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ABSTRACT An intuitive and generalisable approach to spatial-temporal feature extraction for high-density
(HD) functional Near-Infrared Spectroscopy (fNIRS) brain-computer interface (BCI) is proposed,
demonstrated here using Frequency-Domain (FD) fNIRS for motor-task classification. Enabled by the
HD probe design, layered topographical maps of Oxy/deOxy Haemoglobin changes are used to train
a 3D convolutional neural network (CNN), enabling simultaneous extraction of spatial and temporal
features. The proposed spatial-temporal CNN is shown to effectively exploit the spatial relationships in HD
fNIRS measurements to improve the classification of the functional haemodynamic response, achieving
an average F1 score of 0.69 across seven subjects in a mixed subjects training scheme, and improving
subject-independent classification as compared to a standard temporal CNN.

INDEX TERMS fNIRS, brain-computer interface, neural network, machine learning, CNN.

IMPACT STATEMENT The unique and often overlooked interdependence between fNIRS probe design and
neural network architecture is demonstrated. A novel and effective BCI model is presented, which can be
generalised to multi-wavelength, broadband, and hybrid fNIRS data.

I. INTRODUCTION

FUNCTIONAL near-infrared spectroscopy (fNIRS) is a
neuroimaging technique which affords safe, cheap and

non-invasive measurement of human brain activity, while al-
lowing a higher degree of mobility to the user as compared to
other functional imaging technologies such as fMRI. fNIRS
hardware and processing techniques have advanced consid-
erably over the past two decades of research, however the
essential technique is unchanged: Near-Infrared (NIR) light
(650–900 nm) emitted by LEDs or laser diodes attached to
the scalp diffuses through the outer layers of the head (scalp,
skull, cerebro-spinal fluid, and outer-cerebral grey and white
matter), where it is absorbed by various chromophores includ-
ing oxy- and deoxy- haemoglobin (HbO & Hb), and scattered
by cellular and sub-cellular structures. A small proportion
of the back-scattered photons are detected by photodetectors
(optodes) on the scalp at distances of 5–50 mm from the

source. The attenuation of the detected light over time is used
to infer changes in Hb & HbO concentrations in the outer layer
of the cortex, caused by the increased oxygen metabolism of
firing neurons. This technique has been effectively applied to
a wide variety of clinical and research problems, including
cognitive neuroscience [1], detection and monitoring of psy-
chiatric conditions whose symptoms include altered cognitive
function, such as Alzheimer’s [2] and schizophrenia [3], and
as a method of brain-computer interface (BCI), in which a
channel of communication is established between a user’s
measured brain signals and a computer [4].

Active BCI involves detecting and classifying deliberately
generated brain activity in a specific region, most commonly
the motor and prefrontal cortices [4]. Such systems afford
the possibility to restore physical capabilities to people with
neuromuscular impairments, such as amputees or sufferers of
locked-in syndrome, by connecting the BCI to the controller

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2023 85

https://orcid.org/0000-0001-8013-7768
https://orcid.org/0000-0001-8662-5121
https://orcid.org/0000-0003-3246-6799
https://orcid.org/0000-0001-8963-7283
https://orcid.org/0000-0003-4117-0412
mailto:rbd079@student.bham.ac.uk


DALE et al.: SYSTEM DERIVED SPATIAL-TEMPORAL CNN FOR HIGH-DENSITY fNIRS BCI

of a robotic prosthesis [5]. However, due to the multiple-
second delay in the haemodynamic response to neural activity
(compared to EEG temporal resolution on the order of mil-
liseconds), fNIRS may be more suited to a decision-making
BCI paradigm, in which the user focuses activity on one of
several time windows, each associated with a different op-
tion from a selection displayed on a screen; Recent work has
shown fNIRS to be highly flexible and reliable mode of BCI
within this paradigm [6]. Additionally, passive BCI for the
purpose of mental state inference has been demonstrated using
fNIRS for several promising applications including mental
workload [7] and drowsiness detection [8], emotional [9],
and preference [10] inference. fNIRS and EEG can also be
used in conjunction, as hybrid BCI, providing complementary
non-invasive measures of neural activity [11]. In this work,
detection and classification of a bi-lateral finger-opposition
task was selected for the BCI paradigm, as this reliably pro-
duces identifiable motor cortex activity with the system and
data collection paradigm described in V-C. However, the pro-
posed classification model is transferable to other BCI tasks
and brain regions, where high-density (HD) measurements are
available.

Functional classification of fNIRS data (as in BCI or di-
agnosis paradigms) generally involves the extraction of tem-
poral features relating to a haemodynamic response from the
set of time-series corresponding to the set of source-detector
pairs, and is complicated by the presence of noise, systemic
signals (primarily cardiac and respiratory) and individual dif-
ferences in physiology. Accurate functional classification can
be achieved using neural networks, which are trained on la-
belled datasets to simulate the statistical mapping between the
boundary measurements and the underlying mental state. This
work investigates one method to improve the performance of
such models: a combination of a specific fNIRS probe geome-
try with a neural network architecture which enforces param-
eter sharing between channels with similar source-detector
separations (SDSs), and positionally invariant feature extrac-
tion. By specialising the network architecture to better reflect
the underlying physics, while allowing the parameters to be
learned from data, the aim is to achieve more efficient training
and more reliable classification.

