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Introduction: Polymer wear debris is one of the major concerns in total joint
replacements due to wear-induced biological reactions which can lead to
osteolysis and joint failure. The wear-induced biological reactions depend on
the wear volume, shape and size of the wear debris and their volumetric
concentration. The study of wear particles is crucial in analysing the failure
modes of the total joint replacements to ensure improved designs and
materials are introduced for the next generation of devices. Existing methods
of wear debris analysis follow a traditional approach of computer-aided manual
identification and segmentation of wear debris which encounters problems such
as significant manual effort, time consumption, low accuracy due to user errors
and biases, and overall lack of insight into the wear regime.

Methods: This study proposes an automatic particle segmentation algorithm
using adaptive thresholding followed by classification using Convolution Neural
Network (CNN) to classify ultra-highmolecular weight polyethylene polymerwear
debris generated from total disc replacements tested in a spine simulator. A CNN
takes object pixels as numeric input and uses convolution operations to create
feature maps which are used to classify objects.

Results: Classification accuracies of up to 96.49% were achieved for the
identification of wear particles. Particle characteristics such as shape, size and
area were estimated to generate size and volumetric distribution graphs.

Discussion: The use of computer algorithms and CNN facilitates the analysis of a
wider range of wear debris with complex characteristics with significantly fewer
resources which results in robust size and volume distribution graphs for the
estimation of the osteolytic potential of devices using functional biological activity
estimates.
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1 Introduction

Wear particles result from frictional interaction between two
surfaces in motion against each other. With the ever-increasing
number of complex mechanical equipment in the industrial and
medical sectors, the study of wear particle characteristics and their
effects on the system’s overall performance has gathered significant
interest in recent years, given that wear is an inherent part of a
mechanical system. Total joint replacement (TJR) procedures are
performed to replace a problematic natural joint and they aim to
preserve the natural range of motion. Motion preservation is
achieved using an articulating mechanism which provides motion
around the desired axes. These articulating components are made of
various materials such as metals, polymers and ceramics. The three
major joint replacements in the human body which are total hip
replacement (THR), total knee replacements (TKR) and total disc
replacements (TDR), use similar design principles but differ in their
mechanical operation, which include different ranges of motion and
different loading conditions. The difference in kinematic conditions
and material choices have been shown to affect the characteristics of
the wear debris produced (Milošev et al., 2012).

The study of wear debris and the potential problems it can cause
in joint replacements have been carried out since the late 1960s
(Lewis, 2001b). Since then, multiple studies have established
cytotoxic reactions, inflammation and osteolysis as major side
effects of the wear particles released from joint replacements
(Harris, 1995; Ingham and Fisher, 1997; Kobayashi et al., 1997;
Green et al., 2000; Lewis, 2001a; Cunningham et al., 2013). Early
studies found that sub-micrometre particles were associated with
macrophage responses releasing several osteolytic cytokines that
cause osteolysis and aseptic loosening of the joint [13]. The level of
cytokine release and the subsequent bone resorption depends on the
characteristics of wear, such as particle size, shape and volumetric
concentration (Green et al., 1998). Wear characteristics such as the
type of wear, the rate, and its severity are the main defining
characteristics of polyethylene wear. The corresponding features
of wear particles that define the wear characteristics include
quantity, shape, size, and composition. Various factors such as
the loading conditions, polishing of the surface material,
oxidative state and the level of cross-linking of polyethylene have
been shown to affect the wear characteristics (Peng, 2002).

Hence, it is crucial to explore the wear characteristics to
understand the biological activity of the wear particles to
minimize the causes of failures, whether it be via a change in
material choice or by the use of a different design. Numerous
studies have been performed in the last 3 decades to analyse the
characteristics and biological compatibility of wear debris in TJRs.
Apart from the analysis of failure modes in artificial joints, wear
particle analysis is one of the crucial features in the condition
monitoring of industrial machines and the prediction of their
imminent behaviour [6]. Unlike the online monitoring and
analysis of wear debris in an industrial setup, most of the wear
analysis in joint replacements is done offline by taking images of
wear debris from an in vitro simulation. Despite similar wear modes
present in joint replacements and industrial machines, the nature of
wear particles is quite different in terms of the particle size and the
wear volume where the particles of interest in an industrial setup are
in the order of micrometers. In contrast, the particles of concern in

joint replacements are in the range of nanometers to millimeters
(Charnley et al., 1968).

