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NF-ULA: Normalizing flow-based unadjusted Langevin algorithm for imaging1

inverse problems2

Ziruo Cai∗ , Junqi Tang† , Subhadip Mukherjee‡ , Jinglai Li§ , Carola-Bibiane Schönlieb¶, and3

Xiaoqun Zhang∥4

5

Abstract. Bayesian methods for solving inverse problems are a powerful alternative to classical methods since6
the Bayesian approach offers the ability to quantify the uncertainty in the solution. In recent7
years, data-driven techniques for solving inverse problems have also been remarkably successful,8
due to their superior representation ability. In this work, we incorporate data-based models into9
a class of Langevin-based sampling algorithms for Bayesian inference in imaging inverse problems.10
In particular, we introduce NF-ULA (Normalizing Flow-based Unadjusted Langevin algorithm),11
which involves learning a normalizing flow (NF) as the image prior. We use NF to learn the prior12
because a tractable closed-form expression for the log prior enables the differentiation of it using13
autograd libraries. Our algorithm only requires a normalizing flow-based generative network, which14
can be pre-trained independently of the considered inverse problem and the forward operator. We15
perform theoretical analysis by investigating the well-posedness and non-asymptotic convergence of16
the resulting NF-ULA algorithm. The efficacy of the proposed NF-ULA algorithm is demonstrated in17
various image restoration problems such as image deblurring, image inpainting, and limited-angle X-18
ray computed tomography (CT) reconstruction. NF-ULA is found to perform better than competing19
methods for severely ill-posed inverse problems.20

Key words. Bayesian inference, Langevin algorithms, normalizing flows, inverse problems.21

MSC codes. 62F15, 49N45, 92C5522

1. Introduction. Imaging inverse problems can be formulated as y = Ax + n, where23

y ∈ Rm is the indirect noisy observation, A : Rd → Rm is the observation operator, n is24

the measurement noise, and x ∈ Rd represents the unknown image that one aims to re-25

cover. In the classical variational framework, the reconstruction problem is formulated as26

the minimization of an energy functional J(x) = L(y,Ax) + α g(x), where L measures data-27

consistency and g is a regularizer that penalizes undesirable images. Following the surge of28

deep learning, data-driven regularization methods have become ubiquitous in imaging inverse29

problems [7,10,72], leading to state-of-the-art results which significantly outperform classical30

hand-crafted regularization schemes such as the total-variation [13] or sparsity-based regular-31

izers (see [10] and references therein). Starting from the plug-and-play methods [96] which32

combine proximal-splitting optimization algorithms [17] with learned denoisers [45, 83, 103],33

researchers have made considerable progress in this direction. Current popular trends in this34
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line of research include the studies in improving practical performances and theoretical guar-35

antees [33,38,47,81,90,94], the development of deep unrolling networks [1,67], deep equilibrium36

models [34], the studies on the image prior by specific networks structures [59], the extension of37

generative models in imaging applications [8,73,87,99], operator regularization methods [77],38

learning explicitly the regularization functional such as a gradient-step denoiser [42], total39

deep variation [53], adversarial regularizers [63,69,78] and the learned convex regularizer [70]40

with input-convex neural networks [5].41

While the previously mentioned approaches treat x deterministically, another alternative42

framework for solving inverse problems is to do it within a Bayesian setting [46,93,95]. Differ-43

ent from the functional-analytic methods, Bayesian methods model the image x as a random44

variable and usually seek to approximate the posterior distribution p(x|y) based on Bayes’45

formula. The methods based on Bayesian inference can not only give a point estimator (e.g.,46

the maximum a posteriori probability (MAP) estimator) but also describe the uncertainty in47

the solution in a probabilistic way in terms of variance and credible intervals. The capability48

of uncertainty quantification is particularly helpful for decision-making and reliability assess-49

ment. Typical examples of Bayesian imaging schemes include the classical approach using the50

total variation prior [62, 76], the works on Markov random fields [11], and more recently the51

patch-based models [2, 41,102,105].52

In Bayesian inference, one explores the posterior distribution to generate samples from it,53

typically using the Markov Chain Monte Carlo (MCMC) methods [32]. Among these sampling54

algorithms, the Langevin Monte Carlo (LMC) algorithms [71,80], also referred to as the Unad-55

justed Langevin Algorithms (ULA), stand out as an increasingly popular tool, since they bridge56

the gap between theoretical guarantees of nonasymptotic convergence analysis [20,22,28] and57

practical performance [29,56]. Note that ULA is subject to bias related to the stepsize, ULA58

can also be modified into Metropolis-adjusted Langevin algorithm (MALA) [80], a non-biased59

version, by adding a Metropolis-Hastings (MH) accept-reject step. Apart from the MCMC-60

based methods, there are also other kinds of sampling methods worth mentioning: methods61

based on variational inference [12, 40, 61] posit a family of densities and then attempt to62

find a member of that family which is close to the target density. Variational auto-encoders63

(VAEs) [52] approximate the posterior by learning deep encoders and decoders. Generative64

adversarial networks (GAN) [19, 35] learn the generator to sample from the training distri-65

bution through adversarial learning. More recently, diffusion models [39, 88, 101] have been66

shown to be a powerful tool for image generation. They learn the target distribution by67

transforming an image into a Gaussian noise and then by reversing the noising process.68

In recent years, the theoretical analysis and nonasymptotic convergence of ULA [20, 28]69

have opened a new direction of research. Besides convex and smooth potentials [20,21,27,28],70

ULA for non-convex or non-smooth potentials has also seen great progress. While ULA71

requires evaluating the score, ULA for non-smooth distributions [29,58,64,68,76] draw samples72

from a smoothed proxy by borrowing the tools such as proximity operators from non-smooth73

optimization literature, or consider potential splitting [85]. For non-convex potentials, ULA74

also has convergence guarantees [14,22,31,65] if some conditions, (e.g., contractivity condition75

on the drift) are satisfied.76

Incorporating data-based approaches into classical algorithms is a trending topic in ULA77

and Bayesian methods for solving inverse problems. More specifically, one aims to utilize78
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an over-parameterized model learned on given data, such as a neural network, instead of79

handcrafted prior. Recently, Langevin Monte Carlo using Plug and Play Prior (PnP-ULA) [56]80

was shown to yield promising results for Bayesian imaging problems. PnP-ULA leverages an81

implicit image prior learned via a Lipschitz-continuous image denoiser [84]. Since the true82

image prior is not assumed to be convex or smooth, PnP-ULA convergence was established83

for non-convex potentials.84

Besides PnP priors [96], normalizing flow (NF)-based approaches [25, 74, 79] also lead85

to impressive performance on imaging problems [25, 50] and have the potential of learning86

the prior in the Bayesian imaging framework. In this work, we attempt to integrate an87

image prior that is learned by NF into the Langevin algorithms. Notably, the resulting88

negative log posterior in our case is non-convex. To make the model well-defined in the89

Bayesian setting and to ensure that the algorithm is numerically stable, we make minor90

changes to the standard ULA to add a regularization on the posterior, akin to PnP-ULA [56].91

As some studies of normalizing flows have shown [25, 50, 74, 79], training a normalizing flow92

prior for natural images generally requires utilizing larger networks, larger training dataset,93

more computational resources and more time than training a PnP denoiser, our proposed94

method is more efficient if the normalizing flow prior is pre-trained and available.95

The idea of interlacing NF with MCMC algorithms has been considered previously in96

the literature, but these methods had significant conceptual differences from our approach.97

For instance, [100] proposed stochastic NF, an arbitrary sequence of deterministic invertible98

functions and stochastic sampling blocks, to sample from target density. The authors of [36,91]99

considered stochastic NF from a Markov chain point of view and replaced the transition100

densities with general Markov kernels. [15] utilized NF to sample from the target distribution in101

the latent domain before transporting it back to the target domain relying on MALA. There are102

some studies combining other generative models with non-Langevin Monte Carlo algorithms,103

e.g., [16] introduced a stochastic PnP sampling algorithm leveraging variable splitting to104

efficiently sample from a posterior distribution using diffusion-based generative models [23].105

To summarize, all the above mentioned approaches are different from ours, mainly because106

they do not directly utilize the log gradient density of NF in Langevin algorithms.107

1.1. Our contributions. The main contributions of this work are:108

1. We propose NF-ULA, a novel framework of sampling by Langevin Monte Carlo-based109

algorithms while leveraging a pre-trained normalizing flow induced prior. Since both110

the density and the log gradient of the density of normalizing flows can be evaluated,111

NF-ULA can potentially be extended to a Metropolis-adjusted version.112

2. We give a sufficient condition to ensure the Lipschitz gradient of the log density of the113

normalizing flows since the Lipschitz gradient is one of the most essential conditions114

to guarantee the convergence of ULA. This might also be useful in the future when an115

NF-based prior is used in methods other than Langevin algorithms.116

3. We show that the Bayesian solution of NF-ULA is well-defined and well-posed and117

establish that NF-ULA admits an unique invariant distribution. We also give a non-118

asymptotic bound on the bias.119

4. We demonstrate that NF-ULA yields high-quality results in applications such as image120

deblurring, image inpainting, and limited-angle X-ray computed tomography (CT) re-121

This manuscript is for review purposes only.
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construction. For more ill-posed problems, NF-ULA demonstrates stronger regulariza-122

tion than competing methods. We also provide experimental evidence that enhanced123

training of the NF prior results in improved sampling and reconstruction, especially124

for severely ill-posed problems (such as limited-angle CT).125

The rest of the paper is organized as follows: Sec. 2 gives a brief review of both Langevin126

Monte Carlo and normalizing flow, leading to the proposed NF-ULA method. Sec. 3 presents127

a theoretical analysis of the Bayesian solution obtained using NF-ULA. In Sec. 4, we evaluate128

NF-ULA on image deblurring, image inpainting, and limited-angle CT reconstruction. Final129

conclusions are summarized in Sec. 5. The proofs and extra experiments are in the Appendix.130

2. Mathematical background and the proposed method. We begin by giving some back-131

ground on Langevin Monte Carlo (LMC) algorithms and normalizing flow. Subsequently, we132

propose NF-ULA, an LMC algorithm that utilizes a pre-trained normalizing flow network.133

2.1. LMC for Non-smooth Potentials. In Bayesian inference, there is a broad class of134

problems where we seek to draw samples {Xk}Kk=1, Xk ∈ Rd, from a target posterior distribu-135

tion p(x|y), given the observation y ∈ Rm. Using Bayes’ formula, we have that136

(2.1) p(x|y) = p(y|x)p(x)∫
p(y|x̃)p(x̃)dx̃

.137

Under some assumptions on the likelihood p(y|x) and the prior p(x), the posterior distribu-138

tion p(x|y) is well-posed; meaning that it is well-defined (
∫
p(y|x̃)p(x̃)dx̃ is finite), unique,139

and varies continuously in y with respect to appropriate distance metrics for probability dis-140

tributions [55, 89]. The well-known LMC approach [71, 80], also referred to as the unadjusted141

Langevin algorithm (ULA), can efficiently sample from p(x|y) using the following Markov142

chain:143

(2.2)
Xk+1 = Xk + δ∇ log p (Xk|y) +

√
2δZk+1

= Xk + δ∇ log p (y|Xk) + δ∇ log p (Xk) +
√
2δZk+1,

144

where {Zk}k ∼ N (0, Id) is a family of i.i.d. standard Gaussian random variables. The ULA145

approach in (2.2) is based on the Euler-Maruyama (EM) discretization with step-size δ of the146

over-damped Langevin stochastic differential equation (SDE) given by147

(2.3) dXt = ∇ log p (Xt|y) dt+
√
2 dBt,148

where Bt is a Brownian motion. It has been shown in [20,28] that when − log p(x|y) is contin-149

uously differentiable and has Lipschitz gradient, the convergence of ULA can be guaranteed150

if the convexity of − log p(x|y) [20] or contractivity in the tails [28] is satisfied. The conver-151

gence is subject to a bias related to the step-size δ. In general, smaller δ leads to a smaller152

bias and larger δ leads to faster convergence of the Markov Chain. The non-asymptotic153

bias and convergence analysis of ULA have remained relatively under-explored until the last154

few years [20, 21, 27, 28]. Notably, the bias of ULA in (2.2) can be removed by adding a155

Metropolis-Hastings (MH) accept-reject step, leading to the so-called Metropolis-adjusted156

Langevin algorithm (MALA) [80]. In this paper, we will focus on ULA without any MH157

adjustments.158
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When the potential − log p(x) is convex but non-smooth, [29] uses a smooth proxy utilizing159

the Moreau envelope U (λ)(x) of U(x) = − log p(x) in (2.2). The Moreau envelope U (λ)(x) and160

the proximity operator proxλ,U of U(x) are defined as161

U (λ)(x) := inf
z∈Rd

(
U(z) +

1

2λ
∥x− z∥22

)
, and proxλ,U (x) := argmin

z∈Rd

(
U(z) +

1

2λ
∥x− z∥22

)
.162

For a convex function U , proxλ,U (x) is unique and well-defined.163

Since the Moreau envelope U (λ)(x) is always continuously differentiable [9, 18] even if164

