘anticipatory guidance, based on genetic information,’ which 
could ‘result in more effective pedagogical approaches and beneficial outcomes’ 
(Grigorenko 2007: 24). More recently, Plomin (2018: 134) referred to ‘Learning 
Chips’—from which polygenic predictions for educational achievement could be 
derived—as ‘DNA fortune tellers,’ actively proposing their use as a source of antici-
patory guidance in education.

One paper, ‘Predicting educational achievement from genomic measures and 
socioeconomic status,’ involved microarrays to study swab samples collected from 
approximately 5000 UK school children (von Stumm et al. 2020). Another team lev-
eraged genotypes from 3500 UK school children, seeking to investigate ‘how accu-
rately polygenic scores for education predicted pupils’ test score achievement’ (Morris  
et  al. 2020: 1). The methods section from the report of this work indicated the  
range of biotechnology organizations involved in providing ‘chip genotyping plat-
forms’ for educational genomics studies and the significant interpolation of private 
enterprise within a publicly funded and, ostensibly, -orientated endeavor, and hence 
the imbrication of (educational) genomics within the broader bioeconomy:

DNA of the […] children was extracted from blood, cell line and mouthwash 
samples, then […] genotyped using the Illumina HumanHap550 quad chip gen-
otyping platforms by 23andme subcontracting the Wellcome Trust Sanger Insti-
tute […] and the Laboratory Corporation of America. (Morris et al. 2020: 11)

Microarrays highlight how the study of human biology has become centered on 
masses of data and analytical algorithms, as commercially produced bioinformatics 
apparatuses have intervened in methods and knowledge-making practices (Keating 
and Cambrosio 2012). Moreover, the design, statistical power, and technical con-
straints of the chips have shaped the ‘definition and significance of human genetic 
differences,’ through having ‘locked in’ the primary ‘conceptual frameworks humans 
should use to consider, organize, work with, and ultimately act on genetic differ-
ences’ (Rajagopalan and Fujimura 2018: 862). Polygenic variation in educational 
outcomes has therefore been ‘locked-in’ to educational genomics by the design and 
constraints of DNA chips developed in large part by global biotechnology compa-
nies. Microarrays have enabled a particular style of molecular analysis—and hence 
imagining—of human difference, consolidating visions for a form of research into 
educationally relevant genetic variations and proposals to use genetic data for antici-
patory interventions.

Significantly, microarrays are complex sociotechnical and bioeconomic assem-
blages for interpreting and in a sense ‘producing’ human genetic variation, based 
on the biomedical application of techniques from the computing and data sciences 
including data mining, machine learning, computational algorithms, robotics, and 
automation (Kragh-Furbo et  al. 2016). Accordingly, microarrays represent how 
educational genomics is intertwined with technical innovations, specific material 
objects, biomedical methodological practices, and bioeconomic valuation in the 
biotechnology industry. They make human subjects surveyable as bioinformational 
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proxies with phenotypic traits and outcomes that can be predicted from genotyped 
samples. These technoscientific ‘lock-ins’ are further consolidated as genotyped 
microarray data are aggregated into large-scale bioinformation repositories.

Biobank Repositories

Educational genomics depends on building infrastructural connections to ‘biobanks’ 
for access to the necessary genotyped data. Biobanks are large-scale repositories of 
biomedical samples and associated information for use in research and medicine. As 
‘biorepositories’ that blur the distinction between the ‘wet lab’ of human specimen 
analysis and ‘dry lab’ data analytics, biobanks are also ‘nodes’ for ‘global sharing’ 
that are embroiled within sometimes diverging economic, epistemic, and norma-
tive agendas (Argudo-Portal and Domènech 2020: 1). In essence, they allow for the 
storage and exchange of ‘bioinformatized’ data. Following Chow-White and García-
Sancho’s (2012) analysis of the emergence of DNA databases in the 1960s, the con-
temporary use of biobanks in educational genomics can be understood as represent-
ing a material-technical instantiation of the historical and ongoing convergence of 
biological and computer sciences, and of academia and industry. They represent a 
notably powerful point at which genetic data are formatted.