A. FNIRS HARDWARE
Swift advancement is being made in fNIRS hardware, with
state-of-the-art systems trending toward miniaturisation, mo-
bility, and modularity. Several wearable fNIRS devices have
recently been developed for commercial sale (e.g. [12]) - mar-
keted as brain training or meditation tools, and part of a gen-
eral trend in wearable technology for biometric monitoring
and optimisation. fNIRS BCI may be integrated in near-future
virtual reality headsets (as EEG already has been [13]), to
enhance user experience through neurofeedback, or to gather
real-time data on users’ mental states to be used, for example,
in targeted advertising. Consequently, increasingly large and
user-diverse datasets may soon become available to organisa-
tions whose products are widely adopted for either clinical

or commercial use, enhancing the potential of data-driven
processing and classification methods.

There are three main types of fNIRS instrumentation:
continuous-wave (CW), frequency-domain (FD), and time-
domain (TD), requiring progressively more complex hard-
ware and processing procedures, and providing progressively
greater information content regarding tissue optical proper-
ties. Conventional CW-fNIRS measures the attenuation of
light intensity only, while the time resolved measurements of
FD and TD additionally indicate the time-of-flight of emitted
photons - via the phase component of the complex FD signal,
and the temporal point spread function in TD – which can
potentially be used to recover absolute values of absorption
and reduced scattering coefficients (μa and μs′).

This work focuses on HD FD-fNIRS, which is more widely
used than HD-TD, and fills an important niche in the evolving
fNIRS landscape, providing the greater information content
of the time-resolved measurement without the full complex-
ity and weight of TD [14]. Furthermore, while FD generally
requires more elaborate hardware than CW, recent advances
in hardware have shown that high performance lightweight
FD-fNIRS is possible. For example, Yazdi et al. have re-
cently presented an FD system on a chip, with comparable
optical property fidelity to a standard NIRS Diffuse Optical
Spectroscopy (DOS) system [15]. The benefits of FD-DOS
for both image reconstruction and functional classification
are well documented. Scholl et al. performed PCA on FD-
data collected from the visual cortices of subjects watch-
ing movie scenes, and found that the combined intensity
and phase signal captured more orthogonal signal dimen-
sions over training and hold-out data than either intensity or
phase alone [16]. Thompson et al. found that the inclusion
of the phase measurement along with intensity significantly
improved the accuracy of a regression-based classifier in a
two-class finger-opposition task, achieving higher accuracy
for each of twelve subjects and significantly higher accuracy
at the group level [17]. Doulgerakis et al. have demonstrated
additional benefits of FD-DOS for tomographic image recon-
struction of the head via simulation, showing that incorporat-
ing both HD-intensity and phase measurements can provide
higher image resolution [18], and increased depth sensitiv-
ity [19]. Stillwell et al. have developed a handheld broadband
FD-DOS device for breast imaging, with the capability to
sweep through six wavelength and hundreds of modulation
frequencies, and a maximum sample speed of 36,600 Hz for
amplitude and phase data at a single wavelength and single
modulation frequency [20]. This technology could be inte-
grated into future wearable fNIRS devices, providing richer
data streams with many more data channels than the conven-
tional dual-wavelength intensity.

B. HD-DOS
The arrangement of sources and detectors is a crucial con-
sideration in fNIRS as it determines the regions of sensi-
tivity of the measurement channels. Channels with source-
detector separation (SDS) > 20 mm are more sensitive to
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FIGURE 1. Illustration of the effect of source-detector separation (SDS) on
the region of sensitivity of fNIRS channels.

cortical changes, as the detected photons have on average
penetrated deeper into the head, while short SDS channels
are sensitive primarily to superficial changes in the scalp,
which are dominated by systemic activity. Where multiple
channels are used, the probe arrangement affects both the
extent of the field of view, and the distribution of measure-
ment sensitivity within it. State-of-the-art fNIRS systems are
increasingly tending towards wireless, wearable probes with
multiple sets of multi-distance channels to improve differen-
tiation between functional and systematic perturbations, how-
ever there is still considerable variety in the SD arrangements
employed.

The standard high-density (HD-) array used in Diffuse
optical tomography (DOT) employs a tightly packed arrange-
ment of sources and detectors to create a grid of overlapping
multi-distance measurement channels across the region of in-
terest, and can be used to reconstruct 3D maps of cortical
haemodynamic changes with spatial resolution comparable
to the BOLD response measured using fMRI [21]. Accurate
real-time DOT is prohibited by system noise and computa-
tional cost, and so direct classification, without the intermedi-
ate reconstruction stage, is needed for real-time applications
such as BCI. However, HD-array may still improve functional
classification both by improving localisation of haemody-
namic changes and distinction between superficial and cor-
tical changes. Furthermore, it could reduce the effect of small
changes in probe position relative to the ROI, which can be
caused by variations in probe placement between sessions
(especially in the case of non-expert users), and by variation
in cortical response between users. fNIRS applications with
sparse arrays require precise probe placement to target the
ROI, and while effective techniques for precise probe place-
ment have been developed [22] these are often only viable
in a clinical or laboratory context. In this research a data-
driven feature extraction technique is proposed which exploits
the specific geometry of the HD-DOT array to enhance the
performance of a neural network model for classifying brain
function, showing that choices in probe geometry affect model
design in addition to ROI.

