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A Novel Neural Network-based Multi-objective
Evolution Lower Upper Bound Estimation Method

for Electricity Load Interval Forecast
Yaoyao He, Member, IEEE, Jianhua Zhu and Shuo Wang, Member, IEEE

Abstract—Currently, an interval prediction model, lower and
upper bounds estimation (LUBE) which constructs the prediction
intervals (PIs) by using the double outputs of the neural network
(NN) is growing popular. However, existing LUBE researches
have two problems. One is that the applied NNs are flawed:
feedforward neural network (FNN) cannot map the dynamic
relationship of data and recurrent neural network (RNN) is
computationally expensive. The other is that most LUBE models
are built under single-objective frame in which the uncertainty
cannot be fully quantified. In this paper, a novel wavelet neural
network with direct input-output links (DLWNN) is proposed
to obtain PIs in a multi-objective LUBE frame. Different from
WNN, the proposed DLWNN adds the direct links from the
input layer to output layer which can make full use of the
information of time series data. Besides, a niched differential
evolution non-dominated fast sort genetic algorithm (NDENSGA)
is proposed to optimize the prediction model, so as to achieve a
balance between estimation accuracy and the average width of
the PIs. NDENSGA modifies the traditional population renewal
mechanism to increase population diversity and adopts a new
elite selection strategy for obtaining more extensive and uniform
solutions. The effectiveness of DLWNN and NDENSGA is eval-
uated through a series of experiments with real electricity load
data sets. The results show that the proposed model has better
performance than others in terms of convergence and diversity
of obtained non-dominated solutions.

Index Terms—Short-term load interval prediction, uncertainty
forecasting, wavelet neural networks, multi-objective optimiza-
tion.

I. INTRODUCTION

SHort-term load forecasting of power systems can not
only help operators to reduce costs, but also assist the

power market to save momentous materials for environmental
protection. Therefore, it has been increasingly essential for a
reliable power system operation in the long time. However,
load forecasting has presented a huge challenge in which the
demand for forecasting reliability has greatly increased along
with the continuous development of renewable energy and the
growing electrical load demand. To address this huge chal-
lenge, many researchers have proposed different methods to
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implement load forecasting, mainly including point forecasting
and probabilistic forecasting.

Load forecasting approaches with point prediction had been
dominating the research for a long time, which provides an
expected value of electricity load. In this category, statistical
models (such as autoregressive moving average (ARMA)) [1]
had been widely used in early days. Then, machine learning
approaches (such as multi-layer perceptron (MLP), recurrent
neural networks (RNN) and long short-term memory neural
networks (LSTM)) [2], [3] gradually became mainstream
benefiting from stronger nonlinear capabilities. In particular,
ensemble learning [4] received great attention which combines
data decomposition techniques, statistical methods and ma-
chine learning methods. Although these statistical and machine
learning methods can provide future power load as a guidance,
forecasting accuracy is still a major issue due to the uncertainty
and dynamics of power systems. Hence, quantifying such
uncertainty in forecasting has become extremely vital.

To take consideration of power load uncertainty, the proba-
bilistic forecasting approaches that construct probability den-
sity functions, prediction intervals (PIs), and quantiles [5],
[6], are proposed in recent years. From the perspective of
power system operators, interval forecasting can simply and
effectively assist them in decision making. Thus, constructing
PIs plays a significant role in uncertainty forecasting.

Traditional parametric interval prediction models like fuzzy
inference, Gaussian process and Bayesian method [7], [8] have
to come up with a prior assumption about the shape of the
error distribution in which the parameters of distribution are
estimated based on historical data. The accuracy is greatly
affected by the effect of relevant numerical prediction. Then,
Khosravi et al. [9] proposed the lower and upper bound
estimation (LUBE) method through nonlinear computation of
the neural network with double outputs. Without minimizing
the sum of squared errors or weight decay cost function, it
outputs the PI with a high coverage probability and a small
width. The accuracy of this method is greatly affected by the
choice of NN. However, in the current research on LUBE,
the applied NN models are flawed. Quan et al. [10] used
feedforward neural networks (FNN) in which each neuron
can only connect to the neurons in the previous layer. In
spite of FNN’s great nonlinear processing capability, it does
not take into account the inherent relationships between data,
leading to the issue that the accuracy of time series forecasting
does not achieve the expectation. Therefore, algorithms using
recurrent neural network (RNN) [11], [12] were proposed. Its
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interrelated structure leads to better prediction than FNN-based
algorithms in time series forecasting, but they are extremely
computationally expensive. To overcome these problems, Pao
et al. [13] proposed a random vector functional link net-
work (RVFL). In this network, the input weights and hidden
nodes are all randomly selected. Its structure is similar to
the conventional FNN, the only difference is that the RVFL
allows the direct input-output links. The direct input-output
links of RVFL can map the dynamic input-output relationship
preferably in time series prediction. Ren et al. [14] verified that
direct input-output links can effectively increase the accuracy
of power load forecasting. But the randomization of input
weight and hidden node only considers empirical risk, which
may lead to the problem of over-fitting.

As a type of FNN, wavelet neural network (WNN) [15]
combines the merits of artificial neural network (ANN) and
wavelet analysis. It possesses the time-frequency local analysis
ability and fast convergence speed. In previous studies, WNN
has been proven to be successfully applied to point forecasting
[15] and interval prediction [16]. Different from previous
studies, this paper proposes a wavelet neural network with
direct input-output links (DLWNN), as the base model for
multi-objective LUBE. The proposed DLWNN changes the
original network structure of WNN, increasing the direct links
from the input layer to the output layer. In the face of complex
time series data, the input-output links of DLWNN can directly
transmit the characteristics of the time series data to the output
layer through weighting on the premise of the advantage of
wavelet analysis, so as to make full use of the information
of time series data and improve the forecasting accuracy.
Furthermore, existing researches on WNN [15], [16] focus on
its application to single-objective problems, while the DLWNN
is built in a multi-objective LUBE frame to obtain high quality
PIs.

To the best of our knowledge, deep neural networks (DNNs)
have achieved unprecedent success in time series forecasting
due to the strong representation ability. For example, Li et al.
[17] proposed a temporal convolutional network (TCN) based
hybrid PV forecasting framework for enhancing hours-ahead
utility-scale PV forecasting. Lu et al. [18] proposed a non-
crossing sparse-group Lasso-quantile regression deep neural
network to address electricity load forecasting. But as Ref
[19] discussed, using multi-objective optimization algorithms
to optimize DNNs is extremely complex and time consuming.
Therefore, it is an important challenge to balance the training
effect and speed of the model. In this paper, WNN is extanded
as a multi-hidden layer deep learning framework and the
dropout theroy is used to improve its generalization. This deep
wavelet neural network (DWNN) is used to compare with
the proposed DLWNN on LUBE. In addition, the ablation of
DWNN is studied from the aspects of hidden layer number
and dropout probability.

The PIs constructed by LUBE have two objectives, the
coverage probability and the width. The former represents
the probability that the true values are covered by the PIs,
while the latter indicates the average width between the
upper and lower bounds of PIs. When more actual values are
covered by the PIs, the coverage probability is higher, but

obviously the widths of the PIs increase. So, the two indices
are in conflict with each other. These objective functions are
generally nonanalytic and non-differential. But the traditional
weight correction method like gradient descent (GD) is only
implemented under the condition that the loss function is dif-
ferentiable. Thus, the single and multi-objective optimization
algorithms are gradually used by researchers to optimize the
NN in LUBE. In recent years, this multi-objective optimization
problem of LUBE is generally handled in two ways, one is
to transform the two objectives to a single-objective problem
through penalty terms or constraints, and the other is to
use a multi-objective optimization algorithm to obtain a set
of non-dominated solutions. The method of converting two
objectives into a single objective has gained the attention of
many researchers because it can obtain reasonable results at
a fast speed and is simple to implement. Quan et al. [10]
proposed a method to minimize the width of PIs with coverage
probability restraints. Furthermore, Quan et al. [20] introduced
a novel cost function that assigns weights to two objectives.
Both of the above methods use an aggregation method to link
the two evaluation indices together. The quality of the built
interval depends heavily on the aggregation approach, but it is
hard to determine which way of aggregation is more suitable.

