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ENG INEER ING

Window into the mind: Advanced handheld
spectroscopic eye-safe technology for point-of-care
neurodiagnostic
Carl Banbury1†, Georgia Harris1†, Michael Clancy1,2, Richard J. Blanch3,4,5,
Jonathan James Stanley Rickard6, Pola Goldberg Oppenheimer1,7*

Traumatic brain injury (TBI), a major cause of morbidity and mortality worldwide, is hard to diagnose at the point
of care with patients often exhibiting no clinical symptoms. There is an urgent need for rapid point-of-care di-
agnostics to enable timely intervention. We have developed a technology for rapid acquisition of molecular
fingerprints of TBI biochemistry to safely measure proxies for cerebral injury through the eye, providing a
path toward noninvasive point-of-care neurodiagnostics using simultaneous Raman spectroscopy and fundus
imaging of the neuroretina. Detection of endogenous neuromarkers in porcine eyes’ posterior revealed en-
hancement of high–wave number bands, clearly distinguishing TBI and healthy cohorts, classified via artificial
neural network algorithm for automated data interpretation. Clinically, translating into reduced specialist
support, this markedly improves the speed of diagnosis. Designed as a hand-held cost-effective technology,
it can allow clinicians to rapidly assess TBI at the point of care and identify long-term changes in brain biochem-
istry in acute or chronic neurodiseases.
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INTRODUCTION
Traumatic brain injury (TBI) has become a leading clinical chal-
lenge of the 21st century affecting 135 million people globally.
TBI injuries evolve immediately after the initial trauma, yet many
individuals display very few clinical symptoms at the early stages,
which, however subsequently, develop long-term, persistent, neuro-
degenerative deficits (1–3). As the brain tissue lacks regenerative ca-
pacity, early diagnosis is crucial for improving outcomes. Life-
critical decisions, which influence patients’ prognoses and the effi-
cacy of treatment, must be made within the first hour after trauma
(i.e., the “golden hour”). Hospital radiological investigations, in-
volving computer tomography (CT) or magnetic resonance
imaging, are expensive and cannot be used in a timely manner at
the point of care, where the assessment by ambulance crews still
relies on blunt observational triage tools with macro-descriptors
transmitted via third-party intermediaries to clinicians. The
Glasgow Coma Scale (GCS) is widely used to predict patients’ out-
comes; however, this has limitations of variability of inter-rater re-
liability, predictive validity, inability to evaluate the verbal part of
measure for endotracheally intubated patients, obscuration by seda-
tion, and the inability to detect small changes in TBIs, which can be
present without any detectable physiological abnormalities. It is

known that in TBI misdiagnosis or delay in treatment in the preho-
spital settings is where most of the acute, cerebral damage occurs.
Now, no point-of-care technology exists for quantitative assessment
of TBI with sufficient sensitivity and timeliness to aid the stratifica-
tion and early diagnosis whether this is at the pitch side in contact
sports or the roadside after motor vehicle collisions. This is exacer-
bated by the long-term consequences of mild TBI and concussion,
with cumulative effects from multiple sustained injuries for athletes
and the military.

To address the challenges associated with early-stage detection
of TBI, we have developed an unconventional laser-based spectro-
scopic technology focused on analyzing the neuroretina and optic
nerve at the back of the eye, as a projection of brain tissue. This
structure, bathed in cerebrospinal fluid and in continuity with the
central nervous system (CNS), provides an optically clear window
into the biochemistry of the brain (4–8). By targeting CNS biochem-
ical changes, we reduce the need to filter out confounding (non-
CNS) compounds, measuring the brain side of the blood-
brain barrier.

At the back of the eye exists a small part of the brain covered only
by optically clear media, the retina containing all retinal ganglion
cell bodies and the optic disc, through which all retinal ganglion
cell axons leave the eye, carrying visual information captured by
the retina to the brain through the optic nerve. Ganglion cells in
the retina are unmyelinated, meaning that changes assessed there
relate directly to neuronal biology, while the optic nerve is myelin-
ated and surrounded by cerebrospinal fluid, continuous with that
surrounding the rest of the CNS. The retina and optic nerve have
long been known to display physically measurable changes
because of increased intracranial pressure, where its monitoring is
of significance for intensive care in TBI (9–12). To interrogate these
eye layers, we have developed an eye-safe device (EyeD), based on
using multiplex resonance Raman spectroscopy, targeted at specific
TBI biomarkers or “molecular fingerprints,” as proxies for disease

1School of Chemical Engineering, Advanced Nanomaterials Structures and Appli-
cations Laboratories, College of Engineering and Physical Sciences, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK. 2Ministry of Justice, 102
Petty France, Westminster, London, UK. 3Department of Military Surgery and
Trauma, Royal Centre for Defence Medicine, Birmingham, UK. 4Neuroscience and
Ophthalmology, Institute of Inflammation and Ageing, College of Medical and
Dental Sciences, Robert Aiken Institute for Clinical Research, University of Birming-
ham, Edgbaston, Birmingham, B15 2TT, UK. 5Department of Ophthalmology,
Queen Elizabeth Hospital Birmingham, UHB NHS Foundation Trust, West Midlands,
UK. 6Department of Physics, Cavendish Laboratory, University of Cambridge, JJ
Thomson Avenue, Cambridge, CB3 0HE, UK. 7Healthcare Technologies Institute, In-
stitute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK.
*Corresponding author. Email: goldberp@bham.ac.uk
†These authors contributed equally to this work.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Banbury et al., Sci. Adv. 9, eadg5431 (2023) 15 November 2023 1 of 15

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 19, 2023

mailto:goldberp@bham.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fsciadv.adg5431&domain=pdf&date_stamp=2023-11-15


and injury. Such markers for “brain health” include structural
changes in brain-specific lipids and biochemicals due to local
tissue damage such as cardiolipin and cytochrome C or multiple
specific neuromarkers such as S100B, glial fibrillary acidic protein
(GFAP), or the N-acetylasparate, found exclusively in the CNS. In
the acute TBI phase, these have demonstrated strong correlation
with injury severity, relating to radiological, surgical, and physiolog-
ical findings (13–17).

Concurrently, Raman spectroscopy is a highly specific analytical
technique and rapid, which can provide real-time, quantitative di-
agnostic information in clinical settings both in vivo and ex vivo by
measuring subtle changes to inelastically scattered light, accurately
identifying changes in disease-specific biomarkers with diagnostic
capabilities (18–21). In ophthalmology, Raman spectroscopy has
been applied to study disease states ex vivo (22–24). Further find-
ings highlighted the ability to identify malignant tissue in the brain,
acting as a surgical guide. However, these required direct and inva-
sive access to the brain (18). We have recently demonstrated a path
toward the detection of changes to brain chemistry by acquiring
spectra from tissues of the retina to identify TBI in ex vivo
murine model and established a high-accuracy differentiation of
degrees of brain injury severity using a commercial laboratory-
based Raman spectroscopy (17). We have further demonstrated
that a range of validated CNS biomarkers, rapidly and continuously
released from injured neurons into the blood, were detectable in ce-
rebrospinal fluid, reflecting biochemical changes occurring in the
brain and creating temporal profiles of extracellular activity post-
TBI (16). TBI was subsequently classified from spectral data on
mice by detecting tissue-specific signatures of each anatomical
layer on eye sections using a commercial Raman system (17, 25).
Marro et al. and Stiebing et al. (26, 27) have studied the retina
using a standard Raman arrangement and flat mounted or cultured
tissue. However, the major obstacle to in vivo imaging has been the
use of high-magnification, high–numerical aperture (NA) objective
lenses, which are typically required for Raman spectroscopy. Such
objectives have a natural incompatibility with imaging the eye pos-
terior since the eye itself can be considered as a lens with a com-
bined positive power of 60 diopters (28). Thus, the combined eye-
microscope optics led to a compound lens arrangement, which
shortened the working distance of the microscope lens (Fig. 1A).

Here, we have developed and engineered an unprecedented por-
table and noninvasive EyeD technology, without using ionizing ra-
diation, combining modified optics with fundus imaging of the
optic nerve together with a class I laser introduced into the
optical path and focused by the eye. Our unique device permits si-
multaneous Raman spectroscopy and fundus imaging by isolating
the Raman and white light paths. Via the EyeD, Raman signals are
collected using a detector, and data are classified using the devel-
oped artificial neural network algorithm as a decision support
tool (29) and the self-optimizing Kohonen index network
(SKiNET) as a framework for an advanced multivariate analysis
(30–36), which simultaneously provides (i) dimensionality reduc-
tion, (ii) feature extraction, and (iii) multiclass classification
(Fig. 2A). SKiNET performs visual separation to identify the under-
lying chemical differences between classes, providing accurate clas-
sification for simultaneously rich-information and high-
classification specificity, even for low laser powers and short acqui-
sition times, representative of the real-world point-of-care condi-
tions. SKiNET’s intrinsic self-optimizing maps (SOMs) provide

visually intuitive two-dimensional (2D) clustering, i.e., according
to injury state, of high-dimensional spectral data, which are other-
wise difficult to interpret for large sample numbers. SKiNET incor-
porates supervised learning to additionally provide accurate
classification, which could then be used to make diagnostic predic-
tions. Further, self-optimizing map discriminant index (SOMDI)
feature extraction identifies which spectral features, i.e., chemical
changes, are responsible for the clustering seen in SOMs. Applying
the EyeD, integrated with SKiNET, to investigate the retina and the
optic nerve, reflecting the brain environment after injury, rapidly
distinguishes TBI from control groups, yielding an automated clas-
sification of the acquired Raman data and assignment to the partic-
ular neuromarker, tissue type, or disease state. This tool, along with
the successful demonstration that high-frequency Raman bands in-
dicative of early-stage TBI, can be safely measured from the neuro-
retina and the optic nerve, enabling important steps for translation
of the developed platform technology to real-world clinical point-
of-care neurological diagnostic applications.

Rapid, portable EyeD is designed for use on-site for immediate
decision-making and treatment. Measuring abnormal changes in
the optic nerve at the point of care would be indicative of TBI, pro-
viding a quantitative assessment of trauma at the earliest stages
while simultaneously helping to quantify the damage. It would be
interpreted by clinicians as an indication to treat the patients ac-
cording to TBI guidance without delay and help in triaging, e.g., di-
recting to major trauma centers with neurosurgical facilities.
Neuroprotective measures would be instigated immediately irre-
spective of the exact diagnosis (a more detailed pathoanatomical
classification would come later, after in-hospital neuroimaging).