U(x) is not, the authors of [29] replace ∇U(x) by ∇U (λ)(x) =
(
x− proxλ,U (x)

)
/λ, resulting165

in Moreau-Yoshida regularized ULA (referred to as MYULA), which requires the proximal166

operator of U(x) in each iteration of (2.2).167

In a more general case where the prior p(x) is not available in closed form, the authors168

of [56] propose a plug-and-play (PnP) denoising-based approach for learning the prior [84,96].169

This is achieved by training a Lipschitz-continuous Gaussian denoiser Dε(x). More precisely,170

Dε(x) is trained on a given dataset {xn}Nn=1 by learning to remove Gaussian noise of zero-171

mean and ε variance added to the clean images xn, which are i.i.d. samples of p(x). The ideal172

minimum mean-squared-error (MMSE) denoiser takes the form173

Dε(x) = (2πε)−d/2

∫
Rd

x̃ exp
[
−∥x− x̃∥2/(2ε)

]
p(x̃)dx̃.(2.4)174

175

The noisy data follows the Gaussian-smoothed prior176

pε(x) = (2πε)−d/2

∫
Rd

exp
[
−∥x− x̃∥22/(2ε)

]
p(x̃)dx̃,177

which is the convolution of the non-explicit prior p(x) with a Gaussian smoothing kernel.178

Similar to the Moreau envelope [9, 18], pε is always differentiable and satisfies Tweedie’s179

identity [30]: ε∇ log pε(x) = Dε(x)−x. While computing ∇ log p(x) could be intractable, one180

can use ∇ log pε(x) as a surrogate in (2.2), leading to the PnP-ULA approach [56]:181

(2.5)
(PnP-ULA) : Xk+1 = Xk + δ∇ log p (y|Xk)

+
δα

ε
(Dε (Xk)−Xk) +

δ

λ
(ΠC (Xk)−Xk) +

√
2δZk+1,

182

where α > 0 is a regularization parameter associated with the PnP prior and {Zk}k are i.i.d.183

drawn from N (0, Id). A projection ΠC (Xk) onto a convex and compact set C is added in each184

iteration to enable the theoretical analysis for PnP-ULA. λ > 0 is a parameter associated with185

the operator ΠC − Id. Moreover, the Lipschitz continuity of the denoiser Dε(x) is required for186

convergence. A detailed convergence analysis of (2.5) is available in [56].187

2.2. Normalizing Flow. Similar to a PnP prior, a flow-based model can also serve as a188

prior. A flow-based model seeks to express x ∈ Rd as189

(2.6) x = T (z),190
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where T : Rd → Rd is an invertible transformation applied to z ∈ Rd, where z ∼ qz(z). Here,191

qz(z) is the input (or, latent) distribution of the flow-based model and is generally chosen to192

be a distribution that can be sampled easily, such as a multivariate Gaussian [51, 54, 74, 79].193

Apart from T : Rd → Rd being invertible, both T and T−1 must be differentiable [74, 79].194

The flow-based model is also called normalizing flow since T−1 implicitly transforms q(x), the195

distribution of x, into a normal distribution. In practice, T is typically implemented with an196

invertible neural network [25, 50]. By a change of variables in (2.6), the distribution of x can197

be written as198

(2.7) q(x) = qz(z) |det JT (z)|−1 = qz
(
T−1(x)

)
|det JT−1(x)| ,199

where z = T−1(x) and JT (z) is the d × d Jacobian matrix of T . Many normalizing flows200

[50,51,74,75,79] use specific network architectures such that T−1 is a triangular mapping, that201

is, the Jacobian JT−1(x) is a triangular matrix, which simplifies the calculation of |det JT−1(x)|.202

Note that T is used to generate x from z, and T−1 is needed for evaluating the density q(x).203

Some works on normalizing flow use coupling layers in the network to make T−1 a tri-204

angular mapping [24, 25, 50, 51, 75]. Denote G(x) = T−1(x), G : Rd → Rd. Let xj be the205

j-th element of x and x<j be the elements before xj , i.e. x1, · · · , xj−1. Then, for one-layer206

network, [44] summarizes the coupling layer-based flows as Gj(xj , x<j) = φj(x<j)xj+ηj(x<j),207

where Gj is the j-th element of the vector G(x) and the functions φj and ηj map x<j to a208

real number. The Jacobian JG(x) is triangular since Gj only depends on xj and x<j .209

Assume that the unknown prior distribution that we aim to learn is p(x). Then, the210

forward KL divergence between the target distribution p(x) and the output distribution q(x)211

of the NF model [54,74,79] can be written as212

DKL (p, q) = −Ep(x) [log q(x)] + const.(2.8)213

= −Ep(x)

[
log qz

(
T−1(x)

)
+ log |det JT−1(x)|

]
+ const.214215

When the transformation T is parameterized by an invertible neural network Tθ with param-216

eters θ ∈ Θ, we denote the parameterized density of x as qθ(x) and the optimization problem217

of learning Tθ reads:218

(2.9) min
θ∈Θ

DKL(p, qθ).219

Given samples {xn}Nn=1 drawn i.i.d. from p(x), we can estimate the expectation in (2.8) by220

Monte Carlo averaging over the training samples {xn}Nn=1. Correspondingly, the loss function221

for training the NF model becomes222

L(θ) = − 1

N

N∑
i=1

(
log qz

(
T−1
θ (xi)

)
+ log

∣∣∣det JT−1
θ

(xi)
∣∣∣)+ const.(2.10)223

224

Generally, it is reasonable to assume that the data samples {xi}Ni lie within a compact set225

CR ⊂ Rd. In particular, when the flow-based model is learned on imaging data, it is common226

to set CR = [0, 1]d. Knowing the set where the data samples lie will give us the intuition to227
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select some parameters in the next section. From the numerical observations, the networks also228

partially know CR while trained from the data - the knowledge of CR is implicitly encapsulated229

in a well-trained flow model, meaning that most generated samples using a well-trained NF230

model fall within CR.231

2.3. ULA with NF-prior . In this section, we propose a framework for sampling using232

the LMC algorithm based on a pre-trained normalizing flow network. Given data samples233

{xn}Nn=1 drawn i.i.d. from p(x), one can approximate p(x) by learning a flow-based model234

x = Tθ(z), with output distribution qθ(x) = qz
(
T−1
θ (x)

) ∣∣∣det JT−1
θ

(x)
∣∣∣. Once qθ(x) is learned,235

log qθ(x) is always differentiable since Tθ and T−1
θ are differentiable. By replacing p(x) with236

qθ(x) in (2.2), the ULA scheme boils down to237

Xk+1 = Xk + δ∇ log p (y|Xk) + δ∇ log qθ(Xk) +
√
2δZk+1.238

Since convexity of − log qθ(x) and the Lipschitz continuity of its gradient are not guaranteed to239

be satisfied, one does not yet have the sufficient conditions to infer convergence and numerical240

stability similar to the cases in [20, 28]. In this work, we follow [56] to impose a projection241

ΠC (Xk) onto a convex and compact set C to ensure that the posterior distribution is well-242

defined and propose the resulting NF-ULA algorithm (c.f. Algorithm 2.1). The parameter

Algorithm 2.1 Normalizing Flow-based Unadjusted Langevin algorithm (NF-ULA)

Input: y ∈ Rm, X0 ∈ Rd, α > 0, λ > 0, K ∈ N, C ⊂ Rd

Ly: Lipschitz constant of ∇ log p(y|x).
L: Lipschitz constant of ∇ log qθ(x).
Output: {Xk}Kk=1

Set: k = 0, δ < (1/6) (Ly + αL + 1/λ)−1.
Initialize X0 according to the considered problems.
while k < K do

Zk+1 ∼ N (0, Id)

Xk+1 = Xk + δ∇ log p (y|Xk) + δα∇ log qθ(Xk) +
δ

λ
(ΠC (Xk)−Xk) +

√
2δZk+1

k = k + 1
end while

243
α > 0 controls how strongly the regularization of qθ is imposed and λ controls the amount of244

the projection (ΠC−Id) enforced. Theoretical analysis of NF-ULA is presented in Sec. 3, while245

in Sec. 4, we provide some general guidelines for selecting the hyper-parameters involved in246

NF-ULA. One can efficiently compute ∇ log qθ(x) using the automatic differentiation libraries247

in the standard deep learning frameworks (such as PyTorch).248

Remark: Algorithm 2.1 only requires evaluating the ∇ log qθ(x) and its Lipschitz constant.249

Our theoretical analysis in Sec. 3 depends on the properties of qθ(x) and holds even when qθ250

does not arise from a normalizing flow. This is essential since in our CT experiments in Sec.251

4.3, we utilize patchNR [3], a normalizing flow-based regularizer which cannot generate x by252

(2.6) but is able to evaluate the log gradient ∇ log qθ(x). Moreover, since qθ(x) can also be253
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evaluated given x, Algorithm 2.1 can be extended to a Metropolis-adjusted version by adding254

an accept-reject step. We leave this as a possible future work.255

It is imperative to understand why the projection (ΠC−Id) is necessary for the convergence256

of NF-ULA. Let ι
(λ)
C (x) be the λ-Moreau envelope [9] of the indicator function257

ιC(x) =

{
0, x ∈ C,

+∞, x /∈ C.
258

Then, we have that259

ι
(λ)
C (x) := inf

u∈Rd

(
ιC(u) +

1

2λ
∥x− u∥22

)
=

1

2λ
∥x−ΠC(x)∥22 ,

and ∇ι
(λ)
C (x) =

x− ProxιC (x)

λ
=

x−ΠC(x)

λ
,

260

where ΠC is the projection operator on the convex and compact (i.e., closed and bounded)261

set C ⊂ Rd. Define pλ(x|y) as262

(2.11) pλ(x|y) =
p(y|x)qαθ (x) exp(−ι

(λ)
C (x))∫

Rd p(y|x̃)qαθ (x̃) exp(−ι
(λ)
C (x̃))dx̃

,263

where the exponent α > 0. The subscript λ in pλ underlines the distinction from the posterior264

p(x|y) = p(y|x)p(x)/p(y). Since θ is fixed if the NF is pre-trained and α is adjusted in the265

experiments section, they are not in the notation of pλ for brevity. We show in Sec. 3.2 that266

pλ(x|y) is well-defined and therefore the projection term is necessary for NF-ULA, without267

which, p(y|x)qαθ (x)/
∫
Rd p(y|x̃)qαθ (x̃)dx̃ is not guaranteed to be well-defined in our settings.268

Denote by πλ,y (which we will write as πλ for brevity) the probability measure whose density269

is pλ(x|y) in (2.11), i.e.,270

(2.12)
dπλ
dπleb

(x) = pλ(x|y),271

where πleb denotes the Lebesgue measure. Then, NF-ULA in Algorithm 2.1 is essentially272

equivalent to273

(2.13) Xk+1 = Xk + δ∇ log pλ(Xk|y) +
√
2δZk+1.274

For standard ULA (2.2), the tail-decay condition (−log p(x|y)/∥x∥2 converges to a positive275

constant when x → ∞) was first studied in [80,92] and was shown to imply the convergence of276

ULA. For NF-ULA (2.13), we want to emphasize that in most of our experiments, NF-ULA is277

convergent while using a well-pre-trained normalizing flow, even without the projection term.278

This is presumably because the density qθ of a well-trained normalizing flow already satisfies279

the tail-decay condition [80,92] and most of the probability mass lies within C. For the cases280

where the normalizing flow is poorly trained, one should select a smaller C, without which281

the samples generated by NF-ULA will go far beyond our expected region (for imaging it is282

CR = [0, 1]d).283
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3. Theoretical Analysis. We define some useful notations for our analysis in Sec. 3.1 and284

present a theoretical analysis (well-definedness and well-posedness) of the Bayesian posterior285

pλ(x|y) in Sec. 3.2. Subsequently, we prove the convergence and non-asymptotic bias of286

NF-ULA in Sec. 3.3.287

3.1. Notations. Denote by B
(
Rd
)
the Borel σ-field of Rd. Let µ be a probability measure288

on
(
Rd,B

(
Rd
))

and f be a µ-integrable function. Denote by µ(f) the integral of f w.r.t. µ.289

For measurable f : Rd → R and measurable V : Rd → [1,∞) , the V -norm of f is defined290

as ∥f∥V = supx̃∈Rd |f(x̃)|/V (x̃). Let ξ be a finite signed measure on
(
Rd,B

(
Rd
))
. Then the291

V -total variation norm of ξ is defined as292

(3.1) ∥ξ∥V = sup
∥f∥V ⩽1

∣∣∣∣∫
Rd

f(x̃)dξ(x̃)

∣∣∣∣ .293

Note that if V = 1, then ∥ · ∥V is the total variation ∥ · ∥TV. ∥ · ∥V is weaker than ∥ · ∥TV294

and from the definitions one has ∥ξ∥TV ⩽ ∥ξ∥V . ∥ · ∥V has been used a lot in the studies of295