In the multi-objective framework, two objectives are syn-
chronously optimized for a set of Pareto-optimal solutions
and the trade-off solution is selected among them. Different
from existing multi-objective learning algorithms [21], [22],
LUBE-based multi-objective learning method simultaneously
optimizes the accuracy (coverage probability or estimation
error) and dimension (width) of PIs instead of reducing the
training error of the cost function. Ak et al. [23] employed
the LUBE method to build PIs based on multilayer perceptron
neural network (MLP) in a multi-objective framework. Li et
al. [24] proposed a knee-based lower upper bound estimation
method which uses non-dominated fast sort genetic algorithm
II (NSGA II) to train a NN and knee selection criterion
to select the best trade-off solution. Various heuristic algo-
rithms can be capitalized on multi-objective problems, such
as evolutionary algorithms (EA) [25], [26], particle swarm
optimization (PSO) [27], differential evolution (DE) [28], [29].
EA represents a special class of evolutionary algorithms that
uses techniques inspired by evolutionary biology. Although it
can rapidly provide solutions to both discrete and continuous
problems, its local search ability is still weak. In face of the
flaws of these algorithms, this paper, based on NSGA II [25],
proposed a novel niched differential evolution non-dominated
fast sort genetic algorithm (NDENSGA). It added the adaptive
differential evolution variation operation before the population
cross operation to expand the search scope. To increase the
closeness between iterations of the population, the merging
mechanism of the population are adjusted, that is, the individ-
uals generated by the adaptive difference evolution variation
and cross operation of the current iteration were merged with
the individuals generated by polynomial variation operation
of the previous iteration. This also proposed a modified elite
selection strategy for increasing the universality of the solution
set. All the proposed methods have been assessed by the case
study with a real-world electricity load.



HE et al.: A NOVEL NN-BASED MOELUBE METHOD FOR ELECTRICITY LOAD INTERVAL FORECAST 3

To sum up, the major contributions of this paper are as
follows:

1) To overcome the problems that are the computational
complexity of RNN and the absence of dynamic nature of
FNN in LUBE, a novel DLWNN with PIs outputs is proposed
for LUBE, which is faster and more accurate in constructing
PIs of power load data.

2) To increase local search capability and population di-
versity, a novel NDENSGA is presented to optimize the new
LUBE model.

3) DLWNN and NDENSGA are firstly employed in LUBE
to construct PIs of power load data.

4) The obtained experiment results show that the solutions
obtained by DLWNN and NDENSGA perform best compared
with conventional benchmark NNs and optimization algo-
rithms, and the quality of constructed PIs are significantly
improved compared with other interval prediction models.

5) The disturbance and multi-step experiment results indi-
cate the strong robustness of the proposed model.

6) The online NDENSGA-optimized DLWNN is success-
fully designed and its feasibility is verified in real data.

The rest of this paper is arranged as follows. Section
II introduces the basic knowledge of PIs. In Section III,
the proposed DLWNN-based LUBE model, NDENSGA, the
implementation of multi-step forecasting and online prediction
are elaborated. The electricity load forecasting case studies
are presented in Section IV. Finally, Section V draws the
conclusion of this paper.

II. PRELIMINARIES

The evaluation metrics of PIs fall into the following two
categories. One is the accuracy that represents whether the
uncertainty of the data is effectively quantified. The other is the
width of intervals. For power system operators, narrower PIs
means more valuable information. Main assessment metrics of
PIs are introduced in this section.

A. Prediction Interval Coverage Probability

Prediction interval coverage probability (PICP) represents
the prediction quality, indicating whether the future power load
is within the lower and upper bounds. Therefore, a higher PICP
indicates better forecasting intervals. It can be mathematically
defined as follows [30]:

PICP =
1

N

N∑
i=1

αi (1)

where N is the number of test data samples, and αi is a binary
value described as follows:

αi =

{
1, yi ∈ [Li, Ui]
0, yi /∈ [Li, Ui]

(2)

where yi is the target of test samples, Li and Ui are lower and
upper bound of the PIs. From most studies, PICP is usually
set to be higher than a pre-defined confidence level, and the
incongruent PIs should be cast away.

B. Prediction Interval Normalized Average Width

Although PICP is a crucial indicator for forecasting inter-
vals, it is easy to obtain an extremely high PICP with an
amply wide width. Too wide intervals contain little useful
forecasting information, becoming meaningless in the worst
case. So, prediction interval normalized average width [31]
(PINAW) is defined to measure the width of PIs and calculated
as follows:

PINAW =
1

N ·W

N∑
i=1

(Ui − Li) (3)

where W means that the difference between the target maxi-
mum and minimum.

C. Prediction Intervals Estimation Error

Binary variables of PICP that express whether the test
samples are in the lower and upper bounds. In addition,
many forecasting intervals researches based on the PICP
index mainly focused on the coverage probability and ignored
the risk outside the interval consequently. Thus, Zhou et al.
[32] introduced a novel evaluation metric, called prediction
intervals estimation error (PIEE), to quantify the forecasting
error of PIs. PIEE is defined as follows:

PIEE =
1

N ·W

N∑
i=1

Ei (4)

where Ei is described as follows:

Ei =

 (yi − Ui), if yi ≥ Ui

0 if Li < yi < Ui

(Li − yi), if Li ≥ yi

(5)

Compared with PICP, PIEE is better at estimating errors of
PIs, but loses the aspect of the width of PIs. In the actual
operation of the electricity market, the situation of a greatly
low PIEE with extremely large PINAW is faced frequently.
To achieve a small PI width and a low forecasting error, PIEE
(accruacy) and PINAW (width) are simultaneously optimized
in a multi-objective framework for high-quality PIs in this
paper.

III. DLWNN INTERVAL PREDICTION MODEL
BASED ON NDENSGA

Getting high quantity PIs is the main goal in the field of
uncertainty forecasting. LUBE is widely used for constructing
PIs for its simplicity and computational efficiency. It often
works with neural networks and optimization algorithms. In
this section, the novel DLWNN prediction model based on
NDENSGA is presented.

A. Wavelet Neural Network with Direct Input-Output Links

Researchers usually recommend single hidden layer feed-
forward network (SLFN) when solving regression and classi-
fication problems because of its efficiency and prospective per-
formance. The nonlinear mapping between inputs and outputs
depends largely on the activation function of hidden neurons.
Traditionally, the parameters of SLFN are adjusted by the
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gradient of the loss function. However, in LUBE, nonanalytic
objective functions make this approach infeasible. The param-
eters of NN are optimized by the meta-heuristic algorithm,
the structure and activation function of NN becomes more
important. Unfortunately, this kind of architecture of SLFN
cannot take full advantage of the historical data. Therefore,
the RVFL [13] model, in which the input-hidden layer weights
and the number of hidden nodes are randommized, is noticed.
Compared with the traditional SLFN, its structure increases
the links from the input layer to the output layer. The input-
output links of NN can improve the generalization ability by
nonlinear transformation of the original features of the data
and make better use of the dynamic information existing in the
data. The randomization method is very effective in solving
the problem that the traditional NN cannot converge globally
when propagating back. But it is inapplicable in LUBE.

Based on the above situations, this paper proposes a novel
neural network model called wavelet neural network with
direct input-output links (DLWNN) which employs the direct
input-output links in WNN for LUBE. Compared with the
Fourier transformation, wavelet analysis can better analyze the
local features of signals through the transformation of wavelet
basis functions. DLWNN takes the wavelet basis function as
the transfer function of the hidden layer nodes can well capture
the characteristics of time series. In addition, the input-output
links are able to solve the structure flaw of WNN. The structure
of DLWNN is a fully connected single hidden layer wavelet
neural network with direct input-output links as shown in
Fig. 1.