Wear debris analysis is a time-consuming process due to the
complex nature of the wear particles generated from a joint
replacement. Particle sizes range from less than 50 nm to greater
than 100 µm and are morphologically complex due to a lack of
uniformity in size, shape and intensity (McKellop et al., 1995).
Smaller particles are hard to identify due to contamination by
protein structures and low resolution of imaging. Until recently,
the quantitative analysis of wear debris was performed manually,
adding to the time constraint. The use of computer vision and
machine learning for structural and morphological analysis of the
wear debris is more efficient in terms of resources and time, which
allows for a larger set of data to be analysed, potentially improving
the distribution functions of wear particle size and volume.

The extraction and classification of the wear debris is a major
step in determining the characteristics of the wear particles. There
have been a small number of attempts to classify the wear particles
generated from the use of machinery in the late 1990s using neural
networks (Myshkin et al., 1997; Peng and Kirk, 1998). These
methods use a discrete set of values, known as features, to
classify the data into different categories. The features can be any
data parameter such as the area, perimeter, length, shape, Fourier
descriptors and fractal dimensions. These methods can perform
basic classification but fail when the dataset is complex, and the
features of two datasets become similar. Classification attempts have
been made using a support vector machine (SVM) classifier with
dissimilarity measures as the feature descriptors to detect the
progression of wear in a tribological setup with a classification
accuracy of 97% for wear particle images in different stages of
the simulation, without considering their morphology (Podsiadlo
and Stachowiak, 2005). Their main achievement was to distinguish if
a debris sample is at the initial or mid stages of wear. However, in
addition to the results not being explicit about the wear regimes, the
results of this study are constricted due to the use of wear debris that
was uniform and carefully selected.

Eckold et al. (Eckold et al., 2015) used a scale-invariant feature
transform (SIFT) to extract features from the wear particle images
obtained from a total disc replacement setup, using Charite TDR
implant and then used SVM to classify the wear particles based on
their morphology into five different categories with an accuracy of
77.6%. Juranek et al. (Juránek et al., 2011) used a machine learning
algorithm called AdaBoost as a classifier on a four-bit feature vector
produced using centre-symmetric local binary patterns to classify
wear particles produced in an industrial machine into four classes
based on the mechanism of wear with an average classification
accuracy of 91.8%.

Recent studies on the classification of wear debris produced in
industrial machines have used a convolution neural network (CNN)
to determine the wear phenomenon according to the type of wear
debris present. In a study by Wang et al. (Wang H et al., 2019),
accuracies of up to 96% were achieved in detecting the presence of
wear debris with disregard to the type and quantity of wear debris.
Another study used CNN to detect the wear condition present in a
mechanical setup without classifying the wear debris, with an
accuracy of 90% (Wang et al., 2020). However, for the detailed
quantitative analysis of wear debris, the average classification
accuracies for different types of wear debris ranges from 77% to
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83% across multiple studies (Wang H et al., 2019; Wang et al., 2020;
Wang S et al., 2019). CNN-based identification and classification of
wear debris in joint arthroplasty have been shown to have very high
accuracies in multi-class morphological classifications as shown in
(Hu et al., 2022). However, the wear debris collected in this study
was specific and constrained as they were collected from a 50 nm
filter membrane Song et al. (2020) which does not accurately
represent the vast number of particles generated in a joint
replacement in terms of size and frequency.

Wear debris classification in the industrial setup has come a long
way, with significant improvements in classification accuracy and
detection of the underlying wear mechanism. However, the same

can not be said for medical applications mainly because of the
difference in size and number of the wear particles due to the
difference in the dynamics of the two systems. The size of wear
debris of interest in the industrial condition monitoring ranges from
20 µm to hundreds of micrometres (Wang H et al., 2019; Wang S
et al., 2019), which can cause mechanical failure due to equipment
breakages on a dynamic system. On the contrary, wear debris of a
few micrometres, or less is more problematic in joint replacements
as they are more biologically active and cause macrophage activation
resulting in osteolysis. This difference in the size of wear particles
correlates to the performance of a classifier and thus results in a
significant difference in classification accuracies. Aside from that,
the wear debris in the mechanical system are suspended in a
lubricating medium which can be filtered, replaced, and
monitored online. Whereas, the wear debris in artificial joints are
in a closed loop system which cannot be monitored in real-time and
replacing the lubricating medium is also not a possibility which
imposes significantly more challanges in wear analysis and fault
prevention. Since the biological reactions due to the wear debris
depend not only on the type of wear present but also on the volume
and size of the wear debris, determining just the wear mechanism is
not enough for understanding adverse reactions. Hence a more
complex method of wear particle identification is required for
comprehensive quantitative analysis.

