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• Intercomparison campaign data from au-
tomated OPCs and Hirst-type samplers.

• Different approaches for constructing pol-
len proxies from OPC data evaluated.

• Neural Network and Random Forest
models demonstrate promising results.

• Model-constructed proxies can detect
temporal trends and high pollen events.

• Attractive low-cost, high time resolution
alternative for pollen monitoring.
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Pollen allergies affect a significant proportion of the global population, and this is expected to worsen in years to come.
There is demand for the development of automated pollen monitoring systems. Low-cost Optical Particle Counters
(OPCs) measure particulate matter and have attractive advantages of real-time high time resolution data and afford-
able costs. This study asks whether low-cost OPC sensors can be used for meaningful monitoring of airborne pollen.
We employ a variety of methods, including supervised machine learning techniques, to construct pollen proxies from
hourly-average OPC data and evaluate their performance, holding out 40 % of observations to test the proxies. The
most successful methods are supervised machine learning Neural Network (NN) and Random Forest (RF) methods,
trained from pollen concentrations collected from a Hirst-type sampler. These perform significantly better than
using a simple particle size-filtered proxy or a Positive Matrix Factorisation (PMF) source apportionment pollen
proxy. Twelve NN and RF models were developed to construct a pollen proxy, each varying by model type, input fea-
tures and target variable. The results show that suchmodels can construct useful information on pollen fromOPC data.
The best metrics achieved (Spearman correlation coefficient= 0.85, coefficient of determination=0.67)were for the
NN model constructing a Poaceae (grass) pollen proxy, based on particle size information, temperature, and relative
humidity. Ability to distinguish high pollen events was evaluated using F1 Scores, a score reflecting the fraction of
true positives with respect to false positives and false negatives, with promising results (F1 ≤ 0.83). Model-
constructed proxies demonstrated the ability to followmonthly and diurnal trends in pollen. We discuss the suitability
of OPCs for monitoring pollen and offer advice for future progress. We demonstrate an attractive alternative for auto-
mated pollen monitoring that could provide valuable and timely information to the benefit of pollen allergy sufferers.
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1. Introduction

Pollen constitutes a significant proportion of atmospheric bioaerosols
(primary biological aerosol particles, PBAP) and affects as much as 40 % of
the population in industrialised countries with pollen allergies (Fröhlich-
Nowoisky et al., 2016) causing health issues such as allergic rhinitis and
asthma. Pollen is released from plants as part of their reproductive cycle, car-
rying themale gamete, and thus are vital for the survival and spread of terres-
trial ecosystems. Anemophilous species - including almost all cone-bearing
plants (gymnosperms) and many flower-bearing plants (angiosperms) - de-
pend on wind to transport their pollen grains through the atmosphere
where the grains can travel long distances at significant concentrations dur-
ing pollen seasons (Skjøth et al., 2007, Alarcón et al., 2022, Jochner et al.,
2015, Grewling et al., 2016, Siljamo et al., 2008, Manninen et al., 2014).

Individual pollen grains can vary in size between 10 and 100 μm (see,
e.g., Després et al., 2012, Reponen, 2011, pp. 723, Bradley, 2015, pp.
408–409), though many anemophilous species fall towards the lower end
of this range, often below 40 μm. On rupturing in the atmosphere, pollen
grains can release smaller subpollen particles which can also contain aller-
genic proteins relevant to human health (Bacsi et al., 2006), and reside in a
more easily respirable size fraction compared to the intact pollen grains
(Taylor et al., 2004). Subpollen particle size ranges have been reported be-
tween 20 nm and 6.5 μm for giant ragweed (Stone et al., 2021) and
<0.25–3.2 μm (aerodynamic diameter) for birch (Burkart et al., 2021).
Other work reports subpollen particles containing specific pollen allergens
of a similar size range of a few to several micrometres (Miguel et al., 2006).
The category of subpollen particles is still loosely defined in the literature
and can encompass a wide range of particles, including starch granules
and other cytoplasmic debris. As with pollen grains, subpollen particles
can be expected to vary in size range across different taxa and species of pol-
len. However, the wide range of particles included within this term likely
makes the distinction between species somewhat difficult.

Pollen grains and subpollen particles have been considered to have po-
tential cloud condensation nucleation (CCN) activity (Pope, 2010; Griffiths
et al., 2012; Steiner et al., 2015;Mikhailov et al., 2019), as well as ice nucle-
ation (IN) properties (Diehl et al., 2001, Diehl et al., 2002, Pummer et al.,
2012, Tong et al., 2015, Dreischmeier et al., 2017, Gute and Abbatt,
2020, Burkart et al., 2021) which can be affected by atmospheric process-
ing (Gute et al., 2020). This means that these particles could affect the pro-
cess of water condensation or ice crystal formation in clouds, and thus
precipitation and ultimately climate.

Whether in the interest of public health, ecosystem regeneration and
recolonisation, or climate change, there is consensus that further focused
studies of pollen, and other bioaerosols, are required (Huffman et al.,
2019). Yet there are significant limitations to current methods available
for studying airborne pollen dynamics. Conventional methods for measur-
ing pollen generally use volumetric Hirst-type samplers which are time con-
suming and labour intensive, requiring trained staff to identify and count
pollen concentrations from collected slides. Data is therefore often only
available in daily, or for limited periods up to hourly, time resolution, is
not available in real-time, and suffers from relatively large uncertainties,
easily up to 30 % (Adamov et al., 2021). An overview of the current state
of pollen monitoring stations globally can be found by Buters et al.
(2018), which highlights the need for technological advancement.

Attention is now turning towards the use of automated monitoring sys-
tems, with an aim to standardise such methods to replace conventional
manual techniques (Tummon et al., 2022). Recent automated pollen mon-
itoring instruments have been developed such as PollenSense's PS-300
(Jiang et al., 2022), Hund-Wetzlars BA500 pollen monitor (Oteros et al.,
2015, 2020; Plaza et al., 2022), the Rapid-E (Šaulienė et al., 2019; Smith
et al., 2022), and the Swisens Poleno (Sauvageat et al., 2020, Sofiev et al.,
2022). The first two use an impactor to capture grains on a slide, similarly
to conventional manual traps, but the slide imaging and pollen grain classi-
fication are automated. The Rapid-E is a cytometer which identifies parti-
cles using classification algorithms based on laser scattering signal,
fluorescence spectrum and fluorescence lifetime data. Meanwhile the
2

Poleno presents a recent advancement whereby pollen grains are identified
in an automated system utilising light scattering, fluorescence, and holo-
graphic imaging techniques, trained by machine learning. Fluorescence
spectroscopy methods have been utilised to characterise pollen using the
Wideband Integrated Bioaerosol Sensor, WIBS (e.g. O'Connor et al., 2014;
Savage et al., 2017; Ruske et al., 2018), the WIBS has also been used to
identify pollen fragments (Hughes et al., 2020). These and new technolo-
gies are in continuous development to meet the present need for more ad-
vanced pollen monitoring systems. A comprehensive review, including
the use of various machine learning models for pollen modelling, can be
found in Maya-Manzano et al. (2020) and in Buters et al. (2022).