.
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Output 
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Output 
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.
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Input Layer

Hidden Layer

Output Layer
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Fig. 1. The structure of DLWNN

In the input layer, each neuron xi, i ∈ {1, 2, ...,m} repre-
sents a feature of the input vector and passes not only to the
hidden layer neurons but also to the output layer neurons. Each
hidden layer neuron hj , j ∈ {1, 2, ..., l} calculates nonlinear
weighted values of the input layer:

hj = f


m∑
i=1

wijxi − bj

aj

 j = 1, 2, ..., l (6)

where m is the number of input layer neurons, l is the number
of hidden layer neurons, wij expresses the weight from the
input layer to the hidden layer. Based on DLWNN, bj is the
shift factor and aj is the scalability factor of wavelet basis
function. f(·) is the wavelet basis function defined as follows:

f = cos(1.75x)e−x2/2 (7)

The two output neurons Ok , k ∈ {1, 2} , are the weighted
sum of the outputs of the hidden layer and the outputs of the
input layer which can be computed as follows:

Ok =

l∑
j=1

wjkhj +

m∑
i=1

wikxi (8)

where wjk is the weight from the hidden layer to the output
layer and wik means the weight from the input layer to the
output layer.

B. Niched differential evolution non-dominated fast sort ge-
netic algorithm

In order to optimize PIEE and PINAW concurrently, this
paper searches for the optimal parameter combination ω∗

of DLWNN in a multi-objective framework. The objective
function is as follows:

Objectives : Finding optimal ω∗ to
Min PIEE(ω∗)
Min PINAW(ω∗)

Constraints : PINAW(ω∗) > 0
NSGA II [25] has been used in the LUBE model because of

its fast convergence and low computation complexity. But it
controls the process of parental crossover and variation accord-
ing to fitness values, which leads to the decline of local search
ability and insufficient diversity of the population. Meanwhile,
the mutation vector of differential evolution algorithm [28]
generated by parent difference vector can improve the effect
of approaching the optimal solution set. Therefore, based on
NSGA II, this paper proposes the NDENSGA in which the
adaptive differential evolution mutation operation is added
before the crossover operation. To expand the search scope
and increase the connection between population iterations,
NDENSGA integrates the individuals generated by adaptive
difference evolution variation and crossover of the current it-
eration with the individuals generated by polynomial variation
of the previous iteration. The adaptive differential evolution
mutation operation can be defined as follows:

Vi(It) = q·bestX(It−1)+q·Xi(It)+F ·(Xr1(It)−Xr2(It))
(9)

where It is the current iterative number,Xi(It) , Xr1(It) ,
Xr2(It) respectively represent the three individuals of the
It−th generation population and i ̸= r1 ̸= r2, Vi(It)
indicates the individual for the It-th generation self-adaption
differential evolution variation population. It is different from
the traditional differential evolution algorithm because our
algorithm uses bestX which is the highest non-dominant rank
and largest crowding degree individual in the previous gen-
eration. The function of bestX is to optimize the population
in the direction of the target. Both q and F are decreasing
adaptive parameters which can be calculated by the following
equations:

q =
MaxIt− It

MaxIt
(10)

where MaxIt represents the maximum number of iterations.

F =
(Fmax − Fmin) · (MaxIt− It)

MaxIt
+ Fmin (11)
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where the values of Fmax and Fmin are the maximum and
minimum of inertia weights.

In addition, NDENSGA introduces an elite selection strat-
egy [33] which can be summarized as the following steps:

1) Assuming that the sorted population is Pu. The subpop-
ulation of Pu is Pfst, in which the value of non-dominant
rank is 1. The population quantity of Pfst is npop , and the
predetermined population number is pop. If npop ≤ pop, the
new population should take the first pop individuals of Pu.
Oppositely, if npop > pop , the Euclidean distances between
individuals are calculated firstly in Pfst which can be defined
as follows:

E(i, j) = E(j, i) =

√√√√ n∑
t=1

(yit − yjt)
2 (12)

where i and j are individuals in Pfst , n means the number
of targets, yit represents the tth target values of the individual
i and yjt is in a similar way.

2) According to (12), a Euclidean distance matrix E and
E(i, i) = 0, i = 1, 2, ..., npop can be obtained. For each
individual i (i = 1, 2, ..., npop), the minimum value of E(i, j)
(j = 1, 2, ..., npop, i ̸= j) is {m1i}(i = 1, 2, ..., npop). Then
the minimum value m1k1

in {m1i}(i = 1, 2, ..., npop) should
be found and the individual k1 is removed.

3) For each individual i (i = 1, 2, ..., npop), finding the
minimum value {m2i}(i = 1, 2, ..., npop) in E(i, j) (j =
1, 2, ..., npop, i ̸= j) except {m1i}(i = 1, 2, ..., npop). Then,
the minimum value m2k2

in {m2i}(i = 1, 2, ..., npop) should
be located and the individual k2 is removed.

4) Continue to remove individuals following 2) and 3) until
npop = pop.

C. Model Implementation

Based on DLWNN, the LUBE model is run to provide
future load PIs through the majorization of the NDENSGA.
The multi-objective framework is guided by PIEE and PINAW.
The model implementation flowchart is shown in Fig. 2 The
important steps are discussed below.

1) Dataset partitioning and preprocessing. To train the
forecasting model, the original dataset is divided into training
data and test data. The training data are further partitioned into
training and validation sets. The validation data is used to find
the best hyper-parameter setting of the model. The test data
are used to estimate the generalization ability of the model.
All the data are normalized to [0,1].

2) Model parameters initialization. Setting It as 1 and
P (It) represents the It−th generation population. In P (1),
the parameters of each individual (wij , wjk, wik, bj and aj)
are initialized as random numbers in [-1,1]. MaxIt, pop of
NDENSGA should also be predetermined.

3) Fitness value calculation. Each individual i of P (It) can
be deemed as a potential solution for DLWNN. Inputting the
training set into the DLWNN to obtain the PI through the
nonlinear weighted calculation. Then, the PIEE and PINAW
of each individual can be calculated.

4) Updating population. After the initial population P (1)
is randomly generated, the individuals of the population are

evolved towards the target functions. A variant population
P1(It) attached to DE is generated according to (9)-(11).

Then, select the parent population Ppar(It) from P (It) in
which two individuals are randomly selected and the one with
better non-dominant grade and crowing degree is kept. The
progeny population P2(It) is generated based on the analog
binary crossover which can be calculated by the following
functions:

C1(It) =

 0.5× [(1 + γ(It))X1(It)
+(1− γ(It))X2(It)] r1(It) < 0.5
X1(It) else

(13)

C2(It) =

 0.5× [(1− γ(It))X2(It)
+(1 + γ(It))X2(It)] r2(It) < 0.5
X2(It) else

(14)

γ(It) =

{
(2u(It))1/(φ+1) u(It) < 0.5
1/(2(1− u(It)))1/(φ+1) else

(15)

where X1(It) and X2(It) are the individuals of the It−th
generation parent population Ppar(It), C1(It) and C2(It) are
the offspring individuals. In addition, r1(It) and u(It) are
random numbers while φ is a parameter that needs to be set
in advance.

The next step is to integrate P (It) into P1(It) , P2(It)
and P3(It) (when It = 1 , P3(It) = P (1)) and sort this
new population based on the non-dominance ranks and the
crowding degrees. Here, P3(It) represents It−th generation
mutation population. The number of the new population is
usually larger than the preset population amount. Thereupon,
the elite selection should be implemented according to (14).
After this, a new population P (It+ 1) is created.

In the last step, a polynomial variation population P3(It+1)
based on the population Ph(It) which ranks highest in the
non-dominant level of P (It + 1) is evolved to improve
the search capability and increase the connection between
population iterations. P3(It+ 1) is defined as follows:

C3(It+ 1) =

{
X3(It) + ∆(It) r3(It) < 0.1
X3(It) else

(16)

∆(It) =

{
(2µ(It))1/(φ+1) − 1 µ(It) < 0.5
(1− 2(1− µ(It)))1/(φ+1) else

(17)

where X3(It) is the It−th generation parent individual in
Ph(It), C3(It+1) is the offspring individual for P3(It+1),
r3(It) and µ(It) are the random numbers.

5) population iteration. It = It+ 1.
6) Termination criterion. The training is terminated when

the current generation It is arriving at the maximum iteration
MaxIt in this work.