RESULTS AND DISCUSSION
As a result of the fundamental restriction imposed by the optics of
the eye shown in Fig. 1A, we have acquired the Raman spectra from
the retina using a collimated beam incident on the cornea, allowing
the eye to naturally focus the beam onto the retina. This has previ-
ously been limited to the identification of age-related macular de-
generation, by exploiting resonance Raman of macular pigments
(37). Such an effect markedly enhances the available signal, which
helps to mitigate the restricted laser power and absence of high-
power optics.

Figure 1B shows the representative Raman spectra of murine
brain tissue measured using an excitation wavelength of 633 nm
spanning the fingerprint and high-frequency regions, from a com-
mercial Raman instrument (Qontor InVia Renishaw). We observe
an apparent enhancement of high–wave number bands, associated
with the resonance of the methylene overtone at 619.68 nm (38),
which normally yield relatively weak peaks with the 785-nm excita-
tion. In addition to the strong high–wave number response, these
bands suffer little interference from fluorescence, which often
tends to dominate the fingerprint region. Further to the detected
enhanced response from the high–wave number region of the
murine tissue identifying the bands, which alone are capable of de-
tecting the presence of TBI, an eye safe 635-nm class I laser, guar-
anteeing eye safety, has been identified. The use of fiber optics
allows us the design and engineering freedom, allowing for bulky
components to be kept away from the patient, ensuring a compact
imaging system. Silica used in fiber optics normally yields addition-
al interference due to its own Raman signal in the fingerprint
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region. However, in the high–wave number region, there is no
Raman contribution from silica. Via the combined ability to
avoid interference from fluorescence as well as Raman scattering
from optical fibers, we have established a suitable spectroscopic por-
table setup enabling the detection of high–wave number Raman
bands from the retina. The overall engineered EyeD consists of
the combined fundus imaging optical path and eye-safe Raman
spectroscopy path contained within a 3D-printed housing (Fig. 1,
C and D).

The design that houses the optics is based on a split casing and
an indented lid to overlap the housing and lid components when
secured, limiting external light entering the system. Optical compo-
nents fit into a cradle and allow for easy adjustments and optimiza-
tion in free space with an open-on-top section for alignment during
optimization (figs. S2 and S3). The fundus imaging path consists of
a smartphone (F1), D-EYE fundus module (F2), 625-nm short-pass
dichroic beam splitter (F3), and the eye (F4). The Raman spectro-
scopy path consists primarily of a 635-nm class I laser (R1), 635-nm

dichroic beam splitter (R2), and spectrometer (R3), converging with
the imaging path at F3.

Previously, we have shown that Raman spectroscopy can be used
to detect mild TBI from the retina (and brain) in a murine model
using the 785-nm excitation laser and formed a classification model
(17, 25, 29) using a commercial Raman spectrometer in the finger-
print region. High–wave number measurements recorded from
these murine tissue samples display a clear separation between
healthy controls and TBI groups via SOMs (Fig. 2B) with a subtle
but clear change in the ratio of the bands around 2850 and 2930
cm−1 observed from features extracted using SOMDI to rapidly
detect the TBI cohorts (Fig. 2C).

The acquired data are classified using the artificial neural
network algorithm, SKiNET as a decision support tool, based on
SOM with a classification via SOMDI. An illustration of the work-
flow is shown in Fig. 2A. Through inspection of key differences
between neuron weights and class weight vectors, the algorithm
enables identification of the key spectral changes. These allow the
identification of the types of data a given neuron activates, which

Fig. 1. The engineered EyeD overview. (A) Convergence of a collimated beam entering the eye onto the retina (left) and the compound lens effect (right) resulting from
the introduction of a microscope objective. (B) Representative Raman spectra of murine brain tissue in the fingerprint and high–wave number regions, measured using a
commercial In-Via Raman, with an excitation laser of 633 nm (0.39 to 0.63mW). (C) 3D schematics of the combined fundus photography and eye-safe Raman spectroscopy
optical paths contained within a 3D-printed housing. (D) Photograph of the bench-top breadboard setup, including smartphone, housing, and input/output fibers. a.u.,
arbitrary units.
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are then used to inspect the weights across all neurons and extract
prominent features belonging to each class by finding the weights
that contribute most to a particular class. The peaks in SOMDI sub-
sequently correspond to cm−1 and modes that contribute most to
the clustering observed in the SOM. Training parameters used for
the SOM include grid size, learning rate, and optimal number of
epochs, and the separation of classes reveals the characteristic dif-
ferences due to the classification of certain neurons. This enables a
clear basis for differentiation via the characteristic weight vectors to
be derived in SOMDI.

SKiNET is based on the separation of data classes in a SOM,
which loosely mimics the visual cortex in the brain with the neigh-
boring neurons activating on similar inputs, and the undefining
characterization using a SOMDI, enabling the rapid subsequent
classification of the tested data. SOM defines 2D maps of
neurons, typically arranged as a grid of hexagons. Each neuron is
assigned a weight vector, which is initialized randomly and has a
length equal to the number of variables in a spectrum. The weight
vector affects which neuron is activated for a given sample with the
neighboring neurons having similar weights. Spatial clustering is
therefore observed in the trained SOM, with spectra that exhibit dis-
tinct properties activating different neurons. To extract the informa-
tion on which spectral features are responsible for certain neurons
activating over others, a SOMDI is used. SOMDI provides a repre-
sentation of weights associated with neurons identifying a particular
class by introducing class vectors as labels for each spectrum and
corresponding weight vectors for each neuron, without influencing
the training process, allowing the identification of what type of data
a given neuron activates, used to inspect the weights across all
neurons and extract prominent features belonging to each class.
Neurons (hexagons) are colored according to the modal class they
activate, from the Raman spectra and those that have no majority
class or activate none of the data are colored as white. For each
class, there is a clearly defined block of neurons, with many of
these activating only a single tissue or biomarker type and a
higher SOMDI intensity indicates a greater importance of wave

number. Further, by inputting a test sample into the trained
neural network and detecting which neuron has been activated,
the associated SOMDI provides class data, which is then used to
make a prediction for the unseen sample, enabling SKiNET to be
used as a classifier.

Colored circles within each neuron represent spectra from the
training data that have been activated for that neuron. To aid visu-
alization, circles are forced to not overlap in space using the D3force
library, providing an alternative mechanism to display sample fre-
quency and class overlap for each neuron. For each class, there is a
clearly defined block of neurons, with many of these activating only
a single tissue type. An approximately even distribution in the
number of neurons required to identify each class is observed.
The SOMDI provides a representation of weights associated with
neurons that identify a particular class. A higher SOMDI intensity
indicates greater importance of particular inverse centimeters along
the axis of a spectrum. This, despite the level of overlap or noise in
the original data, enables well-defined peaks to be resolved, which
are either more prominent or unique to each class.

To measure Raman spectra from the eye posterior segment, a
coaligned imaging system was required to target a region of interest
on the retina, such as the optic disc. Thus, a D-EYE smartphone
fundus camera was used for optical imaging of the retina, which
uses the flash from a smartphone camera for illumination and the
phone camera for imaging. The D-EYE is a compact optical module
providing a direct illumination and therefore can be used without
pupil dilation of the patient. A representative fundus image using
the D-EYE is shown in Fig. 3A (a). Visual targeting of the laser
spot was performed during fundus photography enabling the tar-
geting of a region of interest, such as the optic disc. Figure 3A (b)
shows that while a small amount of laser light is transmitted to the
camera through the 625-nm filter, during the fundus imaging
(Fig. 3A, c), the laser spot is only faintly visible. A crosshair on
the phone screen marks the position of the laser, making targeting
straightforward and minimizing the laser exposure time (Fig. 3, A
and D, inset). A short-pass 625-nm filter, designed for

Fig. 2. Illustration of data analysis workflowvia SKiNETwith representative classification outputs via SOMand SOMDI. (A) In this workflow, spectrameasured from
Ramanmaps are grouped according to class or group studied. A 20% partition of the data is randomly selected and reserved as test data. The remaining 80% is input into
SKiNET, which directly provides dimensionality reduction (SOM), SOMDI feature extraction and classification. SKiNET is optimized on the training data using cross-val-
idation and adjusting the available parameters (number of neurons, initial learning rate, and number of training steps) to maximize the classification accuracy on the
training data. Last, the optimized model is shown the previously unused test data and asked to classify each spectrum as either TBI, control, or the various brain injury
severity subgroups. (B) SOM spatial clustering of high–wave number spectra from control and TBI tissue of the murine retina. (C) SOMDI extracted Raman features dis-
tinguishing TBI and healthy control [determined by one-way analysis of variance (ANOVA)] (P = 0.0090) groups from the corresponding SOM in (B).
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epifluorescencemicroscopy, is introduced at an angle of 45° into the
optical path between the D-EYE camera and the subject. The cutoff
range, edge steepness, and efficiency of the filter are such that most
of the visible spectrum is transmitted along the path from the
camera to the eye and back (>90%) while rejecting white light
from the source at wavelengths of >625 nm, which would otherwise
interfere with Raman measurements. Wavelengths of >625 nm are
efficiently reflected at an angle of 45° (>98%), allowing for the in-
troduction of class I 635-nm laser (0.39 to 0.63 mW) and, subse-
quently, Stoke’s shifted Raman scatter orthogonal to the fundus
imaging path.

The combined system (Fig. 1C) is contained in the 3D-printed
housing including the 625-nm short-pass dichroic beam splitter
(F3) and the 635-nm laser introduced into the housing via a Fiber-
Port, which provides fine control of the beam position and

collimation, aiding alignment. The collimated beam is then
passed through a 635-nm laser line filter, before being reflected at
45° by a 635-nm dichroic beam splitter (R2) toward F3 and focused
onto the retina by the eye. The backscattered Raman light is reflect-
ed along the reverse path of F3 toward R2, where the longer wave-
length Raman scatter passes through the filter (R2) to a collection
FiberPort (R3). Between R2 and R3, a 650-nm long-pass filter is
located to reject Rayleigh scatter to the detector. R3 is used to
focus the beam into a fiber, and the spectrum is measured using
an Ocean Optics QE Pro spectrometer tailored for a 635-nm exci-
tation. A photograph of the full EyeD prototype is shown in Fig. 1D,
demonstrating a compact, portable, and eye-safe system for simul-
taneous fundus imaging and rapid detection of high–wave number
Raman bands.