These methods do however bring limitations of time resolution in some
cases and heavy cost limitations in general. With each instrument costing
thousands or tens of thousands of U.S. dollars, suchmethods become unavail-
able for the global majority and smaller institutions, let alone for personal
use. It would also be infeasible to utilise such sensors in monitoring networks
that could offer high spatial resolution data. While high performance sensors
with high accuracy have their value, there is also a need for more affordable
and portable options, that could be used in networks to provide high
spatiotemporal resolution information throughout dynamic pollen seasons.

Low-cost optical particle counter (OPC) sensors have already been ex-
plored extensively to monitor particulate matter (PM) – i.e., all generic, in-
ternally and externally mixed, solid and liquid particles suspended in the
atmosphere - primarily in the context of air quality and anthropogenic pol-
lution (for example: Crilley et al., 2020; Giordano et al., 2021; Dubey et al.,
2022; Narayana et al., 2022). These OPC sensors take in a continuous flow
of particles from ambient air, direct laser light at the stream of particles and
from the scattering pattern of the light intercepted by the particles deter-
mines, via Mie theory, counts for particles in different size range bins. Pol-
len, being an aerosol, should also be detectable by such methods, though it
is generally larger in size than most monitored anthropogenic particulate
matter (i.e. larger than PM10, which is PM with an aerodynamic diameter
of 10 μm or less). There has been very limited previous research and re-
ported success in using a laser optics monitoring system to measure pollen
concentrations (Kawashima et al., 2017).

The Alphasense OPC-N3 (Alphasense, Braintree, UK) has capability to
measure particles up to 40 μm in size (i.e., optically measured diameter)
thereby covering a large proportion of anemophilous pollen species. Cost-
ing a few hundred U.S. dollars, it is significantly more affordable than
other current pollenmonitoring options. Additionally, it comeswith advan-
tages of high time resolution (down to 10 s) and flexibility on deployment
and functionality. It can also be functionalised to give real-time and re-
motely accessible data. The challenge, however, is isolating a meaningful
pollen signal from the sized particle count information provided by the
OPC sensors and this is what this study addresses. Previously, our group
has used the OPC-N2, the precursor to the OPC-N3 to monitor for airborne
fungal spores in a forest (Baird et al., 2022).

Our aim is to assess whether the data available from low-cost OPC sen-
sors such as these have potential to be used for monitoring pollen, to an ex-
tent that provides useful information for public health. We have taken
commercially available Alphasense OPC-N3 sensors, functionalised them
to log independently outdoors for extended periods, and to deliver their
sized particle data online via amobile phone network in real-time. Through
the EUMETNET Autopollen ADOPT - COST Action Intercomparison Cam-
paign in 2021 (Maya-Manzano et al., 2022), we acquired data from our sen-
sors in parallel with baseline pollen data from Hirst-type volumetric
samplers. Using these data, we investigated potential methods to determine
pollen proxies from OPC data and evaluated for each method its accuracy
and potential value for monitoring airborne pollen concentrations.

2. Materials and methods

2.1. Instrumentation

Three commercially manufactured Alphasense optical particle counter
(OPC-N3) devices were used in this study. These are small (mass < 105
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g), and cost in the range of a few hundred dollars. Their predecessor, the
OPC-N2, has been described previously by Sousan et al. (2016) and
Crilley et al. (2018) with the main difference being that the OPC-N3 units
have an extended measurable size range up to larger particle sizes. While
the OPC-N2s measure within a size range of 0.38–17 μm (divided into 16
software bins), the OPC-N3s output raw particle counts segregated into
24 bins of different particle size ranges between 0.35 and 40 μm (see
Table S1 in the Supporting Information for individual bin size ranges).
This means that, unlike its predecessor, its detection size range overlaps
with the typical size range of many anemophilous pollen taxa, including
oak (Quercus), birch (Betula), grass (Poaceae), nettle (Urtica). Though
some taxa are not in this range, such as pine (Pinus) pollen, which are typ-
ically over 40 μm in diameter (Song et al., 2012).

The OPC device actively draws in a stream of air, at around 5 L min−1,
which passes through a 658 nm-wavelength laser beam that is scattered by
the incoming particles. Measurements of scattered light intensity are calcu-
lated based on Mie scattering theory and used to determine number counts
for particles that fall within each bin size range. A refractive index of 1.5
and particle density of 1.65 gmL−1 is assumed, and the devices have amax-
imum particle count of up to 10,000 particles s−1 (equivalent to number
concentrations of 1.2 × 108 particles m−3 at a 5 L min−1

flow rate).
A custom-built systemwas developedwith anArduinoMKRGSM1400mi-

croprocessor (Arduino S.r.l., Via Andrea Appiani 25, Monza, 20,900, Italy) to
facilitate the independent logging of the OPC-N3 data, both onto internal SD
cardmemory and online via the GSM (Global System forMobile Communica-
tions) network to a webpage where the raw data could be accessed in real-
time. The lowest time resolution for the logged data in this casewas 1min, av-
eraged from measurements set to be taken by the OPC every 10 s. Each OPC
device and microprocessor-controlled circuit board system were encased in-
side a plastic weatherproof box and also included BME280 sensors (Bosch
Sensortec GmbH, Gerhard-Kindler-Strasse 9, 72770 Reutlingen, Germany) to
measure temperature and RH (relative humidity). These were positioned ex-
ternally to the OPC device but inside the weatherproof box for this study.
We found the measurements from the BME280 sensors to be more accurate
than the temperature and relative humidity measurements supplied by OPC
devices themselves, which are more influences by the heat generated by the
OPC-N3 sensors and surrounding electronics.

Fig. S1 in the Supporting Information shows the time series of RH and
temperature measured by the BME280 sensors against reference data, ob-
tained from the German National Meteorological Service (DWD) at the
München-City station located 7.5 km away from the sampling site. While
there is a systematic error for both variables due to the positioning of the
BME280 sensors inside the weatherproof box, it is evident they are consis-
tent with the ambient variations over time.