7) The constructed PIs for test data. When the training
has been completed, the optimal parameters of the DLWNN
model are obtained. Possessing this optimal forecasting model,
the model can easily construct PIs on test data. The relevant
metrics are calculated to evaluate the PIs quality.
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Algorithm1: NDENSGA
1: /*Population initialization, It represents the current generation

and P (1) represents the initial population*/
2: set It = 1 , Initialize population P (1)
3: /* Calculate the fitness value of the initial population*/
4: for i = 1 : populationsize(P (1)) do
5: Calculate the PIEE and the PINAW values for individual i by

(3), (6)
6: end for
7: /* Get the dominant relationship between individuals in the

initial population*/
8: for i = 1 : populationsize(P (1)) do
9: for j = i+ 1 : populationsize(P (1)) do
10: Compare the dominant relationship between individual

i and individual j
11: end for
12: end for
13: While It ≤ MaxIt do
14: /*Update population, fitness values are calculated for each

offspring population obtained*/
15: Get the differential evolution variation population

P1(It) according to (11), (12), (13)
16: Get the cross-progeny population P2(It)

according to (15), (16), (17)
17: /*Population union, P3(It) represents Itth

mutation population and it is P (It) when It = 1 */
18: Integrate P (It) with P1(It), P2(It) and P3(It)

to obtain Pu(It)
19: /*Dominance comparison*/
20: for i = 1 : populationsize(Pu(It)) do
21: for j = i+ 1 : populationsize(Pu(It)) do
22: Compare the dominant relationship between individual i and

individual j
23: end for
24: end for
25: /*Elite selection, Pfst(It) indicates the highest non-dominant

rank subpopulation of Pu(It), npop is the quantity of
Pfst(It), pop is the preset population number*/

26: while npop > pop do
27: Remove individuals of Pfst(It) according to (14), obtain

an elite population P (It+ 1)
28: end while
29: Generate mutation population P3(It+ 1) for next generation

accordingto (18), (19)
30: It = It+ 1
31: end while
32: output P (It)

D. Prediction implementation:single step and multistep fore-
casting

In short-term power load time series forecasting issues, due
to the day similarity of time series changing, the reference
value of load output in the forecasting day can be calculated
by using the load data in the same historical periods and the
adjoining dates according to the time correlation characteristic
[34]. In other words, the key of similar day forecasting is to
use a series of data at the same time points to predict the
value at the same time point in the future day. Moreover,
the direct multi-step prediction method [35] is implemented
in which the function, rather than the input set, changes
during the repetition process. The proposed network executes
iteratively for each time step. When historical load data
X = [x1, x2, ..., xj ] are selected as inputs, for a specific value
of k, k ∈ {1, 2...,K}, the k-th step estimation of the direct
strategy is the k-th step function map of inputs, i.e.,

[yuj+k, y
l
j+k] = F (x1, x2, ...xj), k ∈ {1, 2, ...K} (18)

where X = [x1, x2, ..., xj ] is the input sequence, yuj+k, ylj+k

are the k-th step estimations of upper bound and lower bound.

Fig. 2. Evolving DLWNNs in a multi-objective framework.

F () is the training process of DLWNN, j indicates the length
of input sequence, and K is the length of steps. When k is
equal to 1, it is a single step forecasting model. If the value
of k is greater than 1, it is a multi-step forecasting model.
This paper takes similar day forecasting method, the input
sequence [x1, x2, ..., xj ] represents the same time point from
day 1 to day j. Each step indicates one day, [yuj+k, ylj+k]
means estimations of PI of the same time point in day j + k.

E. Prediction implementation: online learning

In previous sections, the implementation of the model in
the offline state is introduced. However, in the actual scenario,
many power systems require real-time forecasting [36], [37].
For example, the Electric Reliability Council of Texas (ER-
COT) [38] offers a 1-hour ahead real-time locational marginal
price forecast, updated every 5 minutes. Furthermore, the
characteristics of the data may change. The offline learning-
based forecasting models which are trained only from the
training set may not be apply to the dataset outside training
set. For solving these problems, online learning [39] is a
learning-based method of training and updating, in which
the model receives data points sequentially and updates its
parameters incrementally based on the new data. Therefore, in
this paper, the proposed model is applied to online forecasting.
The proposed DLWNN is constantly trained to update the
prediction results in real time as the data progresses.

The specific approach is to add sliding window and tuning
module. Sliding window technique is known as one approach
for solving temporal changes. Each sliding window reads the
new data and discards the previous data. Given a time series
dataset {xj , yj

}, j = 1, 2, ..., J , xj is a vector composed of
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past loads and yj is the target value to be predicted. As with
batch processing, the n-th window is the data batch Bn that
includes the following data samples:

Bn = {xj , yj}, j = 1+S(n−1), 2+S(n−1), ..., L+S(n−1)
(19)

where S is the sliding steps, L is the window length, and S
must be less than or equal to L. Fig. 3 shows an example
(S=2, L=4).

The tuning module adapts the model hyperparameters to
new data in the online learning process. However, adjusting
the hyperparameters for each batch of data leads to long
computation time. A threshold for the solutions obtained from
each batch of data needs to be set. It is worth noting that only
non-structural parameters can be adjusted through the online
learning because such changes do not modify the structure
of the neural network. In this paper, the hyperparameter of
the proposed method is the number of iterations. The HV
of the Pareto solution obtained from each batch of data is
first calculated, and if it is less than 0.9, then the optimum
hyperparameter is picked from the given range using grid
search (GS) [40].

1 1{ , }x y 2 2{ , }x y 3 3{ , }x y 4 4{ , }x y 5 5{ , }x y 6 6{ , }x y 7 7{ , }x y 8 8{ , }x y 9 9{ , }x y 10 10{ , }x y

n=1
n=2

n=3

n=4

n=1
n

Sliding 

steps

S=2

n=2n

Overlap
n=44

Window 

length

L=4

Fig. 3. An example of sliding window of online learning
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convergence degree and training time of the algorithm.
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Fig. 5. The Pareto-optimal front received by the proposed prediction model
on two datasets. a) dataset 1. b) dataset 2.

IV. CASE STUDIES

To validate the effectiveness and efficiency of the proposed
LUBE model based on DLWNN, two real-world datasets of
electricity load are conducted in this section. Datasets are
introduced firstly, parameter settings of the model, and de-
termine the optimal structure of the proposed neural network.
Then, the experiment results of the proposed model are shown.
Lastly, the robustness analysis, multi-step forecasting and
online learning results of the proposed model are presented.

A. Data Sets

The case study 1 data come from the Australian Energy
Market Operator (AEMO) [41] which contains half-hourly
electricity load data (unit is MW) recorded in New South
Wales (NSW) and Queensland (QLD), Australia (48 points in
one day). Dataset 1 use the historical electricity load data of
AEMO in NSW which are from 1 January 2014 to 30 March
2014. The whole dataset is further divided into three subsets
for training, validation, and test. The training set accounts
for about 70% of the whole dataset, validation set and test
set severally occupy 15% of the entire dataset. To verify the
effectiveness of the proposed method in long data sets, The
load data from 1 January, 2014 to 30 June 2015 in QLD are
employed for dataset 2. Its three subsets partition is the same
as dataset 1.

Furthermore, to verify the validity of the proposed model
in online learning, the case study 2 uses actual electricity
load data (unit is MW) from German which are public in
European network of transmission system operator for electric-
ity (ENTSOE) [42]. This dataset includes 14484 points from
January 1, 2023 to May 31, 2023, with 15-min resolution. Be-
cause online learning methods adjust hyperparameters online
for each batch of data, there is no need to divide a validation
set for this dataset to pick hyperparameters. The original data
are divided into a training set and a test set in a 3:1 ratio.

B. Parameter Setting

Before estimating the weights and biases, the structure
of NN should be determined first. As the output includes
the lower and upper bounds, the number of output nodes is
set as 2. The number of input nodes represent the lag of
the historical load data and has a significant impact on the
prediction accuracy of the model. As discussed in section III-
D, similar day method is applied in case 1 to implement day-
ahead forecasting, which utilizes the same point in historical
data to forecast the current load point. Case 2 is applied to
validate the effectiveness of the proposed model for real-time
online prediction at a shorter period of 15-min in advance in
which the similar day approach is inappropriate to adopt. By
the trial and error in a large number of literature research [43],
[44], The number of input nodes for case 1 and case 2 are set
to 7 and 8 respectively.