C. SPATIAL-TEMPORAL FEATURE EXTRACTION
Temporal feature extraction from fNIRS timeseries has tra-
ditionally been achieved through manually selected features
such as peak amplitude, mean value, variance, slope, or skew-
ness, which can be used as input to train a machine learn-
ing model such as support vector machine (SVM), K-nearest
neighbours (KNN), or linear discriminant analysis (LDA)
classifier. Many recent fNIRS-BCI studies have found neu-
ral network-based models which learn features directly from
fNIRS time series data to achieve superior results compared
to standard ML techniques [23], [24], [25], [26], [27]. Convo-
lutional neural networks (CNNs) and Long Short Term Mem-
ory networks (LSTMS) in particular have become prominent
among the most effective methods of classifying fNIRS data.
Both of these architectures employ parameter sharing mecha-
nisms to efficiently extract recurrent features from temporal
data, thereby improving training efficiency compared to a
fully-connected architecture. While LSTM is generally pre-
ferred for time-series forecasting, [26] found a 1D temporal
CNN to outperform uni- and bi-directional LSTM, in addi-
tion to SVM, KNN & LDA models for a two-class BCI gait
prediction task.

Multi-channel fNIRS data also contains spatial information
related to the relative positions on the sources and detectors,
especially in the case of HD arrangements, where multiple
channels may have overlapping regions of sensitivity. CNNs
can be used to extract spatial features from multi-channel
fNIRS measurements. This requires the data to be input as
an image, or set of images (in computer vision, images are
represented as [width x height x 3(RGB)] matrices), and the
arrangement of the data over the spatial and channel dimen-
sions determines the features that the convolutional filters
extract. Several techniques for representing fNIRS data as
images have been proposed, the most basic being a 2D Matrix
with shape [n_channels x n_timesteps] to input the data from
an entire task period in a single image. Depending on the
channel numbering scheme employed, the first dimension of
the flat fNIRS image can correlate with SDS, or with position
on the head, and therefore its gradient can contain informa-
tion pertaining to degree and location of functional activation,
enabling 2D convolution. Janani et al. have achieved 72.35
± 4.47% accuracy on a four-class motor-imagery BCI task
using a spectrogram representation of fNIRS data, where each
row corresponded to the strength of a particular temporal fre-
quency over multiple time windows, and these were stacked
together to produce a 2D image corresponding to a 20 s task
period [24].

Other studies have demonstrated the utility of producing
fNIRS images from measurements from a single time-step
according to the positions of the channels in the probe. Yang
et al. trained a CNN to detect mild cognitive impairment
(the clinical precursor to Alzheimer’s Disease) in subjects
completing three different mental tasks and found that the
use of temporal-spatial feature maps produced a more re-
liable performance than either spatial or temporal features
individually [28]. Their CNN used a spatially resolved 2D
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FIGURE 2. Classification results for each subject using the mixed subjects
training scheme.

input layer, where the temporal information was captured by
selected features such as mean and slope measurements over
specific time periods. Saadati et al. constructed spatial images
of fNIRS signals at each time-step by matching the locations
of measurement channels on the scalp to pixel positions and
interpolating the values of the pixels between channels [7].
Using these 2D images as input into a CNN, they achieved an
8% increase in accuracy on an n-back (a classic experiment
for measuring mental workload) classification task, compared
to a DNN model with flattened input layer.

Sommer et al. arranged HD-fNIRS measurements in two
areas of interest corresponding to the left and right primary
motor cortices, and within these regions according to the
SDS [29]. Rolling window samples of these images were
used to train a CNN-LSTM model to predict finger-opposition
laterality and frequency, achieving average accuracy of 0.81
over eleven subjects. They conducted a SHAP analysis of the
trained CNN-LSTM model, showing that the highest node
activation values in the network corresponded to the expected
contralateral motor cortex activation, and tended to be in
neighbouring channels, further supporting the choice of CNN
for extracting spatial features.

The results of the studies described above show that robust
classification performance can be achieved with CNN trained
on fNIRS images, especially where the data is arranged to
correspond with the physical measurement space.

In this work it is argued that the geometry of the standard
HD-DOT array (shown in Fig. 6) is uniquely suited to convo-
lutional feature extraction. It affords the possibility to produce
fully spatially resolved, multi-depth topographical images of
the fNIRS measurements, without a heuristic interpolation
function. These images can be input directly to the first con-
volutional layer of the classifier network to perform spatial
and temporal feature extraction simultaneously. In short, the
HD-array allows the raw fNIRS measurements to be treated
like video data.