Fig. 3. Eye phantom, fundus imaging with the coaligned system, and the OCT. (A) (a) Fundus image of a human eye acquired using an unmodified D-EYE camera. (b)
Fundus image (video still) from combined D-EYE and Raman spectroscopy setup, highlighting the laser spot, and (c) fundus photograph (video still) focused on the tissue
phantom posterior using the combined D-EYE and Raman spectroscopy device. The laser spot in (a) and (b) are indicated by the red arrow. (B) Exploded 3D view and
schematic (inset) of the eye tissue phantom, consisting of a single lens tomimic the total power of the eye (CM), 4-mmpinhole [iris model (IM)] representing the undilated
pupil, and screw in the sample holder (RM). (C) Photograph of the 3D-printed tissue phantom (top) and fundus image of tissue phantom using D-EYE camera observing
target card at eye posterior (bottom). (D) Representative Raman spectra measured from TBI tissue using phantom eye via the portable EyeD setup (top) and from the
commercial instrument used to form SOMs and distinguish between control and TBI in the murine model (bottom). The raw data are shown in gray with a smoothed line
representation shown in black for visual presentation of the major Raman bands in the high–wave number region. (E) Representative OCT images of postmortem [(a) and
(b)] and in vivo (F) porcine OCT images. Measurement locations at 3000 and 4500 μm are shown as blue and red lines, respectively, illustrating the retinal layers being
consistent with a postmortem cellular edema present in (b). Illustrative normal human OCT (c) showing the optic disc margin on the left of the en face image and a
horizontal arrow marking the location of the cross section running through the fovea shown on the right. Comparison to the porcine eye reveals the same retinal layers,
although the foveal dip is absent in the pig eye.
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Our engineered device technology relies on the optical power of
the eye to focus the Raman laser (Fig. 1A). To provide a controlled
testing environment with fixed optics, a tissue phantom for the eye
was further developed tomimic the physical dimensions and optical
characteristics of the eye while providing a realistic Raman signature
of the retina. On average, the human eye has a combined power of
60 diopters, with the majority of focusing being provided by the
cornea and fine adjustment by the crystalline lens (28). For simplic-
ity, a single lens is used to mimic the combined power, restricted by
a 4-mm diameter pinhole representing the undilated pupil and
housed in a 3D-printed case. The tissue characteristics of the
retina are then simulated by a removable sample holder, where
the tissue can be mounted. The sample holder is screwed in place
using 3D-printed threads, which allows for small focus adjustments
to compensate for differences in the thickness of different tissue
samples. An exploded view and schematic of the lens [condenser
model (CM)], housing, and sample/retina model (RM) holder are
shown in Fig. 3B, and the combined eye phantom, fundus photog-
raphy, and Raman spectroscopy optical paths are shown in fig. S3.

The optics of the printed tissue phantom are visually confirmed
(Fig. 3C), showing a photograph taken using the smartphone
without the D-EYE attachment (top), and with the D-EYE attach-
ment (bottom), where a target card placed at the position of the
retina is only visible through the pupil using the D-EYE fundus
camera module. Spectra measured from the tissue phantom and
optical arrangement from Fig. 1C are shown in Fig. 3D (top),
where the major bands of the high–wave number region are resolv-
able. A representative average spectrum from the training dataset
used to identify and cluster TBI in the murine model (Fig. 2, B
and C) is shown in Fig. 3D (bottom), where the raw data (gray)
were used in the SOM clustering. These results highlight that
even while the spectra obtainable from a portable system using a
class I laser remain noisy, representative of the real-world condi-
tions at the point of care, data of this quality still providemeaningful
insights especially when combined with the use of advanced
machine learning algorithm such as SKiNET and a large number
of prior training inputs.

The engineered device technology was further used to analyze
porcine ex vivo eye retina (Fig. 4B, inset), being closely similar to
human eyes in size, structure, development, and composition, en-
abling the study of the pathological effects of TBI (39–41).

Before this, a validation study was completed to determine the
extent of postmortem structural change in porcine eyes using
optical coherence tomography (OCT), a technique commonly
used in ophthalmology (Fig. 3, E and F). The postmortem tissues
displayed qualitatively less clear separation of retinal layers, with a
lower signal-to-noise ratio, which could relate to degradation of the
optically clear optical media (such as the cornea) after death as well
as to cellular cytotoxic edema occurring in the ischemic and post-
mortem tissue (Fig. 3E). Objectively, retinal layer thicknesses were
higher in the retinal images obtained postmortem (Fig. 3E, b). The
relatively small increase (6.4%) in retinal nerve fiber layer thickness
and a larger (21.6%) increase in ganglion cell layer thickness (fig.
S4A) is consistent with the early cytotoxic edema predominantly af-
fecting the cell bodies with the corresponding SEM thicknesses (fig.
S4B). Together these findings are consistent with the abattoir-sup-
plied porcine eyes being in the early stages of postmortem degrada-
tion at the time of Raman imaging, with relative preservation of
inner retinal structure.

Subsequently, biochemical analyses of porcine retinae were per-
formed. A total of 510 measurements were collected from pigs’ eye
retinal samples (nTBI = 39, nControl = 12). Spectra measured from the
retina were taken from an area in close proximity to the optic disc
for each eye. Overall, frommeasurements of the retina, several char-
acteristic bands can be observed in the region of 1200 to 1700 cm−1

with an accompanying apparent enhancement of high–wave
number bands in the region of 2800 to 3200 cm−1, attributed to res-
onant overtones of vibrational modes in the fingerprint region.
Studies have shown that high–wave number region bands can be
used to distinguish a number of tissue types, including the differ-
ence between myelinated and unmyelinated nerves (42–44). The
resonance effect observed is strong enough to sit above the auto-
fluorescent signal from tissue further supported by being of high
enough frequency to be in the tails of the main fluorescence band.

A clear separation between the retina with TBI (red) and control
groups can be seen in the SOM shown in the inset of Fig. 4A. Using
the SOMDI, it is further possible to identify features in the Raman
spectrum responsible for the clustering observed in the SOM. The
specific differences in these features originating from biochemical
variations in the eye after TBI reflected in the Raman spectra,
indicating the changes in molecular composition (Fig. 4, A to C)
include the stretching of CH2/CH3 bonds present in lipids (i.e.,
cardiolipin, C81H140Na2O17P2) and proteins (i.e., cytochrome C,
C42H52FeN8O6S2) (CH2 symmetric stretching at 2850 cm−1 and
asymmetric stretching at 2930 cm−1; CH3 symmetric stretching at
2880 cm−1 and asymmetric at 2955 cm−1 peaks constituting the
gray matter, all identified by SOMDI; Fig. 4C) with the further
C═O and C═C coupled bond stretching from the unsaturated
fatty acid residues (45–48). For brain lipids, Raman spectra may
be split into regions which originate from the molecular vibrations
of different parts of the lipid molecules, i.e., the hydrocarbon tail,
the interface region, and the head group (45, 49). The characteristic
peaks from TBI spectra compared with the spectroscopic finger-
prints of the cardiolipin and cytochrome C (fig. S5) with selected
features of six peak intensities and a peak ratio (highlighted as
gray lines) form the SKiNET classification, yielding the combined
barcode for TBI detection from the retina (Fig. 4C). The peaks de-
tected in the fingerprint region are associated with the changes in
the lipid concentration in the brain post-TBI of cardiolipin and cy-
tochrome C, representative of metabolic cellular distress and dys-
function (48, 50–52).

Bands originations form the acyl chain of C═O due to the CH3
and CH2 asymmetric and symmetric stretching vibrations, CH2
bending vibrations, the headgroup of PO�2 stretching vibration (in
the central part of the cardiolipin’s molecular structure) (45, 53),
and the interface region due to the C═O stretching vibration can
be excellent indicators used to obtain information relating to the
conformation of these lipids in the brain. Cardiolipin, playing a
key role in cell metabolism and signaling, is known to undergo ox-
idation during the pathophysiological cascade in TBI, with an accu-
mulation of similar oxidation products in the region of injury as well
as comprising the blood-brain barrier, triggering the metabolic dis-
ruption and the biochemical cascade following cell damage (17, 54,
55). Consistent changes are observed in spectra in response to TBI
and particularly in the 2850 relative to 2930-cm−1 bands. These
changes correspond to the C─H and C─C stretching vibrations as
the trans-gauche in the hydrocarbon is altered and as structural
changes occur in the hydrated lipids, and the intensity of bands
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Fig. 4. EyeD validation on porcine eyemodel. (A) Representative spectrum of porcine eyes covering the fingerprint and high–wave number regions. (Inset) SOM of the
corresponding clustering of Raman spectra from the retina for TBI (red) and controls (black). (B) Comparative average spectra from retina of the high–wave number region,
collected under the same experimental conditions, using the commercial Renishaw system (black) and the EyeD technology (red). (Inset) Representative ex vivo porcine
eye used for Raman analysis, before dissection. (C) SOMDI extracted features measured via the Renishaw system [(A), inset] and the EyeD technology [(D), inset], high-
lighting the most influential peaks for TBI and control groups. Bands highlighted at 1266, 1452, and 1660 cm−1 and the ratio of peaks at 2850/2930 are representative of
the changes to relative lipid and protein composition as a result of TBI versus control (80), generating an overall barcode for the TBI detection via the eye. (D) Repre-
sentative average SOMDI and SOM (inset) of TBI (green) and control (black) of porcine eyes (nTotal = 51) from retina using EyeD. (E) Colored Raman maps of the average
peak ratio at 2930/2850 cm−1 for eyes from TBI and control groups. Consistent changes observed to spectra in the 2930 cm−1 versus 2850 cm−1 bands, proportional to
injury. (F) Box andwhisker plots represent theminima, maxima, interquartile ranges, whiskers, and themedian in the key-feature peaks of 2930 and 2850 cm−1 for TBI and
controls and the ratio (inset) of 2930/2850 cm−1 levels (nsamples = 39) versus controls (nsamples = 12). (G) The determined intrinsic classification accuracy from the high–
wave number bands of AUC = 90.7 ± 0.9% (inset) (P = 0.003), comparable with the receiver operating characteristic curve values detected in biofluids within 0 to 48 hours
after injury. (H) Changes to lipid composition post-TBI showing the non-negative least squares regression coefficients fitted to the average spectrum collected from each
sample (*P < 0.05). The fitting of raw component spectra from brain-specific lipids correlates to SOMDI for a particular state. CI, confidence interval.
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near 2930 and 2850 cm−1 alters due to asymmetric and symmetric
stretching vibrations, respectively. Such hydrocarbon chain transi-
tions are accompanied by discontinuous changes in both wave
number of the bands and the bandwidths, where the absorption
maxima and bandwidth increase indicating greater hydrocarbon
chain disorder and the start of the change to the gauche form. In
this form, the band at 2850 cm−1 is weakened due to the vibrational
decoupling. Further peaks identified as strong SOMDI weights are
associated with bands at 1452 and 1660 cm−1 from to the scissoring
and wagging vibrations of CH2/CH3 and the PO�2 , indicative of the
changes occurring in the cardiolipin following a TBI. These bands
are sharp when the lipids are in the trans-configuration and become
broad as the conformational changes proceed with the overall inten-
sity decreasing. The frequency of the P═O group (within the
O═OP�3 of cardiolipin) is further influenced by the number of elec-
tronegative substituents directly bonded to it as well as being sensi-
tive to association effects (45) and therefore results in a shift in band
position of about 40 cm−1, further enhancing the 1660-cm−1 peak
(45, 51, 52).