In this paper, three other SLFNs including WNN, RVFL,
extreme learning machine (ELM) are used to compare with
DLWNN. The cross-validation method is applied for deter-
mining the number of hidden nodes. For the simplification
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of the model, the number of hidden nodes varies from 1-
10. To evaluate the performance of different Pareto-optimal
solutions caused by diverse hidden nodes, a widely used metric
hypervolume (HV) used. This index can measure the size of
the part of the target space that is dominated by the Pareto
optimal solution. Through the cross-validation, the optimal
numbers of hidden nodes of DLWNN, WNN, RVFL and ELM
on two datasets are shown in Table I. It is worth noting that
DLWNN and RVFL have an extremely low number of hidden
nodes. This is due to the fact that both DLWNN and RVFL
are SLFNs with direct input-output links, based on which
the final output of the NN consists of a superposition of the
mapping from the hidden layer to the output layer and the
mapping from the input layer to the output layer. Compared
to the traditional FNN, this approach obviously leads to a
significant reduction in the number of hidden nodes. These
links emulate the finite impulse response filter (FIR) [14] and
substitute for a portion of the hidden nodes, so the model does
not suffer from overfitting or underfitting, as demonstrated
by experimental results on subsequent test sets. This is also
consistent with the conclusion described in Ref [14] that direct
input-output links promote the NN more dependent on the
mapping between inputs and outputs, reduce training time and
increase prediction accuracy.

Regarding NDENSGA, the inertia decreasing weights Fmax,
Fmin in adaptive methods [45], φ in analog binary crossover
and polynomial variation operation and other parameters are
tabulated in Table I. Two conventional algorithms (NSGA II
and MOPSO) and are used as benchmarks. It is well known
that the population size pop and the number of iterations
MaxIt have a great impact on the degree and efficiency
of convergence. In this paper, we vary pop in [50:25:150]
to explore the impact of population size on the effectiveness
and efficiency of three algorithms. Similarly, MaxIt is varied
at [100:50:300]. To simplify the experiments, all algorithms
are used to optimize the DLWNN on dataset 1 of case 1
with different population size and iterations. Fig. 4 illustrates
the HV values and times of the algorithms for different
population sizes and iterations on validation set. It can be
clearly seen that when the population size rises to 100, the
increase in HV is minimal and even decreases on NDENSGA.
But the training time of three algorithms increases steadily.
The same situation occurs when the number of iterations is
200. Therefore, setting the population size and iterations to 100
and 200 for algorithms is a reasonable choice that takes into
account both the optimization effect and the iteration speed. In
addition, as in most existing studies [26], [28], the algorithms
are set to the same population size and iterations allowing for
a fairer comparison.

All the experiments of this paper have been run 30 times
by Matlab 2018b software on a PC with Intel Core i9-
11900K 11th generation CPU @ 3.50 GHz, 32 GB of DDR4
RAM @3200 MHz, and Windows 10 operating system. In
order to effectively compare the performance of the proposed
algorithm, a widely used HV metric was calculated for each
experiment with the reference point (1,1).

TABLE I
PARAMETERS FOR COMPARATIVE STUDY

Models Parameters description values
DLWNNM (m1,m2) the input nodes in two case studies (7,8)

WNN (hd1, hw1, hr1, he1) the optimal hidden nodes of four SLFNs in dataset 1 (1,4,1,8)
RVFL (hd2, hw2, hr2, he2) the optimal hidden nodes of four SLFNs in dataset 2 (1,9,2,10)
ELM O the output nodes 2

Fmax the maximum of ineritia weight 0.9
NDENSGA Fmin the minimum of ineritia weight 0.4

NSGA II φ distribution factor 1
MOPSO MaxIt the number of iterations 200

pop the preset population number 100

TABLE II
PIS CONSTRUCTION RESULTS WITH DIFFERENT PINCS IN THE TEST SET

OF TWO DATASETS

PINC PIEE PICP PINAW
0.0005 3.8801E-04 0.9380 0.2390
0.001 7.8745E-04 0.9112 0.2067

Dataset 1 0.0025 2.4471E-03 0.8392 0.1715
0.005 4.7355E-03 0.7789 0.1496
0.01 9.6231E-03 0.6298 0.1114

0.0005 4.7625E-04 0.9765 0.2510
0.001 9.6072E-04 0.9575 0.2200

Dataset 2 0.0025 2.3074E-03 0.8613 0.1511
0.005 4.3699E-03 0.8613 0.1511
0.01 9.1254E-03 0.7296 0.0995

C. Experimental Results

In the training process, through the iteration of NDENSGA,
a set of non-dominated solutions can be obtained. With these
solutions, a range of different PIs for the test set are con-
structed, providing more information for decision-making in
power system operation.

For a visual comprehending of the distribution of solutions,
Fig. 5 shows the Pareto-optimal fronts of the particular run,
where the obtained HV result is the closest to the mean value
on the test set of two datasets. What can be found is that
PIEE and PINAW conflict with each other. When reducing
the width of PIs, the forecasting estimation error is increased
due to more observed values being out of PIs, vice versa.
As shown in Fig. 5, unlike the single-objective framework,
the two intrinsically conflict indices are well balanced by the
multi-objective framework, which can provide more solutions
to meet the demands of power system operators.

It is significant that the actual power operation process is
generally prescribed to achieve the value which represents the
level of reliability. Therefore, the solution that is as low in
width as possible while the value of PIEE wirelessly approach-
ing this value can be selected. This value is usually called
prediction interval nominal confidence (PINC) and the PIEE
and PINAW should meet the following two requirements:

1) PIEE ≤ PINC
2) PINAW should be as small as possible
Therefore, according to different PINC values, the corre-

sponding solutions can be selected from the particular non-
dominated solutions of 30 runs where the obtained HV result
is the closest to the mean value on the test set. In Table II,
the corresponding solutions and calculated PICP in addition
to PIEE and PINAW with 5 different PINC values are shown.
The results obtained from these five PINC values can basically
meet the three requirements of the actual power system oper-
ation: 1) the high coverage with high width which means that
the real power load almost in the constructed interval but the
width of PIs is too large; 2) the low coverage with low width
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which represents that although the width of the constructed
PIs is very low, there are many real power loads outside the
constructed PIs; 3) the balanced coverage and width which
represents that the constructed interval can cover most of the
real power load and the width is not particularly large.

To achieve a balance of coverage and width, Figs. 6 and
7 plot the PIs construction results with the PINC of 0.001
of two datasets. Due to the excessive number of samples in
dataset 2, 1000 samples are selected to be displayed in Fig.
7 in order to better analyze the relationship between the PIs
and the true values. Whether in short or long datasets, the
upper and lower bounds of the constructed PIs can almost
cover all the target values which indicates that the proposed
prediction model is reliable. In addition, implying that the
proposed forecasting model can capture the dynamic feature
of electric power data well, both the upper and lower bounds
have a similar trend with the real load data. To sum up, the
proposed method can successfully construct high quality PIs
and provide more decision combinations for power systems.

TABLE III
p−values OF THE WILCOXON RANK SUM TESTS OF THE FIVE

ALGORITHMS FOR THE TEST SET OF TWO DATASETS AT THE SIGNIFICANCE
LEVEL α = 0.05. RESULTS WITH SIGNIFICANT DIFFERENCES ARE

HIGHLIGHTED IN BOLD

Dataset 1

NSGA II MOPSO CL-NSGA II PI-NSGA II
NDENSGA 2.93E-06 4.23E-07 4.47E-02 2.99E-11

NSGA II - 2.46E-02 2.87E-03 2.98E-11
MOPSO - - 2.74E-04 3.01E-11

CL-NSGA II - - - 2.89E-11

Dataset 2

NSGA II MOPSO CL-NSGA II PI-NSGA II
NDENSGA 4.61E-09 2.86E-08 9.06E-11 2.92E-11

NSGA II - 1.10E-01 7.28E-01 3.28E-11
MOPSO - - 1.65e-01 2.99E-11

CL-NSGA II - - - 2.14E-11

TABLE IV
COMPUTATIONAL RESULTS (HV) OF THE FIVE ALGORITHMS FOR THE

TEST SET OF TWO DATASETS. THE BETTER RESULTS ARE HIGHLIGHTED IN
BOLD.