One of the major problems associated with wear debris
analysis in joint replacements is the time required to perform
image analysis and characterise wear debris, which can take up to
a year for trained professionals. Another major issue is the
segmentation and separation of wear debris from the non-
particles present in the image. In most cases, the non-particles
consist of images of filter pores. In some cases, the filter pores are
well-defined and are easily identifiable. However, in other cases,
the filter pores are almost identical to the wear debris and are
hard to detect using traditional methods. A unique approach to
tackle this issue is to use a hybrid model of wear analysis with a
classical method of image segmentation and a CNN-based image
classification system. To address the issues with time and the
complex nature of the data, we designed a simple yet robust
segmentation algorithm using adaptive thresholding to segment
the image into the foreground and background. Then we used
CNN to classify the objects defined by their bounding boxes into
two categories of particle and non-particle. Threshold-based
image segmentation is frequently used to analyse microscopic
objects due to its capability to use local threshold values to
identify objects in uneven illumination (Ma et al., 2023).
Threshold-based segmentation is faster than machine
learning-based segmentation significantly reducing the time
required to perform wear debris analysis. On the other hand,
a CNN is resilient to the distortion in the input image and can
extract features directly from the image data, allowing better
classification of particles and non-particles obtained from the
SEM images. Since CNN automatically learns features from the
images, the performance is significantly better, and this has been
proven the case in multiple studies (Wang H et al., 2019; Wang
et al., 2020; Wang S et al., 2019). With the segmentation and
classification results, we then performed statistical analysis on the
wear debris to perform size and volume distribution analysis. An
overview of this paper is presented as a flowchart in Figure 1.

FIGURE 1
An overview of the CNN based polymer wear debris analysis
system.
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FIGURE 2
FEGSEM images of different magnification levels with different level of complexity.
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2 Methodology

2.1 Wear particle generation

Similar to Vicars et al. (Vicars et al., 2010), we performed a study
to compare the results of wear of the ProDisc-L TDR from 4 degrees
of freedom (DOF) and 5 DOF movement. Six ProDisc-L devices
were fixed into the test cells of the Prosim 5 DOF spine simulator,
and tests were carried out for 5 million cycles (MC) according to the
ISO 18192-1 4DOF protocol. The lubricating solution of 25% (v/v)
Bovine serum, containing the wear debris, was extracted from the
test setup every third of a million cycles and stored at −20°C for
analysis.

2.2 Debris isolation

Wear particles were isolated from the serum Lubricant
according to Richards et al. (Richards et al., 2008). An alkaline
digestion procedure was employed to isolate and collect the wear
particles by successive filtration through 10 μm, 1 μm and 0.015 µm
filters. Tipper et al. (Tipper et al., 2012) captured the images of each
filter using high-resolution field emission gun scanning electron
microscopy (FEGSEM) at different levels of magnifications ranging
from ×400 to 120000 x. A total of 1233 FEGSEM images from
4 simulator stations were analysed. Figure 2 shows SEM images
taken at different magnification levels containing wear debris with
varying levels of complexity.

2.3 Debris segmentation

MATLAB (MathWorks) image processing toolbox was used to
analyse the FEGSEM images. Wear particles were segmented and
measured using the Regionprops MATLAB function. Local adaptive
thresholding was used to separate the foreground objects from the
background. Before segmentation, a Gaussian filter was used to
reduce the salt and pepper noise from the image, followed by a
Laplacian filter which reduces the grey levels from the image and
enhances the contrast and dynamic range. The dense clusters of
bright pixels in the image indicated the wear particles, and the
clusters of dark pixels in circular and semi-circular shapes indicated
the filter pores. The segmented objects were classified into particle
and non-particle with a CNN classifier. The region properties of
each bright pixel cluster and black pixel cluster were calculated,
including area, diameter, perimeter, mean intensity, and centroid.