ULA [22,28,56].296

We denote by P
(
Rd
)
the set of probability measures over

(
Rd,B

(
Rd
))

and for any297

m ∈ N,Pm

(
Rd
)
=
{
ν ∈ P

(
Rd
)
:
∫
Rd ∥x̃∥m dν(x̃) < +∞

}
. Denote by Wp as Wasserstein-p298

metric:299

(3.2) Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)
E(x,y)∼γ∥x− y∥p

)1/p

, p ⩾ 1,300

where Γ(µ, ν) is the set of all joint probability whose marginal distributions are µ and ν301

respectively.302

Let b ∈ C
(
Rd,Rd

)
where C

(
Rd,Rd

)
stands for the set of all continuous functions from Rd303

to Rd. We consider the Markov chain (Xk)k∈N given by the following recursion for any k ∈ N304

and x ∈ Rd, initialized at X0 = x:305

Xk+1 = Xk + γb (Xk) +
√

2γZk,306

where γ > 0 and {Zk : k ∈ N} a family of i.i.d. Gaussian random variables with zero mean and307

identity covariance matrix. We define its associated Markov kernel Rγ : Rd ×B
(
Rd
)
→ [0, 1]308

as follows for any x ∈ Rd and A ∈ B
(
Rd
)
:309

Rγ(x, A) = (2π)−d/2

∫
Rd

1A(x+ γb(x) +
√

2γz) exp
[
−∥z∥2/2

]
dz,310

where 1A(x) is the function taking the value 1 if x ∈ A or 0 if x /∈ A. We say that Rγ satisfies a311

discrete drift condition Dd(W, ζd, c) if there exist ζd ∈ [0, 1), c ⩾ 0 and a measurable function312

W : Rd → [1,+∞) such that for all x ∈ Rd313

RγW (x) ⩽ ζdW (x) + c,314

where RγW (x) :=
∫
Rd Rγ(x,dx̃)W (x̃). Note that this drift condition implies the existence315

of an invariant probability measure if Rγ is a Feller kernel and the level sets of W are compact,316

see [22] and Theorem 12.3.3 in [26].317
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Similarly, let b ∈ C
(
Rd,Rd

)
such that for any x ∈ Rd, the following SDE admits a unique318

strong solution319

(3.3)
dXt = b (Xt) dt+

√
2 dBt,

X0 = x,
320

where (Bt)t⩾0 is a d-dimensional Brownian motion. For any x ∈ Rd and A ∈ B
(
Rd
)
, equation321

(3.3) defines a Markov semi-group (Pt)t⩾0 by Pt(x, A) = P (Xt ∈ A) where (Xt)t⩾0 is the322

solution of (3.3) with X0 = x. For any f ∈ C2
(
Rd,R

)
, define the generator A of (Pt)t⩾0 by323

Af = ⟨∇f, b(x)⟩+∆f , where ∆ is the Laplace operator. We say that (Pt)t⩾0 on Rd ×B
(
Rd
)

324

with extended infinitesimal generator (A,D(A)) (see e.g. [66] for the definition of (A,D(A)) )325

satisfies a continuous drift condition Dc(W, ζ, β) if there exist ζ > 0, β ⩾ 0 and a measurable326

function W : Rd → [1,+∞) with W ∈ D(A) such that for all x ∈ Rd,327

AW (x) ⩽ −ζW (x) + β.328

This assumption is the continuous counterpart of the discrete drift condition Dd(W, ζd, c),329

which will be used in Appendix A.7.330

3.2. Well-posedness of the Bayesian solution. In this section, we first prove that the331

posterior distribution (2.11) is well-defined. Secondly, we prove the well-posedness for the332

Bayesian solution, i.e., the Lipschitz continuity of the posterior measure (2.12) with respect333

to changes in y. To start with, we give a lemma that will be used later.334

Lemma 3.1. Let λ > 0. For any convex and compact subset C of Rd and for all k ∈ N, it335

holds that336 ∫
Rd

∥x∥k exp

(
−
∥x−ΠC(x)∥22

2λ

)
dx < +∞.337

Proof. See Appendix A.1.338

Lemma 3.1 implies that the integral of any polynomials multiplied by exp
(
−ι

(λ)
C

)
, where339

ι
(λ)
C =

∥x−ΠC(x)∥22
2λ

, is finite. To prove that pλ(x|y) and πλ are well-defined, besides Lemma340

3.1, we need an assumption about the boundedness of the prior and the likelihood.341

Assumption 3.2. The distribution learned by NF is bounded, i.e., sup
x∈Rd

qθ(x) < +∞. More-342

over, for any y ∈ Rm, sup
x∈Rd

p(y|x) < +∞ and p(y|·) ∈ C1
(
Rd, (0,+∞)

)
.343

Since qθ(x) is a distribution induced by normalizing flow and qθ(x) is continuous on Rd,344

intuitively sup
x∈Rd

qθ(x) is bounded and Assumption 3.2 is easily satisfied. To give rigorous proof,345

we state the following proposition which assumes a similar triangular network architecture as346

mentioned in Sec. 2.2.347
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Proposition 3.3. Assume that the input distribution qz(z) to the normalizing flow network348

is the standard normal distribution. Assume that T−1(x) = G(k)◦· · ·◦G(1)(x) is a composition349

of k coupling layers and each of the layer G(i) : Rd → Rd, x(i) 7→ x(i+1) is given by350

(3.4) G
(i)
j (x

(i)
j , x

(i)
<j) = φ

(i)
j (x

(i)
<j)x

(i)
j + η

(i)
j (x

(i)
<j), j = 1, · · · , d.351

Denote x(1) = x and x(k+1) = z. If φ
(i)
j s are bounded, then log qθ(x) is upper bounded on Rd.352

Proof. See Appendix A.2.353

Using Lemma 3.1, we can then prove that the normalizing constant in the expression for354

pλ(x|y) in (2.11) is finite.355

Corollary 3.4. Suppose Assumption 3.2 holds. Let λ > 0. Then, for any convex and com-356

pact set C and α > 0, we have357 ∫
Rd

p(y|x)qαθ (x) exp

(
−
∥x−ΠC(x)∥22

2λ

)
dx < +∞.358

Hence, pλ(x|y) in (2.11) is well-defined.359

Proof. Letting k = 0 in Lemma 3.1 and using Assumption 3.2, we conclude the proof.360

Remark: Although
∫
Rd qθ(x)dx = 1,

∫
Rd q

α
θ (x)dx may not be finite in rare cases. This361

depends on how heavy the tail of qθ(x) is. Corollary 3.4 shows that multiplying qαθ (x) with362

exp
(
−ι

(λ)
C (x)

)
always leads to a finite integral, regardless of the tail behavior of qθ(x).363

Now, we establish the well-posedness of the posterior measure πλ in the following propo-364

sition. Note that the local Lipschitz stability of posterior distribution in the observation has365

been studied in [55,89] and applied to posterior sampling with PnP prior [56] and generative366

models in [4]. Apart from the considered ι
(λ)
C (x̃), Proposition 3.5 and Proposition 3 in [56] are367

based on similar ideas.368

Proposition 3.5. Suppose Assumption 3.2 holds and that there exist continuous functions369

Φ1 : Rd → [0,+∞) and Φ2 : Rm → [0,+∞) such that for any x ∈ Rd and y1, y2 ∈ Rm, the370

following are satisfied:371 ∣∣ log (p (y1|x))− log (p (y2|x))
∣∣ ⩽ (Φ1(x) + Φ2 (y1) + Φ2 (y2)) ∥y1 − y2∥ ,372

and

∫
Rd

(1 + Φ1(x̃)) exp
[
c0Φ1(x̃)− ι

(λ)
C (x̃)

]
dx̃ < +∞,373

374

for all c0 > 0. Then, y 7→ πλ,y defined in (2.12)) is locally Lipschitz w.r.t. the total-variation375

(TV) norm ∥ · ∥TV, i.e., for any compact set K, there exists MK ⩾ 0 such that for any376

y1, y2 ∈ K, ∥πλ,y1 − πλ,y2∥TV ⩽ MK ∥y1 − y2∥.377

Proof. See Appendix A.3.378

For Gaussian likelihood p(y|x), the conditions in Proposition 3.5 are satisfied when Φ1(x) =379

c1∥x∥2 and Φ2(y) = c2∥y∥2 with positive constants c1 and c2.380
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3.3. Convergence of NF-ULA. Most of the existing works on ULA for non-convex poten-381

tials [14,28,31,56,65] assume Lipschitz-continuity of the score. If the drift term ∇ log pλ(x|y)382

is not Lipschitz, from [43, 48], it cannot generally be guaranteed that the SDE (2.3) will383

have a unique strong solution. This is why one must investigate the Lipschitz continuity384

of ∇ log pλ(x|y) before studying the convergence of NF-ULA. First, we make an assumption385

about the Lipschitz-continuity of ∇ log(p(y|·)):386

Assumption 3.6. ∇ log(p(y|x)) is Ly-Lipschitz continuous in x, where Ly > 0 is a constant.387

Note that Assumption 3.6 is generally satisfied for common imaging inverse problems.388

One example is the popular Gaussian likelihood where p(y|x) ∝ exp
(
−∥y −Ax∥22/(2σ2)

)
, for389

which Ly = ∥A⊤A∥/σ2.390

Lemma 3.7. Under Assumption 3.6, ∇ log pλ(x|y) is Lipschitz continuous if and only if391

∇ log qθ(x) is Lipschitz continuous.392

Proof. See Appendix A.4.393

For convenience, we explicitly define the Lipschitz condition on the log gradient of qθ(x) in394

the following assumption:395

Assumption 3.8. There exist L ⩾ 0 such that for any x1, x2 ∈ Rd,396

∥∇ log qθ (x1)−∇ log qθ (x2)∥ ⩽ L ∥x1 − x2∥ .397

It is therefore natural to ask how to enforce Assumption 3.8 on the NF-based image prior398

qθ(x) during training or by the network architecture. There have been some studies about399

the Lipschitz continuity of the invertible transform Tθ [54, 74, 97], the Lipschitz constants of400

invertible neural networks by changing the latent distribution from a standard normal one to401

a Gaussian mixture model [37], the Lipschitz constants of other “push-forward” generative402

models [86]. However, to the best of our knowledge, there is no study about the Lipschitz403

continuity of ∇ log qθ(x) until now.404

While the equivalent conditions on Tθ for Assumption 3.8 remain unknown, a sufficient405

condition on Tθ for Assumption 3.8 can be obtained easily. For instance, when Tθ is a linear406

transform mapping a Gaussian distribution qz(z) to another Gaussian distribution qθ(x),407

Assumption 3.8 holds. However, this may not be true if Tθ is nonlinear.408

As we have mentioned that Assumption 3.8 is necessary for the convergence of NF-ULA,409

we derive a sufficient condition on Tθ for Assumption 3.8 to hold. Intuitively, distributions410

with similar tail behaviors as Gaussian may have similar log gradients as Gaussian, if more411

conditions are satisfied. We thus refer to some studies on the tails of normalizing flow priors412

[44]. Theorem 4 in [44] shows that affine coupling layer-based flows (e.g., NICE [24], Real-413

NVP [25], MAF [75], IAF [51], and Glow [50]) can only map the base normal distribution qz(z)414

to a light-tailed distribution qθ(x). To be more specific, denote G(x) = T−1(x), where G(x)415

is a triangular mapping and the Jacobian JG(x) is a triangular matrix function. From [44],416

generally one can assume that for affine coupling layer-based flows, Gj(xj , x<j) = φj(x<j)xj+417

ηj(x<j), where Gj is the j-th element of the vector G(x) and x<j indicate x1, · · · , xj−1. The418

condition they assume is heuristic: if φj is bounded above and ηj is Lipschitz, then qθ(x)419

is light-tailed. In Glow, [50] these conditions on φ and η are satisfied and even stricter.420
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Therefore, we are able to prove the Lipschitz continuity of ∇ log qθ(x) in the proposition421

below, by enforcing a stricter condition on φ and η.422

Proposition 3.9. Assume that the input distribution qz(z) to the normalizing flow network423

is the standard normal distribution, and that T−1(x) = G(k) ◦ · · · ◦G(1)(x) is a composition of424

k coupling layers, where each of the layers G(i) : Rd → Rd, x(i) 7→ x(i+1) is given by425

(3.5) G
(i)
j (x

(i)
j , x

(i)
<j) = φ

(i)
j (x

(i)
<j)x

(i)
j + η

(i)
j (x

(i)
<j), j = 1, · · · , d.426

Denote x(1) = x and x(k+1) = z. If φ
(i)
j is a constant function, η

(i)
j is Lipschitz and for all427

r < j,
∂η

(i)
j

∂xr
is well-defined almost everywhere and piecewise constant on R, then ∇ log qθ(x)428

is Lipschitz continuous on Rd.429

Proof. See Appendix A.5.430

The conditions on φ, η in Proposition 3.9 are satisfied in Glow [50] with additive coupling431

layers where each η is a five-layer sequential network with 2D convolutional layers (denoted432

as Conv2d) and ReLU activations:433

η(x) = Conv2d(ReLu(Conv2d(ReLu(Conv2d(x))))),434

where ReLu(x) := max(0, x) (applied in an element-wise manner) and Conv2d(x) := KNF ∗ x435

denotes a 2D convolution layer acting on x with a kernel KNF. Further, φ = 1 is used in436

the additive coupling layer. Note that in Glow, there is an option of using an affine coupling437

layer where φ is the sigmoid function φ(x) = 1/(1 + e−x) element-wise. This leads to a438

more powerful network and can generate better human face images [50], but ∇ log qθ(x) is439

not guaranteed to be Lipschitz anymore. This theoretical observation is corroborated by our440

experiments in Sec. 4.1, as we found that NF-ULA with affine coupling layer did not converge.441