Metric (HV)
Best Worst Average Median Std

Dataset 1

NDENSGA 0.9966 0.9936 0.9951 0.9952 9.14E-04
NSGA II 0.9964 0.9905 0.9932 0.9936 1.60E-03
MOPSO 0.9955 0.9784 0.9909 0.9919 4.30E-03

CL-NSGA II 0.9961 0.9846 0.9941 0.9949 2.32E-03
PI-NSGA II 0.8542 0.8037 0.8300 0.8296 1.12E-02

Dataset 2

NDENSGA 0.9975 0.9952 0.9969 0.9970 5.17E-04
NSGA II 0.9968 0.9659 0.9921 0.9935 6.40E-03
MOPSO 0.9968 0.9785 0.9940 0.9956 4.50E-03

CL-NSGA II 0.9960 0.9855 0.9942 0.9952 3.18E-03
PI-NSGA II 0.8566 0.8298 0.8439 0.8438 4.68E-o3

TABLE V
p−values OF THE WILCOXON RANK SUM TESTS OF THE FOUR NEURAL
NETWORK MODELS BASED ON NDENSGA FOR THE TEST SET OF TWO

DATASETS AT THE SIGNIFICANCE LEVEL α = 0.05. RESULTS WITH
SIGNIFICANT DIFFERENCES ARE HIGHLIGHTED IN BOLD

Dataset 1

WNN RVFL ELM
DLWNN 4.80E-04 1.56E-05 9.42E-05

WNN - 8.60E-01 4.92E-02
RVFL - - 4.35E-02

Dataset 2

WNN RVFL ELM
DLWNN 1.64E-09 1.18E-09 2.92E-11

WNN - 5.18E-02 4.20E-02
RVFL - - 9.01E-08

TABLE VI
COMPUTATIONAL RESULTS OF THE FOUR NEURAL NETWORK MODELS
BASED ON NDENSGA ON TWO DATASETS. THE BETTER RESULTS ARE

HIGHLIGHTED IN BOLD.
Metric (HV)

Best Worst Average Median Std

Dataset 1

DLWNN 0.9966 0.9936 0.9951 0.9952 9.14E-04
WNN 0.9960 0.9656 0.9921 0.9937 5.80E-03
RVFL 0.9958 0.9879 0.9933 0.9938 1.80E-03
ELM 0.9960 0.9692 0.9902 0.9929 6.40E-03

Dataset 2

DLWNN 0.9975 0.9952 0.9969 0.9970 5.17E-04
WNN 0.9968 0.9625 0.9884 0.9919 1.02E-03
RVFL 0.9967 0.9694 0.9936 0.9947 4.90E-03
ELM 0.9942 0.9821 0.9892 0.9891 3.00E-03

TABLE VII
DWNN WITH DIFFERENT HIDDEN LAYERS AND DROPOUT PROBABILITY

Hidden layers Dropout probability Optimal hidden nodes
Dataset 1 Dataset 2

DWNN-1 2 0.2 (7,9) (10,10)
DWNN-2 3 0.2 (8,9,8) (10,7,7)
DWNN-3 4 0.2 (6,6,10,9) (9,7,10,10)
DWNN-4 5 0.2 (9,10,10,8,10) (7,9,9,10,10)
DWNN-5 3 0.3 (8,9,10) (10,10,9)
DWNN-6 3 0.4 (7,7,9) (10,7,8)
DWNN-7 3 0.5 (8,6,8) (10,10,9)

D. Effectiveness of the optimization algorithm

In order to prove the effectiveness of the proposed algo-
rithm, two conventional algorithms including NSGA II and
MOPSO are used as benchmark algorithms. Furthermore,
two state-of-the-art algorithms, competitive learning-NSGA
II (CL-NSGA II) [32] and prediction interval-NSGA II (PI-
NSGA II) [24] are applied for comparison. CL-NSGA II pro-
motes the evolution of individuals towards the elite individual
for increasing the degree of convergence by introducing a
competitive learning strategy as follows:

Pa ← Pa + η ∗Rand(0, 1) ∗ (Ps − Pa) (20)

where η is the control parameter, Pa is randomly selected from
the present population and solution Ps is an elite individual.

PI-NSGA II alters the traditional dominance mechanism.
For solution p in PI-NSGA II, if its first objective f1 (which
is PIEE) satisfies f1 ⩽ 0.01, then let its non-dominance
rank increase, and vice versa. It selects preferentially the
individuals in the population with better interval coverage
probabilities. Both two algorithms have been proved to obtain
high-quality PIs in LUBE. All parameters are set as suggested
in the literature. The population size and number of iterations
are set to be the same as the other algorithms for a fair
comparison. All these algorithms are used to optimize the
DLWNN-based LUBE model and the value of HV metric is
calculated respectively on two datasets. In order to ensure that
the performance of the proposed NDENSGA is statistically
different from other algorithms, the Wilcoxon rank sum test
[46] at the significance level α = 0.05 is used. As shown
in Table III, the p−values between the proposed NDENSGA
and other algorithms are lower than 0.05 which also indicates
that the performance of NDENSGA is statistically significantly
different from other two algorithms. To further evaluate the
validity of the proposed algorithm, Table IV lists the best,
worst, average, median and standard deviation (std) values
of HV for three algorithms. As it can be seen, the proposed
NDENSGA has the best computational results in every respect
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Fig. 6. PIs construction results of DLWNN-based LUBE model in the test set of dataset 1 with PINC of 0.001
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Fig. 7. PIs construction results of DLWNN-based LUBE model in the test set of dataset 2 with PINC of 0.001

on two datasets which means that NDENSGA can obtain
more diverse and convergent solutions. In addition, with the
lowest standard deviation(std), the NDENSGA method has
better stability. The HV of CL-NSGA II is significantly higher
than conventional NSGA II, which also demonstrates the role
of competitive learning strategies in expanding population
diversity. However, PI-NSGA II has the lowest HV in both
datasets because it can only find solutions where PIEE per-
forms well, which greatly reduces the breadth and diversity
of the algorithm. To visually compare these algorithms, in
Fig. 8, the Pareto fronts of five algorithms in the test set of
two datasets are shown. Deservedly, each front represents a
particular run where the result of HV is the closest to the
average. In both short and long datasets, the Pareto-optimal
front obtained by the NDENSGA performs better than the
other algorithms in convergence and uniformity of solution
set. Therefore, possessing high diversity and convergency, the
NDENSGA can be used for the electrical load multi-objective
interval prediction model as a greatly valid method.
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Fig. 8. Comparison of NDENSGA with other four benchmark algorithms on
DLWNN-based interval prediction model in the test set of two datasets. a)
dataset1. b) dataset 2.

TABLE VIII
THE RUNNING TIME(S) OF DIFFERENT OPTIMIZATION ALGORITHMS AND

NEURAL NETWORKS ON TWO DATASETS

Dataset 1(s)
Algorithms NDENSGA NSGA II MOPSO CL-NSGA II PI-NSGA II

380.35 29.12 60.75 61.37 31.15

NNs DLWNN WNN RVFL ELM -
380.35 440.77 369.59 410.45 -

Dataset 2(s)
Algorithms NDENSGA NSGA II MOPSO CL-NSGA II PI-NSGA II

722.35 178.14 249.48 366.62 203.01

NNs DLWNN WNN RVFL ELM -
722.35 881.47 773.98 868.83 -

TABLE IX
COMPARISN RESULTS OF DIFFERENT INTERVAL PREDICTION MODELS ON

TWO DATASETS

Dataset1 Dataset2
PICP PINAW PICP PINAW

DLWNN-NDENSGA 0.9598 0.2583 0.9575 0.2200
ER-GRU 0.9378 0.2894 0.9562 0.2780

DWT-QRF 0.9124 0.3074 0.9426 0.3247
BOOTSTRAP 0.8179 0.3841 0.8588 0.3799

E. Validity of the proposed neural network

To assess the effectiveness and efficiency of the proposed
DLWNN, it is comparied with three other benchmark neural
networks in the same test set of two datasets. The traditional