2.4 Performance evaluation

The performance of the custom method was compared to the
results obtained from image analysis using commericially available
software, ImageJ. While there are other commercially available
scientific image analysis software with proprietary algorithms for
debris analysis, ImageJ was selected based on the better user
interface. Moreover, there have been no studies establishing
significant performance differences among different image
analysis software. To evaluate the performance of the

segmentation and pixel measurements, uniform synthetic images
with varying levels of complexity of morphological and intensity
features, including triangle, circle, pentagon and dodecagon, were
used. The synthetic images were segmented and measured using two
comparative analysis methods. The total number of pixels in an
enclosed area indicated by a single object was used as the parameter
for performance evaluation, as the volume estimation is primarily
based on the area of the particles. Inbuilt image processing and
segmentation techniques available in ImageJ were used to segment
and characterise the objects.

2.5 Classification

Images extracted from the SEM image were manually labelled as
wear particles and non-particles which mostly included filter pores
as well as some foreign particles and non-objects which were isolated
due to high-intensity areas as a result of light interference. The ratio
of the number of wear particles to the filter pores was significant, and
thus this affected the data analysis. However, the presence of foreign
objects and non-objects was relatively low and did not affect the
parameter distribution. Pre-established CNN models with high
levels of accuracy are available to use in the classification task,
but they are more complicated and require more resources. The
parameters of CNN depend on the input data type and can be
tailored according to the need to design a simpler architecture that
uses lower resources and less time with high accuracy.

We designed a simple CNN structure with six convolutions
and three fully connected layers. Batch normalisation and
dropout techniques were used to make the CNN faster and
more robust and prevent the network from overfitting. The
segmented object was normalised to a size of 64 × 64 pixels
and was sent as an input to the network. Six Convolution
operations followed by batch normalisation, ReLu activation
operations, and five max pooling operations were performed
to create an output feature map of 2 × 2 × 512. Three fully
connected neural networks with 2048, 1,024 and 2 neural, nodes
respectively, were used to classify the information from the
feature maps into two categories which indicate wear particles
and non-particles. Each fully connected layer was followed by a
dropout layer with a 50% probability, to avoid overfitting. A
SoftMax activation function followed the fully connected layer. A
simple structure of the proposed CNN is shown in Figure 3.

2.6 Morphological calculations

The equivalent circular diameter (ECD), Circularity (C), and
elongation (E) of the particles were calculated using Eqs 1–3. The
size of the particles was determined by using the length and
equivalent circular diameter (ECD). The bright pixel count
debotes the area of the particle and thus can be multiplied by the
scale factor to convert it into micrometres square (µm2).

ECD �
�������
4 * Area

π

√
(1)

The circularity of the particle (C) was calculated using Eq 2:
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C � 4 * Area/P2 (2)
Elongation (E) was calculated using Eq 3:

E � Maxdia/Mindia (3)
Where, P = perimeter, MaxDia = Maximum diameter, MinDia =
Minimum Diameter.

The wear particles volume was calculated by using area and wear
particle thickness. Since SEM is a two-dimensional analysis, it can
only provide the area of the wear particle, which is insufficient for
volume analysis. Mean particle thickness can be estimated using
two-dimensional area estimate and mass of the wear particles
obtained by gravimetric analysis (Tipper et al., 2000). However,
this method assumes a constant particle thickness which may
introduce errors in volume estimations for larger particles.
Another method of estimating particle thickness is using Atomic

Force Microscopy (AFM) to directly measure the thickness of the
particle (Wu et al., 2013). Thickness estimations for the size range <
0.1 µm, 0.1 µm–1 μm and1 µm to 10 µm were made using the width-
to-thickness ratio obtained from a previous experiment that used
AFM to measure the third dimension of the UHMWPE wear
particles obtained from a six station pin-on-plate simulator (Wu
et al., 2013). The width-to-thickness ratio used was 2.27, 1.32,
3.1 and 3.1 for the respective size ranges, which ensured a
unique thickness estimation for every particle.

2.7 Experimental setup

Experiments conducted during this study were performed using
MATLAB software on a computer with configurations: CPU i7
8,700 six cores 3.2 GHz, RAM 16 GB, GPU NVIDIA GeForce GTX

FIGURE 3
The architecture of the proposed Convolution neural network.

FIGURE 4
Confusion Matrix for classification.

FIGURE 5
ROC curve for classification.
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2070 8 GB. MATLAB’s built-in image processing toolbox and deep
learning toolbox were used to write the segmentation and the CNN
algorithms. A learning rate of 0.01, Max epochs 30, the total number
of iterations 1,300, and stochastic gradient descent with momentum
(sgdm) optimiser were used as training parameters. A total of
4,440 images were used in the classification, and the data was
divided into 80% training and 20% test set.