In this work, a model combining a 3D CNN architecture
with a Block data structure for classifying fNIRS data is
therefore proposed, based on a video classification

model [30], with a 3D convolutional first layer to extract
spatial and temporal features simultaneously. To quantify
the effect of this data structure/architecture combination,
the proposed model is compared to two other models:
a 1D CNN with a 1D input (Flat) and fully connected
feature extraction layer, and a 3D CNN whose input is a
non-spatial representation of the same data (referred to as
Source-by-Detector, or S-by-D).

The proposed model is demonstrated to accurately classify
10-second slices of processed fNIRS data based on task state
(left hand activity/right hand activity/rest), necessary for a
simple choice-making BCI paradigm, and could be adapted
for other BCI tasks, given an appropriate training dataset.

II. RESULTS
Results are presented for three model + data structure combi-
nations: 3D CNN + Block, 3D CNN + S-by-D, and 1D CNN +
Flat - for a three-class BCI motor-classification task described
in Section V-B and for two training schemes: mixed subjects
and subject-independent, described in Section?

A. MIXED SUBJECTS RESULTS
In the mixed subjects scheme, the three models achieved sim-
ilar F1 scores on each of the test subjects. There was high
variability in F1 scores between the subjects (Fig. 2). For four
out of the seven subjects, all the models achieved F1 Scores
over 70%. The highest score for each model was approx 84%
(subject 4), while scores associated with subject two were
significantly lower than any other subject (approx 45%). A
two-way ANOVA (analysis of variance) test revealed that
there was not a statistically significant difference in average
F1 score between any two models (F = 1.48, p = 0.23) (note:
the F statistic here is the ratio of two variances revealed by the
ANOVA test, and is different from the F1 score.

B. SUBJECT INDEPENDENT RESULTS
In the subject independent scheme, the F1 scores were gen-
erally lower than the mixed subjects scheme, with maximum
accuracy around 70% compared to 80% (Fig. 3). Again, the
models all achieved similar scores for each subject with con-
siderable variation between subjects. 3D CNN + Block im-
proved classification compared to the other two models for
all subjects except subject 5, with an average F1 score of
58.3%, 2.6% higher than 1D CNN + Flat and 2.7% higher
than 3D CNN + S-by-D. A two-way ANOVA revealed that
there was a statistically significant difference in sampled F1
scores between at least two models (F = 12, p = 1.3e-5).
Post-hoc t-tests revealed a significant increase in sampled F1
scores for the 3D CNN+Block method compared to both the
1D CNN+Flat (F = 3.78, p = 2.3e-4), and 3D CNN+S-by-D
(F = 5.19, p = 7.4e-7).

III. DISCUSSION
In this work, the use of spatially resolved HD-FD-fNIRS
data to train a 3D CNN for functional classification has been
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FIGURE 3. Classification results for each subject using the
Subject-Independent training scheme.

TABLE 1. Classification Results for Each Subject Using the Mixed Subjects
Training Scheme

TABLE 2. Classification Results for Each Subject Using the
Subject-Independent Training Scheme

demonstrated, for an offline motor-classification task. The im-
plementation described in Section V could be incorporated to
enable offline BCI applications such as choice-selection [6]
and could potentially be adapted for other BCI tasks.

The results suggest that all three of the tested models
are potentially viable for applications such as BCI requiring
functional classification of fNIRS signals. All of the mod-
els achieved average classification accuracy of approximately
70%, which is conventionally considered the baseline require-
ment for a functional BCI system [31], and up to 84% for
some subjects. It is possible that large variation in perfor-
mance found between subjects was caused by the effect on
fNIRS signal quality of hair colour and density, due to the
high absorbance of dark hair to NIR light. It was noted that
three of the four lowest performing subjects in this study were
those with the most hair. By contrast, the results presented
in [29] for a similar motor task, found an average F-score
of 82% over eleven subjects, and far lower between-subject
variation. The data in that study were collected with a NIRx
Sport wearable fNIRS device with in-built ‘variable tension
spring holders designed to improve source detector coupling’.
This demonstrates the importance of specialised hardware for
functional classification with fNIRS.

In the subject-independent training scheme, the 3D CNN
+ Block model achieved a significantly higher F1 score than
either of the other models. This finding supports previous
research demonstrating the additional benefit of spatial
feature extraction with CNNs [7], [28], [29]. However, no
statistically significant difference was found between the F1
scores of the three models in the mixed subjects scheme i.e
when data from the test subject also appeared in the training
set. To understand why this might be the case, consider how
features are computed in the 3D CNN: the same filters are
applied to local groups of measurements at multiple positions
in the input space, and therefore variation in the position of
the functional haemodynamic response in relation to the array
(caused by differences in both individual physiology and
probe placement) has relatively small effect on the resulting
feature space. In the case of the 1D CNN however, each
chromophore time-series is taken as an independent variable,
and therefore the features that are learned are specific for each
position in the voxel space.

