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Abstract
Solid-state lithium batteries may provide increased energy density and improved
safety compared with Li-ion technology. However, in a solid-state composite
cathode, mechanical degradation due to repeated cathode volume changes dur-
ing cyclingmay occur, whichmay be partiallymitigated by applying a significant,
but often impractical, uniaxial stack pressure. Herein, we compare the behavior
of composite electrodes based on Li4Ti5O12 (LTO) (negligible volume change)
and Nb2O5 (+4% expansion) cycled at different stack pressures. The initial LTO
capacity and retention are not affected by pressure but for Nb2O5, they are sig-
nificantly lower when a stack pressure of<2MPa is applied, due to inter-particle
cracking and solid-solid contact loss because of cyclic volume changes. Thiswork
confirms the importance of cathodemechanical stability and the stack pressures
for long-term cyclability for solid-state batteries. This suggests that low volume-
change cathode materials or a proper buffer layer are required for solid-state
batteries, especially at low stack pressures.

KEYWORDS
cathode, interface, mechanical degradation, stack pressure, solid-state battery

1 INTRODUCTION

Solid-state batteries employ a solid-state electrolyte (SE) in
pursuit of superior safety and to enable the use of a lithium
metal anode, which in turn may provide energy densi-

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

ties that exceed conventional Li-ion batteries (LIB).1–3
However, amongst ongoing challenges to developing
practical solid-state batteries (SSBs), mechanical and
chemical instability at the electrode/SE interface must be
overcome for SSBs to realize their full potential.4–10 These
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instabilities occur in the solid-state composite cathode
(SSC), which is composed of a particulate mixture of the
cathode active material (CAM), the SE, and generally
carbon additives.
Oxides and sulfides are two of the most well-studied

groups of SE. Oxide-type SEs have advantages includ-
ing highmechanical strength, high temperature tolerance,
stability against air and solvents, and wide electrochem-
ical stable window.11 However, the rigid oxide-based SE
could not form a good connection between particles
and grains without high-temperature sintering. The high-
temperature sintering will cause undesired elemental dif-
fusion between the CAM and oxides.12–14 Therefore, it
is challenging to form a direct cathode/oxide SE parti-
cle contact for most types of cathodes. Different from
oxides, sulfide-based SEs have high ionic conductivi-
ties and deformability at low/intermediate temperatures,
desirable for processing electrodes to high, near theoretical
density.15–20 However, sulfides are susceptible to oxidation
at the operating potentials required for the CAM (such as
Li(NixCoyMn1-x-y)O2 and Li(NixCoyAl1-x-y)O2).21–23 Even
when CAM particles are coated with a protective layer
(e.g., oxide) that partially passivates the surface, carbon
additives required for electron percolation, such as car-
bon nanofiber (CNF), may also play a role in oxidizing
the sulfide electrolyte.24,25 In both cases, ongoing chemical
interaction undermines retained capacity and cyclability.
Mechanically, the cyclic volume change of the CAM dur-
ing the induced insertion/extraction of Li-ion can lead
to sudden or progressive contact loss between the sulfide
SE, CNF, and CAM, resulting in voiding and irreversible
loss of capacity.26–30 Cracking of CAMparticles themselves
may also occur.31–34 To mitigate some of the mechanical
effects (and ongoing porosity due to sub-optimal electrode
preparation), cells may be subject to a relatively high uni-
axial stack pressure of over 50 MPa during cyclic testing.
However, amuch lower stack pressure is required for prac-
tical applications, for example, in electric vehicles,35,36 and
excessive pressuremay accelerate the damage of CAMpar-
ticles and lead to the deformation of Li metal electrodes.
Given this complexity and interaction of SSC capacity fad-
ing mechanisms, separation of mechanical degradation
from chemical and electrochemical side reactions is vital to
elucidating the various processes occurring and searching
for corresponding strategies.
Here, we investigate the effects of CAM volume change

and stack pressure on the capacity decay of SSCs. Two
model active materials with the same voltage window
but different volume changes during cycling were cho-
sen, including Li4Ti5O12 (LTO) with a negligible vol-
ume change and α-Nb2O5 with 4% expansion on Li
intercalation37,38 to compare the effects of intrinsic vol-
ume changes on retained capacity. Each CAM is combined

with Li6PS5Cl (LPSC) as the SE and CNF additive to form
the SSC and a potential range of 1.4–1.9 V versus Li+/Li
was chosen, where LPSC does not exhibit significant elec-
trochemical degradation.39,40 Therefore, the mechanical
degradation effect can be decoupled from the chemical
reactivity. We find that LTO can be stably cycled at pres-
sures as low as 0.1 MPa, which is a reasonable pressure
for practical pouch cell applications without external pres-
sure configurations, while significant fading was observed
for Nb2O5 at low stack pressures due to contact loss. Voids
form inside the cathode, which severely reduces the capac-
ity retention. A zero-strain cathode or a buffer layer is
therefore required to achieve sustained cycling for SSCs at
low stack pressures.