Biobanks are key sources of genotyped SNP data used in educational genom-
ics. The SSGAC has arranged an array of biobank and cohort study data to calcu-
late polygenic scores for educational attainment. This was, first, with a sample of 
126,500 genotyped individuals, which identified three SNPs associated with just 
2% of the variation in educational attainment (Rietveld et al. 2013), then a follow-
up 2016 sample of 300,000 identifying 74 SNPs regarded as explaining 3.2% of 
variation (Okbay et  al. 2016). In 2018, with an updated sample of 1.1 million, 
SSGAC scientists reported more than 1200 SNPs accounting for 11–13% of the 
variation in years spent in school (Lee et al. 2018). The million-sample database it 
constructed was based primarily on combining data sourced from the UK Biobank, 
a large-scale biomedical database funded by UK research councils and charities, 
and data from the aforementioned 23andme (proprietor of one of the world’s largest 
private biobanks).

The SSGAC has also completed another study with a scaled-up sample of 3 
million through its extended partnership with 23andme, identifying 3952 lead 
SNPs explaining between 12 and 16% of the variation in educational attainment 
(Okbay et al. 2022). It further published an updateable ‘repository’ detailing the 
polygenicity of 47 distinctive phenotypes (five of which are educationally rele-
vant) based on data sources including 23andme and UK Biobank (Becker et  al. 
2021). These thousands of polygenic associations constitute the genetic architec-
ture of educational attainment, according to the SSGAC and the wider domain of 
educational genomics it supports. In other words, large-scale biobank data, and 
associated practices of storing and sharing bioinformation, have made it possible 
to conceive of the genetic or ‘biological architecture’ of learning outcomes as a 
potential object of policy attention (Government Office for Science 2022).
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Biobanks are, however, far from merely neutral repositories of bioinformation, 
despite their enrolment in epistemic programs ostensibly generative of insights 
about both populations and, increasingly, the individuals inscribed within them 
(Hoeyer et al. 2019). The construction of the SSGAC datasets from biobanks can 
be understood as the result of ‘bioprospecting’ for data that holds potential value 
for further research and its ‘data packaging’ for re-use. Bioprospecting and pack-
aging involve the ‘selection, formatting, standardization, and classification, as 
well as the development of methods for retrieval, analysis, visualization and qual-
ity control’ that underpin the integration of biological data for dissemination and 
analysis (Leonelli 2016: 16). The SSGAC thus bioprospects data from biobanks, 
negotiates financial contracts and legal data-sharing agreements, and packages 
data into ‘harmonized’ large-scale repositories and polygenic indices for sharing 
and analysis by other researchers (Becker et  al. 2021). The bioprospecting and 
packaging of harmonized biobank data is central to the potential research yield  
of educational genomics, constituting an integral part of its infrastructure of data-
fied knowledge production.

Importantly, however, biobank data are constrained and limited in several 
ways. They tend only to include white European ancestry populations, and are not  
representative of diverse groups, skewing the ontological claims emerging from 
their use and potentially leading to discriminatory outcomes (Lee 2015; Herd 
et al. 2021). Further, how they are curated and modified and who gets to access 
their data shape the science that involves them (Argudo-Portal and Domènech 
2020; Milanovic et  al. 2018). This contouring is again tightly linked to bioeco-
nomic dynamics, with private biobanks like 23andme amassing significant value 
by acting as ‘platforms’ and ‘two-sided markets’ generating capital from both  
consumers who provide their data for a fee and from research labs who pay to 
access the repository (Stoeklé et  al. 2016). Organizations such as the SSGAC  
have to negotiate legal and logistical contracts over access to biobank data, data 
sharing, and security. As such, educational genomics depends on the commercial 
infrastructures of biotech companies and the forms of bioeconomic value-generation  
they entail (Birch 2017).