It is possible that the difference in the models’ perfor-
mances emerged only in the subject-independent scheme be-
cause in the mixed subjects scheme, the models could identify
subject-specific markers in the data, which were also present
in the test data, and were directly indicative of where to
locate the relevant haemodynamic response. Although sub-
jects were given the opportunity to take a break and remove
the fNIRS cap between each run, most chose not to, and
those who did took only one break, after the 3rd or 4th run.
Therefore, for every subject there was a somewhat consistent
relationship between the position of the HD probe and the
position of the functional motor response, so if the network
could determine which subject an example had come from, it
could then rely on a single channel or small set of co-located
channels to make the classification, which is easily learnable
by the 1D CNN (i.e. without positionally invariant feature
extraction). In the subject independent scheme however, the
models were not trained on any examples from the test sub-
ject and therefore had no ‘markers’ by which to distinguish
probe/FHR position, and had to rely purely on generalised
features.

The considerably higher accuracy of all models in the
mixed subjects scheme suggests that the models were re-
lying partly on subject-specific features to improve classifi-
cation, and this finding is in agreement with other subject-
independent BCI studies such as [27] who found that their
subject-independent classifier was outperformed by a simple
LDA mixed subjects classifier with relatively few training
examples. While the preprocessing pipeline in this study was
designed to remove session- or subject- specific ‘markers’
from the data, such as the magnitude and variance of specific
channels (corrected by z-score normalisation and interpola-
tion of low quality channels) this is difficult to do completely,
and the residual subject ‘markers’ clearly biased the clas-
sifiers in the mixed subjects training. It is for this reason
that it is relevant to report in fNIRS BCI studies both the
training paradigm (mixed subjects/subject independent) and
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also details of how the fNIRS probe was positioned, and
whether it was repositioned or adjusted between experimental
runs.

While previous work on subject-independent fNIRS
BCI [27] has shown the efficacy of temporal CNNs, it has
not reported the effect of spatial convolutions. On the other
hand, previous work on spatial CNN for fNIRS BCI [7],
[28], [29] has not highlighted the difference between mixed
subject and subject-independent training. One contribution of
this work therefore, is to indicate the specific benefit of posi-
tionally invariant feature extraction for session- and subject-
independent BCI, and to propose an intuitive implementation
for passing spatially arranged HD-fNIRS measurements to
a spatial-temporal CNN. If the 3D CNN + Block method
indeed confers a greater benefit in functional classification
when there is greater uncertainty in the positioning of the
probe in relation to the haemodynamic response, then it could
be a useful technique for developing generalised, subject-
and session- independent classification models. One of the
primary benefits of fNIRS for neuroimaging is that it can
be applied in a naturalistic setting, and potentially, as recent
work has highlighted, in a user-applied setting (e.g. in the
home of a patient) [32]. In such cases there is likely to be
considerable variation in probe placement between sessions,
and data-driven models designed to account for this varia-
tion could improve the usability and accessibility of such
systems.

The primary limitation in this study is the small number
of subjects (n = 7). Intuitively, a more diverse training set
would be expected to make it more difficult for the model fit to
subjects, and make the differences in probe vs haemodynamic
response position more continuous, and could therefore in-
crease the benefit of positionally invariant feature extraction.
Subsequent research in this subject may seek to prove or dis-
prove this hypothesis, as well as to replicate these results over
a larger and more diverse dataset. Additionally, conducting
data collection with each subject over multiple sessions would
help to separate the effects of subject-fitting (e.g. learning
individual differences in haemodynamic strength, shape, po-
sition - potentially desirable) to session-fitting (e.g. learning
arbitrary characteristics of a particular session i.e. source in-
tensity, probe placement - not desirable).

This work highlights the crucial and often overlooked role
that data structure can play in fNIRS processing and classifica-
tion. As previously discussed, neural network models trained
on HD-fNIRS data are increasingly prevalent in BCI research
due to their high performance compared to traditional ML. In
addition to classification, neural network-based models have
been applied in multiple stages of fNIRS processing includ-
ing removal of systemic physiological signals and motion
artefact correction [33], creating the possibility of a modular
end-to-end network pipeline for fNIRS processing and classi-
fication. The data structure is the link between probe design
and network which can implicitly confer relational informa-
tion (regarding channel position & SDS in this study) to the
network in addition to the individual fNIRS signals. In this

work a specific data arrangement afforded by the standard
HD-array was identified, and showed how this choice afforded
additional opportunities for data visualisation, augmentation
and feature extraction. Another benefit of the Block technique
is that it can be easily and intuitively expanded to additional
data channels e.g. raw intensity and phase measurements from
multiple fNIRS wavelengths or modulation frequencies, or
hybrid fNIRS/EEG. Other specific SD configurations afford
different techniques for processing data, each with their own
costs and benefits. For example, Blaney et al. [34] have pro-
posed the dual slope method, a specific arrangement of two
pairs of sources and detectors to form four multi-distance
channels which, taken together, can suppress instrumental
artefacts and increase sensitivity to brain tissue. This and
other techniques should be investigated and compared where
possible. Given the diversity in configurations among state-of-
the-art wearable high-density systems, it could also be benefi-
cial to investigate a generalisable interpolation strategy which
accounts for differences in SDS, and could therefore allow
data from multiple systems to be used together for training a
single model.