While the OPCs output a number of different variables, including calcu-
lated PM mass concentrations, the main data collected that was relevant to
this study were the raw particle number counts from each of the 24 size
bins, alongside variables that would influence the bin counts, including
the laser status, sample period and flow rate.

The benchmark pollen data for this study were obtained from the mean
of four collocated Hirst-type samplers (all Burkard Manufacturing Co Lid,
Rickmansworth, UK) provided by the coordinators of the EUMETNET
AutoPollen – ADOPT COST Action (CA18226) Intercomparison Campaign
2021. Further details on this can be found in the initial overview paper
(Maya-Manzano et al., 2022). These data consisted of hourly averages
and included pollen number concentrations in grains/m3 for 16 different
pollen taxa: Alnus (alder), Ambrosia (ragweed), Artemisia (mugwort), Betula
(birch), Carpinus (hornbeam), Fagus (beech), Fraxinus (ash), Picea (spruce),
Pinus (pine), Plantago (plantain), Poaceae (grass), Populus (poplar), Quercus
(oak), Taxaceae Cupress (yew), Tilia (lime), Urtica (nettle), as well as a total
pollen concentration.

2.2. Context

The three OPCs (‘OPC1’, ‘OPC2’ and ‘OPC3’) were placed within a few
metres of each other, facing the same direction, on the building roof site
3

used for the AutoPollen Intercomparison Campaign at the Center of Allergy
& Environment (ZAUM) in Munich, Germany, alongside all the other sen-
sors participating in the campaign. The campaign ran from early March
until July 2021. Hirst pollen concentrations were recorded for each hour
of every day between 3rd March and 19th July. The OPCs were deployed
in tandem from 9th March until 7th July, however, due to technical issues,
not all the datasets were complete for the entire period. OPC1 recorded the
most complete dataset, covering the whole period without significant gaps.
Meanwhile, OPC2 recorded from 20th May until 7th July and OPC3 from
9th March until 29th June, with only one significant gap of under 48 h be-
tween 13th–15th March). Fig. S2 in the Supporting Information displays
the data availability of each OPC.

2.3. Data pre-processing

Initial data processing was performed in RStudio using R version num-
ber 4.1.2. As standard procedure, timestamps where the laser status vari-
able (which should be around 620 W cm−2) was below 570 or above
670 W cm−2 were omitted, as anomalies in laser intensity could make
the corresponding particle counts unreliable. This resulted in no data points
being omitted for OPCs 1 and 3 and <0.001 % of data points omitted for
OPC 2. Subsequently, the raw particle counts were converted to particle
number concentrations (PNC) in particles m−3 by the following Eq. (1):

PNC particles m−3� �

¼ raw counts

sample period sð Þ � flow rate L min−1� �� 0:001 m3 L−1
� �

60 s min−1� �
ð1Þ

The sample period and flow rate for each timestampwas used in the cal-
culation but the mean sample period for all OPCs during this period was
5.0 s while the mean flow rate was 5.2 L min−1. OPC datasets were aver-
aged over each hour for comparison with the hourly manual pollen data.

2.4. Simple (large particle) pollen proxy

The first method trialled as a pollen proxy, whichwe refer to here as the
‘Simple Pollen Proxy’, used the sum of all detected particles in size bins
above 10 μm. Pollen grains are generally greater in diameter than 10 μm
(Reponen, 2011, pp. 723, Bradley, 2015, pp. 408–409), which means
they are also larger than most reported PM. It was observed that the OPC
bins between 10 and 40 μm generally showed very little or no activity at
normal times when deployed away from sources of coarse dust
(e.g., quarries, construction sites, ocean spray, etc). We hypothesised that,
when the sensors were placed in the vicinity of significant pollen sources
during an active pollen season, particle concentrations present in this par-
ticular size range would be dominated by pollen. Thus the total number
concentrations greater in diameter than 10 μm could be taken as a proxy
for pollen.

2.5. PMF pollen proxy

The second method was a Positive Matrix Factorisation (PMF) source
apportionment technique used to isolate a signal for pollen from all OPC
bins. This is a multivariate data analysis method developed by Paatero
and Tapper (1994), which attempts to find patterns in the variables of a
dataset. It then assigns these patterns into factors according to their unique
features and provides a relative contribution for each one of them for each
timestep of the dataset. This technique is generally used to isolate specific
pollutant sources from environmental pollution data that is collectively
comprised of background and other various component sources (e.g., Sun
et al., 2020). We hypothesised that pollen could be isolated in OPC time se-
ries via this method, as has been demonstrated previously for typical pollut-
ant sources (Bousiotis et al., 2022).

This PMF method took the particle counts of the 24 bins as input and
output a corresponding time series of the relative contributions of five
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different factors at each timestamp. Five factors were chosen on the basis of
previous experience with atmospheric aerosol samples. In theory, each fac-
tor should equate to a particular source of aerosols picked up by the sensors.
For each factor, size distribution information is also available which can be
used to identify which factor corresponds with which source. We investi-
gated correlations of each of the factors with total pollen and individual
taxa concentrations, and also used the particle size distributions to inform
our decision onwhich factors were most likely to be associatedwith pollen.
Two factors were selected for each OPC dataset that demonstrated the
highest correlations with various pollen species and the ‘PMF Pollen
Proxy’ was calculated from the sum of these two factors.

2.6. Supervised machine learning methods

Two further methods –Neural Network (NN) and Random Forest (RF) -
were employed in parallel, with identical data for training and testing, in an
attempt to construct a pollen proxy from the OPCdata. Thesemethodswere
implemented using Python (version 3.9.7, Anaconda distribution) in
Jupyter Notebook.

Both NN and RF are supervised learning methods where a target vari-
able from reference data is used to train and evaluate the model. This target
variable was chosen from the Hirst data. Due to the limitations of the OPCs,
measuring up to just 40 μm, it was considered that the data may not effec-
tively capture all taxa included within the Hirst ‘total pollen’ variable. For
the purposes of this study, two different target variables were selected to
train and evaluate the models: total pollen and Poaceae (grass) pollen.
The total pollen target variable was the sum of all pollen taxa concentra-
tions collected by the Hirst. The Poaceae taxon was chosen here as the
Hirst data showed a substantial active season that the OPCs could have a
good chance of detecting, and provide sufficient information for themodels
to learn from. It is also generally ubiquitous and affects many allergy suf-
ferers.