For the SSGAC and associated scientists, educational genomics studies have 
become feasible because biobanks routinely collect basic educational attainment 
information too (Benjamin et al. 2012). The biobanks underpinning educational 
genomics, then, make the data for such studies ‘conveniently available’ (Burt 
2013b: 60), while shaping, defining, and constraining the kinds of data available, 
the analyses that can be conducted with them, and the claims made based upon 
them about the polygenic genetic architecture of educational outcomes. The bio-
logical architecture of educational outcomes claimed by educational genomics is 
to a large extent a bioinformational artifact of the technical, financial, legal, and 
logistical arrangements that constitute biobanks. These infrastructural arrange-
ments make genotypes surveyable for genetic patterns related to educational out-
comes through data mining software and techniques.
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Polygenic Data Mining

Biobanks and microarrays have together enabled the conduct of genome-wide asso-
ciation studies (GWAS) and the construction of polygenic scores (PGS) related to 
educational outcomes. The creation of polygenic scores, we suggest, constitutes a 
significant formatting of genetic data into a single numerical signal of genetic influ-
ence on educational outcomes that, it is claimed, provides a probabilistic prediction 
of an individual’s future prospects (Visscher 2022). It is this formatting of genetic 
predictors that has animated promotional rhetoric in educational genomics research 
(Plomin 2018; Harden 2021), and captured policy attention (Asbury et al. 2021).

GWAS, a form of big data analysis that involves surveying genomic bioinformation 
to find SNP variants statistically associated with a specific phenotype (Uffelmann et al. 
2021), have principally been used to ‘search for genetic markers that may increase the 
risk of developing common complex diseases’ (Fujimura and Rajagopalan 2011: 8). 
Increasingly, they are also enrolled to study phenotypical behavioral traits and their 
genotypical correlates. As Fujimura and Rajagopalan (2011: 8) note, ‘GWAS research-
ers scan the genomes of large groups of individuals in search of genetic markers […] 
through statistical analyses that distinguish differences in the frequencies of genetic 
marker variants in cases afflicted with a disease versus controls.’ GWAS is a promi-
nent tool within the wider apparatuses of genomics, and integral to producing polygenic 
scores in educational genomics.

Historically, polygenic scores emerged as a ‘pragmatic solution’ to the statisti-
cal problem of processing a very large number of small SNP associations in GWAS 
research (Janssens 2019: 147). A polygenic score is a single aggregated number that 
summarizes all the genetic variations in an individual in relation to a phenotype (out-
come, trait, or behavior) of interest and is the central focus of most educational genom-
ics studies (Domingue et al. 2015). PGS are calculated using bioinformatics applica-
tions, computing formats, algorithms, and statistical standards created by statistical 
and bioinformatics specialists in genomics research laboratories (Choi et al. 2020).

Commonly used in educational genomics, for example, GCTA (Genome-wide 
Complex Trait Analysis) is a freely available, ‘user friendly’ software package com-
bining multiple statistical algorithms to estimate ‘additive genetic variation that 
is captured by SNP arrays and is therefore informative with respect to the genetic 
architecture of complex traits’ (Yang et al. 2011: 80). Likewise, PLINK is a ‘user 
friendly’ open-source genetic analysis software toolset for ‘computationally effi-
cient’ GWAS, which makes ‘large data sets comprising hundreds of thousands of 
markers genotyped for thousands of individuals’ available to be ‘rapidly manipu-
lated and analyzed’ to identify ‘polygenic effects’ (Purcell et al. 2007: 559).

Other applications utilized in educational genomics are PRSice and LDpred 
for calculating polygenic scores. LDpred—used by the SSGAC in its education 
studies—is a popular and computationally intensive bioinformatics method for 
‘deriving polygenic scores based on summary statistics and a matrix of corre-
lation between genetic variants’ (Privé et  al. 2020: 5424). Likewise, PRsice is 
‘an efficient and scalable software program for automating and simplifying’ the 
‘computationally intensive’ process of calculating polygenic scores from large-
scale biobank data (Choi and O’Reilly 2019: 1). PRSice is characterized as being 
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able to ‘infer the genetic architecture of a trait’ at ‘high resolution’ (Euesden, 
Lewis, and O’Reilly 2015: 1466). The polygenic associations underpinning 
claims about genetic influence on educational outcomes are therefore artifacts of 
the convergence of high-powered genomic data mining software with molecular 
conceptualizations of somatic substance.