Furthermore, the strong Raman intensity of the peak at 1660
cm−1 in Fig. 4 (A and C) corresponds to C═N stretching vibrations
of cytochrome’s C pyrroline (56). There is also a very weak band of
the S─H stretching vibration in a region relatively free of absorption
bands at 2600 cm−1 associated with the mercaptan of the cyto-
chrome C. This protein is known as a biomarker indicative of cell
death apoptosis and is found in themitochondrial inner membrane,
where a complementary change to cardiolipin is expected. Mem-
branes of cells are the primary target for injury and their damage
and are highly dependent on their physical properties and lipid or-
ganization, affecting membrane fluidity, which is a key property for
maintaining cell functionality and depends on lipid composition
and cell environment, leading to distortions, deformations, and de-
crease of mechanical stability (57–59). Cardiolipin undergoes oxi-
dation during the pathophysiological cascade in TBI, with an
accumulation of similar oxidation products in the region of injury
(38, 60). A further link has been established between the spectral
changes and apoptosis via comparison to immunohistochemistry
of TBI in mice using Raman spectroscopy (33). An accumulation
of ganglioside in the region of injury has also been demonstrat-
ed (57).

Given the brain’s high-fat content, with the Raman signatures
for the major and minor brain-specific lipids being well-character-
ized (61, 62), we applied the non-negative least square fitting versus
the average spectra from the retina (Fig. 4H) and the raw data of
brain-specific lipids in the range of 1200 to 3000 cm−1, to identify
the relative contributions in each sample for TBI and control
groups. The resultant fitting coefficients for each spectrum are pro-
portional to the biomarker concentration measured within each
retina sample. From the decomposition of contribution from
brain lipids in average Raman spectra of retinal samples, four
main lipids including cardiolipin, ganglioside, cytochrome C, and
cholesterol, have exhibited coefficients with a value above zero.
Among these, the most statistically significant difference has been
identified from the contribution of cardiolipin, linked to the in-
crease in the peaks’ ratio of 2930/2850 (Fig. 4, B to D and F) in
TBI versus the control. As TBI occurs clinically, the lipid and
protein contents in the eye increase, and the peaks originating
from these become more pronounced in the Raman spectra. The

ratio was elevated in the eyes after TBI [median, 2.34; interquartile
range (IQR), 0.63; P < 0.0010] compared with the control group
(median, 0.48; IQR, 0.12). The central line in the box plots
(Fig. 4F) represents the median, top and bottom edges of the box
are the upper and lower quartiles, whiskers extend to upper and
lower quartiles plus and minus 1.5× the interquartile range, and
crosses indicate values outlying the whiskers. A further statistically
significant change also is evident in cytochrome C post-TBI com-
pared to the control. There is no statistically significant difference
between TBI and control groups for ganglioside, and only a small
decrease in the fitting coefficient observed for cholesterol, most
probably a result of a hemorrhage, yielding an increase in its con-
centration specific to the injury site; however, it was not statistically
significant.

Two closely related aspects can be derived from the above Raman
analysis. First, the spectral changes related to hydrocarbon chain
conformation and packing, forming the base for the above peak as-
signments and the corresponding discussion, and second, spectral
changes related to gross changes in the environment of the hydro-
carbon chains. It has been previously shown that there is an increase
in cerebral cortical free fatty acids (used as further predictive
markers of early outcome) following cortical impact brain injuries
in rats (63) and human cerebrospinal fluid (64), suggesting that
these phospholipases, activated by the TBI, hydrolyzed several
phospholipids within minutes of the injury. Changes in the envi-
ronment of hydrocarbon chains of lipid molecules result in strong
effects on the C─H stretching vibration region of the Raman
spectra, and these can be further used to indicate different states
of order, making it possible to detect whether the hydrocarbon
chains of the lipid molecules are associated into separate lipid
regions or located in a protein environment.When the hydrocarbon
chains of the lipid cardiolipin are in a natural state, the symmetric
stretching vibrations of the CH2 groups at the 2850-cm−1 band
dominate. However, when the cardiolipin undergoes environmen-
tal change, such as in the case of TBI, the relative intensity of the
2930-cm−1 band, in relation to the other C─H stretching vibration,
is increased relative to the intensity of the 2850 cm−1 as well as com-
pared to the 2885-m−1 peaks in hydrocarbon chain region (65), due
to the disorder induced in the hydrocarbon chains. As the environ-
ment changes increase and becomes more polar during the patho-
physiological cascade in TBI, the 2930-cm−1 peak increases
successively compared to the other C─H stretching vibration
peaks. This is associated with the increased importance of the inter-
molecular interactions for the C─H stretching vibrations than the
coupling along the carbon skeleton of the chain, which affects the
C─C stretching vibrations. Hence, a small change in the lateral
packing of largely disordered hydrocarbon chains, i.e., from being
freely dispersed in healthy controls in a plane to being forced to be
reorganized into a more spherical micelle-like state of order due to
the metabolic cascade following TBI. The increase in the cardiolipin
concentration, as well as the presence of the cytochrome C, provides
sufficient change in the neighborhood of the CH2 and CH3, yielding
detectable changes in the 2930/2850 peak ratio.

The feature bands in the barcode, identified as strong SOMDI
weights as derived from the analysis provided by SKiNET, closely
reflect the cardiolipin and cytochrome C molecular structures and
the corresponding variations, indicating that, in the earliest stages
after TBI, the concentration ratio of these biomarkers’ changes in
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the retina, providing a prediagnostic value to the in-hospital histo-
pathological outcomes.

To assess the ability of the EyeD to differentiate TBI via the
retinal changes, the area under the curve (AUC) for each peak
and their ratio was calculated (Fig. 4G, inset) with the true-positive
rate against the false-negative rates was plotted. From the SKiNET
model optimization with the 10-fold cross-validation on the train-
ing data, the determined intrinsic classification accuracy for the
peak 2930/2850 ratio was found to be AUC = 90.7 ± 0.9%, with
normal based, two-sided 95% confidence interval of less than
±9%, clearly discriminating between TBI and control groups, com-
parable to the receiver operating characteristic curve of the sensitiv-
ity versus 1-specificity derived following TBI detected from
biofluids within 0 to 48 hours (16). The AUC indicates that the
change in the peak ratio of 2930/2850 following the TBI could be
a valuable indicator for discriminating TBI from healthy
control cohorts.

In summary, we have demonstrated an unprecedented concept
of measuring changes to brain neurochemistry noninvasively via
the eye, overcoming the strict constraints of in vivo imaging that
are highly unfavorable for Raman spectroscopy, and shown the
first evidence that spectra of the neuroretina can be used to identify
TBI.We show that by using the eye alone to focus a collimated beam
onto the retina, high–wave number Raman bands can be measured
while simultaneously performing fundus imaging (Fig. 5). The en-
gineered eye phantom, mimicking the physical dimensions and
optical characteristics of the eye, further opens a new avenue for
further straightforward studies of various biological tissues in con-
junction with Raman spectroscopy, enabling validation of develop-
ments for other detrimental neurological and ophthalmological
diseases.

We have established that high–wave number bands alone can be
used to identify TBI from the retina and subsequently designed a
portable device for eye-safe data acquisition in a realistic synthetic
model of the human eye, providing the first tangible path toward
noninvasive point-of-care diagnostics of the brain using Raman
spectroscopy. The engineered EyeD technology combined with
SKiNET has been then used to investigate whether the retina can
reflect the brain microenvironment after injury, in clinically rele-
vant murine and porcine eye models of focal TBI. The intensity
ratio of two main peaks at 2850/2930 cm−1 was found to be associ-
ated with the CH2 stretching of lipids/CH3 symmetric stretching of
proteins, further revealing information on the type of lipid-protein
biomarker interaction due to the metabolic cascade following TBI,
the environment of the hydrocarbon chains of the lipid, and the
state of order of the chains. Retinal degeneration after TBI is directly
caused by CNS damage affecting the visual pathways, accounting
for 30% of the cerebral cortex (66–68). The detected retinal
changes are found to closely associate with TBI, eliciting subtle
spectral changes through the use of multivariate analysis, linked
to variation in cardiolipin and cytochrome C, and indicating met-
abolic disruption. These lipid-rich fatty substances encompass the
brain tissue (69), especially with the brain containing nearly 60% fat
and Raman signatures for all 12 major and minor brain-specific
lipids being well characterized (61, 70). The characteristic peaks
from the porcine eye with selected features of the 2850/2930 ratio
and six peak intensities in the fingerprint region form themultilayer
classification yielding the combined spectroscopic barcode for TBI
detection via the EyeD technology.While Raman data show a strong

and uniform relative change for severe TBI, tissue from the mild
TBI retina appears more heterogeneous. From pigs’ eyes, more
obvious changes were observed to spectra in response to injury,
which is in contrast to the more subtle changes seen in the
murine model. The consistency in the findings between large and
small animal models, with different injury mechanisms and differ-
ent tissue processing methods, strongly supports the veracity of
these findings. The greater magnitude of changes in the porcine
model may further relate to the unfixed nature of the tissue as
well as to the model involving a more severe TBI.