TABLE X
PERFORMANCE METRICS AFTER ADDING PERTURBED DATA

HV PINC PIEE PICP PINAW
0.0005 3.63E-04 0.9749 0.3217
0.001 6.35E-04 0.9631 0.3058

Dataset 1 0.9866 0.0025 2.21E-03 0.8961 0.2507
0.005 4.27E-03 0.8358 0.2076
0.01 8.92E-03 0.7186 0.1648
0.005 4.51E-04 0.9825 0.3156
0.001 8.45E-04 0.9696 0.2827

Dataset 2 0.9888 0.0025 2.33E-03 0.8997 0.2175
0.005 4.63E-03 0.8253 0.1784
0.01 9.98E-03 0.6822 0.1285
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TABLE XI
THE 7-STEP-AHAED PIS CONSTRUCTION RESULTS WITH DIFFERENT PINCS IN THE TEST SET OF DATASET 1

HV PINC
0.0005 0.001 0.0025 0.005 0.01

PIEE PICP PINAW PIEE PICP PINAW PIEE PICP PINAW PIEE PICP PINAW PIEE PICP PINAW
Step 1 0.9966 3.88E-04 0.9380 0.2390 7.87E-04 0.9112 0.2067 2.45E-03 0.8392 0.1715 4.74E-03 0.7789 0.1496 9.62E-03 0.6298 0.1114
Step 2 0.9952 4.91E-04 0.9593 0.3091 8.33E-04 0.9356 0.2485 2.21E-03 0.8610 0.1887 4.94E-03 0.7729 0.1664 9.91E-03 0.6254 0.1215
Step 3 0.9924 3.37E-04 0.9708 0.3422 9.10E-04 0.9228 0.2565 2.50E-03 0.8559 0.2004 4.93E-03 0.7410 0.1680 8.21E-03 0.6552 0.1280
Step 4 0.9920 3.18E-04 0.9722 0.3284 9.62E-04 0.9253 0.2335 2.35E-03 0.8542 0.1785 4.00E-03 0.8299 0.1614 9.65E-03 0.6684 0.1115
Step 5 0.9832 4.98E-04 0.9577 0.2805 4.98E-04 0.9577 0.2805 1.94E-03 0.8856 0.2229 4.95E-03 0.8099 0.1833 1.00E-03 0.6444 0.1278
Step 6 0.9936 4.32E-04 0.9572 0.3269 9.21E-04 0.9376 0.2942 2.41E-03 0.8859 0.2321 4.54E-03 0.8093 0.1563 9.90E-03 0.6560 0.1200
Step 7 0.9779 3.37E-04 0.9621 0.3440 6.36E-04 0.9549 0.3033 2.21E-03 0.8484 0.1347 4.51E-03 0.7220 0.1031 9.10E-03 0.5325 0.0711

TABLE XII
THE DETERMINISTIC PARAMETERS AND DYNAMIC PARAMETER OF FOUR

ONLINE METHODS
Deterministic parameters value Dynamic parameter range

The proposed model

Sliding steps 100

Iterations [50:10:100]
Window length 200
Hidden nodes 1

Population size 30
Adjustment threshold 0.9920

Sliding steps 100
O-QRNN Window length 200

O-QRLSTM Hidden layers 3 Training epochs [50:10:100]
O-QRGRU Hidden nodes 10

Learning rate 0.2
Adjustment threshold 0.9920

TABLE XIII
THE EVALUATION METRICS OF PIS CONSTRUCTED BY FOUR ONLINE

METHODS ON TEST SET OF CASE STUDY 2
PIEE PICP PINAW

The proposed model 4.04E-04 0.9525 0.0617
O-QRNN 4.18E-04 0.9508 0.0843

O-QRLSTM 4.98E-04 0.9453 0.1189
O-QRGRU 3.35E-04 0.9725 0.2256

single hidden layer FNN models including WNN and ELM
are applied for comparison. With the same input-output direct
links structure as DLWNN, RVFL is also implemented to
forecast future load intervals. To make a fair comparison,
the interval prediction models of these neural networks have
respectively selected the optimal number of hidden nodes
in the validation set. Moreover, all these NNs-based LUBE
models are optimized by the NDENSGA. Table V shows
the p−values of Wilcoxon rank sum tests between DLWNN
and other neural network models. The p−values between the
proposed DLWNN and other models are all less than 0.05
on two datasets. So, the proposed DLWNN is significantly
different from other models. The overall statistical results (HV)
of four models are displayed in Table VI. Furthermore, the
Pareto-optimal fronts of four NNs-based LUBE models are
given in Fig. 9. Similarly, each front is a particular run in
which the value of HV is the closest to the mean value of 30
runs. From the above results, DLWNN can obtain very precise
solutions with various and evenly distributed populations in
two datasets. Moreover, having the same input-output direct
connections as DLWNN, the average performance of RVFL
is better than the other two basic FNNs. As noted before,
these links can capture the characteristics of time series data
to improve the forecasting accuracy. To sum up, regarding the
PIs constructed by the DLWNN-based LUBE model have the
best quality, DLWNN shows the superiority in LUBE.

F. Comparison results with deep wavelet neural network

Deep learning frameworks have been widely used for load
forecasting in recent years due to their excellent generalization

ability, but the complex multi-layer structure also results in
time-consuming. Therefore, in this paper, the traditional WNN
is extended to a DNN. Deep wavelet neural network (DWNN)
is a network with a multi-hidden layer structure, where the ac-
tivation function of each layer is the wavelet basis function as
presented in (7). In addition, a regularization method, dropout,
which is commonly used in deep learning frameworks, is used
for the DWNN. Sufficient ablation experiments are conducted
to verify the effects of the number of hidden layers and
dropout probability on DWNN. As before, the optimal number
of hidden nodes for each hidden layer is picked by cross-
validation on validation set. All DWNN used in ablation
studies are shown in Table VII.

All DWNNs in Table VII are optimized by NDENSGA to
obtain PIs. Fig. 10 shows the HV and training time of seven
different DWNNs and DLWNN on test sets of two datasets. It
can be clearly seen that the number of hidden layers has a great
influence on DWNN. The optimal number of hidden layers
of dataset 1 and dataset 2 is 4 and 3. When the number of
hidden layers is fixed and the dropout probability is increased
or decreased, the HV and training time of DWNNs change
by an extremely small amount. However, the HV values
of the nondominated solution sets obtained by either DNN
are lower than those of the proposed DLWNN, proving the
effectiveness of the proposed DLWNN. In addition, due to the
high complexity of deep learning, the training time of DWNN
is much higher than DLWNN. In summary, adding direct
input-output links to the structure of WNN can map dynamic
input-output relations with shorter training time and obtain the
best results. Therefore, it is reasonable to use DLWNN as the
forecast model in order to get PIs with higher quality.
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Fig. 9. Comparison of DLWNN with other three benchmark neural networks
under the optimization of NDENSGA in the test set of two datasets. a) dataset
1. b) dataset 2.
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G. computational performance analysis

The training efficiency is an important evaluation index.
The computational complexity of training of the optimization
algorithm can be calculated as:

e OA = O(M ∗MaxIt ∗ P 2) (21)

where M is the number of objectives, P is the population
size. NDENSGA, NSGA II, CL-NSGA II and PI-NSGA
II use fast non-dominated sorting method, but NDENSGA
and CL-NSGA II adds offspring populations to expand the
population diversity. Obviously, its computational complexity
is larger than that of NSGA II. MOPSO updates the personal
optimal solution and the global optimal solution based on the
dominant relationship. So, the complexity is lowest with the
minimum size of P . The computational complexity of four
neural networks on each iteration can be calculated as follows:

e DLWNN = O(S ∗ (dx ∗ dh + dh ∗ do + dx ∗ do)) (22)

e WNN = O(S ∗ dh ∗ (dx + do)) (23)

e RV FL = O(S ∗ do ∗ (dh + dx)) (24)

e ELM = O(S ∗ dh ∗ do) (25)

where S is the number of samples, dx, dh and do are the
dimensions of the input layer, hidden layer and output layer
respectively. Compared with S, all the values of dx, dh and do
are small. Therefore, the computational complexity of the four
neural networks is actually O(S). In Table. VIII, the specific
running times are presented, from which the following results
can be shown:

1) The running time of the proposed method (DL-
WNN+NDENSGA) in two datasets are 380.35s and 722.35s
which verifies the realizability of the model on short-term and
long-term data.