Automated ‘bioannotation’ software also generates ‘explanatory notes based 
on what is known about genomic and cellular biology’ to add descriptive power 
to data about polygenic association and genetic architecture (Harden 2021: 137). 
Genome annotation applications such as BLAST are used in educational genom-
ics studies by the SSGAC to automatically describe the mechanisms of selected 
SNPs associated with educational outcomes (Lee et al. 2018), though these mech-
anistic explanations remain highly partial (Matthews and Turkheimer 2022). The 
dependency of researchers on such tools demonstrates how knowledge about the 
genetic dimensions, associations, and architecture of educationally relevant out-
comes is inseparable from computational innovations, algorithms, and automa-
tion that have been central to both genomics and the bioeconomy.

In educational genomics literature, GWAS and PGS are presented as trans-
formative methodologies for predicting and explaining the genetic dimensions of 
educationally relevant traits and learning outcomes (Allegrini et al. 2019; Plomin 
and von Stumm 2021). As Harden (2021: 58) has remarked: ‘A GWAS measures 
millions of SNPs in thousands of people and correlates each SNP with a pheno-
type’ like ‘years of education.’ Researchers can then ‘add up all the information 
across all SNPs into a single number’—a PGS—which can be used to ‘predict’ 
educational attainment (Harden 2021: 65). In turn, PGS are described as part of 
a purportedly new ‘genetic toolbox’ for ‘doing better social science research’ and 
inform education policy and practice interventions (Harden 2021: 188). PGS are 
framed as representing ‘an unbiased but noisy measure of what we call the “addi-
tive SNP factor,” which is the best linear predictor of the phenotype from the 
measured genetic variants’ (Becker et al. 2021: 1745).

The word ‘unbiased’ is key here. The framing of GWAS, polygenic scor-
ing, and bioannotation commonly highlight a form of supposedly ‘theory-free’ 
or ‘hypothesis-free’ discovery science (Leonelli 2016). The bioinformatic data 
mining methodologies of GWAS, it is claimed, adopt ‘an unbiased, hypothesis-
free approach to discover SNPs that are associated with a trait’ (Mills and Tropf 
2020: 556). GWAS are described as a ‘technological advance’ that ‘enabled an 
atheoretical approach to identify associations across the genome,’ which has led 
to ‘increasingly more insight into the molecular genetic architecture of cogni-
tive ability and academic performance’ (Malanchini et al. 2020: 235). Similarly, 
microarray chips are deemed to have enabled ‘atheoretical’ and ‘hypothesis-free 
investigation’ of the genetic aspects of ‘important social outcomes’ like educa-
tion (Conley and Fletcher 2017: 44). The implication is that such ‘objective,’ and 
‘unbiased’ discovery might become the basis for genetically informed educational 
interventions of the kind popularized in recent educational genomics books like 
Blueprint (Plomin 2018) and The Genetic Lottery (Harden 2021).

Yet, claims that polygenic scores ‘work’ as measures of ‘genetic propensities’ or rep-
resent ‘genetic influence’ on educational outcomes are highly disputed as ‘obscuring 
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environmental influences’ and ‘perpetuating a flawed concept of genetic potential for 
social behaviors and achievements’ (Burt 2023a: 2). While debates continue about 
using genomic technologies such as GWAS and PGS for revealing educationally rel-
evant knowledge, the extent to which such techniques may function both as scientific 
instruments that ‘mediate’ and ‘produce’ certain understandings of scientific phenom-
ena (de Boer et  al. 2021) and as political artifacts is less considered (Fujimura and 
Rajagopalan 2011).