Both the NN and RF require an appropriate selection of input variables
or features for the model to extract information from for the learning pro-
cess. Here we prepared three sets of input variables for the models: number
concentrations (particles m−3) from all 24 OPC bins, all 24 OPC bin num-
ber concentrations plus meteorological variables relative humidity (RH)
(%) and temperature (°C) from the BME280 sensor, and finally, just meteo-
rological variables RH and temperature. As mentioned previously, these
values from the BME280 sensor do have a systematic error from ambient
conditions, however the variation over time is consistent with ambient con-
ditions (see Fig. S1 in the Supporting Information), and so should serve the
purpose sufficiently for these models.

The data for the input features were collated from all three OPC-N3s
present at the campaign and split into ‘train’ and ‘test’ datasets simulta-
neously with the target variable using the train_test_split function from
the Scikit-learn library (Pedregosa et al., 2011). Data was shuffled before
being split and 40 % of all the data (6220 data points) was taken for the
test dataset. (Other split percentages were trialled but this was selected as
optimal for this dataset based on convergence of NN training and validation
learning curves.) The same train and test datasets were used for all models
of both methods. Before implementing the Neural Network method, the
input feature train and test datasets were normalised using Scikit-learn
MinMaxScaler function, with the scaler fit to the train dataset so the test
dataset was kept ‘unseen’. This was not considered necessary for the Ran-
dom Forest method.

2.6.1. Neural Network method
The Neural Network (NN) model was a simple multilayer feedforward

Neural Network (Svozil et al., 1997; Sazli, 2006) constructed using a Se-
quential model from the TensorFlow library (Abadi et al., 2015). The Se-
quential model structure facilitates the construction of linear stacks of
layers, each with a chosen number of nodes and an activation function
through which the data passes in the training process. The models used
here all had five Dense (fully connected) hidden layers, each with 5 times
as many nodes as input features (i.e. 130 or 120, with or without
4

meteorological variables) and a ReLU (Rectified Linear Unit) activation
function. After each hidden layer a Dropout layer was implemented with
a frequency rate of 0.2 (i.e. 20 % of nodes randomly dropped in each
layer) to reduce overfitting and improve generalisation. Each hidden
layer had a kernel constraint, often used in combination with Dropout
layers to manage overfitting, constraining the max norm of incident
weights to less than or equal to 1. A Dense single node output layer, also
with a ReLU activation function, followed the last hidden layer to produce
the output. A generalised model, simplified without visible dropout layers,
can be found in Fig. S4 in the Supporting Information.

Models were compiled with the Adam optimiser and mean squared
error (MSE) loss metric and fit on the training data subset, using the test
data subset for validation, with a batch size of 128. Early stopping was
implemented so the training process stopped automatically when the
loss in MSE had not improved any further within a given patience pa-
rameter of 100 epochs. A model checkpoint saved subsequent models
of best MSE so the last to be saved was that which reached the lowest
MSE, rather than the final one wherever training stopped. Training gen-
erally stopped between 400 and 800 epochs (runs through the whole
training dataset).

For eachmodel, training and validationMSE loss curves were plotted to
assess the model learning process. Root mean squared error (RMSE), mean
absolute error (MAE), explained variance (R2) and Spearman's rank correla-
tion coefficient (ρ) values were calculated between the predicted target
values from the test dataset and the corresponding real target values asmet-
rics to evaluate model performance. Relative root mean squared (RRMSE)
error - RMSE divided by the mean of the reference target variable - was
also calculated.

2.6.2. Random Forest method
The Random Forest model was implemented using the

RandomForestRegressor model from the Scikit-learn library. A generalised
diagram of the random forest framework used for regression can be found
in Fig. S5 in the Supporting Information. An initial grid search cross valida-
tion was used to trial different values for the number of estimators (number
of decision trees) and max depth (the number of splits allowed in each de-
cision tree). For the final models, the number of estimators used was 600,
the max depth was 10 and the maximum number of features (to be used
for each tree) was the square root of the total number of input features. Sim-
ilarly, RMSE, RRMSE, MAE, R2 and ρ were calculated between predicted
test target values and the real target values to evaluate model performance
on unseen data.

The RandomForestRegressor model from the Scikit-learn library en-
ables calculation of feature importance score for each of the variables
input into the model. These scores are measured by Gini Importance, or,
Mean Decrease in Gini Impurity (MDG) (Breiman, 1984; Menze et al.,
2009). The Gini Impurity function determines how useful a node in a deci-
sion tree, with a given split rule based on a particular feature, was at sepa-
rating the observations being passed through. A higher decrease in Gini
impurity, which ranges between 0 and 0.5, means that node was more use-
ful. Decrease in Gini impurity values are averaged across all nodes using the
same feature, producing MDG, which measures the contribution of each
feature across the whole Random Forest in separating the observations ac-
cording to the labels or target variable. The higher the MDG importance
score, the greater effect or predictive power this feature has over the Ran-
dom Forest model.

This technique was applied to all Random Forest models after training
to ascertain the relative influences of each of the OPC size bins, also RH
and temperature where applicable, on the predictions output from the
model. Due to their more complex nature, this is process is not as easily ap-
plied Neural Network models and so such scores were not calculated here.
To accompany this, we also calculated Spearman correlation coefficients
between each of the input features and target variables. This does not pro-
vide a truemeasure of feature importance on eachmodel since themachine
learning methods can learn from more complex variable relationships.
However, we still considered it useful to investigate since it can provide
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information the feature importances do not, i.e. whether the correlation be-
tween input feature and target variable is positive or negative.

2.6.3. Evaluating the spatial footprint of pollen vs pollen proxy
As a further test of themodels' ability to accurately identify pollen, wind

direction (°) and wind speed (m/s) measurements, also from the DWD
München-Citymeteorology station, were used to assess the spatial footprint
of the pollen detected in this campaign. Using the R Openair package
(Carslaw and Ropkins, 2012), bivariate polar plots showing pollen concen-
tration by wind direction and speed were constructed for both Hirst and
OPCmodel concentrations. From these plots we can ascertain the direction
and approximate distance of the particle sources relative to the sampling
site. By comparing Hirst and model concentration plots, we can gauge
how accurately the models are identifying particles from the same source
of pollen.