2 RESULTS AND DISCUSSION

Nb2O5 and LTO were incorporated into SSCs with LPSC
and CNF at a volume ratio of 10:10:1, as described in
the Supporting Information. As shown in the scanning
electron microscope (SEM) images in Figure S1, the par-
ticle sizes of Nb2O5 and LTO were comparable. The
electrochemical stability of LPSC between 1.4 and 1.9 V
was investigated by galvanostatic cycling of an SSC com-
posed of LPSC and CNF. The specific capacity was close
to 0 mAhg−1, indicating that no significant degradation
of LPSC occurs in this voltage range. The X-ray pho-
toelectron spectra (XPS) before and after 100 cycles in
Figure S2 showed no new compounds were generated dur-
ing cycling, further confirming the stability of LPSC, in
agreement with previous reports.39,40
In order to avoid the effect of the counter electrode

and focus on the investigation of the working electrode,
a custom-designed three-electrode cell was utilized with
the LTO/LPSC or Nb2O5/LPSC composite as the working
electrode, prelithiated LTO/LPSC composite as the counter
electrode and Li metal as the reference electrode, with
further details in the Supporting Information. Prelithiated
LTO was selected as the counter electrode because it had
a constant volume during cycling and provided negligi-
ble stress against the working electrode. Electrochemical
cyclingwas carried out at 60◦C to promote ionmobility and
to ensure high utilization of the CAM. The ionic conduc-
tivity of LPSC at 60◦C increased from 5.3 to 7.7× 10−3 S/cm
between 0.1 and 50MPa (Figure S1D,E). The apparent con-
ductivity increased with higher stack pressure because of
the better contact between LPSC and the current collector
surface. The same trend was reported at room tempera-
ture previously.41 Although the ionic conductivity of LPSC
changed with stack pressure, even at 0.1 MPa stack pres-
sure, it is still high enough for the full utilization of the
CAM for the selected electrode loading and rate.42
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LIU et al. 723

F IGURE 1 Electrochemical behavior of the Nb2O5/LPSC composite electrode under different stack pressures. (A). In-situ X-ray
diffraction (XRD) of Nb2O5 at different stages of lithiation (1.9 and 1.4 V vs. Li+/Li). The peaks marked with * are from the PTFE inside the
electrode. (B) 1st cycle voltage profiles and (C) Coulombic efficiency of the composite electrode under various stack pressures. The efficiency
is defined as the ratio of total charge capacity and the discharge capacity between 1.4 and 1.9 V. (D) Schematic of the Nb2O5/LPSC particle
interface over the 1st cycle under high and low stack pressures.

Figure 1 shows the relation between the 1st cycle of
Nb2O5/LPSC composite electrodes and the stack pressures.
Nb2O5 was pre-treated to achieve the α phase with the
details in the Supporting Information, which is confirmed
by the X-ray diffraction (XRD) shown in Figure S3. The in-
situ XRD profiles from Nb2O5 over discharge were tested
to calculate the volume change of the Nb2O5 (Figure 1A).
Based on lattice parameters matching and calculation, the
volume expansion was 3.8% and was anisotropy (Table S1).
The volume expansion was lower than the 6% reported
in literature37,38 because the Nb2O5 in this work was not
fully lithiated in our selected voltage window. The 1st cycle
voltage profiles of the Nb2O5/LPSC composite electrode at
various stack pressures are shown in Figure 1B. Compared
with the discharge capacities, the loss of charge capaci-
ties at low pressures was more severe. For cells discharged
at stack pressures ≥ 0.5 MPa, the 1st discharge capacities
were ∼156 mAh/g, while for cells at 0.1 MPa, the capac-
ity was reduced to 135 mAh/g. In the 1st charging process,
the cells with ≥ 2 MPa stack pressures had similar capac-
ities of 127 mAh/g, while cells at 1, 0.5, and 0.1 MPa had
reduced capacities of 121, 98, and 65 mAh/g, respectively.