The building of the microarray chips, the selection of markers, the genotyping itself, 
the selection of biobank data, the design of the GWAS software, and the automated cal-
culation of polygenic scores all shape the knowledge produced in educational genom-
ics. These impose molecular understandings of social problems, privileging and hard-
ening biological explanations while obscuring the social dimensions of educational 
outcomes. Accordingly, the bioinformatics apparatus underpinning educational genom-
ics is also a political apparatus that locks in a particular molecular conceptualization 
and statistical configuration of the underlying genetic architecture of educational out-
comes. The apparatus of microarrays, biobanks, and polygenic scoring software for-
mats genetic data in ways that configure knowledge about genetic influences on educa-
tional outcomes, privileging not just biological but bioinformational explanations as the 
basis for potential educational interventions.

The production of PGS for education is therefore synthesized through an apparatus 
of bioinformatics hardware and software packages, each loaded with algorithmic cal-
culating tools that ultimately enable and mediate the production of specific knowledge 
claims. GWAS and PGS together represent a computational epistemology that assumes 
the heritability of complex human behaviors and social outcomes can be explained in 
finer polygenic grain and with more predictive confidence by increasing the quantita-
tive and computational powers of analysis (Stevens 2013). The genetic influences on 
educational outcomes are regarded as objectively discoverable by data mining mil-
lions of bioinformational data points. This conception is folded unto understandings of 
GWAS and PGS as a means to develop supposedly better, more predictive, and action-
able knowledge about educationally relevant phenotypes and outcomes.

Ultimately, polygenic scores are the end result of a series of formatting operations. 
Bioinformation produced using microarrays, aggregated and stored in biobanks, and 
analyzed through data mining software, produce a single numerical predictor of an 
individual’s probably educational prospects. It is this formatted quantitative signal of 
genetic influence on educational outcomes—generated through the infrastructure of 
network associations, conceptual architecture, and technoscientific apparatus outlined 
in this analysis—that has begun to animate promissory discourses and catalyze signifi-
cant public, media, and policy interest in the use of genetic data in education.

Conclusion

In this article, we have documented and analyzed some key constitutive elements 
and reciprocal relations of an emerging knowledge infrastructure for educational 
genomics, at a time of growing advocacy for genetically informed educational 
research, practice, and policy. This advocacy for opening up the ‘black box of the 
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genome’ with molecular methods in education is reflected in large grants from 
funders, media interest, and increasing policy attention. Claims that genetic data 
could be used for screening children in the early years, investigating biological dif-
ferences between groups, or to ‘target educational interventions’ and create ‘per-
sonalized’ pedagogic approaches, have become the subject of UK policy–facing 
reports (Government Office for Science 2022: 134; Asbury et  al. 2021). In this 
context, our aim was to open the ‘black box’ of the organizational associations, 
epistemic architecture, and methodological apparatuses that are converging to 
comprise a knowledge infrastructure of educational genomics.

As a science-in-the-making undergoing infrastructuring, educational genomics 
aims to advance ‘a more comprehensive, biologically oriented model of individual 
differences in cognitive ability and learning’ (Malanchini et al. 2020: 230), framing 
its aim as the identification of ‘authentic genetic signals’ and biological influences 
on educational outcomes (Burt 2023b: 61). The knowledge claims of educational 
genomics are possible only due to the construction and operations of an underpin-
ning scientific knowledge infrastructure, which profoundly shapes how studies are 
conducted, supports assertions of scientific authority and policy relevance, and for-
mats human subjects as bioinformational proxies that can be searched in databases 
using bioinformatics software. We offer three key points in conclusion.

First, understood as undergoing infrastructuring, educational genomics is ‘inex-
tricably bound up with the technical, social, and organizational practices of large-
scale computer-enabled information infrastructures’ (Blok et  al. 2016: 7). This 
infrastructuring enables ‘ontological experiments’ (Jensen and Morita 2017), recon-
stituting educational outcomes in terms of the ‘genetic architecture’ of thousands 
of polygenic molecular associations. The knowledge-making systems of educational 
genomics act as an ontological infrastructure for purportedly objective forms of 
knowing and practicing in education. Its emphasis on the genetic architecture of edu-
cational achievement, made legible at the molecular scale via bioinformatics, locks 
in polygenic conceptualizations of the genetic influences of learning and configures 
bioinformational educational subjects as genetically surveyable and predictable. By 
ordering epistemic activities through the convergence of algorithmic techniques and 
a molecular style of thought, the knowledge infrastructure of educational genomics 
may privilege and harden bioinformational explanations for the complex social fac-
tors underpinning academic achievement. In so doing, the social and environmental 
factors that underpin social and educational inequalities can be treated as biological 
qualities that are discoverable in the body (Darling et al. 2016).