2.6.4. Evaluating model ability to distinguish high pollen events
Rather than producing highly accurate pollen concentrations, as is the

aim with instruments specifically designed to measure bioaerosols, we
hope to be able to use the low-cost OPCs to produce a sufficiently accurate
and precise estimate for pollen concentrations making it possible to deter-
mine when high pollen events are occurring. Simple information such as
this could be useful for allergy sufferers, if suitable thresholds for ‘high’ con-
centrations are set.

We evaluated themodels using furthermetrics which test their ability to
distinguish high pollen concentration events. The threshold for high
Poaceae pollen events was set at 50 grains m−3, following standards stated
by the UK Met Office (https://www.metoffice.gov.uk/weather/warnings-
and-advice/seasonal-advice/health-wellbeing/pollen/what-is-the-pollen-
count, Jan 2023), and the threshold was scaled up for total pollen by the
ratio of the 99th percentiles. The manual and model-constructed pollen
proxy test datasets were split into Positive or Negative categories - equal
to/greater than or less than the threshold value respectively. For each
data point it was determined whether the constructed pollen proxy was a
True Positive (TP), False Positive (FP), True Negative (TN) or False Nega-
tive (FN) compared to the manual baseline (see Figs. S5 and S6 in the
Supporting Information for more detail). The precision, recall and F1
score (the harmonic mean of precision and recall) were calculated from
Eqs. 2, 3 and 4. The closer the F1 score to 1, the better the ability of the
model to distinguish successfully high pollen events from the OPC data.

Precision ¼ TP
TPþ FP

(2)

Recall ¼ TP
TPþ FN

(3)
Fig. 1. Time series for Simple Pollen Proxy over the whole campaign duration. Simple P
from Hirst data in blue. The Simple Pollen Proxy has been scaled up by the ratio of the
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F1 score ¼ 2� Precision� Recallð Þ
Precisionþ Recall

(4)

3. Results and discussion

3.1. Simple pollen proxy

Fig. 1 shows a comparison of the Simple Pollen Proxy for all sensors,
engineered from OPC bins >10 μm in particle diameter, in orange against
the manual total pollen concentration in blue. To facilitate visual compari-
son, the Simple Pollen Proxy values have been scaled up by the ratio of the
99th percentiles of the two variables (7.1). During the summer months of
June and July the Simple Pollen Proxy suggests a greater frequency of
high particle concentration events, coinciding approximately with the
Poaceae (grass) and Urtica (nettle) pollen seasons. However, the resem-
blance is not close enough to draw significant conclusions. The Spearman
correlation coefficients between the Simple Pollen Proxy and each of the
total pollen and Poaceae pollen target variables were negligible (between
−0.1 and 0.1).

While most of the time the Simple Pollen Proxy concentrations are rel-
atively small or equal to zero, there are peaks of very high concentrations
which do not appear to coincide with the manual pollen counts. It is possi-
ble that some of these peaks are not indicative of pollen grains but rather of
other non-biological particles or meteorological conditions at the time such
as precipitation, as this method has no way to distinguish from other parti-
cles in this size range. Some peaks, particularly in late June and in July, co-
incide with rainfall events (see Fig. S3 in the Supporting Information),
suggesting that rain droplets may have been detected in this size range by
the OPCs. Maya-Manzano et al. (2022) reported that some construction
work was taking place near the measurement site during the campaign pe-
riod, which may have affected sensors such as the OPCs. The concomitant
occurrence of anthropogenic air pollutants, mineral dust and fungal spores
with pollen has been studied by Grewling et al. (2019) and demonstrates
the possibility of such particles interfering. Unfortunately, however, we
lacked the means to investigate further here.

The significant lack of non-zero concentrations in this size range sug-
gests that the OPC sensors may in fact struggle to capture larger sized par-
ticles from ambient air where the sources are varied and potentially some
distance away. Larger particles typically are not transported over as long
distances as smaller particles, and do not follow air streamlines around sen-
sor inlets (e.g., Hinds, 1999), which can cause sample losses ahead of the
detection laser.

3.2. PMF pollen proxy

Fig. 2 shows in orange the PMF Pollen Proxy constructed from all OPC
bins of all sensors against the blue Hirst total pollen observations. Again,
ollen Proxy concentrations from OPC data in orange and total pollen concentrations
99th percentile of the two variables to facilitate comparison.

https://www.metoffice.gov.uk/weather/warnings-and-advice/seasonal-advice/health-wellbeing/pollen/what-is-the-pollen-count
https://www.metoffice.gov.uk/weather/warnings-and-advice/seasonal-advice/health-wellbeing/pollen/what-is-the-pollen-count
https://www.metoffice.gov.uk/weather/warnings-and-advice/seasonal-advice/health-wellbeing/pollen/what-is-the-pollen-count
Image of Fig. 1


Fig. 2. Time series for PMF Pollen Proxy over the whole campaign duration. PMF Pollen Proxy constructed from OPC bin data in blue and Hirst data total pollen in orange. PMF
Pollen Proxy values have been scaled up by the ratio of the 99th percentiles of the two variables to facilitate comparison.
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the PMF Pollen Proxy values have been scaled up by the ratio of the 99th
percentiles of the two variables (51.8) to facilitate comparison. Visually,
the PMF Pollen Proxy appears to demonstrate closer resemblance to the
manual total pollen counts than the Simple Pollen Proxy. Some activity
also coincides with the Taxaceae Cupressus (March-early April), Fraxinus
(April), Betula (April), Quercus (May), Poaceae (June), Urtica (June–July)
pollen seasons, suggesting that these taxa may be better detected by the
OPCs. The PMF Pollen Proxy achieved Spearman correlation coefficients
of 0.18 and 0.10 with the target variables total pollen and Poaceae respec-
tively.

While the PMF Pollen Proxy, with itsmore sophisticated processing of the
data and inclusion of all bins, performed better than the Simple Pollen Proxy,
it still does not provide a significantly accurate indicator for pollen concentra-
tions when compared with the manual pollen measurements. Correlations
were also explored between the PMF Pollen Proxy and individual pollen
taxa, with certain taxa exhibiting higher correlations with the proxy than
other taxa. This suggests that some taxa were more successfully detected by
the OPC instruments, due to their grain size and higher concentrations.

A possibility to improve this method furtherwould be to attempt resolv-
ing a greater number of factors from the data, which might better isolate
some pollen sources from other particle sources. However, this has not
been taken further within the scope of this study.