The conditions on φ and η might be relaxed if qz(z) is not Gaussian, but this requires re-442

training the network since most of the popular normalizing flows accept standard Gaussian443

base distribution as input. We leave these studies on the Lipschitz-continuity of ∇ log qθ(x)444

for future work.445

In order to prove the convergence of NF-ULA, we need one final assumption.446

Assumption 3.10. There exists my ∈ R such that for all x1, x2 ∈ Rd, we have447

⟨∇ log p (y|x2)−∇ log p (y|x1) , x2 − x1⟩ ⩽ −my ∥x2 − x1∥22 .448449

This condition is called the contractivity condition of ∇ log p(y|x) and is used to prove450

the contractivity of the drift term ∇ log pλ(x|y) at infinity (see proofs of Theorem 3.11 in451

Appendix A.6). Note that the influence of the drift’s contractivity condition has been studied452

in ULA for non-convex potentials [14,22,65].453

If Assumption 3.10 is satisfied with my > 0, then x 7→ − log p(y|x) is my-strongly convex.454

If Assumption 3.6 is satisfied, then Assumption 3.10 holds for my = −Ly. However, we are455

interested to find my > −Ly while Assumption 3.6 holds, since we will see in the proofs of456

Theorem 3.11 and Theorem 3.12 in Appendix A.6 and A.7 that a larger my is beneficial to457

the convergence of NF-ULA.458
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In what follows, we introduce the associated stochastic kernel Rδ : Rd × B(Rd) → [0, 1] of459

the NF-ULA (2.13) and the drift bλ ∈ C
(
Rd,Rd

)
:460

(3.6)

Rδ(x, A) = (2π)−d/2

∫
Rd

1A

(
x+ δbλ(x) +

√
2δz
)
exp

[
−∥z∥2/2

]
dz,

bλ(x) = ∇ log pλ(x|y) = ∇ log p (y|x) + α∇ log qθ(x) +
ΠC (x)− x

λ
,

461

where x ∈ Rd and A ∈ B(Rd). Here bλ has the subscript λ and is different from the b defined462

in Sec. 3.1 because of (ΠC (x) − x)/λ. Given Xk in NF-ULA (2.13), Rδ(Xk, ·) is actually a463

probability measure which defines the transition probability p(Xk+1|Xk).464

With all the previous four assumptions A 3.2, A 3.6, A 3.8, and A 3.10 holding, we can465

prove that NF-ULA (Algorithm 2.1) is convergent, or more precisely, the stochastic kernel466

Rδ admits an unique invariant distribution πδ,λ. We follow the proof in SM6.2 from [57] but467

our theorem and proof are slightly different, as we do not include the parameter ε of PnP468

denoisers in the condition. The first thing to prove is that Rδ defines a contractive mapping.469

Theorem 3.11. Assume A 3.2, A 3.6, A 3.8, and A 3.10. Assume V (x) = 1+∥x∥2 , x ∈ Rd.470

Let λ, α,C,Ly,L be the ones in NF-ULA (Algorithm 2.1). Let my be the parameter in A 3.10.471

Let λ > 0, such that 2λ (Ly + αL−min(my, 0)) ⩽ 1 and let δ̄ = (1/6) (Ly + αL + 1/λ)−1.472

Then for any convex and compact C with 0 ∈ C, there exist A1 ⩾ 0 and ρ1 ∈ [0, 1) such that473

for any δ ∈ (0, δ̄], x1, x2 ∈ Rd, and k ∈ N we have474 ∥∥∥δx1R
k
δ − δx2R

k
δ

∥∥∥
V
⩽ A1ρ

kδ
1

(
V 2 (x1) + V 2 (x2)

)
, and

W1

(
δx1R

k
δ , δx2R

k
δ

)
⩽ A1ρ

kδ
1 ∥x1 − x2∥2 .

475

Proof. See Appendix A.6.476

In the above theorem the Dirac measures δx1 , δx2 can be extended to any measures ν1, ν2 ∈477

P1

(
Rd
)
:478

(3.7)

∥∥∥ν1Rk
δ − ν2R

k
δ

∥∥∥
V
⩽ A1ρ

kδ
1

(∫
Rd

V 2(x̃)dν1(x̃) +

∫
Rd

V 2(x̃)dν2(x̃)

)
,

W1

(
ν1R

k
δ , ν2R

k
δ

)
⩽ A1ρ

kδ
1

(∫
Rd

∥x̃∥dν1(x̃) +
∫
Rd

∥x̃∥dν2(x̃)
)
.

479

From Theorem 6.18 in [98],
(
P1

(
Rd
)
,W1

)
is a complete metric space. For any measure480

ν ∈ P1

(
Rd
)
, define f : P1

(
Rd
)
→ P1

(
Rd
)
as f(ν) = νRε,δ. Then for any δ ∈ (0, δ̄], there481

exists large enough mδ ∈ N∗ such that fmδ is a contractive mapping. Therefore we can apply482

the Picard fixed point theorem and we obtain that Rδ admits an unique invariant probability483

measure πδ,λ ∈ P1

(
Rd
)
. Since πδ,λ is subject to bias comparing with the solution of the SDE484

dXt = bλ(Xt)dt+
√
2 dBt, in the Theorem below, we follow the proof in SM6.3 from [57] and485

give a nonasymptotic bias analysis:486

Theorem 3.12. Assume A 3.2, A 3.6, A 3.8, A 3.10. Assume V (x) = 1 + ∥x∥2 , x ∈ Rd.487

Let λ, α,C,Ly,L be the ones in NF-ULA (Algorithm 2.1). Let my be the parameter in A 3.10.488
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Let λ > 0 such that 2λ (Ly + αL−min(my, 0)) ⩽ 1 and let δ̄ = (1/6) (Ly + αL + 1/λ)−1.489

Then for any δ ∈ (0, δ̄] and C convex and compact, Rδ admits an unique invariant probability490

measure πδ,λ. In addition, there exists B1, B2, B3 ⩾ 0, ρ̃1 ∈ [0, 1) such that for any δ ∈ (0, δ̄],491

k ∈ N∗,492

∥∥∥δxRk
δ − πλ

∥∥∥
V
⩽ B1ρ̃

kδ
1 V 2(x) +B2V (x)

√
δ2k

(
d+

B3δ

3

)
.493

Proof. See Appendix A.7.494

Remark: Note that there is a trade-off of selecting the step-size δ. In order to achieve a495

small bias, one needs to set a large time interval t = kδ, keep t fixed and use a small step size496

δ. However, larger k means drawing more samples, resulting in longer computation time. In497

practice, the burn-in period is incorporated in t, in which the Markov Chain is dramatically498

exploring the state space.499

4. Experiments in Bayesian Imaging. We apply NF-ULA and PnP-ULA on three inverse500

problems: image motion deblurring, image inpainting, and limited-angle computed tomogra-501

phy (CT) reconstruction. We compare with PnP-ULA since, to the best of our knowledge, it502

is the state-of-the-art Langevin algorithm with data-driven non-convex regularizers.503

Choice of α: For both NF-ULA and PnP-ULA on different problems, we fine-tune α such504

that the peak signal-to-noise ratio (PSNR) of the sample mean gets maximized. While in most505

cases α ∈ (0, 5] works well, for NF-ULA it is also related to the architecture of the normalizing506

flow. For CT reconstruction, we use the pre-trained patchNR, a NF-based regularizer learned507

on medical images, from the code provided in [3] and choose α = 5000. Notably, in the original508

implementation, the maximum a posteriori estimator was considered, and α = 700 was the509

best choice.510

Choices of C and λ: We only perform the study of choosing different C and λ in the511

deblurring experiments. From [56], a projection term (Id − ΠC) is introduced to PnP-ULA512

to make sure that the posterior satisfies the tail-decay condition. Therefore, for posterior513

distributions with a slower tail-decay, a smaller C is recommended. We found experimentally514

that NF-ULA was numerically stable when the NF prior was trained for more than 20 epochs,515

even with a large C. In this case, C is chosen to be large enough such that ΠC is never516

activated, since we do not expect to choose a small C to change the behaviors of NF-ULA if517

it already converges. For a normalizing flow that is not well trained (less than 5 epochs), it518

is recommended that C should be the same as the range CR of the dataset. In the imaging519

problems, we have that CR = [0, 1]d. See Table 1 for details on the algorithm behaviors520

of NF-ULA with different choices of C and normalizing flow architectures. For well-trained521

normalizing flows in NF-ULA and denoiser in PnP-ULA, we set C = [−100, 100]d. Actually522

all the samples generated in Tables 2, 3, and 4 never escaped [−0.2, 1.2]d, indicating that the523

projection ΠC(x) was never activated. We keep λ = 5× 10−5, even though different λ makes524

no difference in most of our experiments.525

Choice of δ: From the convergence analysis in Theorem 3.11 and Theorem 3.12, any δ <526

(1/6) (Ly + αL + 1/λ)−1 should work. However, this upper bound is not a strict bound and527

in practice, it is not easy to know the Lipschitz constant L of ∇ log qθ(x). To give an upper528
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bound of L, we calculate the spectral norm of ∇2 log qθ(x) through power iteration when x529

is randomly choosen in CR and the spectral norm are smaller than 2 × 105. This upper530

bound for L is still too loose since we find that NF-ULA converges for many δ larger than531

the corresponding upper bound. Moreover, as different λ makes no difference in most of our532

experiments, we fine tune δ instead of precisely calculating the upperbound given by L and λ.533

In most of our experiments, δ is chosen to be smaller than (1/10)L−1
y , to ensure convergence of534

different algorithms. Our choice of δ is slightly different from PnP-ULA because the Lipschitz535

parameter L of the PnP prior can be set to 1 during training.536

Implementations: We implement all the experiments in Python and utilize PyTorch for im-537

plementing the ULA Markov chains. The numerical experiments are run on Intel(R) Xeon(R)538

Platinum 8358P CPU with four Nvidia Tesla A100 GPUs. Codes for NF-ULA are available539

at Github1.540

4.1. Image Deblurring. We first consider a non-blind motion deblurring problem on hu-541

man face images. The corresponding forward operator A applies a convolution on the image542

x with a 9 × 9 motion-blurring kernel of horizontal blurring direction, with all the elements543

in the fifth row of the kernel being 1/9 and the other rows being 0. Both x, y ∈ Rd, where544

d = 3 × 128 × 128 and the forward operator A : Rd 7→ Rd is linear. To describe the for-545

ward model (likelihood), we add Gaussian noise n ∼ N (0, σ2 Id), leading to the following546

measurement equation and likelihood:547

y = Ax+ n, p(y|x) = 1

(2πσ2)d/2
exp

(
−∥y −Ax∥2

2σ2

)
.548

4.1.1. Networks and Parameters. To realize NF-ULA, we train the well-known flow-549

based model, Glow [50], on the human face dataset FFHQ [49] without the first 20 images,550

which amounts to 69980 images in total. All the images are 3-channel images normalized551

to CR = [0, 1]3×128×128. We train Glow from scratch using the publicly available PyTorch552

implementation2, however, NF-ULA can also use an appropriate pre-trained model. The553

architecture of Glow has five blocks with 32 flows in each block.554

For PnP-ULA [56], we use the real spectral normalization DnCNN (realSN-DnCNN),555

which is a Lipschitz-continuous denoiser proposed in [84]. In order to see the behavior of the556

denoiser without the Lipschitz constraint, we train both the standard DnCNN [104] and557

realSN-DnCNN [84] on the image patches of a 980-image subset of FFHQ. To train the558

denoiser, we follow the same procedure reported in [56], i.e., we add Gaussian noise with559

the variance ε = (5/255)2 on the training data batches. In fact, we also tested ε = (15/255)2560

or (25/255)2 but the generated samples get lower PSNR. To train the standard DnCNN, we561

directly use the code in the Image Restoration Toolbox3. We keep the default parameter562

settings to train a 17-layer DnCNN on image patches of size 40 × 40. For realSN-DnCNN,563

the original implementation4 in [84] only supports training on grayscale images, therefore we564

1https://github.com/caiziruo/NF-ULA
2https://github.com/rosinality/glow-pytorch
3https://github.com/cszn/KAIR
4https://github.com/uclaopt/Provable Plug and Play/
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Table 1
The behavior of NF-ULA by different Glow and different choices of C. The algorithm does not converge

For Glow with affine coupling layers. For Glow with additive coupling layers, the algorithm converges better
when Glow is trained for more epochs.