In the handheld technology, integrated SKiNET can simultane-
ously provide dimensionality reduction, feature extraction, and
multiclass classification to act as a decision support tool to allow
automated interpretation of Raman data without specialist
support, markedly improving the speed and cost of diagnosis
(Fig. 5). The achieved SKiNET classification performance con-
firmed via cross-validation results from SOM, and the correspond-
ing discriminant indices are therefore a direct reinforcement of the
SOMDI observations, ensuring the high reproducibility. Smart-
phone camera–based systems are easy to use and, coupled with AI
diagnostic support, produce an output when an adequate signal is
obtained. The experience of using smartphones to acquire images is
ubiquitous and will lead to a high user acceptance. Clinical efficacy
studies will determine the extent towhich paramedics and clinicians
rely on the device to drive decision-making. The EyeD readout
would form part of a protocolized decision-making tree such as:
normal EyeD + no “red flag” symptoms or signs classify the head
injury as mild TBI not requiring hospital assessment versus abnor-
mal EyeD mandates additional assessment in emergency depart-
ment. Further, by levering modern web technologies, data
analysis can be performed remotely on any device that has a web
browser and is designed to be user friendly to clinicians (61).

In comparison to the currently used methods in ophthalmology
for TBI diagnostics, there are no comparable techniques in clinical
practice. OCT and fundus photography as well as B scan ultrasound
provide structural imaging of the retina. Raman spectroscopy pro-
vides information on the biochemical composition and therefore
the metabolic state of the neuroretina, which is only indirectly avail-
able with structural imaging modalities, such as using OCT angiog-
raphy or fluorescein angiography, which may reveal reduced blood
flow, fromwhich clinicians could infer retinal ischemia.While mag-
netic resonance spectroscopy is unable to examine the retina due to
the minimum voxel size being too large, it could examine the vitre-
ous and has occasionally been used for this purpose in research;
however, there is a limited relationship between vitreous and
retinal findings. A brief overview of ophthalmological technologies
for the assessment of TBI is summarized in text S1.

To date, the specificity in multidisease settings has not been suf-
ficiently established. All approaches used clinically today and many
of the proposedmethods, e.g., S100B, lack specificity (30), and while
the latter has been implemented in Scandinavian countries, it is
rarely used elsewhere (71). The high sensitivity for the combination
of GFAP and neuro–Ubiquitin C-Terminal Hydrolase L1 (UCH-
L1) measured within 12 hours of injury (72), formed the basis of
the first US Food and Drug Administration–approved TBI test for
triaging the need for CT, however, is affected by poor specificity
(36.5%), low-positive predictive value (9.2%), and long-analysis
times, defeating its purpose (73). GCS, despite being highly subjec-
tive, remains the only ground truth for clinical and academic

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Banbury et al., Sci. Adv. 9, eadg5431 (2023) 15 November 2023 9 of 15

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 19, 2023



understanding of TBI that can span the entire patient journey as
well as injury severity. Measuring the biochemical compounds via
EyeD from the retina directly, as an accessible part of the CNS, cir-
cumvents many of the drawbacks of TBI detection, particularly with
specificity. Known biomarkers once thought to be highly specific
for the brain have later been found to have additional extracranial
sources, which confound the results. This a particular issue in poly-
trauma. In the case of the compounds detected by the EyeD, there is
no biological reason to infer that extracranially derived metabolites
would accumulate in any large quantities in the retina, as the blood-
retinal barrier prevents the entrance of systemic compounds from

circulation. We thus measure the changes directly from the
blood-brain-barrier side, probing both the local brain biology via
the neuroretina and the global brain via the optic nerve. Thus,
our noninvasive in vivo spectroscopic EyeD technology, which
could be combined with a parallel blood test (16), would be reflec-
tive of both global brain pathology (via probing the optic nerve) and
any local neurological disease (via detecting from the neuroretina),
representing the first opportunity for an alternative to GCS while
simultaneously offering greater fundamental mechanistic insights
to further our understanding of the underlying pathobiology of TBI.

Fig. 5. Translatable neuro-engineered EyeD technology for rapid TBI point-of-care diagnostics. From (A) concept through to the (B) design of the EyeD with a 3D-
printed phantom eye-model (with the synthetic eye model incorporated into the housing design) mimicking the optical properties of the eye, allowing Raman spectra
through an eye-like lens to be acquired onmodel samples and optimizing of the resolution and optical throughput and onto the (C) lab prototype, which uses the eye to
focus a collimated beam onto the retina, enablingmeasuring the spectroscopic fingerprint bands while concurrently performing fundus imaging to verify that the correct
area is imaged [(a) and (b)] created using BioRender. Subsequently, SKiNET generates (c) feature extraction and identification of the most important Raman bands by
separating the high-dimensionality data from different classes, identifying the underlying chemical differences, and classifying the data using the network with peaks in
SOMDI corresponding to cm−1 and modes that contribute most to the clustering observed in SOM. Its implementation using open-source libraries enables data analysis
to be performed online and run from any browser or smartphone (d), reducing the hardware footprint and increasing portability. (D) The engineered EyeD incorporates a
(a) disposable eye guard, (b) SKiNET software for rapid data classification, and visually clear on-site readout for clinicians or paramedics, enabling automated interpre-
tation of Raman data and thus markedly improving the speed and cost of diagnosis at the point of care using an (c) ergonomic handheld device for simultaneous fundus
photography and high–wave number Raman spectroscopy.
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Furthermore, the potential scope of in vivo EyeD detection to
characterize the neuroretinal sequelae of trauma is wide. Retinal de-
generation after TBI is directly caused by CNS damage involving the
visual pathways, which comprise 30% of the cerebral cortex (74, 75).
While the retinal changes detected in animal models closely associ-
ate with TBI severity, the markers considered (and other potential
markers) detected in the retina may also associate with local pathol-
ogy and afferent visual dysfunction. Given that up to 80% of patients
with mild TBI have long-term visual complaints, the ability to
detect and predict long-term visual dysfunction after TBI would
further be extremely valuable. It is also possible that the detected
metabolites may reflect more generically an acute brain injury.
This would not affect the utility of the solution in the context of
trauma, as the test would not be used in a total vacuum of informa-
tion. The identification of a generic acute brain injury would still
call for neuroprotective measures and triage to a neuroscience
center, whatever the cause, and could theoretically be of use in
many acute neurological conditions (e.g., stroke or the “found un-
conscious” patient). Ocular Raman spectroscopy can be further
translated to other clinical applications in ophthalmology and neu-
rology, such as the early diagnosis of diabetic retinopathy and de-
mentias or monitoring drug delivery to the brain.

In the longer term, the EyeD technology has the potential to
offer crucial clinical insight in a growing number of diagnostic
and patient-monitoring scenarios. By developing an eye-safe funda-
mental mechanism that combines fundus imaging and Raman
spectroscopy to allow reliable retinal data acquisition, we bridge
the translational gap via additive manufacturing, smartphone tech-
nology, and machine learning. Our results highlight that Raman
spectroscopy of the neuroretina is subject to the natural optics
and dimensions of the eye but show how this can be incorporated
into the device design. While we have demonstrated that high–wave
number bands detected in the eye can be used to diagnose TBI,
Raman spectroscopy EyeD has the potential to also be applied to
a multitude of neurological conditions. The measurements are
made portable and noninvasive, therefore enabling routine point-
of-care use and long-term patient monitoring. As a pathway to
translation, the standalone spectrometer will be replaced with a
compact on-device spectrometer and smartphone readout, allowing
for fundus photography and Raman spectroscopy from a single
smartphone screen, backed by cloud data processing, storage, and
machine learning. The final portable EyeD will be used to detect
neurotrauma at point of care, e.g., roadside, pitch side, and
austere combat environment, where no expert evaluation or
urgent radiological investigations are immediately available. This
has the potential to revolutionize how TBI and neurological condi-
tions are diagnosed and triaged, which, in turn, would provide sub-
stantial health care savings and improved clinical outcomes and save
many lives.

MATERIALS AND METHODS
Porcine eye study
Pig eyes were acquired from large white pigs (Liverpool Medical
Meat Supplies). Traumatic focal brain injuries, representative of a
cortical impact, to the pigs’ brain (frontal and parietal) were
induced as an electrical stun shock directly to the brain, followed
by an incision to the neck [following United Kingdom Food Stan-
dards Agency (UK FSA) health guidelines as part of standard

abattoir slaughtering practice]. These injury forces led to clinically
relevant histopathological outcomes including cellular damage and
death, skull fracture, disruption and hemorrhage of the cortical
surface, swelling, edema, and contusions (76), representing the
head injuries acquired from falls, which account for over 35% of
all sustained TBIs and over 50% of TBIs in children younger than
14 years (77). Control eye samples were acquired from Yorkshire
pigs dying a natural death. All eyes remained optically clear
(Fig. 4B, inset) and were analyzed 2 to 4 hours after extraction.
Retinae were dissected out and analyzed in flat mount on alumi-
num-covered microscope slides. In determining the extent of
changes in the retinal structure of living and postmortem eyes of
Yucatan and Yorkshire pigs, respectively, eyes were imaged using
a Heidelberg Spectralis OCT platform (for both postmortem and
in vivo imaging), using the manufacturer’s “Posterior Pole” proto-
col to acquire volumetric retinal scans in 61 horizontal b-scans av-
eraged over at least nine frames in a 30° × 25° volume centered
temporal to the optic disc in the expected location of the pig
visual streak. OCT images were exported in tiff format and analyzed
using ImageJ. The retinal nerve fiber layer and ganglion cell layer
were manually segmented, and thicknesses were measured at 3000
and 4500 μm from the optic disc orientated in the axis of the visual
streak. Raman spectra were acquired using both the InVia Qontor
(Renishaw Plc) and the engineered EyeD technology equipped with
a 635-nm laser. Surface maps over an area of 2500 μm2 were ac-
quired for each sample, with an acquisition time of 3 s and using
a 50× Leica objective (0.75 NA), with scans recorded in the
ranges of 500 to 3500 cm−1 and 2032 to 3466 cm−1, accordingly.
A total of 400 spectra per tissue sample were recorded. Spectra
were processed using cosmic ray removal and baseline subtraction
in WiRE 5.3 (Renishaw Plc) and exported to text files.