3.3. Neural Network and Random Forest methods

3.3.1. Input feature correlations
The Spearman correlation coefficients between input and target vari-

ables are displayed as a bar chart at the top of Fig. 3. Below this, also in
Fig. 3, are the Random Forest model feature importances – those with
only OPC bin input features above and those including meteorological var-
iables below. These plots provide an idea ofwhich input features havemore
influence on the model learning process. It may seem surprising that the
larger size bins, equivalent to the size of intact pollen grains, do not show
significant correlation with the target variables. However, as discussed in
Section 3.1, it seems that the OPCs struggle to detect significant particle
counts in this range and this could be the reason for the negligible
correlations.

Meanwhile, the most positively correlated OPC bins with the target var-
iables are bins 7 and 8, corresponding to a size range of 3.0–5.2 μm. This is a
possible size range for pollen fragments and some subpollen particles judg-
ing by the measurements of a few different species by Taylor et al. (2004),
Miguel et al. (2006), Stone et al. (2021) and Burkart et al. (2021). Interest-
ingly, we then see negative correlations for the smaller size ranges, espe-
cially bins 1 and 2 which correspond to 0.46–1.0 μm. It should be noted
that the particle size ranges determined by the OPC optical Mie scattering
measurements may not correspond absolutely with accurate geometric di-
ameters, but it should be consistent across OPC-N3 instruments in general.
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Nevertheless, we conclude from this that the models in fact may not be
learning primarily from the signal of intact pollen grains. Instead, the
models are likely learning from the particle size information primarily associ-
ated with pollen fragments and subpollen particles released from ruptured
pollen grains.We assume here that such particles coming directly frompollen
grains are present simultaneously with pollen in the atmosphere. Yet such
particles would be far more numerous than pollen grains (Stone et al.,
2021), while likely suspended for increased time periods and transported
greater distances compared to intact pollen grains. They would likely be
much more readily detected by our OPC instruments. Other particles such
as fungal spores and anthropogenic particles may also be present but, since
the machine learning methods are supervised using Hirst target data,
pollen-correlated particles should be distinguished from these. Thus, we as-
sume that this information can serve as a useful pollen proxy.

Both correlations and calculated importances for meteorological vari-
ables are more significant than those of each of the particle bins. RH
shows negative correlation while temperature has a positive correlation
with pollen concentrations. This is likely a result of diurnal variation
where temperature peaks during the day and RH during the night in gen-
eral, as pollen concentrations tend to be higher in the daytime. The positive
temperature correlation could also be due to the onset of significant pollen
seasons, including Pinus, Poaceae and Urtica, towards the later summer
months, or a more general correlation between temperature and pollen sea-
son start (Van Vliet et al., 2002). Negative correlationwithRH could also be
a result of precipitation occurring when humidity is high, as this could ef-
fectivelywash airborne pollen grains out of the atmosphere and reduce con-
centrations. Pollen grains are hygroscopic (Pope, 2010) and therefore swell
at high humidity which could also cause the grains to settle more quickly
under gravity even without precipitation.

3.3.2. Neural Network and Random Forest models: overview
In total, 8 models were trained and can be categorised bymethod (Neu-

ral Network/RandomForest), input features (with/without RHand temper-
ature), and target variable (Poaceae/total pollen). Fig. 4 displays the time
series for each of these models for the duration of the campaign, with the
reference target variable in blue and the model-constructed proxy in or-
ange. This figure includes only those models which included meteorologi-
cal input features, whereas an alternative figure also displaying the
models without meteorological input features can be found in Fig. S6 in
the Supporting Information. Table 1 lists all the models, their defining cat-
egories, and themetrics - RMSE, RRMSE, MAE, ρ, R2 and F1 score - attained
by each for the test datasets.

The time series andmetrics tables for furthermodels, trained on just RH
and temperature input features, can be found in Figs. S7, Fig. S8, Table S2
and Table S3 in the Supporting Information.

From the time series plots in Fig. 4, it is evident that all NN and RF
model-constructed proxies performed significantly better than the Simple

Image of Fig. 2


Fig. 3. Bar plots of correlations between OPC input features and Hirst target variables and Random Forest feature importances. Top: Spearman correlation coefficient values
of each input feature (24 OPC bins, RH and temperature) with each target variable (Poaceae and total pollen). Middle: Feature importances of Random Forest models with
only OPC bins. Bottom: Feature importances of Random Forest models with relative humidity (RH) and temperature (Temp.) input features as well as 24 OPC bins.
Corresponding particle size ranges for each OPC bin can be found in Table S1 in the Supporting Information.

Fig. 4. Time series for NN and RF pollen proxies over the whole campaign duration. Hirst data target variable are in blue and model predictions for models with RH and
temperature as input features are in orange. Plots on the left (A and C) are from Neural Network models while those on the right (B and D) are from Random Forest
models. A and B are predictions for Poaceae pollen and C and D for total pollen number concentrations in grains m−3.
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Table 1
Summary of Neural Network (NN) and Random Forest (RF) models and evaluation metrics. The 8 supervised machine learning
models tested to predict pollen concentrations fromOPC data, differentiated bymodelmethod (NN /RF), input features (with/with-
out meteorological variables RH and temperature) and target variable (Poaceae/total pollen). The best NN and RF results have been
emboldened.
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Pollen Proxy and PMF Pollen Proxy, and pollen season variations are to
some extent successfully reconstructed. There are false positive signals oc-
curring at times when the manual baseline shows low or zero pollen con-
centrations, for example Poaceae pollen being predicted outside of its
season. However, this was observed for most instruments that took part
in the campaign (Maya-Manzano et al., 2022). Particularly for the OPCs,
non-biological particles - or other biological particles - which are of a simi-
lar size to the particles of interest may easily be confusedwith them causing
such false positives. Many different pollen taxa overlap in size ranges, and
so may limit the ability of the model to distinguish individual species
with the data available. The model-constructed proxies in general appear
to underestimate when very high pollen concentrations are observed in
the manual counts. This may suggest greater physical limitations for the
particles being sampled through the inlet and detected by the OPC than
for the Hirst-type sampler.

3.3.3. Difference in model performance due to input variables
The most apparent difference observed among the models is that those

with RH and temperature added as input features perform significantly bet-
ter than those without. This can be seen in Fig. S6 in the Supporting Infor-
mation. The metrics (see Table 2a) support this where the models without
Table 2
Mean-averaged metrics for models by category. Categorised by input feature in top
table A, by model type in middle table B, and by target variable in bottom table C.