Deblurring network: Glow. α = 1.5

coupling layers epochs C PSNR

face1

NF-ULA affine 100 [0, 1]d divergent
NF-ULA additive 5 [−100, 100]d divergent
NF-ULA additive 5 [0, 1]d 26.58
NF-ULA additive 20 [−100, 100]d 29.84
NF-ULA additive 100 [−100, 100]d 30.42

modified the code to make it applicable to color images. We also set up the number of network565

layers as 17 and preprocess the data to patches of size 40 × 40, while setting the Lipschitz566

parameter to 1. Although DnCNN and realSN-DnCNN are trained on such a small dataset,567

they can still obtain a peak signal-to-noise ratio (PSNR) of more than 40 dB on the validation568

set. In fact, the original implementation in [84] trains the denoiser on a dataset consisting of569

only 400 images, and increasing the size of the dataset does not necessarily lead to a higher570

PSNR on the validation set.571

The Glow network that we used for NF-ULA has 100870544 parameters in total, while572

DnCNN has 559363 parameters and realSN-DnCNN has 558336 parameters. To train 100573

epochs, Glow spent up to 100 hours, while DnCNN and realSN-DnCNN spent less than 5574

hours. The heavier network and the longer training time for Glow pay off when it comes to575

reconstruction performance and image quality.576

ULA parameters settings: We set the standard deviation of the Gaussian noise n to577

σ = 0.02. To ensure that both PnP-ULA and NF-ULA are numerically stable, we select the578

step size δ = 5× 10−5. For Glow, DnCNN and realSN-DnCNN, α = 1.5 leads to the highest579

PSNR. We initialize X0 = y, the noisy blurred observation for both NF-ULA and PnP-ULA.580

4.1.2. Performance of the Algorithms. To explore the state space thoroughly, all the581

experiments have burn-in iterations less than 5000. Since the first sample X0 is initialized as582

the observation y, the PSNR of the samples Xn starts from around 22.78 dB and then keeps583

going up and finally stays in an interval, e.g. [29.0, 31.0]. After the burn-in time, we calculate584

the posterior mean by obtaining 10000 samples and compute the PSNR of the sample mean. To585

draw 10000 samples, NF-ULA spends around 3100 seconds, while PnP-ULA spends 30 seconds.586

For both algorithms, calculating the posterior mean by more samples, e.g. 106 samples, does587

not improve the PSNR. When generating equal samples, NF-ULA spends more time mainly588

because of the large network Glow uses - the Glow we use has approximately 100 times more589

parameters than realSN-DnCNN. In fact, we found that computing and forwarding the auto-590

gradient function of qθ(x) takes 10% longer time than forwarding qθ(x) itself. However, we591

believe that NF-ULA has great potential to leverage smaller and more advanced normalizing592

flows to reduce computational time. In Sec. 4.3, we use a lightweight NF-based regularizer593

and the resulting NF-ULA requires significantly less time.594

This manuscript is for review purposes only.



18 Z. CAI, J. TANG, S. MUKHERJEE, J. LI, C.-B. SCHÖNLIEB, AND X. ZHANG

Figure 1. Deblurring by PnP-ULA and NF-ULA. What each row represents is written on left of the rows.
PSNR values corresponding to the sample mean are provided in Table 2. PnP-ULA with standard DnCNN does
not converge on face2 and face4. On all four faces, NF-ULA (Glow) yields a higher PSNR (for the sample
mean estimator) than PnP-ULA (realSN-DnCNN). The sample mean images also have a better visual quality
for NF-ULA.
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To examine the Lipschitz continuity of ∇ log qθ(x) for different kinds of coupling layers, we595

train two different Glow networks for 100 epochs each, with affine and additive coupling layers,596

respectively. Also, to verify our hypothesis that better training of the normalizing flow prior597

will imply better samples from NF-ULA, we trained Glow (additive coupling layers) for 5,598

20, and 100 epochs, and compared their performance when used in the NF-ULA framework.599

The PSNR values of the sample mean images corresponding to these variants of NF-ULA600

with different NF-based priors are reported in Table 1. With affine coupling layers in Glow,601

NF-ULA fails to converge because ∇ log qθ(x) is not Lipschitz continuous, which is consistent602

with Proposition 3.9. For Glow with additive coupling layers and also for the case where the603

Glow model is well-trained (more than 20 epochs), NF-ULA works well and the generated604

samples do not blow up, even in the case where C = [−100, 100]d is much bigger than CR.605

This suggests that a well-trained prior qθ(x) already satisfies the tail decay conditions, without606

imposing the projection Id − ΠC . However, it is still essential for the theoretical study. For607

poorly trained Glow (less than 5 epochs) and large C, NF-ULA does not work well - most of608

the samples go far beyond CR and the PSNR of them are below 10 dB. If C is set to be a609

much smaller set, e.g., C = CR, then the PSNR can be up to 26 dB, which is still considerably610

lower than what one can achieve with a well-trained Glow.611

Intuitively, qθ(x) is more diffusive when Glow is trained for only a few epochs. After612

training for some epochs, the normalizing flow is more suitable to serve as an image prior,613

and the density qθ(x) is more concentrated. Moreover, the tail decay condition of p(x|y) is614

also satisfied with a well-trained prior, even without the projection term.615

To compare the performance of ULA with both PnP- and normalizing flow-induced priors,616

we run NF-ULA using Glow, PnP-ULA using DnCNN, and PnP-ULA with realSN-DnCNN617

on four human face images randomly selected from the first 20 images of FFHQ [49], which are618

the ones not used during training. In the following experiments, we use Glow with additive619

coupling layers. Glow, DnCNN, and realSN-DnCNN are all trained for 100 epochs for a fair620

comparison. The results are shown in Figure 1 and Table 2. From Table 2, we note that621

NF-ULA with Glow generates samples with the highest PSNR. We also present the standard622

deviation of the samples on the same channel in Fig 1. NF-ULA has richer details for the623

posterior mean and more variations for standard deviation, particularly on the eyes, mouths,624

and hair. This is probably due to a more accurate prior learned by the generative model. It is625

worth noting that PnP-ULA with DnCNN shows great performance on Face-1 and Face-3, but626

is divergent on Face-2 and Face-4. However, PnP-ULA with realSN-DnCNN converges on all627

images, albeit with lower PSNR than NF-ULA. Moreover, we also performed the simulations628

of PnP-ULA using DRUnet [103], a newer denoiser than DnCNN, but the results are very629

comparable to the ones obtained with DnCNN - the algorithm is not convergent on Face-2630

and Face-4 due to DRUnet not being Lipschitz.631

We record the PSNR of the samples and the minimum mean square error (MMSE) es-632

timator in Figure 2. It’s about the deblurring experiments of face1 and the evolutions for633

face2, face3, and face4 are similar. In the left figure, we start from the burn-in period un-634

til 15000 samples. The MMSE estimator is approximated by the last 10000 samples. For635

both algorithms, the burn-in periods are less than 5000 samples. Regardless of the sampling636

time, NF-ULA shows a faster increase of PSNR, which means the convergence speed of the637

first-order moment for NF-ULA mildly outperforms PnP-ULA. However, in the right figure,638
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Table 2
Deblurring: Comparison of ULA with different priors for image deblurring. PnP-ULA with a standard

DnCNN does not converge on face2 and face4. NF-ULA (Glow) generates samples with slightly higher PSNR
than PnP-ULA.

Deblurring net epochs = 100, C = [−100, 100]d

network parameters PSNR

face1

NF-ULA Glow α = 1.5 30.42

PnP-ULA DnCNN α = 1.5 30.40
PnP-ULA realSN-DnCNN α = 1.5 30.42

face2

NF-ULA Glow α = 1.5 29.81

PnP-ULA DnCNN α = 1.5 divergent
PnP-ULA realSN-DnCNN α = 1.5 29.38

face3

NF-ULA Glow α = 1.5 30.70

PnP-ULA DnCNN α = 1.5 29.61
PnP-ULA realSN-DnCNN α = 1.5 29.39

face4

NF-ULA Glow α = 1.5 30.34

PnP-ULA DnCNN α = 1.5 divergent
PnP-ULA realSN-DnCNN α = 1.5 29.71

Figure 2. The evolution of PSNR(xi, xmmse) of deblurring (face1). The left figure is according to the number
of the samples and the right one is according to elapsed time. A faster increase means a faster convergence
speed.

we consider evolution w.r.t. the sampling time and NF-ULA has a slower increase of PSNR.639

NF-ULA has a burn-in time of about 400 seconds while PnP-ULA is less than 40 seconds.640

One common approach to studying the convergence speed of a Markov chain is to calculate641

the d-dimensional auto-correlation function (ACF) of it. For samples {Yi}Ni=1 from a one-642
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YH (Fast direction) YL (Slow direction) YL( Slow direction)

Figure 3. The autocorrelation function (ACF) of the samples (deblurring on face1). The definition of
the ACF is given in (4.1). ACF is calculated by wavelet basis using the band-pass coefficients (YH) and the
low-pass coefficients (YL). Faster decreasing ACF implies faster convergence of the Markov chain.

dimensional Markov chain, the sample auto-correlation function is given by643

(4.1) ω(l) =

∑n−l
t=1(Yt+l − Ȳ )(Yt − Ȳ )∑n

t=1(Yt − Ȳ )2
, Ȳ =

1

n

n∑
t=1

Yt,644

where l = 0, 1, · · · , n − 1, is the lag between the samples. Since the samples generated645

by ULA are not strictly uncorrelated, faster decreasing ACF means that the samples are646

less correlated and generally implies faster convergence of the Markov chain to some extent.647

Notably, the calculation of ACF is not easy in high-dimensional problems. Therefore, we firstly648

transform the image samples using wavelet basis and obtain the band-pass coefficients (YH)649

and the low-pass coefficients (YL). YH contains the image details while YL captures the overall650

image structure. We consider the finest scale coefficients in YH. To characterize the Markov651

chain generated by NF-ULA (Glow) and PnP-ULA (realSN-DnCNN), we randomly select652

100 dimensions respectively from YH and YL, and calculate the ACF on those dimensions.653

It should be noted that the ACF can have different rates of decay in different directions,654

therefore it is time-consuming to analyze the ACF of all the image dimensions and calculate655

the fastest and slowest decreasing direction. However, ACF in YH mostly have faster decrease656

and ACF in YL will have slower decrease. In Fig 3, we show the convergence of ACF (face1),657

along one fast direction in YH and two slow directions in YL. In the fast direction, the ACF658

of PnP-ULA decreases from 1 to 0 within about 20 lags, while for NF-ULA it converges even659

faster (within approx. 10 lags). For slow directions, both NF-ULA and PnP-ULA hold a660

non-zero ACF until more than 40 lags, and it is not immediately clear which of these two661

methods has a faster decay of the ACF. ACF of face2, face3 and face4 are similar as face1662

and hence omitted here.663

4.2. Image Inpainting. In this section, we present the experimental results on image in-664

painting. We still consider human face images and use the Glow and realSN-DnCNN networks665

trained as explained in Sec. 4.1. For inpainting, the forward operator A applies masking on666

x so that 80% of the pixels in x are missing. We choose different α to ensure both NF-667

ULA and PnP-ULA have the best performance: α = 2.0 works well for NF-ULA, while for668
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Figure 4. Comparison of image inpainting performance of PnP-ULA and NF-ULA. The PSNR values of the
sample mean images are reported in Table 3. NF-ULA (Glow) yields a higher PSNR (by approximately 2.5-3.0
dB) of the sample mean images than PnP-ULA with a realSN-DnCNN denoiser. This experiment underscores
the importance of stronger regularization (which the Glow-based prior can achieve) when the forward operator
is severely ill-posed.
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Table 3
Inpainting: Comparison of the ULA with different priors. The parameter α is fine-tuned to maximize the

PSNR for both algorithms. Since inpainting relies more on the prior, NF-ULA has a higher PSNR for the
sample mean as compared with PnP-ULA.

Inpainting net epochs = 100, C = [−100, 100]d

network parameters PSNR

face1

NF-ULA Glow α = 2 28.02

PnP-ULA realSN-DnCNN α = 2.5 25.80

face2

NF-ULA Glow α = 2 25.04

PnP-ULA realSN-DnCNN α = 2.5 22.17

face3

NF-ULA Glow α = 2 29.18

PnP-ULA realSN-DnCNN α = 2.5 27.40

face4

NF-ULA Glow α = 2 28.26

PnP-ULA realSN-DnCNN α = 2.5 26.23

YH (Fast direction) YL (Slow direction) YL (Slow direction)

Figure 5. The auto-correlation function (ACF) of the samples (inpainting on face1). The definition of
ACF is given in (4.1). ACF is calculated by wavelet basis using the band-pass coefficients (YH) and the low-pass
coefficients (YL). Faster decreasing ACF implies faster convergence of the Markov chain.