Murine samples
Murine samples were purchased from the Istituto di Ricerche Farm-
acologiche Mario Negri IRCCS following experimental brain injury
and spectra measured from flat mounted retina samples, as we have
previously described (17, 29). Briefly, the brain injury was induced
using a 3-mm rigid impactor driven by a pneumatic piston rigidly
mounted at an angle of 20° from the vertical plane and applied to
the exposed dura mater, between bregma and lambda, over the left
parietotemporal cortex (antero-posteriority: −2.5 mm, laterality:
−2.mm), at an impactor velocity of 5 m/s. The deformation depth
was of either 1 or 0.5 mm, resulting in a severe or moderate level of
injury respectively. The craniotomy was then covered via cranio-
plasty, and the scalp was sutured. Sham mice received identical an-
esthesia and surgery without brain injury. Three days after TBI,
mice were deeply anesthetized with ketamine chlorhydrate (20
mg, i.p.) and medetomidine chlorhydrate (0.2 mg, i.p.) transcar-
dially perfused with 30 ml of 1% phosphate-buffered saline (PBS)
(pH 7.4), followed by 60 ml of 4% paraformaldehyde (PFA) in
PBS. The brains and eyes were carefully removed from the skull
and postfixed in 4% PFA in PBS for 24 hours at 4°C. The postfixed
tissue was then rinsed and stored in normal saline (NaCl 0.9%) at 4°
C. Adult (8 weeks old) C57BL/6J male mice (Envigo RMS Srl) were
used. No additional procedures were performed on mice except
those related to the experiment they were intended for. Procedures
involving animals and their care were conducted in conformity with
the institutional guidelines of the Istituto di Ricerche Farmacolo-
giche Mario Negri IRCCS, Italy in compliance with national (D.
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lgs 26/2014; authorization no. 19/2008A issued by Ministry of
Health) and international laws and policies (EEC Council Directive
2010/63/UE; the National Institutes of Health Guide for the Care
and Use of Laboratory Animals, 2011 edition). They were approved
by the Mario Negri Institute Animal Care and Use Committee that
includes ad hoc members for ethical issues and by the Italian Min-
istry of Health (Decreto no. D/07/2013B and 301/2017PR). Animal
facilities meet international standards and are regularly checked by
a certified veterinarian who is responsible for health monitoring,
animal welfare supervision, experimental protocols, and review of
procedures.

Artificial neural network data analysis and classification
SKiNET, an open-source analysis tool (25) with an accompanying
Raman Toolkit web interface, was used to generate SOM models
from the training data and perform predictions against the test
data. A total of 20% of the data was randomly selected from each
group and used as test data with the remaining 80% of data used
for training (tables S1 and S2). To achieve higher accuracy of the
SOM size, these models were optimized by performing cross-vali-
dation on the training data, tuning the number of neurons (hexa-
gons), initial learning rate, empiric testing of the number of epochs,
and number of training steps, with classification accuracy deter-
mined using a 10-fold cross-validation. To determine the best
matching unit, the initial area size was maintained at two-thirds
the edge length of the grid with the cosine similarity used as the dis-
tance metric. The 400 spectra measured across each sample were
grouped according to class (table S1). A total of 20% of the data
was randomly selected from each group and reserved as test data,
leaving the remaining 80% for training (table S2). Analysis of the
training data was performed using SKiNET by randomly passing
samples from the training data into the SOM over a number of it-
erations. SKiNET models were optimized by performing 10-fold
cross-validation on the training data and tuning the number of
neurons, initial learning rate, and number of training steps. The
final model used a 10 by 10 or a 20 by 20 grids of neurons (for
each group), 57,600 training steps (nine epochs), with an initial
learning rate of 0.3. The initial neighborhood size was maintained
at two-thirds the edge length of the grid, and cosine similarity was
used as the distance metric to determine the best matching unit.
Last, the optimized model was used to classify the previously
unused test data, to give an indicator of the classification perfor-
mance. Classification using the test data were repeated 10 times
from separate SOM initializations and an average of the results
output as a confusion matrix. A repeat initialization of the classifi-
cation verified the stability of the model.

Non-negative least squares analysis
Non-negative least squares analysis was performed on eye samples
by fitting a library of component spectra to the average spectrum for
each sample (table S3). The component spectra consisted of raw
data for brain lipids and cardiolipin (70). Cytochrome C was pur-
chased from Sigma-Aldrich Ltd. and measured without modifica-
tion at 633 nm using a laser power up to 1 mW, focused through
a 50× Leica objective (0.75 NA) over 3 s (1-s acquisition, 3 accumu-
lations). The lsqnonneg function in MATLAB was used to deter-
mine coefficients of the raw component spectra to the average
spectra measured from the eyes. The interp1 function was used to
rescale the data in increments of one inverse centimeter. Raw

component spectra from brain-specific lipids were fitted to
SOMDI for a particular state, constituting a physically realistic fit,
as Raman spectra represent a mixed state of positive contributions
from constituent components. The change in fitting coefficients was
used to interpret the compositional changes to the retina in re-
sponse to the injury.

Raman spectroscopy
InVia Qontor confocal Raman (Renishaw) spectrometer equipped
with 514-, 633-, and 785-nm lasers, which was adjusted for optimal
throughput, fluorescence control, and sensitivity, was used to
acquire the standard and comparative data. Normalization was
applied so that the AUC of the spectrum equates to 1 in each case
and the data to be plotted on the same scale, enabling a straightfor-
ward comparison between spectra taken from instruments with dif-
ferent optics. The acquired spectra were normalized using the
standard normal variate, and cosmic ray peaks were removed
using a custom Python script (Python 3.7) andWiRE 5.3 (Renishaw
Plc). Ramanmaps were generated in a Streamlinemode scan with 1-
s acquisition, 3 accumulations at 633 nm. A 50× objective with an
NA of 0.75 was used for Raman measurements. Optical measure-
ments were carried out with a specially adapted research grade mi-
croscope (Leica DM 2700 M) equipped with an incoherent white
light source, allowing confocal measurements with 2.5-μm depth
resolution. Postprocessing of spectra was performed in WiRE 5.3
and Python 3.7, and cosmic rays were removed from each map
using the nearest neighbor method, followed by baseline subtrac-
tion using the “intelligent spline” fitting (11 nodes). The average
was taken from each map resulting in a single spectrum per sample.

Design and fabrication of the EyeD technology
Computer-aided design (CAD) designs for 3D printing were made
using Autodesk Fusion 360 (figs. S2 and S3) and printed in polylac-
tic acid using an Ultimaker 3 Extended (Ultimaker BV).The com-
bined Raman spectroscopy/fundus photography setup consisted of
the following components: iPhone (Apple Inc.), D-EYE Smart-
phone-Based Retinal Imaging System (D-EYE Srl), 625-nm edge
BrightLine single-edge short-pass standard epi-fluorescence di-
chroic beam splitter, 635-nm BrightLine dichroic beamplitter
(Laser 2000 Ltd.), 650-nm FEL0650 long-pass filter, 635-nm
FL0635-10 laser line filter, 2× FiberPort, FC/PC 100-μm 0.22-NA
multimode input fiber, SMASMA 100-μm 0.22-NA multimode
output fiber (ThorLabs Inc.), 635-nm class I laser (KI9807A VFL,
Kingfisher International) (fig. S6) (78), and QE Pro Spectrometer
optimized for 638 nm (Ocean Optics Inc.). The eye tissue
phantom consisted of a 3D-printed housing encasing an aspheric
condenser lens (ACL2018U) with a focal length of 18 mm (Thor-
Labs Inc.). Fatty tissue from bacon was used to simulate the signal
from the optic nerve and retina in the phantom. Fundus photograph
of a human eyes (approved by University of Birmingham ethics
committee for healthy controls, Ethics Reference: ERN_22-1129)
were taken using unmodified D-EYE camera attachment. Further
(OCT/fundus) images were from patient recruited to the Ophthal-
mic and Neurocognitive Assessment in the Management of Criti-
cally Ill Patients study: 19/YH/0113, approved by the National
Health Service Research Ethics Service and conducted in the Oph-
thalmology Department at the Queen Elizabeth Hospital Birming-
ham of University Hospitals Birmingham NHS Foundation Trust
(UK), as previously described. Inclusion criteria were patients
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over the age of 18 years with planned esophagectomy. Exclusion cri-
teria were individuals with preexisting retinal pathology, optic nerve
pathology, or known neurological conditions. Patients were ap-
proached in clinic by members of the clinical care team, and if
they expressed a willingness to participate, were given a patient in-
formation leaflet, had the opportunity to discuss the study, and were
invited to participate by a member of the research team, providing
written, informed consent if they agreed. All documents were ap-
proved by the NHS Research Ethics Service and the Hospital
Trust. Spectra were acquired using OceanView software (Ocean
Optics Inc.) and an acquisition time of 30 s and 3 accumulations.
An intelligent-fitting filter was applied for baseline subtraction.
After excluding regions with peaks, the baseline was fitted to all
the remaining points in each spectrum, and a polynomial order
of nine with the noise tolerance of 1.50 was applied. The baseline
correction was achieved via the modified polynomial fitting
(ninth order) and optimized peak detection, as auto baseline
default configuration was not suitable, providing a close-fitting cor-
rection and background subtraction.

Receiver operating characteristic curves and box plots
Receiver operating characteristic curves were generated from the ac-
quired data for different cutoff points using nonparametric Mann-
Whitney U and Kruskal-Wallis tests using SPSS (79). Each point in
the receiver operating characteristic curve represented a sensitivity-
specificity pair corresponding to a particular decision threshold,
and the values of sensitivity, specificity, and accuracy were calculat-
ed using standard equations. A test with perfect discrimination (no
overlap in the two distributions) exhibited a receiver operating char-
acteristic curve that passed through the upper left corner (100% sen-
sitivity and 100% specificity) and the closer the receiver operating
characteristic curve was to the upper left corner, the higher was the
overall accuracy of the test. Box plots were generated using Vertex42
software. Each series was an x-y chart used to represent the quar-
tiles, allowing the data to include negative values. The median
was denoted with the “x” marker, and horizontal markers were
used for quartile 1 and quartile 3 without requiring shifting of the
data. The comparison of the TBI group with the control group was
performed using a two-sided normal-based 95% confidence inter-
val t test, and P < 0.05 was considered significant. Classification sen-
sitivity, accuracy, and specificity were determined on the basis of
detection results: sensitivity = (TP)/(TP + FN), specificity =
(TN)/(TN + FP), and accuracy = (TP + TN)/(TP + TN + FN +
FP) where TP is “true positive,” TN is “true negative,” FP is “false
positive,” and FN is “false negative.”