2) Considering the added offspring population, NDENSGA
has the highest computational time cost.

3) It is worth noting that although MOPSO has low compu-
tational complexity, MOPSO takes longer to run than NSGA
II. The reason may be that MOPSO is easy to fall into local
optimal solutions when optimizing such problems.

4) The running time of DLWNN and RVFL is significantly
lower than the other two. Although the computational com-
plexity of the four neural networks is all about the linear order
of S, DLWNN and RVFL can be optimized with very few
hidden nodes. It is the reduction in parameters that leads to
shorter optimization times for DLWNN and RVFL

H. Comparision results with other interval prediction models

Previously, this paper compares and verifies the optimization
effect of NDENSGA and the superiority of DLWNN. How-
ever, all the above are based on the comparison of LUBE.
In this section, some advanced interval prediction methods in
recent years are implemented to compare with the proposed
method. In [47], a new interval construction model based on
error prediction was proposed in which the variational mode
decomposition (VMD) was used to decompose the complex
wind speed time series into simplified modes and two types
of GRU models were built for interval prediction (ER-GRU).
In [48], the author used the wavelet-based decompositions
(DWT) to address the effect of preprocessing load time
series, and then the quantile regression forests (QRF) were
implemented to build probabilistic forecasts (DWT-QRF). In
addition, the bootstrap [49], as a statistical method, is used for
comparison.

The parameters of all the above model are set as follows
according to the references suggested: the decomposition
number of VMD is 4; maximum number of training epochs
are 100; batch size for training model is 64 (ER-GRU). The
decomposition levels of DWT are 4; the number of decision
trees of the RF is 500 (DWT-ARF). The resampling size is set
as 200 (Bootstrap).

Table. IX shows the PIs construction results. Since the
proposed model (DLWNN-NDENSGA) is implemented in a
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Fig. 12. The PIs construction results of four online models on test set of case study 2

multi-objective framework, the results with PICP higher than
95% and the lowest width are selected in the table. It can
be seen that compared with other models, the PIs constructed
by the proposed model cover most true values. Moreover, the
average width of these PIs is lowest which means that the PIs
constructed by the proposed model have the highest quality.

I. Robustness analysis of the proposed model

When there is noise in the training data, the prediction
effect of the model will be affected. In the case of data
contamination, it is necessary to verify the robustness of the
model. One common way to simulate data contamination
in a real-world environment is to add perturbed data [50].
The specific procedures are as follows: First, the dataset
is normalized in the range (0,1). Secondly, 5% stochastic
disturbances with uniform random numbers in [-0.05,0.05] are
added to the normalized data.

The robustness analysis experiments are conducted on the
above two datasets with each dataset running 30 times. Ta-
ble. X shows the performance of the proposed model in
the two disturbed data sets at different PINC values (The
presented result is the closest to the average value of HV
in 30 experiments). As can be seen, although the value of
HV decreases, the proposed model constructs PIs with high
coverage probability and moderate width under the PINC with
higher requirements, and obtains extremely narrow PIs under
the PINC with lower requirements. Thus, the proposed model
has good robustness and low sensitivity to perturbed data.

J. Experimental Results-multistep forecasting

As discussed in Section III-D, this paper uses the proposed
model to achieve 7-step-ahead forecasting in dataset 1. Simi-
larly, for each k-step-ahead model, 30 experiments (the result
in which the obtained HV is the closest to the mean value
is shown) have been run for avoiding occasionality. With five
values of PINC, the 7-step-ahead interval prediction results
are presented in Table XI. The proposed model all achieves
the preset PINCs from step 1 to step 7, which verifies that
the proposed model can obtain a widely distributed solution
set under multiple steps. It is worth noting that, although
the HV of the non-dominated solution set generally shows
a decreasing trend with the increase of steps, the 6-step-ahead

result is better which might be caused by connections within
the data. Furthermore, when the requirement of PINC is high
(0.005, 0.001), the coverage probability of PIs obtained by
the model imposes a high level. Conversely, when the PINC
is set to a low level (0.0025 0.005, 0.01), the constructed PIs
is extremely narrow. As shown in Fig. 11, when the PINC is
set to 0.001, from step 1 to step 7, the coverage probability
of the PI constructed by the proposed model is above 90%
and the average width is below 30%. Therefore, the proposed
model can be availably applied in multi-step forecasting.

K. Experimental Results-online learning-based forecasting

Previous experiments have verified the effectiveness and
efficiency of the proposed model in day-ahead forecasting
with offline state. However, in the actual scenario, power
system scheduling and generation planning requires earlier
access to future load real-time forecasting. New data patterns
resulting from temporal changes cannot be learned from old
data. Therefore, the online NDENSGA-optimized DLWNN
is implemented to achieve 15 min-ahead real-time interval
prediction on case study 2.

As discussed in Section III-E, each data batch generated
by siding window technology is input into the proposed
NDENSGA-optimized DLWNN in turn to obtain PIs, and the
number of iterations of each batch are adjusted online by
tuning module. To verify the validity of this method, several
comparison methods are designed: online quantile regression
neural network (O-QRNN) [51], online quantile regression
long short-term memory (O-QRLSTM) [52], online quantile
regression gate recurrent unit (O-QRGRU) [53]. These meth-
ods, like the proposed model, add the same sliding window
and tuning module to achieve online prediction. All the models
are implemented on case study 2 and the load inputs are
load values with 8 points lagged (The resolution between
each point is 15 minutes). All models enable GS to adjust
hyperparameters when the HV value of each batch of data
is lower than a threshold. The main parameters are shown in
Table XII.

As previously discussed, the online NENSGA-optimized
DLWNN produces a set of non-dominated solutions on each
batch of data. The solutions with PIEE less than 0.0005 and
PINAW minimum of each batch of data in the test set are
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selected to form the final test set PIs. In Table XIII, the eval-
uation metrics of four methods are displayed. In comparison
with O-QRNN and O-QRLSTM, the proposed method obtains
the PI with not only the highest coverage probability but also
the lowest width. Although the PI constructed by O-QRGRU
can cover the largest number of target values, its width is too
high compared to other methods. Such PIs are meaningless.
Furthermore, Fig. 12 plots the PIs construction results of four
methods on test set. It can be seen that all four methods
can cover the vast majority of the true values, but the PI
the proposed method is significantly narrower. In summary,
the proposed method can be successfully applied to online
learning to obtain high quality PIs.

V. CONCLUSION
Electric load forecasting plays an important role in power

operators’ decision-making. Compared with conventional
point forecasting, interval prediction can solve the inherent
randomness of data more effectively. Therefore, in this paper,
a DLWNN-based LUBE model is proposed to construct de-
pendable PIs. In order to obtain various solutions and balance
the conflicting indices, the proposed model is implemented
in a multi-objective framework. With two objectives, this
paper improves NSGA II and proposes a novel NDENSGA
to optimize the above model. Through the test of actual data,
the proposed prediction model can construct high quality PIs
by balancing between PIEE and PINAW. In comparison with
other algorithms, NDENSGA produces the most converged
and diverse solutions. Our proposed novel DLWNN model
is proved to be the most effective and efficient approach to
construct PIs by comparing it with other neural networks.
Compared with some advanced interval prediction methods,
the performance of the proposed model is still optimal on the
two datasets. In addition, it has been verified that the model
obtains high-quality multi-step-ahead PIs, and exhibits strong
robustness in the presence of data interference.

In real scenario, the characteristics of power load data
often change, which leads to the failure of traditional off-line
forecasting methods. Real-time forecasting has also become
an important auxiliary means for increasing power systems.
In order to solve these problems, this paper designs the online
NDENSGA-optimized DLWNN to achieve 15 min-ahead real-
time interval prediction. In a recent dataset, the effectiveness of
the proposed online model is verified. In the future, the work
is not limited to the electrical load prediction. Such multi-
objective interval prediction, and even the probability density
prediction model can be used to quantify the uncertainty of
future data under different scenarios.
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