Figure 1C shows the first cycle Coulombic efficiency of the
Nb2O5/LPSC cathode at different stack pressures, which
is defined as the percentage of discharge capacity recov-
ered on charging on cycling between 1.4 and 1.9 V. The
efficiency was over 95% for stack pressures ≥ 1 MPa but
reduced to only 62% at 0.1 MPa. The high stack pressure
can hold the Nb2O5/LPSC contact during charge and dis-
charge, while at a lower stack pressure, the contact was
reduced due to the volume change of Nb2O5. This resulted
in the porous interface, void formation, and incomplete
delithiation in the Nb2O5 particles (Figure 1D).
In contrast to Nb2O5 with 3.8 % volume change, LTO,

which has similar working potentials but no volume
change over lithiation, showed an approximately constant
charge capacity of 154 mAh/g (Figure 2A) and a 1st cycle
Coulombic efficiency of approximately 98% (Figure 2B)
at stack pressures ranging from 0.1 to 50 MPa. The role
of stack pressure is to maintain the micro-scale integrity
and physical contact of a high fraction of SE/CAM parti-
cle interfaces, where otherwise expansion or contraction
of the CAMwould lead to debonding and/or cracking, and
ionic or electronic isolation of the CAM. The stable LTO
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724 LIU et al.

F IGURE 2 Electrochemical behavior of the Li4Ti5O12/Li6PS5Cl (LTO/LPSC) composite electrode at different stack pressures. (A) 1st
cycle voltage profiles and (B) Coulombic efficiency of the composite electrode under various stack pressures. The efficiency is defined as the
ratio of total charge capacity and the discharge capacity between 1.4 and 1.9 V. (C) Schematic of the LTO/LPSC particle interface over the 1st
cycle. The particle interface was stable regardless of stack pressures.

particles protect the CAM/SE interface from delamina-
tion and ensure good contact during charge and discharge,
evenwithout external pressures, as illustrated inFigure 2C.
The cyclability of Nb2O5-based composite electrodes

at different stack pressures is shown in Figure 3A. The
voltage profiles of the 1st and 30th cycles are shown in
Figure 3B,C. At stack pressures between 2 and 50 MPa,
the charge capacity retention was constant at 96 % over
30 cycles. However, at lower stack pressures of 0.1–1 MPa,
the capacity retention was much reduced. This difference
suggested that a stack pressure ≥2 MPa was required to
maintain an intimate CAM/SE interface during cycling.
For the cell cycled at 0.1MPa, theCoulombic efficiencywas
90% in the 2nd cycle and gradually increased to 98% in the
following cycles, while for the cell cycling under a higher
stack pressure, the Coulombic efficiency was already over
98% from the 2nd cycle (Figure S14A). The XPS profiles
of LPSC in the SSC before and after 30 cycles (Figure S5)
confirmed the chemical and electrochemical stability of
the Nb2O5/LPSC interface within the voltage range used.
Therefore, the capacity decay under low stack pressures
for the Nb2O5-based SSC may be ascribed principally to
the mechanical degradation. The efficiency of the cell at
0.1 MPa after the 2nd cycle (>90%) was much higher than

the 1st cycle (62%), indicating that themost severemechan-
ical degradation happened in the 1st cycle and it became
slower from the 2nd cycle. To investigate the microstruc-
tural changes in the SSC, cross-sectional SEM images of
the Nb2O5/LPSC composites before and after cycling are
shown in Figure 3B–Dwhere cross-sections were prepared
by plasma focused-ion beam (P-FIB). The CAM and LPSC
were differentiated as the lighter and darker grayscale
in the images respectively, with black areas representing
voids. The upright curtain-shaped lines in the FIB-SEM
images were formed by the ion beam for milling. This is
due to the soft nature of LPSC, and the lowest limitation
of ion beam current. The bright dots were because of the
remaining high temperature on the particles after milled
by the ions.
Before cycling, the pristine SSC in Figure 3D shows

that Nb2O5 and LPSC particles formed continuous phys-
ical contact throughout. The composite electrode cycled at
0.5 MPa developed significant voiding from inter-particle
cracking, which ismarked as the dashed lines in Figure 3E,
whereas the electrode cycled at 5 MPa maintained a much
higher fraction of contacting interfaces and comparatively
low incidences of cracking (Figure 3F). The different mor-
phologies shown by the FIB-SEM are in accord with the
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LIU et al. 725