PnP-ULA α = 2.5 works the best. We maintain the same setting for the other important669

hyper-parameters of the experiment, such as the noise standard deviation σ = 0.02, the di-670

mension of image and observation x, y ∈ Rd = R3×128×128, the step-size of both algorithms671

δ = 5× 10−5, the convex set C = [−100, 100]d, and the initialization X0 = y.672

Performance of the algorithms: In contrast with deblurring, we found that both NF-ULA673

and PnP-ULA have much longer burn-in times. We initialize X0 with the measurement y,674

whose PSNR is only 5.46 dB. NF-ULA has a burn-in iteration of 10000 until the PSNR of675

Xn grows more than 25 dB and becomes stable, while PnP-ULA takes about 80000-iterations676

(eight times larger than NF-ULA) for burn-in. The reason might be that Glow’s powerful677
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Table 4
Limited-angle CT reconstruction from Gaussian noise-corrupted limited-angle projection data. α is chosen

to maximize the PSNR for both PnP-ULA and NF-ULA to make a fair comparison. NF-ULA leads to a higher
sample mean PSNR than PnP-ULA.

.

CT C = [−100, 100]d

network parameters PSNR

Image-1

NF-ULA PatchNR α = 5000 29.65

PnP-ULA realSN-DnCNN α = 3 26.60

Image-2

NF-ULA PatchNR α = 5000 34.50

PnP-ULA realSN-DnCNN α = 3 28.30

Image-3

NF-ULA PatchNR α = 5000 31.66

PnP-ULA realSN-DnCNN α = 3 30.08

Image-4

NF-ULA PatchNR α = 5000 30.09

PnP-ULA realSN-DnCNN α = 3 26.83

prior information accelerates the burn-in process, particularly on the pixels missing in the678

observation. After the burn-in time, we draw 10000 samples and compute the PSNR of679

the samples’ mean. Drawing 10000 samples takes approximately the same time as in the680

deblurring experiment.681

The sample mean images and the standard deviations are shown in Fig. 4. As compared682

with PnP-ULA, NF-ULA recovers more areas of the face and shows higher uncertainties on683

eyes, hairs, noses, and teeth. Those areas are easily distinguishable between different human684

faces and should have higher uncertainties than other areas, e.g., foreheads and cheeks. From685

Table 3, we observe that NF-ULA achieves a higher PSNR than PnP-ULA. For both NF-686

ULA and PnP-ULA, the PSNR of the posterior mean is lower than that of the deblurring687

experiment - the forward operator of masking 80% pixels is not invertible and the observation688

y in inpainting is ill-conditioned, which means that in the Bayesian setting, the samples rely on689

the prior than the likelihood. In such cases, NF-ULA provides a stronger and more informative690

prior as compared to PnP-ULA.691

To calculate the ACF in this inpainting results, we use the same strategy as in deblurring:692

calculating the ACF respectively on 100 randomly selected dimensions of YH and YL. In693

Fig. 5, we show the ACF including one fast direction in YH and two slow directions in YL.694

Similar to Fig. 3, among those fast decreasing directions, the ACF of NF-ULA is slightly695

faster than PnP-ULA and they both decrease from 1 to 0 within 20 lags. For slow directions,696

both algorithms have slower decreasing ACF than the deblurring experiments and we cannot697

conclude for which method, the ACF decreases faster. ACF of face2, face3 and face4 are698

similar as face1 and omitted.699
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Figure 6. CT reconstruction of Gaussian noise (limited angles). What each column represents is written
on top of the columns. PSNR of the samples mean are provided in Table 4. NF-ULA (patchNR) yields higher
PSNR of samples mean and better samples Std than PnP-ULA (realSN-DnCNN).
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4.3. CT Reconstruction from limited-angle measurements. We consider the classical700

ill-posed inverse problem of X-ray CT reconstruction from limited-angle projection data. We701

use the torch radon library [82] to model the forward operator A that computes projections702

using a fan-beam acquisition geometry. Instead of considering the full angular range [0, 2π],703

we only have projection data corresponding to an angular sweep over the range [0.1π, 0.9π]704

of angles. We set the number of detector elements to 144, and test the algorithms for both705

Gaussian noise and Poisson noise (see Appendix B). The noisy projection data is given by706

(4.2) y = Ax+ n or y ∼ P (Ax),707

where n is used to denote additive Gaussian noise and P (Ax) denotes adding a non-additive708

noise on Ax such as Poisson noise. The image to be recovered is x ∈ R362×362 and the sinogram709

is y ∈ R144×512. We calculate the norm of A and obtain that ∥A∥ = sup
x:∥x∥=1

∥Ax∥ ≈ 100.710

Network architecture: The features and textures of medical images are more difficult711

to learn as compared with those in natural images. Hence, normalizing flows do not have712

comparable performance in generating semantically meaningful images for medical imaging713

applications, unlike applications involving natural images. Therefore, we utilize patchNR [3],714

which is analogous to normalizing flow, to apply NF-ULA for CT reconstruction. PatchNR is a715

powerful regularizer that involves Glow coupling layers learned on small patches extracted from716

very few images (only six images), which has shown promising results for CT reconstruction [3].717

PatchNR uses five GlowCoupling blocks and permutations in an alternating manner, where718

the coupling blocks are from the FrEIA package [6]. The three-layer subnetworks are fully719

connected with ReLU activation functions and 512 nodes, which overall result in a much720

smaller network than Glow. It should be noted that extracting the patches from an image is721

not a reversible process, therefore patchNR actually learns the prior over the image patches722

and cannot do unconditional sampling using x = T (z). Even so, the log gradient is still723

computable and Lipschitz continuous, since its GlowCoupling blocks satisfy Proposition 3.9.724

The patchNR we used is given by the pre-trained model5 trained on six images from the725

LoDoPaB dataset [60]. For PnP-ULA, we train the denoiser realSN-DnCNN on a 128-image726

subset of LoDoPaB, by adding Gaussian noise with the variance ε = (5/255)2 on the training727

data batches. We train a 17-layer realSN-DnCNN on the preprocessed image patches with728

size 40 × 40. The Lipschitz parameter of the realSN-DnCNN is set to 1. The patchNR has729

2908880 parameters in total and the realSN-DnCNN has 556032 parameters.730

ULA parameters settings: While in [3] α = 700 is the default setting of the considered731

maximum a posteriori estimator, α = 5000 (Gaussian noise) works fine for NF-ULA. For PnP-732

ULA we set α = 3. We use a smaller step size for both algorithms, namely δ = 10−6, to ensure733

convergence, since in CT reconstruction the forward operator A has a larger norm (approx-734

imately 100) than deblurring and inpainting. The convex set is set to be C = [−100, 100]d.735

We initialize X0 using the filtered back-projection (FBP) reconstruction.736

Gaussian noise-corrupted measurement: We first test the case with additive Gaussian737

noise. To be more specific, we add Gaussian noise n ∼ N (0, σ2 Im) in (4.2) to the clean738

projection data. Since ∥A∥ ≈ 100, we select σ = 1.0 to simulate the noisy sinogram y. The739

5https://github.com/FabianAltekrueger/patchNR

This manuscript is for review purposes only.

https://github.com/FabianAltekrueger/patchNR


ULA USING NORMALIZING FLOW PRIOR 27

likelihood can be expressed as740

(4.3) p(y|x) = 1

(2πσ2)m/2
exp

(
−∥y −Ax∥2

2σ2

)
.741

Since the gradient of the log-likelihood is not globally Lipschitz for Poisson likelihood, the742

additional experiments with Poisson noise are moved to Appendix B. Note that NF-ULA743

with Poisson likelihood still converges although the assumptions needed for the theoretical744

guarantees do not hold, which warrants further investigations and we leave it for future work.745

Performance of the algorithms: We test PnP-ULA and NF-ULA on another four images746

from LoDoPaB [60] which were not used for training the patchNR network utilized by NF-747

ULA and the realSN-DnCNN denoiser used in PnP-ULA. They are different from the six748

images trained by patchNR and 128 images trained by realSN-DnCNN. The four ground-749

truth images used for evaluating the performance of NF-ULA and PnP-ULA for limited-angle750

CT are shown in the first column of Fig. 6.751

Both PnP-ULA and NF-ULA have more than 20000 burn-in iterations. Since we initialize752

by setting X0 equal to the FBP reconstruction, the PSNR of Xn starts from around 21.90 dB,753

then slowly increases, and finally stabilizes. Note that for different test images, the burn-in754

time varies. For Image-2 in Table 4, PnP-ULA has 30000 burn-in iterations, and the PSNR of755

the samples never exceeds 29 dB. In contrast, the PSNR of the samples increases until 33 dB756

for NF-ULA and finally the burn-in time for NF-ULA on Image-2 is around 70000 iterations.757

After the burn-in time, we calculate the posterior mean and the standard deviation around758

it by obtaining 10000 samples and computing the PSNR of the samples’ mean. For Gaussian759

noise, drawing 10000 samples by NF-ULA takes around 500 seconds, whereas, for PnP-ULA,760

it takes about 70 seconds. Thanks to the smaller network size of patchNR compared to Glow,761

it saves a large proportion of time in computation.762

Fig. 6 shows the ground-truth images (1st column), the FBP (2nd column), the posterior763

mean and standard deviation of PnP-ULA (in Columns 3 and 4, respectively), and those764

corresponding to NF-ULA (in Columns 5 and 6, respectively). The posterior mean images765

indicate that NF-ULA has a significantly better sample quality than PnP-ULA, which exhibits766

poor reconstruction in the left area, due to the missing angles and the extremely ill-posed767

problem. NF-ULA can recover the details well, which is consistent with the results in [3] that768

patchNR works well in the limited-angle CT experiments. For standard deviation in the case769

of Gaussian noise, NF-ULA shows more realistic uncertainties than PnP-ULA in most areas770

but still has relatively large uncertainties in the left area (where no projection is available).771

Table 4 shows the PSNR of the posterior mean. NF-ULA achieves a considerably higher772

PSNR than PnP-ULA.773

We also compare the ACF (Image-1) in Fig. 7 to study the convergence speed. The ACF774

is calculated by randomly selecting 100 dimensions respectively from YH and YL. The ACF on775

the fast direction is different from deblurring and inpainting: On fastest directions NF-ULA776

decreases from 1 to 0 within 100 lags and the independence is achieved, while the independence777

of PnP-ULA is not achieved (as shown in the first sub-figure). On some fast directions, the778

independence of NF-ULA and PnP-ULA is both not well achieved, as demonstrated in the779

second sub-figure. For slow directions, both two algorithms decrease slowly and independence780
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YH (Fast direction) YH (Fast direction) YL (Slow direction) YL (Slow direction)

Figure 7. The autocorrelation function (ACF) of the samples (Gaussian noise CT on Image-1). The
definition of ACF is given in (4.1). ACF is calculated by wavelet basis using the band-pass coefficients (YH)
and the low-pass coefficients (YL). Faster decreasing ACF implies faster convergence of the Markov chain. On
slow directions, the independence are not achieved for both algorithms.

is not achieved. ACF of Image-2, Image-3 and Image-4 are similar and omitted.781

5. Conclusion and Outlook. We introduced NF-ULA, a Langevin diffusion-based Monte782

Carlo algorithm, which takes advantage of a normalizing flow for prior density estimation. The783

normalizing flow can be pre-trained agnostic to the forward operator of the inverse problem784

that one seeks to solve. Since NF-ULA only requires the log gradient of the prior, our algorithm785

still works in cases where the normalizing flow can only evaluate the density but cannot786

do unconditional sampling. To guarantee that the posterior distribution is well-defined, we787

follow [56] to add a projection operator onto a convex and compact subset of the image space,788

although in most cases the projection is not activated, for instance, if the prior is well-trained.789

Since the density of normalizing flow itself can be evaluated, NF-ULA can be extended to790

a Metropolis-adjusted version, which is left for future studies. For the theoretical analysis791

of NF-ULA, we first prove the well-posedness of the posterior distribution that we aim to792

draw samples from. To prove the convergence of NF-ULA, the most essential condition is793

the Lipschitz drift, and we, therefore, derive a sufficient condition for having a Lipschitz-794

continuous gradient of the log density of the normalizing flow. Moreover, we show that795

NF-ULA admits an unique invariant distribution, and we give a non-asymptotic bound on796

the bias. We demonstrate our method through several Bayesian imaging experiments, namely797

image deblurring, image inpainting, and limited-angle CT reconstruction. We show that798

better training of the normalizing flows leads to better samples and convergence of NF-ULA.799

Although currently, NF-ULA has a longer sampling time because of the large network of800

normalizing flows, it has the potential to use a better and smaller network to reduce the801

computation in the future.802

There are still some unanswered questions about NF-ULA. Although we give a sufficient803

condition for the gradient of the log density of normalizing flow to be Lipschitz, the condition804

might be relaxed, or it might even be possible to derive a condition that is both necessary805

and sufficient. Moreover, given different curvature conditions [22, 65] on the drift other than806