A) Input features RMSE RRMSE MAE ρ R2 F1 score

OPC bins 153.4 1.49 94.1 0.58 0.24 0.64
OPC bins + RH + T 131.9 1.20 69.7 0.80 0.48 0.80

B) Model type RMSE RRMSE MAE ρ R2 F1 score

NN 143.7 1.33 82.3 0.70 0.37 0.73
RF 141.7 1.36 81.5 0.68 0.35 0.71

C) Target variable RMSE RRMSE MAE ρ R2 F1 score

Poaceae 61.2 1.52 30.2 0.72 0.47 0.72
Total pollen 224.2 1.17 133.6 0.66 0.25 0.72
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RH and temperature have average RMSE, RRMSE, ρ and R2 values of 153
grains m−3, 1.5, 0.58 and 0.24 while the models with these features have
values of 132 grains m−3, 1.2, 0.80 and 0.48 respectively. The F1 score is
also improved from 0.64 to 0.80 demonstrating that RH and temperature
significantly add to the accuracy of the models. The likely reasons for the
effect of RH and temperature as input features were discussed in
Section 3.3.1.

Models trained only on meteorological input features RH and tempera-
ture (results shown in Figs. S7 & S8 and Tables S2 & S3 in the Supporting
Information) scored higher metrics than models with only particle size in-
formation, yet significantly belowmodels with both particle size and mete-
orological information. This demonstrates, as the input feature correlations
in Fig. 3 suggested, that RH and temperature add valuable predictive power
to the models. Meanwhile it proves that the combination of both particle
size and meteorological information produces the most accurate results.

3.3.4. Difference in model performance due to model type
The difference between the Neural Network and Random Forest

methods is less distinct. From visual inspection, it appears that the Random
Forestmodels adhere a little closer to the Hirst benchmark andmay capture
more detail of individual peak events. The metrics (see Table 2b) are very
close between NN and RF models with values of 144 grains m−3, 1.3,
0.70, 0.37 and 0.73, and 142 grains m−3, 1.4, 0.68, 0.35 and 0.71 for
RMSE, RRMSE, ρ, R2 and F1 Score values respectively.

While this demonstrates presently that both model types are similarly
useful for this purpose, we note that the NN methods deployed here have
the potential for further development and accuracy improvement in the fu-
ture. A grid search cross validation method was performed on the RF
models first to decide on optimal hyperparameters. Meanwhile the NN
method ismore complexwithmany different hyperparameters and possible
architecture variations. While different variations were trialled in the pro-
cess of achieving the final models presented here, this is by no means
exhausted or optimised to its full potential.

3.3.5. Difference in model performance due to target variable
For the choice of target variable, the single species Poaceaemodels per-

formed best by all metrics (see Table 2c), except for RRMSE. This is because

Unlabelled image
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total pollen had significantly greater range resulting in inevitably greater
error margins. The RRMSE metric however corrects for this and allows
for some comparison across different variables. Total pollen models had
the lower RRMSE at 1.2 compared to Poaceae models at 1.5. Meanwhile
Poaceae and total pollen models achieved joint best F1 scores at 0.72.

The question of which target variable is preferable to use is not simple,
and for future studies no doubt depends on the context, which taxa are pres-
ent and of interest.While targeting individual taxa like Poaceae can result in
smaller error, the limitations of the OPC's ability to distinguish between
taxa based solely on size information should be kept in mind and false pos-
itives are to be expected. Including input features that correlate in some
way to season (including temperature) will likely reduce this error yet
make the model less generalisable to use in different locations, where sea-
sonal patterns are different or irrelevant. A key point from this study is
that using target variables at both the individual taxa and collective pollen
levels are worth investigating for further studies. While in many cases the
accuracy of precise number concentrations may still be lacking, the results
here indicate that reducing the information conveyed to simply the occur-
rence of high pollen events offers better accuracy across different target var-
iables.

3.3.6. Individual model performances
Of all 12 individual models, the best performing across most metrics

was the NN_withMetVar_Po model at RMSE, MAE, ρ, R2 values and F1
score of 49 grains m−3, 21 grains m−3, 0.85, 0.67 and 0.83 respectively.
The RF alternative, RF_withMetVar_Po, performed similarly, also reaching
an R2 value above 0.5 and F1 score of 0.80. While difficult to compare
across different target variables, the total pollen models with meteorologi-
cal variables (both NN and RF) performed best in terms of RRMSE while
Fig. 5. Polar plots of detected pollen source concentrations according to wind direction a
NN model pollen proxy and RF model pollen proxy from left to right (models are those
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also demonstrating high F1 scores at 0.78. Meanwhile, the error margins
and R2 scores for these and the other models would be ideal to improve
upon.

In the campaign overview (Maya-Manzano et al., 2022), 9 out of 18 of
the automated pollen measurement systems (including different classifica-
tion algorithms for the same instrument) were reported to reach R2 values
above 0.5 for both 3 hourly and daily averaged data. These were high qual-
ity instruments, specifically designed to measure pollen with sophisticated
algorithms trained directly on pollen samples. In comparison, 2 out of 8 of
our models here achieved R2 values above 0.5, at hourly time resolution.
When averaged to daily resolution, all R2 values improve significantly – 3
further models (including total pollen proxy models) are at or very close
to R2 values of 0.5. The best models – Poaceae pollen proxies withmeteoro-
logical variables – reach R2 values of 0.75 and 0.86.

It is however interesting that the automated instruments in the inter-
comparison campaign in general achieved the lowest metrics for Poaceae
pollen compared to other taxa (with 6 out of 18 systems achieving R2 >
0.75 for daily resolution data) while we achieved good results for our
Poaceae models. The comparatively worse performance for Poaceae in the
campaign overview (Maya-Manzano et al., 2022) was thought to be due
to greater variation in size among different species of the Poaceae family
(Frenguelli et al., 2010), which could also be expected to affect the ability
of the OPC and machine learning algorithm to distinguish this taxon. Nev-
ertheless, we did not study models targeting other taxa here, largely due to
considered data limitations for model training, and it is possible they may
be able to perform even better given ample training data.

Fig. 5 shows polar plots - using the R Openair package (Carslaw and
Ropkins, 2012) - of pollen concentrations plotted according to wind direc-
tion and speed, which provides further information on pollen sources. The
nd speed. Data for A) Poaceae and B) total pollen for each of theHirst measurements,
which included RH and temperature input variables).

Image of Fig. 5
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meteorological data here was sourced from a weather station situated
7.5 km away from the intercomparison campaign site and so relates to
regional-scale flow rather than local eddies and currents. Hirst, NN model
and RF model (only those which included temperature and RH input vari-
ables) pollen concentrations are presented (left to right) for each target var-
iable (top to bottom).