F IGURE 3 Cycling behaviors and scanning electron microscope (SEM) before and after cycling of Nb2O5 solid-state composite cathode
(SSC). (A) Cycling behaviors of Nb2O5 at different stack pressures. (B, C) Voltage profiles of the Nb2O5 on 1st and 30th cycles at 0.1 (B) and 50
(C) MPa stack pressures. (D–F) Cross-sectional SEM of the SSCs before and after cycling: (D) Pristine Nb2O5/LPSC cathode. (E) Nb2O5/LPSC
cathode after 30 cycles at 0.5 MPa. (F) Nb2O5/LPSC cathode after 30 cycles at 5 MPa. In Figure D–F, the cracking/empty space between
particles was marked by yellow dashed lines.

low coulombic efficiency and poor capacity retention at
lower stack pressures and suggest a stack pressure of
no less than 2 MPa is needed to maintain an intimate
and effective interface between Nb2O5 and LPSC during
cycling.
In comparison, the LTO/LPSC SSC had a stable capacity

retention of 100% over 30 cycles even at a low stack pres-
sure of 0.1 MPa (Figure 4A), and the Coulombic efficiency
maintained > 99% over many cycles under different stack
pressures, as shown in Supporting Information Figure
S14b. The voltage profiles of the 1st and 30th cycles of LTO
at 0.1 MPa are shown in Figure 4B. Figure 4C,D shows
the cross-sectional SEM images of LTO/LPSC SSC before
and after 30 cycles at 0.1 MPa. The microstructure is min-
imal changed, with no clear evidence of cracking after
cycling. A comparison of the post-cycle morphologies of
the SSC with Nb2O5 and LTO indicated that the SE/CAM
interface delamination was caused mainly by the CAM
volume change, especially at a low stack pressure. The
results suggest that whole capacity degradation by inter-
facial debonding and cracking can be partially mitigated
by stack pressures, and intrinsically low-volume change
materials provide a distinct advantage at low pressures.
This work indicated that the critical stack pressure is

related to the volume change ratio of the active mate-
rial. Here, we compared LTO with 0 strain and Nb2O5
with 4% expansion. Other works reported that for large-

volume changing electrode material like Silicon, a much
higher stack pressure of 50–120 MPa was used for stable
cycling.43,44 Therefore, the volume change ratio is a deter-
mining factor of the stack pressure. The elasticity of the SE
would also affect the cycling stability of the composite elec-
trode. Lower mechanical strength of the electrolyte results
in less contact loss and higher stability.45 It was also pre-
dicted by modeling that a lower stiffness SE has a better
tolerance of the active materials volume change.46 How-
ever, the applied stack pressure in these works was not
carefully controlled and reported in the mentioned works.
The activematerialmechanicalmodulus’ effect on the crit-
ical stack pressure is not clear yet, because the different
cathode materials have different specific capacity and vol-
ume expansion ratios and are hard to compare and find the
effect of the different modulus. The critical stack pressure
could also be affected by other variables, including the par-
ticle sizes and conductivities of active material and solid
electrolytes, the thickness of the cathode layer, and the uni-
formity and densification of the composite electrode. The
quantitative description is still an open question to solve.
In conclusion, the mechanical stability of two model

composite cathodes with 4% volume change (Nb2O5) and
with negligible volume change (LTO) has allowed the
decoupling of the chemical and mechanical contributions
to capacity degradation in solid-state battery cathodes.
Cells cycled at various stack pressures showed that the
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F IGURE 4 Cycling behavior and scanning electron microscope (SEM) before and after cycling of Li4Ti5O12 (LTO) solid-state composite
cathode (SSC). (A) Cycling behavior of LTO at 0.1 MPa stack pressure. (B) Voltage profiles of the LTO in the 1st and 30th cycles at 0.1 MPa
stack pressure. (C, D). Cross-sectional SEM of the SSCs before and after 30 cycles at 0.1 MPa: (C) Pristine LTO SSC. (D) LTO SSC after 30
cycles at 0.1 MPa. The interface between LTO and SE was marked with green dashed lines.

first-cycle efficiency and capacity retention ratio over
cycling of Nb2O5 were reduced at a stack pressure of
less than 2 MPa, while LTO maintained almost 100%
first-cycle efficiency and capacity retention even at a
low stack pressure of 0.1 MPa. Volume changes of the
CAM caused CAM/SE microscopic interfacial delamina-
tion, which could be prevented by applying high stack
pressures or substituting with an intrinsically low vol-
ume change CAM. This work has helped to clarify the
relationship between cathode volume change, stack pres-
sure, and capacity retention. These conclusions bring to
the forefront the interesting materials discovery challenge
for identifying new cathode materials with both high
energy density and low volume change ratio for realistic
solid-state batteries.
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