Supplementary Materials
This PDF file includes:
Figs. S1 to S6
Tables S1 to S3
Supplementary Text S1

REFERENCES AND NOTES
1. J. Haarbauer-Krupa, M. J. Pugh, E. M. Prager, N. Harmon, J. Wolfe, K. Yaffe, Epidemiology of

chronic effects of traumatic brain injury. J. Neurotrauma 38, 3235–3247 (2021).
2. S. Koljenović, T. C. B. Schut, R. Wolthuis, B. de Jong, L. Santos, P. J. Caspers, J. M. Kros,

G. J. Puppels, Tissue characterization using high wave number Raman spectroscopy.
J. Biomed. Opt. 10, 031116–031127 (2005).

3. A. van Gils, J. Stone, K. Welch, L. R. Davidson, D. Kerslake, D. Caesar, L. McWhirter, A. Carson,
Management of mild traumatic brain injury. Pract. Neurol. 20, 213–221 (2020).

4. F. Z. Javaid, J. Brenton, L. Guo, M. F. Cordeiro, Visual and ocular manifestations of alz-
heimer’s disease and their use as biomarkers for diagnosis and progression. Front. Neurol.
7, 55 (2016).

5. M. Joukal, Anatomy of the Human Visual Pathway in Homonymous Visual Field Defects
(Springer International Publishing, 2017), 1–16.

6. S. Lemmens, A. Devulder, K. Van Keer, J. Bierkens, P. De Boever, I. Stalmans, Systematic
review on fractal dimension of the retinal vasculature in neurodegeneration and stroke:
Assessment of a potential biomarker. Front. Neurosci. 14, 16 (2020).

7. N. Marchesi, F. Fahmideh, F. Boschi, A. Pascale, A. Barbieri, Ocular Neurodegenerative
Diseases: Interconnection between retina and cortical areas. Cell 10, 2394 (2021).

8. P. J. Snyder, J. Alber, C. Alt, L. J. Bain, B. E. Bouma, F. H. Bouwman, D. C. DeBuc,
M. C. W. Campbell, M. C. Carrillo, E. Y. Chew, M. F. Cordeiro, M. R. Dueñas, B. M. Fernández,
M. Koronyo-Hamaoui, C. La Morgia, R. O. Carare, S. R. Sadda, P. van Wijngaarden,
H. M. Snyder, Retinal imaging in Alzheimer’s and neurodegenerative diseases. Alzheimers
Dement. 17, 103–111 (2021).

9. S. K. Das, S. P. Shetty, K. K. Sen, A novel triage tool: Optic nerve sheath diameter in traumatic
brain injury and its correlation to rotterdam computed tomography (CT) scoring. Polish
J. Radiol. 82, 240–243 (2017).

10. H. E. Killer, G. P. Jaggi, J. Flammer, N. R. Miller, A. R. Huber, The optic nerve: A new window
into cerebrospinal fluid composition? Brain 129, 1027–1030 (2006).

11. O. Mufti, S. Mathew, A. Harris, B. Siesky, K. M. Burgett, A. C. Verticchio Vercellin, Ocular
changes in traumatic brain injury: A review. Eur. J. Ophthalmol. 30, 867–873 (2019).

12. S. S. Sadrameli, M. S. Wong, R. Kabir, J. R. Wiese, K. Podell, J. J. Volpi, R. R. Gadhia, Changes in
transcranial sonographic measurement of the optic nerve sheath diameter in non-con-
cussed collegiate soccer players across a single season. Cureus 10, e3090 (2018).

13. L. Papa, L. M. Lewis, J. L. Falk, Z. Zhang, S. Silvestri, P. Giordano, G. M. Brophy, J. A. Demery,
N. K. Dixit, I. Ferguson, M. C. Liu, J. Mo, L. Akinyi, K. Schmid, S. Mondello, C. S. Robertson,
F. C. Tortella, R. L. Hayes, K. K. W.Wang, Elevated levels of serum glial fibrillary acidic protein
breakdown products in mild and moderate traumatic brain injury are associated with in-
tracranial lesions and neurosurgical intervention. Ann. Emerg. Med. 59, 471–483 (2012).

14. J. Sen, A. Belli, A. Petzold, S. Russo, G. Keir, E. J. Thompson, M. Smith, N. Kitchen, Extra-
cellular fluid S100B in the injured brain: A future surrogate marker of acute brain injury?
Acta Neurochir. 147, 897–900 (2005).

15. R. J. Shannon, S. van der Heide, E. L. Carter, I. Jalloh, D. K. Menon, P. J. Hutchinson,
K. L. H. Carpenter, Extracellular N-acetylaspartate in human traumatic brain injury.
J. Neurotrauma 33, 319–329 (2016).

16. J. J. S. Rickard, V. Di-Pietro, D. J. Smith, D. J. Davies, A. Belli, P. Goldberg Oppenheimer, Rapid
optofluidic detection of biomarkers for traumatic brain injury via surface-enhanced Raman
spectroscopy. Nat. Biomed. Eng. 4, 610–623 (2020).

17. C. Banbury, I. Styles, N. Eisenstein, E. R. Zanier, G. Vegliante, A. Belli, A. Logan, P. Goldberg
Oppenheimer, Spectroscopic detection of traumatic brain injury severity and biochemistry
from the retina. Biomed. Opt. Express 11, 6249–6261 (2020).

18. J. Desroches, M. Jermyn, M. Pinto, F. Picot, M. A. Tremblay, S. Obaid, E. Marple, K. Urmey,
D. Trudel, G. Soulez, M. C. Guiot, B. C. Wilson, K. Petrecca, F. Leblond, A new method using
Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci. Rep. 8,
1792 (2018).

19. P. Gao, B. Han, Y. Du, G. Zhao, Z. Yu, W. Xu, C. Zheng, Z. Fan, The clinical application of
raman spectroscopy for breast cancer detection. J. Spectrosc. 2017, 5383948 (2017).

20. J. H. Granger, M. C. Granger, M. A. Firpo, S. J. Mulvihill, M. D. Porter, Toward development of
a surface enhanced Raman scattering (SERS) based cancer diagnostic immunoassay panel.
Analyst 138, 410–416 (2013).

21. M. Höhl, C. Zeilinger, B. Roth, M. Meinhardt-Wollweber, U. Morgner, Multivariate dis-
crimination of heat shock proteins using a fiber optic Raman setup for in situ analysis of
human perilymph. Rev. Sci. Instrum. 90, 043110–043117 (2019).

22. N. J. Bauer, J. P. Wicksted, F. H. Jongsma, W. F. March, F. Hendrikse, M. Motamedi, Nonin-
vasive assessment of the hydration gradient across the cornea using confocal Raman
spectroscopy. Invest. Ophthalmol. Vis. Sci. 39, 831–835 (1998).

23. A. Katz, E. F. Kruger, G. Minko, C. H. Liu, R. B. Rosen, R. R. Alfano, Detection of glutamate in
the eye by Raman spectroscopy. J. Biomed. Opt. 8, 167–172 (2003).

24. A. Obana, T. Hiramitsu, Y. Gohto, A. Ohira, S. Mizuno, T. Hirano, P. S. Bernstein, H. Fujii,
K. Iseki, M. Tanito, Y. Hotta, Macular carotenoid levels of normal subjects and age-related
maculopathy patients in a Japanese population. Ophthalmology 115, 147–157 (2008).

25. C. Banbury, R. Mason, I. Styles, N. Eisenstein, M. Clancy, A. Belli, A. Logan, P. Goldberg
Oppenheimer, Development of the self optimising kohonen index network (SKiNET) for
Raman spectroscopy based detection of anatomical eye tissue. Sci. Rep. 9, 10812 (2019).

26. M. Marro, A. Taubes, A. Abernathy, S. Balint, B. Moreno, B. Sanchez-Dalmau, E. H. Martínez-
Lapiscina, I. Amat-Roldan, D. Petrov, P. Villoslada, Dynamic molecular monitoring of retina

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Banbury et al., Sci. Adv. 9, eadg5431 (2023) 15 November 2023 13 of 15

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 19, 2023



inflammation by in vivo Raman spectroscopy coupled with multivariate analysis.
J. Biophotonics 7, 724–734 (2014).

27. C. Stiebing, I. W. Schie, F. Knorr, M. Schmitt, N. Keijzer, R. Kleemann, I. J. Jahn, M. Jahn,
A. J. Kiliaan, L. Ginner, A. Lichtenegger, W. Drexler, R. A. Leitgeb, J. Popp, Nonresonant
Raman spectroscopy of isolated human retina samples complying with laser safety regu-
lations for in vivo measurements. Neurophotonics 6, 041106 (2019).

28. G. Smith, D. A. Atchison, The Eye and Visual Optical Instruments (Cambridge University
Press, 2010).

29. C. Banbury, P. Goldberg Oppenheimer, Towards developemnt of technology for point of care
diagnostics for traumatic brain injury, Thesis, University of Birmingham, Birmingham,
UK (2021).

30. C. Banbury, Raman Toolkit - Analysis and Data Management Tool for Raman Spectra, 2023.

31. R. G. Brereton, Self organising maps for visualising and modelling. Chem. Cent. J. 6,
S1 (2012).

32. A. Cheriyadat, L. M. Bruce, Why principal component analysis is not an appropriate feature
extraction method for hyperspectral data. Int. Geosci. Remote Sens. Symp. 6,
3420–3421 (2003).

33. Y. Li, W. Huang, J. Pan, Q. Ye, S. Lin, S. Feng, S. Xie, H. Zeng, R. Chen, Rapid detection of
nasopharyngeal cancer using Raman spectroscopy and multivariate statistical analysis.
Mol. Clin. Oncol. 3, 375–380 (2015).

34. J. Liu, M. Osadchy, L. Ashton, M. Foster, C. J. Solomon, S. J. Gibson, Deep convolutional
neural networks for Raman spectrum recognition: A unified solution. Analyst 142,
4067–4074 (2017).

35. G. R. Lloyd, K. Wongravee, C. J. L. Silwood, M. Grootveld, R. G. Brereton, Self Organising
Maps for variable selection: Application to human saliva analysed by nuclear magnetic
resonance spectroscopy to investigate the effect of an oral healthcare product. Chemom.
Intel. Lab. Syst. 98, 149–161 (2009).

36. J. M. Surmacki, B. J. Woodhams, A. Haslehurst, B. A. J. Ponder, S. E. Bohndiek, Ramanmicro-
spectroscopy for accurate identification of primary human bronchial epithelial cells. Sci.
Rep. 98, 149–161 (2018).

37. I. V. Ermakov, R. W. McClane, W. Gellermann, P. S. Bernstein, Resonant Raman detection of
macular pigment levels in the living human retina. Opt. Lett. 26, 202–204 (2001).