Lipschitz, the studies of ULA on non-convex potentials have shown different convergence807

results and they can also be applied to NF-ULA. However, this might require re-training the808

normalizing flows to enforce such conditions and necessitates further research. Meanwhile809

when the Lipschitz assumption does not hold, the results of our Poisson noise experiments810
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lack an explanation, which also requires a more detailed study.811
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Appendix A. Proofs.1061

A.1. Proof of Lemma 3.1.1062

Proof. For a constant R0 > 0, let1063

B(0, R0) :=
{
z ∈ Rd : ∥z∥2 ≤ R0

}
1064

be the closed ball of radius R0 centered at the origin. Since C ⊂ Rd is compact, there exists1065

R0 > 0 such that C ⊂ B(0, R0). Therefore, for all x /∈ B(0, R0), it follows that1066

∥x−ΠC(x)∥2
(a)

⩾
∥∥x−ΠB(0,R0)(x)

∥∥
2

(b)

⩾ ∥x∥2 −R0 ≥ 0,1067
1068
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where (a) is true since C ⊂ B(0, R0) and (b) follows from the triangle inequality. Then, for1069

all k ∈ N, the following holds:1070 ∫
Rd\B(0,R0)

∥x∥k exp

(
−
∥x−ΠC(x)∥22

2λ

)
dx

⩽
∫
Rd\B(0,R0)

∥x∥k exp

(
−
(∥x∥2 −R0)

2

2λ

)
dx

⩽
∫
Rd\B(0,R0)

∥x∥k exp
(
−∥x∥22 − 2R2

0

4λ

)
dx

< +∞,

1071

where the last inequality follows from the fact that k-order moments of Gaussian distribution1072

are finite for any k.1073

A.2. Proof of Proposition 3.3.1074

Proof. Without loss of generality, we only need to consider the cases when the total number1075

of layers is k = 1, 2.1076

(1) We firstly consider the case that k = 1 and T−1 = G is a composition of only a1077

one-layer coupling network. Then (3.4) can be simplified as:1078

(A.1) Gj(xj , x<j) = φj(x<j)xj + ηj(x<j), j = 1, · · · , d.1079

Since ∀r < j, Gr is independent of xj and the diagonal of the Jacobian is (JG(x))j,j = φj(x<j),1080

from the change of variables1081

(A.2)
q(x) = qz(z) |det JT (z)|−1

= qz
(
T−1(x)

)
|det JT−1(x)| ,

1082

we have that1083

log qθ(x) = log qz (G(x)) + log |det JG(x)|

= −1

2
∥G(x)∥22 + log |det JG(x)|+ const.

= −1

2
∥G(x)∥22 +

d∑
j=1

log |φj(x<j)|+ const.

⩽
d∑

j=1

log |φj(x<j)|+ const.

1084

Since φj is a bounded function ∀j, it follows that log |φj(x<j)| is upper bounded for all j and1085

log qθ(x) is upper bounded on Rd.1086
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(2) Secondly, assume that k = 2 and T−1 = G ◦H(x), where H : x 7→ ω and G : ω 7→ z.1087

Similarly, we have that1088

log qθ(x) = log qz (G ◦H(x)) + log |det JG◦H(x)|

= −1

2
∥G ◦H(x)∥22 + log |det JG(ω)|+ log |det JH(x)|+ const.

= −1

2
∥G ◦H(x)∥22 +

d∑
j=1

(
log
∣∣∣φ(2)

j (ω<j)
∣∣∣+ log

∣∣∣φ(1)
j (x<j)

∣∣∣)+ const.

⩽
d∑

j=1

(
log
∣∣∣φ(2)

j (ω<j)
∣∣∣+ log

∣∣∣φ(1)
j (x<j)

∣∣∣)+ const.

1089

Since φ
(1)
j and φ

(2)
j are bounded functions ∀j, it follows that log

∣∣∣φ(2)
j (ω<j)

∣∣∣ + log
∣∣∣φ(1)

j (x<j)
∣∣∣1090

is upper bounded for all j and log qθ(x) is upper bounded on Rd.1091

A.3. Proof of Proposition 3.5.1092

Proof. By Assumption 3.2, we have that1093 ∫
Rd

(1 + Φ1(x̃)) exp
[
c0Φ1(x̃)− ι

(λ)
C (x̃)

]
qαθ (x̃)dx̃ < +∞,1094

and we conclude the proof from Proposition 2.3 of [56].1095

A.4. Proof of Lemma 3.7.1096

Lemma A.1. Let Assumption 3.6 be true. Then, ∇ log pλ(x|y) is Lipschitz continuous if1097

and only if ∇ log qθ(x) is Lipschitz continuous.1098

Proof. Since Assumption 3.6 is satisfied, from Algorithm 2.1 and (2.13) we have that1099

∇ log pλ(x|y) is Lipschitz continuous if and only if α∇ log qθ(x) + (ΠC(x)− x)/λ is Lipschitz1100

continuous.1101

From Proposition 12.28 in [9], the operator (Id−ProxιC ) is firmly non-expansive, i.e., for1102

all x, y ∈ Rd,1103

∥(ΠC(x)− x)− (ΠC(y)− y)∥22 ⩽ ⟨(ΠC(x)− x)− (ΠC(y)− y), x− y⟩
⩽ ∥(ΠC(x)− x)− (ΠC(y)− y)∥2 ∥x− y∥2 .

1104

Therefore, (ΠC(x) − x)/λ is 1/λ-Lipschitz. Hence, for any α > 0, ∇ log pλ(x|y) is Lipschitz-1105

continuous if and only if ∇ log qθ(x) is Lipschitz-continuous.1106

A.5. Proof of Proposition 3.9.1107

Proof. Without loss of generality, we only need to consider the cases when the total number1108

of layers is k = 1, 2.1109

(1) We firstly consider the case that k = 1 and T−1 = G is a composition of only a1110

one-layer coupling network. Then (3.5) can be simplified as:1111

(A.3) Gj(xj , x<j) = φj(x<j)xj + ηj(x<j), j = 1, · · · , d.1112
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Since ∀r < j, Gr is independent of xj and the diagonal of the Jacobian is (JG(x))j,j = φj(x<j),1113

from the change of variables1114

(A.4)
q(x) = qz(z) |det JT (z)|−1

= qz
(
T−1(x)

)
|det JT−1(x)| ,

1115

we have that1116

log qθ(x) = log qz (G(x)) + log |det JG(x)|

= −1

2
∥G(x)∥22 + log |det JG(x)|+ const.

= −1

2
∥G(x)∥22 +

d∑
j=1

log |φj(x<j)|+ const.

1117

Taking the gradient of both sides w.r.t. x, we get1118

(A.5) ∇ log qθ(x) = − (JG(x))
T G(x) +

d∑
j=1

∇ logφj(x<j).1119

Since φj is a constant function, we have that ∇ logφj = 0. Furthermore as ηj is Lipschitz and1120

∀r < j,
∂ηj
∂xr

is piecewise constant on R,
∂ηj
∂xr

is hence bounded. Meanwhile, (JG(x))j,r =
∂ηj
∂xr

,1121

therefore every element of JG(x) is a bounded piecewise constant function of x. Then both1122

G(x) and (JG(x))
⊤G(x) are Lipschitz, therefore ∇ log qθ(x) is Lipschitz.1123

(2) Secondly, assume that k = 2 and T−1 = G ◦H(x), where H : x 7→ ω and G : ω 7→ z.1124

Similarly, we have that1125

log qθ(x) = log qz (G ◦H(x)) + log |det JG◦H(x)|

= −1

2
∥G ◦H(x)∥22 + log |det JG(ω)|+ log |det JH(x)|+ const.

= −1

2
∥G ◦H(x)∥22 +

d∑
j=1

(
log
∣∣∣φ(2)

j (ω<j)
∣∣∣+ log

∣∣∣φ(1)
j (x<j)

∣∣∣)+ const.

1126

and1127

(A.6)
∇ log qθ(x) = − (JG◦H(x))T G ◦H(x) + 0

= − (JG(H(x))JH(x))T G ◦H(x).
1128

Since every element of JH(x) is a bounded piecewise constant function of x, every element of1129

JG(w) is a bounded piecewise constant function of w, and meanwhile w = H(x) is continuous1130

w.r.t. x, then every element of JG◦H(x) is a bounded piecewise constant function of x. Then1131

both G ◦H(x) and (JG◦H(x))⊤G ◦H(x) are Lipschitz, therefore ∇ log qθ(x) is Lipschitz.1132
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A.6. Proof of theorem 3.11.1133

Proof. Denote RC = sup {∥x1 − x2∥ : x1, x2 ∈ C}. Since we have 2λ(αL−my) ⩽ 1, from A1134

3.8, A 3.10, bλ(x) in (3.6) and the Cauchy-Schwarz inequality we have that for any x1, x2 ∈ Rd,1135

(A.7)
⟨bλ (x1)− bλ (x2) , x1 − x2⟩ ⩽ (−my + αL) ∥x1 − x2∥2 −

∥x1 − x2∥2

λ
+

RC ∥x1 − x2∥
λ

⩽ −∥x1 − x2∥2

2λ
+

RC ∥x1 − x2∥
λ

.

1136

For any x1, x2 ∈ Rd satisfying ∥x1 − x2∥ ⩾ 4RC , we obtain the contractivity at infinity1137

condition on the drift bλ1138

(A.8) ⟨bλ (x1)− bλ (x2) , x1 − x2⟩ ⩽ −∥x1 − x2∥2

4λ
,1139

which indicates the strongly convexity at infinity.1140

After simple computation by letting x2 = 0 in (A.7), we also have that for any x ∈ Rd,1141

(A.9) ⟨bλ(x), x⟩ ⩽ −∥x∥2/(4λ) + sup
x̃∈Rd

{
(RC/λ+ ∥bλ(0)∥) ∥x̃∥ − ∥x̃∥2/(4λ)

}
.1142

From A 3.6, A 3.8, bλ(x) in (3.6) and that (Id−ΠC)/λ is 1/λ-Lipschitz, we have that for1143

any x1, x2 ∈ Rd,1144

(A.10) ∥bλ (x1)− bλ (x2)∥2 ⩽ (Ly + αL + 1/λ) ∥x1 − x2∥2 .1145

Let γ̄ = (4λ)−1 ( Ly + αL + 1/λ)−2. From (A.9) and (A.10), using Lemma SM5.1 in [57]1146

and we get that there exist λV ∈ (0, 1], c ⩾ 0 such that for any δ ∈ (0, γ̄], Rδ satisfies the1147

discrete drift condition Dd

(
V, λδ

V , cδ
)
.1148

For any probability measure ν1, ν2, from the definition (3.1) and Hölder’s inequality we1149

have that1150

(A.11) ∥ν1 − ν2∥V ⩽ ∥ν1 − ν2∥1/2TV

(
ν1
[
V 2
]
+ ν2

[
V 2
])1/2

.1151

Since δ̄ ⩽ γ̄, the contractivity condition (A.8) holds, (A.11) holds, then from Theorem 81152

and Corollary 2 in [22], we can find A2 ⩾ 0 and ρ2 ∈ [0, 1) such that for any δ ∈ (0, δ̄], x1, x2 ∈1153

Rd, and k ∈ N,1154

(A.12)

∥∥∥δx1R
k
δ − δx2R

k
δ

∥∥∥
TV

⩽ A2ρ
kδ
2 (V (x1) + V (x2))

⩽ A2ρ
kδ
2

(
V 2 (x1) + V 2 (x2)

)
,

W1

(
δx1R

k
δ , δx2R

k
δ

)
⩽ A2ρ

kδ
2 ∥x1 − x2∥2 .

1155

Then we conclude the proof from (A.11).1156

This manuscript is for review purposes only.



38 Z. CAI, J. TANG, S. MUKHERJEE, J. LI, C.-B. SCHÖNLIEB, AND X. ZHANG

A.7. Proof of theorem 3.12.1157

Proof. Most of our proof is based on [57] and [22].1158

Recall that1159

(A.13) Rδ(x, A) = (2π)−d/2

∫
Rd

1A

(
x+ δbλ(x) +

√
2δz
)
exp

[
−∥z∥2/2

]
dz.1160

We introduce the stochastic process
(
Xt

)
t⩾0

, which is exactly the solution of the following1161

SDE:1162

(A.14)


dXt = bλ

(
Xt

)
dt+

√
2 dBt

bλ(x) = ∇ log(p(y|x)) + α∇ log qθ(x) +
ΠC (x)− x

λ

X0 = X0,

1163

where (Bt)t⩾0 is a d-dimensional Brownian motion.1164

From Lemma 3.7, bλ is (Ly+αL+1/λ)-Lipschitz continuous. From Chapter 5, Theorem 2.91165

of [48] we have that the SDE (A.14) admits a unique strong solution for any initial condition1166

X0 with E
[∥∥X0

∥∥2] < +∞. We denote by (Pt)t⩾0 the semigroup associated with the strong1167

solutions of SDE (A.14). Similarly to the proof of Theorem 3.11, replacing Corollary 2 in [22]1168

by Theorem 21 and Corollary 22 in [22], there exist Ã1 ⩾ 0 and ρ̃1 ∈ [0, 1) such that that for1169

any x1, x2 ∈ Rd and t ⩾ 0,1170

(A.15)
∥δx1Pt − δx2Pt∥V ⩽ Ã1ρ̃

t
1

(
V 2 (x1) + V 2 (x2)

)
,

W1 (δx1Pt, δx2Pt) ⩽ Ã1ρ̃
t
1 ∥x1 − x2∥2 .