Second, this potential is in part a corollary of the purportedly ‘unbiased’ and 
‘hypothesis-free’ apparatuses—biobanks, SNP chips, GWAS, and PGS—that 
underpin knowledge production in educational genomics. These data-centric 
approaches proceed from the computational search for correlational patterns and 
associations with automated data mining algorithms rather than explicitly theory-
centered inquiry (Kotliar and Grosglik 2023). They are, however, far from atheo-
retical, but embedded in ‘networks of concepts’ and ‘ways of seeing the biologi-
cal world that guide scientific reasoning and the direction of research’ (Leonelli 
2019: 2). Rather than offering ‘biologically realistic’ discoveries and explana-
tions of the genetic mechanisms underlying educational outcomes, educational 
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genomics privileges algorithmic correlations over causal biological explanations, 
with data mining for polygenic signals configuring a different ‘biological reality’ 
through algorithmically sorted associations (Janssens 2019).

The data-centric or information-centric epistemology characteristic of contempo-
rary genomics formats human subjects in terms of genetic data and informational 
conceptions of biology (Koopman 2020). As such, the bioinformational epistemol-
ogy that infuses efforts at infrastructuring educational genomics also carries onto-
logical import. Specifically, it configures what biological and genetic influences are 
taken to be, with those conceptualizations then reified through a cascade of microar-
rays, biobanks, and polygenic data mining apparatuses. This comes with the poten-
tial for disparate impacts, as particular genetic influences are proposed as the basis 
for interventions in policy and practice.

Third, the combination of genetics and computation also helps grant social and  
behavioral genomics a license to produce and circulate seemingly authoritative 
claims about education and related social outcomes. This is reflected in asser-
tions it will transform social science and generate ‘a more realistic understanding 
of human behavior and the functioning of societies’ (Harden and Koellinger 2020: 
567), making ideas about ‘precision education’ based on polygenic scores or ‘geneti-
cally informed’ education policy utterable. Educational genomics claims objective 
biological authority and diminishes other forms of explanation related to education. 
Some specialists in this area actively undermine so-called genome blind social sci-
ences for their alleged ‘failure’ to inform value-for-money policy interventions or 
educational reforms (Harden 2021: 234).

As in other areas of scientific innovation, knowledge infrastructures associated with 
educational genomics ‘may disadvantage and devalue older forms of knowledge produc-
tion’ (Edwards et al. 2013: 11), while rhetorical claims to novelty themselves act as part 
of the machinery through which the import of educational genomics is framed and its 
salience asserted (Pickersgill 2021, 2023). As such, educational genomics can under-
mine many forms of social scientific analysis while advancing existing modes of large-
scale statistical research to privilege biological investigation in educational research.

Through its current infrastructuring, educational genomics represents an emerg-
ing source of power and authority offering avowedly ‘realistic’ biological expla-
nations for complex, socially situated behaviors and outcomes, while devaluing 
other forms of knowledge production or claims to reformatory authority. It recasts 
social phenomena as phenotypes that are substantially decodable from digital geno-
type data through algorithmic apparatuses and makes the human subjects of edu-
cation legible as statistically surveyable and predictable bioinformational proxies. 
While the application of genomics to education remains highly contested on sci-
entific, political, and bioethical lines, it deserves continued critical attention as its 
scientific knowledge infrastructure solidifies, knowledge production intensifies, and 
genetically informed policy action is encouraged. This paper contributes to impor-
tant emerging scholarship on the intersections of biology, technology, and educa-
tion (Peters, Jandrić, and Hayes 2022), and points to the need for additional future 
research to engage with the knowledge claims of educational genomics and the 
translation of such findings into proposals for genetically informed interventions in 
education policy and practice.
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