IV. CONCLUSION
In this study, the utility of spatial-temporal-CNN for HD-
fNIRS-BCI was investigated. Specifically, the performance of
three combinations of fNIRS data structures and CNN archi-
tectures was compared in a three-class motor classification
paradigm. The same input data and processing techniques
were used in each case, so that the only factors in differ-
ences in performance were the structure of the data and the
feature extraction technique employed in the first layer of
the network. While previous studies have documented similar
techniques, we believe that this is the first to present a direct
comparison between 1D (temporal) & 3D (spatial & temporal)
convolutions for functional classification. Applying 3D con-
volutions to the proposed Block representation of HD-fNIRS
signals resulted in a statistically significant increase in the
F1 score of a subject-independent BCI model, compared to
both the 1D CNN, and another 3D CNN trained on a different
data structure. These results suggest that the combination of
spatial-temporal-CNNs with HD-fNIRS data affords a spe-
cific benefit for subject- and session- independent fNIRS BCI,
and is worth further investigation. Furthermore, the significant
difference in performance between the two 3D CNNs reveals
that the effect was not due only to the model, but to the com-
bination of the model with the data structure, highlighting the
interdependence of probe design, data structure, and network
architecture for data-driven fNIRS BCI.

V. MATERIALS AND METHODS
A. SUBJECTS
Seven human subjects (six male, one female, aged 36 ± 8
years) were recruited for the experiment. Subjects with little,
light, thin, or no hair were preferentially selected, because
fNIRS signal quality can be detrimentally affected by thick or
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FIGURE 4. Schematic illustration of the finger tapping paradigm. Each
experimental run consisted of an initial 30 s rest period, followed by 16
task blocks - each consisting of a 10 s task period followed by a 15 s rest
period - followed by a final 30 s rest period.

dark hair, which is highly absorbent of NIRS light. Specialised
hardware and probing techniques to overcome this problem
are the subject of ongoing research [35], but are beyond the
scope of this research. Ethical approval was obtained as part
of the Programme of Work ERN_17-0544P at the University
of Birmingham, U.K. (reference ERN_17-0544AP4), with all
subjects providing written informed consent prior to partici-
pating.

B. EXPERIMENTAL DESIGN
Data were collected while subjects completed a finger-
opposition exercise, in which there were three classes of activ-
ity: left-hand finger-opposition, right-hand finger-opposition,
and rest. Each experimental run consisted of 16 task periods (8
left hand finger-opposition and 8 right hand finger-opposition)
of 10 seconds, with a 15 s rest period after each. Additional
30 s rest periods were added at the start and end of each run.

Instructions to perform the finger-opposition task with ei-
ther the left or right hand, or to rest, were given on a screen
for feet in front of the subject, and additionally spoken aloud
(“left”, “right”, “rest”) by the instructor. The order of the task
blocks was pseudo-randomised (beginning with left) to avoid
anticipatory effects and frequency correlation with systemic
haemodynamic signals (respiratory and cardiac), which could
artificially improve classification. Subjects each completed
five runs of the experiment, each run taking approximately 10
minutes. The subjects were given the option to take a break
and remove the fNIRS cap between each run.

The finger-opposition task required tapping the tip of the
thumb against the tip of each finger in the following order:
first, second, first, third, first, fourth, first, fifth, repeat. Before
the experiment began, the instructor showed the subjects the
finger-opposition pattern, and they were given thirty seconds
to practise it. The pattern, which is more complex than a
standard finger-tapping or hand-gripping action, was chosen
to induce activation in the pre-motor cortex, which is involved
in motor action planning, in addition to the primary motor
cortex. During the experiment, subjects sat in a comfortable
chair in a normally lit room with their eyes open, and their
arms resting on the arms of the chair.

FIGURE 5. Subject wearing the high-density fNIRS cap with channels
arranged over the motor cortex.

C. DATA COLLECTION
The fNIRS data were collected using a dual-module Im-
agent 2 (ISS, USA) FD-DOS system, with thirty-two laser
diode emitters (sources) (λ1 = 690 nm, λ2 = 830 nm, inten-
sity modulated at 141 MHz) and thirty photo-multiplier tube
(PMT) detectors, for a total of 440 measurement channels,
sampled at 39 Hz. The sources and detectors were arranged
in two HD grids, shown in fig, centred over the left and
right primary motor cortices (10–20 positions C3 and C4).
The sources and detectors were placed within two 3D-printed
flexible mounts within a 5 mm thick neoprene swimming cap
and secured in place with spring clamps figure.

D. PREPROCESSING
The complex frequency-domain measurements were automat-
ically converted into amplitude and phase components by the
ISS system. Subsequent preprocessing was done using the
open source neuroDOT Matlab package [36]. Channels with
SNR (calculated as std/mean) of >= 7.5 were marked as poor
quality. Trials in which >30% of channels with SDS < 30 mm
were poor were rejected, because this is likely caused by
errors in cap placement. A total of two runs were rejected.The
data from each remaining run were converted to difference
measurements with respect to the initial and final rest periods.
Channels with SDS > 30 mm were discarded, as the SNR
was consistently poor across all subjects. It is not noted that
the NN3 (39 mm) channels could be incorporated in the data
structures described below, if detectors with greater dynamic
range were used.