1171

Combining (A.15), Theorem 3.11, the fact that
(
P1

(
Rd
)
,W1

)
is a complete metric space1172

and the Picard fixed point theorem, we can obtain that for any δ ∈ (0, δ̄] there exist unique1173

πδ,λ, π̃λ ∈ P1

(
Rd
)
such that πδ,λRδ = πδ,λ and for any t ⩾ 0, π̃λPt = π̃λ. By Theorem 2.11174

in [80] we have that for any x ∈ Rd,1175

(A.16) (dπ̃λ/dLeb) (x) ∝ exp
[
−ι

(λ)
C (x)

]
p(y|x)pαλ(x),1176

Therefore from (2.12) πλ and π̃λ are exactly the same.1177

Similar to (3.7), from (A.15) we have that for any t ⩾ 0 and x ∈ Rd,1178

(A.17) ∥δxPt − πλ∥V ⩽ Ã1ρ̃
t
1

(
V 2 (x) +

∫
Rd

V 2(x̃)dπλ(x̃)

)
.1179

Since we already proved that
∫
Rd V

2(x̃)dπλ(x̃) < +∞ in Lemma 3.1, we can find B1 ⩾ 0 such1180

that for any x ∈ Rd we have1181

(A.18) ∥δxPt − πλ∥V ⩽ B1ρ̃
t
1V

2(x).1182

Select a large m1 ∈ N∗ such that m1 ⩾ δ̄−1. Let’s now consider the interval [0, l], l ∈ N∗.1183

To compare πδ,λ with πδ, we first construct a continuous time Markov process X
(1)
t such1184
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that X
(1)
j/m1

has the same distribution as the j-th sample Xj by NF-ULA (2.13). Define1185

b1

(
t, (wt)t∈[0,l]

)
=

m1l−1∑
j=0

1[j/m1,(j+1)/m1)(t)bλ
(
wj/m1

)
and b2

(
t, (wt)t∈[0,l]

)
= bλ (wt). Let1186

X
(1)
t and X

(2)
t be the unique strong solution of SDE dXt = b

(
t, (Xt)t∈[0,l]

)
dt +

√
2dBt1187

with X0 = x ∈ Rd and b = b1, respectively b = b2. Note that
(
X

(1)
k/m1

)
= (Xk)k∈N and1188 (

X
(2)
t

)
t⩾0

=
(
Xt

)
t⩾0

. Denote P
(1)
t and P

(2)
t the Markov semigroup associated with X

(1)
t and1189

X
(2)
t . Then for any x ∈ Rd, k ∈ N∗ we have1190

(A.19) δxR
km1

1/m1
= δxP

(1)
k , δxPk = δxP

(2)
k .1191

From Lemma 3.7 and A 3.8, for any t ∈ [j/m1, (j + 1)/m1), j ∈ {0, . . . ,m1l − 1} and1192

(wt)t∈[0,l] ∈ C
(
[0, l],Rd

)
we have that1193

(A.20)

∥∥∥b1 (t, (wt)t∈[0,l]

)
− b2

(
t, (wt)t∈[0,l]

)∥∥∥2 = ∥∥bλ (wj/m1

)
− bλ (wt)

∥∥2
⩽ (Ly + αL + 1/λ)2

∥∥wj/m1
− wt

∥∥2 .1194

Using Cauchy-Schwarz inequality, Hölder’s inequality and Itô’s isometry we have for any1195

t ∈ [j/m1, (j + 1)/m1),1196

(A.21)

E
[∥∥∥X(2)

t −X
(2)
j/m1

∥∥∥2] = E

∥∥∥∥∥
∫ t

j/m1

(
bλ

(
X(2)

τ

)
dτ +

√
2 dBτ

)∥∥∥∥∥
2


⩽ E

2 ∥∥∥∥∥
∫ t

j/m1

bλ

(
X(2)

τ

)
dτ

∥∥∥∥∥
2

+ 2
∥∥∥√2

(
Bt −Bj/m1

)∥∥∥2


⩽ 2

(
t− j

m1

)
E

[∫ t

j/m1

∥∥∥bλ (X(2)
τ

)∥∥∥2 dτ]+ 4d

(
t− j

m1

)
⩽ 2

(
t− j

m1

)2

sup
τ⩽(j+1)/m1

E
∥∥bλ (Xτ

)∥∥2 + 4d

(
t− j

m1

)
.

1197

Since we have proved (A.8), (A.9), (A.10) in Appendix A.6, from Lemma 2.11 and Lemma1198

2.12 in [65], for any τ > 0 we have1199

(A.22) E
∥∥Xτ

∥∥2 ⩽ B0,0,1200

where B0,0 is an upper bound formed by λ,C, bλ(0), d, x. Then from (A.10) we have that1201

(A.23) E
∥∥bλ (Xτ

)∥∥2 ⩽ 2 (Ly + αL + 1/λ)2 E
∥∥Xτ

∥∥2 + 2 ∥bλ (0)∥2 ⩽ B3, ∀τ > 0,1202

where B3 = 2 (Ly + αL + 1/λ)2B0,0 + 2 ∥bλ (0)∥2 ⩾ 0.1203
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Then from (A.20), (A.21), (A.23), for i ∈ {0, · · · l − 1} we have that1204

(A.24)

∫ i+1

i
E
[∥∥∥b1 (t,X(2)

t

)
− b2

(
t,X

(2)
t

)∥∥∥2]dt
⩽

(i+1)m1−1∑
j=im1

∫ (j+1)/m1

j/m1

E
[∥∥∥b1 (t,X(2)

t

)
− b2

(
t,X

(2)
t

)∥∥∥2]dt
⩽ (Ly + αL + 1/λ)2

(i+1)m1−1∑
j=im1

∫ (j+1)/m1

j/m1

E
[∥∥∥X(2)

t −X
(2)
j/m1

∥∥∥2]dt
⩽ (Ly + αL + 1/λ)2

(
2B3

3m2
1

+
2d

m1

)
.

1205

1206

From (A.19) and Lemma SM6.1 in [57], we obtain that there exists Bb ⩾ 0 such that for1207

any x ∈ Rd,1208

(A.25)∥∥∥δxRlm1

1/m1
− δxPl

∥∥∥
V
=
∥∥∥δxP(1)

l − δxP
(2)
l

∥∥∥
V
=
∥∥∥δxP(2)

l − δxP
(1)
l

∥∥∥
V

⩽
(
δxP

(1)
l

[
V 2
]
+ δxP

(2)
l

[
V 2
])1/2

×

(
l−1∑
i=0

∫ i+1

i
E
[∥∥∥b1 (t,X(2)

t

)
− b2

(
t,X

(2)
t

)∥∥∥2]dt)1/2

⩽ (Ly + αL + 1/λ)

√
l

(
2B3

3m2
1

+
2d

m1

)(
δxP

(1)
t

[
V 2
]
+ δxP

(2)
t

[
V 2
])1/2

.

1209

Assume that there is a function W ∈ C2
(
Rd, [1,+∞)

)
such that lim∥x∥→+∞W (x) = +∞.1210

Recall that from (A.9), using Lemma SM5.1 in [57] and we get that there exist λW ∈ (0, 1],1211

c, β ⩾ 0 and ζ > 0 such that for any δ ∈
(
0, (4λ)−1 ( Ly + αL + 1/λ)−2

]
, Rδ satisfies the1212

discrete drift condition Dd

(
W,λδ

W , cδ
)
and (Pt)t⩾0 satisfies the continuous drift condition1213

Dc(W, ζ, β). From Lemma SM5.2 in [57], there exists Bc ⩾ 0 such that for any x ∈ Rd, t ⩾ 01214

and k ∈ N∗ we have1215

(A.26) Rk
δW (x) + PtW (x) ⩽ B2

cW (x).1216

Let W (x) = V 2(x) and k = m1l, δ = 1/m1, t = l, then ∀x ∈ Rd,1217

(A.27) δxP
(1)
l

[
V 2
]
+ δxP

(2)
l

[
V 2
]
⩽ B2

cV
2(x).1218

Combined with (A.25), we have that1219

(A.28)
∥∥∥δxRm1l

1/m1
− δxPl

∥∥∥
V
⩽ BcV (x)(Ly + αL + 1/λ)

√
l

(
2B3

3m2
1

+
2d

m1

)
.1220

To give a bound on
∥∥∥δxRm1l

1/m1
− πλ

∥∥∥
V
, we use triangular inequality to split it into two1221

terms:1222

(A.29)
∥∥∥δxRm1l

1/m1
− πλ

∥∥∥
V
⩽
∥∥∥δxRm1l

1/m1
− δxPl

∥∥∥
V
+ ∥δxPl − πλ∥V .1223
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Using this result and (A.18), we obtain that there exists B1, B2 ⩾ 0 such that for any m1 ∈ N∗1224

with 1/m1 ⩽ δ̄,1225

(A.30)
∥∥∥δxRm1l

1/m1
− πλ

∥∥∥
V
⩽ B1ρ̃

l
1V

2(x) +B2V (x)

√
l

(
B3

3m2
1

+
d

m1

)
.1226

The proof in the general case where δ ∈ (0, δ̄] is similar when the interval [0, l] is changed to1227

[0, lm1δ].1228

Then we obtain that there exists B1, B2, B3 ⩾ 0, ρ̃1 ∈ [0, 1) such that for any δ ∈ (0, δ̄],1229

k ∈ N∗,1230

(A.31)
∥∥∥δxRk

δ − πλ

∥∥∥
V
⩽ B1ρ̃

kδ
1 V 2(x) +B2V (x)

√
δ2k

(
d+

B3δ

3

)
.1231

Appendix B. Additional experiments.1232

The second limited-angle computed tomography reconstruction experiment we test is using1233

the Poisson noise, where the model can be formulated as y ∼ P (Ax) and P (Ax) denotes adding1234

a Poisson noise on Ax. We simulate the noisy sinogram as1235

y = − 1

µ
log

(
N1

N0

)
, N1 ∼ Poisson (N0 exp(−A(x)µ)) .1236

Here N0 = 4096 is the mean photon count per detector bin without attenuation. µ = 0.05 is1237

a constant. Since Poisson noise implies a different likelihood1238

p(y|x) = 1

K0
exp(−J(x, y)),

J(x, y) =
m∑
i=1

e−A(x)iµN0 + e−yiµN0 (A(x)iµ− log (N0)) ,
1239

we calculate ∇ log p(y|x) = −∇J(x, y) by using the auto-gradient library.1240

We select a different α = 4000 for NF-ULA while keeping all the other settings the same1241

as in the main paper.1242

Both PnP-ULA and NF-ULA have burn-in iterations of more than 20000. After the1243

burn-in time, we calculate the posterior mean and the standard deviation by obtaining 100001244

samples and computing the PSNR of the samples’ mean. For Poisson noise, the likelihood is1245

more complicated than Gaussian, and NF-ULA spends 510s.1246

Fig 8 includes the original image, the FBP, the posterior mean and the standard deviation1247

of PnP-ULA (realSN-DnCNN) and NF-ULA (patchNR). Table 5 provides the PSNR of the1248

posterior mean. All the samples generated in Table 5 never escape [−0.2, 1.2]d, indicating1249

that the projection ΠC(x) is never activated. Note that the huge uncertainties of standard1250

deviation on the left area in the Gaussian-noise case in the main paper are slightly alleviated1251

in the Poison noise experiments. The ACF test results are similar to the CT experiment with1252

Gaussian noise, therefore here we do not repeat them again.1253
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Figure 8. Limited-view CT reconstruction with Poisson noise. Column 1: Original image. Column 2:
Filtered back projection (FBP). Columns 3, and 4: Posterior mean and the standard deviation of the samples
generated by PnP-ULA (realSN-DnCNN). Columns 5, and 6: Posterior mean and the standard deviation of
the samples generated by NF-ULA (patchNR). PSNR values of the sample mean images are provided in Table
5.
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CT reconstruction of Poisson noise

PSNR: 26.93 PSNR: 27.78 PSNR: 29.64 PSNR: 27.01

PSNR: 29.88 PSNR: 33.85 PSNR: 31.10 PSNR: 30.67
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Table 5
CT reconstruction of Poisson noise, limited angles.

CT C = [−100, 100]d

network parameters PSNR

figure1

NF-ULA PatchNR α = 4000 29.88

PnP-ULA realSN-DnCNN α = 3 26.93

figure2

NF-ULA PatchNR α = 4000 33.85

PnP-ULA realSN-DnCNN α = 3 27.78

figure3

NF-ULA PatchNR α = 4000 31.10

PnP-ULA realSN-DnCNN α = 3 29.64

figure4

NF-ULA PatchNR α = 4000 30.67

PnP-ULA realSN-DnCNN α = 3 27.01
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