3 Results

The custom image segmentation and analysis method was
more accurate than ImageJ across all the synthetic objects, with a
mean absolute percentage error of 4.04% and 14.02%,
respectively. The maximum error encountered was 9.3% and
31.3%, respectively. The custom analysis method performed
significantly better on objects with intensity levels close to the
background intensity levels.

Four thousand four hundred objects with 2,200 particles
and 2,200 non-particles were selected from a pool of labelled
data for the classification. The classification results are shown in
Figures 4, 5. Once the classifier was trained, it was exported to
the file directory as a matrix and then used to classify newly
extracted objects from the FEGSEM images for all four stations
of the spine simulator. Figure 4 shows the classification
confusion matrix for the respective classes. The true positive
and true negative rates for both subclasses were high, suggesting
an even prediction success on both classes. Figure 5 shows the

ROC curve for one instance of classification with 98.17% area
under the curve (AUC).

The CNN classifier was trained and tested on a prelabelled dataset.
An accuracy of 95.61% ± 0.57% was observed, with a maximum
accuracy of 96.49%. The frequency distribution of the particle size
follows a log-normal distribution as shown in Figure 6. The average size
of the particles was 1.699 µm with a modal size of 0.92 µm.

FIGURE 6
Wear particle size frequency distribution.

FIGURE 7
(A) Wear particle size distribution, (B) Wear particle volume distribution.
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4 Discussion

This study has shown that computer vision methods can

significantly improve the efficiency of wear debris analysis. The

use of a convolution neural network for image classification was

found to be very effective and efficient. The accuracy of the CNN

classifier, as shown in Figures 4, 5, is in line with other wear-related

implementations (Wang H et al., 2019; Wang et al., 2020; Wang S

et al., 2019). This is a very high rate of classification accuracy, which

is required to accurately measure the size and number of particles for

the whole experiment. The classification accuracy was found to

fluctuate between training because of the random selection of

training images, which suggests that the images’ quality

significantly affects the classification results. The confusion

matrix, as shown in Figure 4, and ROC, as shown in Figure 5,

suggest that the classifier’s performance was equal in both classes,

which points to a robust classification.
The size and volume distribution of particles, as shown in

Figure 7, were similar to results from other studies (Tipper et al.,
2012). Most of the particles were found to be less than 0.1 µm in
length, followed by particles of size 0.1–1 μm, which are the most
problematic, as established previously. Particles of size 0.1–10 µm
were found to contribute more to the total area of the particles,
which contradicts other similar studies (Fisher et al., 2001; Hyde
et al., 2015). This difference in the area distribution may be
attributed to the fact that this method relies heavily on
segmentation techniques. Any error in the segmentation of large
particles can a have huge effect on the area distribution. Since
particles greater than 10 µm are very few, the variation in their
numbers and pixel counts significantly affects the result. The area of
a wear particle can vary significantly based on the accuracy of pixel
detection, as demonstrated by the comparison analysis using ImageJ
with uniform known shapes. The complexity of the wear particles in
terms of shape and intensity levels and the intensity of the
background are crucial factors to consider in improving the
accuracy of the wear debris characterisation.

The accurate volume distribution is critical for analysing the
biological reactivity of the implant material. The volume distribution
relies heavily on the accuracy of particle area estimation and particle
thickness estimation. Thickness estimation for a large number of
particles is a tedious and time-consuming task. Moreover, current
thickness estimation techniques, such as AFM, cannot measure the
thickness of larger particles. SEM has been the standard choice for
analysing large numbers of particles, as the images can be analysed
later using computer-aided techniques. The accuracy of the various
thickness estimation methods in past studies are debatable due to
unrealistic assumptions of constant thickness across a wide range of
sizes of particles obtained from different filter membranes. In this
study, this problem was mitigated by using empirical thickness
calculated using morphological parameters from a previous
study. We have shown that the speed and accuracy of the wear
particle analysis can significantly be improved by using CNN-based

image analysis. However, there is still room for improvement in
volume estimation.

5 Conclusion

Using a convolution neural network with thresholding-based
segmentation can produce accurate results in segmenting and
classifying wear particles with relatively low resource
consumption. This segmentation and classification can be used to
build a functional biological activity model for all types of wear
debris under different loading conditions. However, the
discrepancies in the area parameter and the lack of three-
dimensional information of the particles demand improvements
in the segmentation and three-dimensional particle characterisation
techniques.
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