Optical Density and phase shift were calculated as:

�OD = −log

(
i

μi

)
(1)

�ph = ph − μph (2)

where i and ph are the measured intensity and phase data,
and μ is the mean of the time-series across the entire run.
A bandpass filter at 0.01–0.5 Hz was applied to remove
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FIGURE 6. High-density source detector arrangement showing 1st, 2nd
and 3 rd nearest neighbour distances and the voxels (yellow squares)
where the channels’ centre points overlap.

confounding physiological perturbations. Measurements were
converted to HbO and Hb concentrations by generating a
semi–infinite model with NIRFAST and inverting the jacobian
(sensitivity matrix), however it was noted that comparable
classification results were achieved by passing the processed
intensity and phase measurements directly to the classifier.
Data were resampled at 2 Hz, and the data from each channel
were standardised by taking the z-score:

Z = x − μ

σ
(3)

where x is the measured value, μ and σ are the mean and stan-
dard deviation of the time-series across the entire run. Chan-
nels marked as poor quality were replaced by an average of up
to eight surrounding good channels of the same chromophore
and NN (those immediately adjoining and diagonal in the
Block representation). The processed fNIRS data was split
into windows of twenty frames (ten seconds) per example,
labelled according to the instruction on the screen at the time
(left-hand finger-opposition, right-hand finger-opposition, or
rest). The final dataset consisted of 1023 labelled examples
from thirty-three runs (five for each of seven subjects, minus
two rejected).

E. DATA STRUCTURES
1) BLOCK
The proposed model uses a Block arrangement, which is
designed to exploit the repeating geometry of the HD-array
to improve the efficiency of spatial feature extraction using
convolutional filters. Firstly, the HbO & Hb measurements

FIGURE 7. Spatially organised high density Hb & HbO measurements,
block-averaged over a left-handed finger tapping task period, arranged
according to channel position.

were grouped by SDS, into nearest neighbour 1 (NN1, 13 mm
SDS) and nearest neighbour 2 (NN2, 29 mm SDS). The NN2
measurements were further divided into horizontally and ver-
tically oriented channels. Within these groups, data from each
time-step were arranged in grids according to their position
on the probe, identified as the central point between the source
and detector (shown as yellow squares in Fig. 6). The six grids
were then stacked along the channel dimension, as shown in
Fig. 8, similarly to the color channels in an image. Because the
HD-array creates a grid of voxels, the fNIRS measurements
can be represented as images without interpolation, producing
a set of topographic images of haemodynamic changes. with
consistent corresponding voxels, and different depth sensitiv-
ity profiles, determined by SDS. As noted above, only NN1
and NN2 were used in this study, due to the limited dynamic
range of the PMTs, however this technique could straightfor-
wardly be extended to include the NN3 measurements.

As the task-averaged measurements in Fig. 7 illustrate,
this arrangement captures spatial information relating to func-
tional activation. An increase in HbO and decrease in Hb in
the NN2 measurements can be observed, with their greatest
changes located over the C4 and C3 regions of the motor
cortex, respectively. This response is typical of the haemo-
dynamic response to a left handed motor action (finger-
opposition in this case).

2) FLAT
fNIRS data from each task/rest period is represented as an

(n x m) matrix where n is the number of SD pairs x2 (Hb &
HbO), and m is the number of time-steps (20 in this case: 10
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FIGURE 8. High-density HbO & Hb measurements in the Block structure
used to train a 3D CNN.

FIGURE 9. High-density HbO & Hb Measurements in the Flat structure
used to train a 1D CNN.

seconds x 2 Hz), as shown in Fig. 9. This representation was
used to train a 1D CNN which applied convolutional filters
across the time dimension only, treating each input measure-
ment as an independent variable. This model is included for
comparison as it is the standard approach to training CNNs
with fNIRS data, and is demonstrated in [23], [24], [26], [37].

3) S-BY-D
The S-by-D arrangement is a straightforward, non-probe-
dependent way of presenting fNIRS measurements as an im-
age. Hb & HbO measurements from each time-step were
arranged in (s x d) matrices, where s is the number of sources
and d is the number of detectors, as shown in Fig. 10, and con-
catenated along channel and temporal dimensions, as shown
in Fig. 11, This representation is used just like Block to train
a 3D convolutional network. The S-by-D representation is
not expected to confer a specific benefit for spatial feature
extraction, rather it is included in for comparison to separate
the effects of the architecture alone (3D vs 1D CNN) from the
effect of the architecture + data structure combination.

VI. DATA AUGMENTATION
A novel data augmentation technique was implemented to
increase the number of training examples in the Block train-
ing set, enabled by the spatial arrangement. Each example
labelled as either right- or left- finger-opposition was flipped

FIGURE 10. High-density Hb & HbO measurements, block-averaged over a
left-handed finger tapping task period, arranged according to source and
detector number.