The Poaceae models appear to have isolated the same source as the
Hirst for this pollen taxa with remarkable success, strengthening the evi-
dence that the models are effective at constructing a pollen proxy. The
total pollenmodels appear less accurate in terms of absolute pollen concen-
trations, but the source areas are generally consistent with the Hirst. There
seems to be a source from the North that the Hirst has collected at high con-
centrations but the OPCs have been less effective at detecting. This could be
due to pollen taxa which are out of the measurable size range of the OPC,
likely Pinus in the context of this campaign, in the case of total pollen. It
may also be that sources brought by the wind from the direction the OPC
inlet was facing were detected more efficiently and this may be important
to consider for future work.

3.3.7. Monthly and diurnal variation
To answer the question of whether these model-constructed proxies can

give meaningful information about real-life pollen trends, we compared
monthly and diurnal variations between proxy and manual benchmark.
Fig. 6 displays plots of the averaged number concentrations by month on
the left and by hour of the day on the right for each target variable – Poaceae
and total pollen from top to bottom. In each plot, the blue line shows the
Fig. 6.Monthly and diurnal trends for model-constructed pollen proxies compared to Hi
the left (A and C) and by hour of the day on the right (B and D) for each of the NN andRF
lines denote the target variable fromHirst data, green and orange lines denote NNmode
denote RF models with and without meteorological input variables.
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target variable reference while the other colours show the other models
for each model type with and without meteorological input features.

All models adhere approximately to the monthly and diurnal trends (for
example increasing in daylight hours), even those without meteorological
variable inputs. This demonstrates that the model does not simply rely on
RH and temperature to create these trends, but that the particle concentra-
tions also provide useful information. Nevertheless, as proven by the time
series and calculated metrics, those models with meteorological variables
perform markedly better. These models in fact seem to even overestimate
pollen concentrations at the height of daylight hours while the manual con-
centrations lie in between the model-constructed proxies with and without
meteorological variables.

Furthermore, as seen in Fig. 5, there is some evidence that the RF
models may be better at detecting some details in temporal variation. For
example, the total pollen baseline counts show a small peak in the evening
after 8 pm and the RF models follow this noticeably better than the NN
models.

3.3.8. Implications for public health
The utility of the methods tested here for public health rely on their fi-

delity in identifying high pollen events; that is, being able to detect high
pollen events with a minimum of false positives and false negatives. De-
tailed results from the high pollen event thresholding test can be found
from Figs. S9 and S10 in the Supporting Information. Fig. S10 shows the
percentage of datapoints belonging to each group of the confusion matrix,
i.e., true positive, false positive, true negative and false negative. NN and
rst baseline. Mean-averaged pollen concentrations bymonth, fromMarch to July, on
models. Top (A and B): Poaceaemodels; Bottom (C and D): Total pollenmodels. Blue
ls with and without meteorological input variables respectively, purple and red lines

Image of Fig. 6
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RF models perform very similarly with respect to true positives; the better
performance of the RF model is due mostly to better discrimination be-
tween true negatives and false positives (Fig. S10).

The false negative category for all models is below 5% of all data points
(except for the Neural Network Poaceae model without meteorological
input features which was 6 %). From a public health perspective, this
false negative category is the most import to keep minimal. As an instru-
ment that informs allergy sufferers whether to anticipate severe symptoms
on going outside, the false positive category would result in an inconve-
nient false alarm. Meanwhile, the false negative category could result in
people at risk setting out when they believe it safe and could potentially re-
sult in more severe consequences including hospitalisations. Therefore,
with a false negative rate generally under 5 %, we suggest that the capabil-
ity of the OPC sensors to determine high pollen events above a set threshold
is sufficient and can provide valuable information for public health.

4. Conclusions

In this study we have explored four different potential methods to mon-
itor pollen using low-cost OPC instruments, and we have made progress in
constructing useful pollen proxies from OPC data. This step towards devel-
oping affordable pollen monitoring techniques and forecasting capabilities
builds upon that already produced from the EUMETNET AutoPollen
ADOPT - COST Action Intercomparison campaign which brought together
various automated pollen sensors to facilitate further advancement in this
area.

This is, to our knowledge, the first study implementing such techniques
to construct a pollen proxy from low-cost OPC sensors conventionally used
to measure particulate matter. While inferior in terms of accuracy to other
instruments specifically developed tomeasure pollen, such low-cost sensors
can, when coupled with suitable machine learning algorithms, estimate
pollen concentrations to a useful degree of accuracy. They would thus sup-
ply an attractive alternative that has the potential provide automated, high
temporal and spatial resolution data with fleets of sensors deployed in net-
works. This has not been possible before due to the high cost and labour de-
mands of conventional manual instruments.

We presented here our investigation into finding and demonstrating an
appropriate method of processing OPC general particle size data to gain
useful information on airborne pollen concentrations. We show that NN
and RF methods demonstrate the most success and can predict pollen con-
centrations to R2 values reaching above 0.5 when compared to a Hirst-type
sampler as a baseline, when meteorological variables RH and temperature
are included as training features. The models also demonstrate an ability
to distinguish high concentration pollen events above a certain threshold,
achieving F1 scores (for reliable event detection) between 60 and 83 %.

We recommend for further investigations that meteorological variables
including RH and temperature are used for model training and target vari-
ables for both individual and collective pollen taxa should be studied,
though the limitations of the OPC should be kept in mind. We find that
NN and RF methods achieve similar results, but there is still potential for
optimisation of these methods (particularly NN variations) to improve ac-
curacy even further. Future work should include extending the method to
other locations and environments and assessing the generalisability across
sensors and different environments.

Furthermore, it would be beneficial to investigate application across
networks of sensors to see if the information from the models can discern
environmental variations on a local scale, as this is where the affordability
of the sensors will have their edge. Hybrid networks would likely be re-
quired, with high quality instruments integrated across a few of the low-
cost network sites, to provide accurate references for the low-cost sensors.
High performance automated instruments, such as the Swisens Poleno or
Plair Rapid-E, may become increasingly prevalent in populating pollen
monitoring networks. Therefore, studies using pollen data from instru-
ments such as these (in particular those that detect particles in-flight simi-
larly to the OPC) as a reference, to provide the target variables in model
training, would also be valuable. From here, future possibilities of high
11
spatiotemporal resolution pollen measurement via sensor networks, or
even personal pollen monitors, would look promising. This could ulti-
mately provide valuable information to improve pollen forecasting models
and help many allergy sufferers.
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