FIGURE 11. High-density HbO & Hb measurements in the S-by-D structure
used to train a 3D CNN.

along the vertical axis, so that the left motor cortex mea-
surements were positioned on the right hand side and vice
versa. The flipped examples were labelled as the opposite
task state. This technique is based on the assumption that the
contralateral motor cortex activation is generally dominant,
and therefore a reversed image of left-hand tapping activation
is a sufficiently realistic simulation of right-hand tapping acti-
vation to support the training of the classifier. As the data were
already in a spatially resolved format, the number of training
examples could be doubled in a single line of python code.

VII. MODEL ARCHITECTURES
CNNs generally consist of a series of convolutional layers
for feature extraction, followed by fully connected layers for
classification. A fully connected layer is the most basic neural
network component. It consists of a series of nodes, each
of which computes a weighted sum of all the input values
plus a bias term, before applying a non-linear activation func-
tion. The weights and biases of the nodes are randomised at
the beginning of the training process, and then adjusted to
minimise a loss function calculated between network output
probabilities and the ground truth label of each example. A
convolutional layer similarly uses trainable weights and biases
to compute node values, however the weights are grouped
into filters, which are cross-correlated with the input data
to produce a set of n spatial feature maps, where n is the
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number of filters applied. Where the input data has multiple
channels, a separate set of filter kernels is trained for each
channel. A key feature of the convolutional operation is that
it enforces positional invariance: the same set of features
(transformations) are calculated at each position in the input
space, and the derivatives calculated during back-propagation
are used to update the same filters regardless of where the
feature was detected, making it very efficient to learn spatially
recurring features. Thus, while any transformation performed
by a convolutional layer is possible to perform with a FC layer,
the FC layer, which learns the relationships between each set
of input values independently, requires a far greater number
of parameters and far greater number of training examples to
learn. This is why CNNs generally outperform even very large
FC networks for image, video, and time-series classification.

The proposed model combines 3D CNN architecture with
the Block data structure described in Section V-E. The pro-
posed CNN consists of an initial 3D convolutional layer for
spatial and temporal feature extraction, followed by two fully
connected layers for classification. The number of each type
of layer (convolutional and fully-connected), and the size of
the layers, in addition to other hyper-parameters, were de-
termined by grid search (see Section VIII), and the optimal
numbers may be different depending on the size of the dataset
(larger datasets generally facilitate training larger networks).

The Block structure is designed to allow the 3D CNN to
efficiently learn features in the fNIRS data relating to the func-
tional haemodynamic response, which may occur at multiple
locations across the array. Furthermore, because the different
NN measurements a separated between channels, the convolu-
tional filters of each channel are allowed to specialise to repre-
sent the different relationships between the SD positions and
the regions of sensitivity for each SDS. For e.g. the network
could learn to ignore residual systematic changes which are
present simultaneously in both NN1 and NN2 channels.

For comparison, two other models were trained on the same
dataset: a 1D CNN trained on Flat data structure, and another
3D CNN with the same architecture as the proposed model,
but trained on S-by-D data structure.

VIII. HYPER-PARAMENTER TUNING
The hyper-parameters of each model were determined
Empiricall using a class-stratified, group-based five-fold
cross-validation grid-search, meaning that for each combina-
tion of hyper-parameters, the training examples were split into
train and validation sets such that no collection session’s data
appeared in both sets, and so that the class distribution was
preserved. The test data session from each subject that the
models were evaluated with was held out of this process. The
tested values for each parameter are listed in Table 3, with the
selected parameters shown in Bold. The system diagrams for
each model are shown in Fig. 12.

The optimised models shared the same values for many
hyperparameters including batch size, training rate, training
epochs, and the size of the convolutional kernel on the time
dimension. This makes sense because the validation data was

TABLE 3. The Hyper-Parameter Values Tested for Each Classification
Model. Selected Values Are Shown in Bold

FIGURE 12. System diagrams of the three models compared for functional
classification.

equivalent in terms of magnitude, distribution, and temporal
resolution.

IX. TRAINING
Two different training schemes were tested: mixed subjects
and subject-independent. In the mixed subjects scheme, mod-
els were trained on examples from all subjects and tested on
examples from a held out collection session. In the subject
independent scheme, models were trained on examples from
six of the seven subjects, and tested on examples from the
held out subject. The between subjects scheme is designed to
emulate subject independent BCI, in which a pre-trained BCI
system can function with a new user without an initial data
collection/calibration session.

X. CLASSIFICATION ANALYSIS
F1 score, averaged across the three classes (left hand, right
hand, rest), was selected as the primary assessment metric,
and used in all statistical analysis, as it balances type-1 and
type-2 errors, a crucial consideration in classification tasks
where the class distribution is unequal. To determine the ef-
fect of the different models on classification performance, we
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perform statistical tests where the null hypothesis is that the
choice of model has no effect on the distribution of results.
Normality was tested using Shapiro Wilk test. Because there
were two independent variables in the experiment (subject
and classification model), a two-way analysis of variance
(ANOVA) test was used to compare the F1 scores of the
models, while controlling for variation between subjects.

CONFLICT OF INTEREST
T.D.O. discloses patents related to frequency-domain NIRS
technology as well as ownership of NearWave Corp.,
which is producing commercial frequency-domain NIRS
instrumentation.
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