38. P. V. Cvijin, J. J. O’Brien, G. H. Atkinson, W. K. Wells, J. I. Lunine, D. M. Hunten, Methane
overtone absorption by intracavity laser spectroscopy. CPL 159, 331–336 (1989).

39. B. Hoffe, M. R. Holahan, The use of pigs as a translational model for studying neurode-
generative diseases. Front. Physiol. 10, 1–8 (2019).

40. H. A. Kinder, E. W. Baker, F. D. West, The pig as a preclinical traumatic brain injury model:
Current models, functional outcome measures, and translational detection strategies.
Neural Regen. Res. 14, 413–424 (2019).

41. Y. Dang, S. Waxman, C. Wang, R. T. Loewen, M. Sun, N. A. Loewen, A porcine ex vivo model
of pigmentary glaucoma. Sci. Reports. 81, 5468 (2018).

42. Y. Fu, T. J. Frederick, T. B. Huff, G. E. Goings, S. D. Miller, J.-X. Cheng, Paranodal myelin re-
traction in relapsing experimental autoimmune encephalomyelitis visualized by coherent
anti-Stokes Raman scattering microscopy. J. Biomed. Opt. 16, 1–10 (2011).

43. L. E. Masson, C. M. O’Brien, I. J. Pence, J. L. Herington, J. Reese, T. G. Van Leeuwen,
A. Mahadevan-Jansen, Dual excitation wavelength system for combined fingerprint and
high wavenumber Raman spectroscopy. Analyst 143, 6049–6060 (2018).

44. C. Shu, W. Zheng, Z. Wang, C. Yu, Z. Huang, Development and characterization of a dis-
posable submillimeter fiber optic Raman needle probe for enhancing real-time in vivo
deep tissue and biofluids Raman measurements. Opt. Lett. 46, 5197–5200 (2021).

45. I. Anna, P. Bartosz, P. Lech, A. Halina, Novel strategies of Raman imaging for brain tumor
research. Oncotarget 8, 85290–85310 (2017).

46. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd Ed.
(John Wiley & Sons Ltd, 2004).

47. L. Giannoni, F. Lange, M. Sajic, K. J. Smith, I. Tachtsidis, A hyperspectral imaging system for
mapping haemoglobin and cytochrome-c-oxidase concentration changes in the exposed
cerebral cortex. IEEE J. Sel. Top. Quantum Electron. 27, 7400411–7400438 (2021).

48. J. P. Kitt, D. A. Bryce, S. D. Minteer, J. M. Harris, Raman spectroscopy reveals selective in-
teractions of cytochrome c with cardiolipin that correlate with membrane permeability.
J. Am. Chem. Soc. 139, 3851–3860 (2017).

49. V. Russo, P. Candeloro, N. Malara, G. Perozziello, M. Iannone, M. Scicchitano, R. Mollace,
V. Musolino, M. Gliozzi, C. Carresi, V. M. Morittu, S. Gratteri, E. Palma, C. Muscoli, E. Di
Fabrizio, V. Mollace, Key Role of Cytochrome C for Apoptosis Detection Using Raman
Microimaging in an Animal Model of Brain Ischemiawith Insulin Treatment. Appl. Spectrosc.
73, 1208–1217 (2019).

50. K. P. Kirkbride, Infrared Microspectroscopy of Fibres in Forensic Examination of Fibres (CRC
Press, 1992).

51. M. Mowbray, C. Banbury, J. J. S. Rickard, D. J. Davies, P. Goldberg Oppenheimer, Devel-
opment and characterization of a probe device toward intracranial spectroscopy of trau-
matic brain injury. ACS Biomater Sci. Eng. 7, 1252–1262 (2021).

52. P. Larkin, IR and Raman Spectra-Structure Correlations: Characteristic Group Frequencies in
Infrared and Raman Spectroscopy (Elsevier, 2011), 73–115.

53. A. C. S. Talari, Z. Movasaghi, S. Rehman, I. U. Rehman, Raman Spectroscopy of Biological
Tissues. Appl. Spectrosc. Rev. 50, 46–111 (2015).

54. W. Hübner, H. H. Mantsch, M. Kates, Intramolecular hydrogen bonding in cardiolipin.
Biochim. Biophys. Acta 1066, 166–174 (1991).

55. Z. Zhao, M. Wang, Y. Tian, T. Hilton, B. Salsbery, E. Z. Zhou, X. Wu, P. Thiagarajan, E. Boilard,
M. Li, J. Zhang, J. F. Dong, Cardiolipin-mediated procoagulant activity of mitochondria
contributes to traumatic brain injury–associated coagulopathy in mice. Blood 127,
2763–2772 (2016).

56. L. L. Tay, R. G. Tremblay, J. Hulse, B. Zurakowski, M. Thompson, M. Bani-Yaghoub, Detection
of acute brain injury by Raman spectral signature. Analyst 136, 1620–1626 (2011).

57. N. A. Brazhe, A. B. Evlyukhin, E. A. Goodilin, A. A. Semenova, S. M. Novikov, S. I. Bozhevolnyi,
B. N. Chichkov, A. S. Sarycheva, A. A. Baizhumanov, E. I. Nikelshparg, L. I. Deev,
E. G. Maksimov, G. V. Maksimov, O. Sosnovtseva, Probing cytochrome c in living mito-
chondria with surface-enhanced Raman spectroscopy. Sci. Reports 5, 13793 (2015).

58. J. D. Unsay, K. Cosentino, Y. Subburaj, A. J. García-Sáez, Cardiolipin effects on membrane
structure and dynamics. Langmuir 29, 15878–15887 (2013).

59. M. O. Ripple, M. Abajian, R. Springett, Cytochrome c is rapidly reduced in the cytosol after
mitochondrial outer membrane permeabilization. Apoptosis 15, 563–573 (2010).

60. V. E. Kagan, G. G. Borisenko, Y. Y. Tyurina, V. A. Tyurin, J. Jiang, A. I. Potapovich, V. Kini,
A. A. Amoscato, Y. Fujii, Oxidative lipidomics of apoptosis: Redox catalytic interactions of
cytochrome c with cardiolipin and phosphatidylserine. Free Radic. Biol. Med. 37,
1963–1985 (2004).

61. J. Ji, A. E. Kline, A. Amoscato, A. K. Samhan-Arias, L. J. Sparvero, V. A. Tyurin, Y. Y. Tyurina,
B. Fink, M. D. Manole, A. M. Puccio, D. O. Okonkwo, J. P. Cheng, H. Alexander, R. S. B. Clark,
P. M. Kochanek, P. Wipf, V. E. Kagan, H. Bayir, Lipidomics identifies cardiolipin oxidation as a
mitochondrial target for redox therapy of brain injury. Nat. Neurosci. 15,
1407–1413 (2012).

62. C. Y. Chang, D. S. Ke, J. Y. Chen, Essential fatty acids and human brain. Acta Neurol. Taiwan.
18, 231–241 (2009).

63. C. Krafft, L. Neudert, T. Simat, R. Salzer, Near infrared Raman spectra of human brain lipids.
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 61, 1529–1535 (2005).

64. P. Homayoun, N. E. Parkins, J. Soblosky, M. E. Carey, E. B. Rodriguez De Turco, N. G. Bazan,
Cortical impact injury in rats promotes a rapid and sustained increase in polyunsaturated
free fatty acids and diacylglycerols. Neurochem. Res. 25, 269–276 (2000).

65. J. G. Pilitsis, W. M. Coplin, M. H. O’Regan, J. M. Wellwood, F. G. Diaz, M. R. Fairfax,
D. B. Michael, J. W. Phillis, Free fatty acids in cerebrospinal fluids from patients with trau-
matic brain injury. Neurosci. Lett. 349, 136–138 (2003).

66. S. Yue, J. M. Cárdenas-Mora, L. S. Chaboub, S. A. Lelivre, J. X. Cheng, Label-free analysis of
breast tissue polarity by Raman imaging of lipid phase. Biophys. J. 102, 1215–1223 (2012).

67. C. Childs, L. A. Barker, A. Gage, M. Loosemore, Investigating possible retinal biomarkers of
head trauma in Olympic boxers using optical coherence tomography. Eye Brain 10,
101–110 (2018).

68. C. S. Gilmore, K. O. Lim, M. K. Garvin, J. K. Wang, J. Ledolter, A. L. Fenske, C. L. Gentz, J. Nellis,
M. T. Armstrong, R. H. Kardon, Association of optical coherence tomography with longi-
tudinal neurodegeneration in veterans with chronic mild traumatic brain injury. JAMA
Netw. Open 3, e2030824 (2020).

69. L. Vien, C. Dalporto, D. Yang, Retrograde Degeneration of Retinal Ganglion Cells Secondary
to Head Trauma. Optom. Vis. Sci. 94, 125–134 (2017).

70. T. Minamikawa, Y. Harada, T. Takamatsu, Ex vivo peripheral nerve detection of rats by
spontaneous Raman spectroscopy. Sci. Rep. 5, 17165 (2015).

71. R. E. Andersen, L. O. Hansson, O. Nilsson, R. Dijlai-Merzoug, G. Settergren, High serum
S100B levels for trauma patients without head injuries. Neurosurgery 48,
1255–1260 (2001).

72. M. Minkkinen, G. L. Iverson, A. K. Kotilainen, S. L. Pauniaho, V. M. Mattila, T. Lehtimäki,
K. Berghem, J. P. Posti, T. M. Luoto, Prospective validation of the scandinavian guidelines
for initial management of minimal, mild, and moderate head injuries in adults.
J. Neurotrauma. 36, 2904–2912 (2019).

73. J. J. Bazarian, P. Biberthaler, R. D. Welch, L. M. Lewis, P. Barzo, V. Bogner-Flatz, P. Gunnar
Brolinson, A. Büki, J. Y. Chen, R. H. Christenson, D. Hack, J. S. Huff, S. Johar, J. D. Jordan,
B. A. Leidel, T. Lindner, E. Ludington, D. O. Okonkwo, J. Ornato, W. F. Peacock, K. Schmidt,
J. A. Tyndall, A. Vossough, A. S. Jagoda, Serum GFAP and UCH-L1 for prediction of absence
of intracranial injuries on head CT (ALERT-TBI): A multicentre observational study. Lancet
Neurol. 17, 782–789 (2018).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Banbury et al., Sci. Adv. 9, eadg5431 (2023) 15 November 2023 14 of 15

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 19, 2023



74. Administration, U.F.a.D., “Evaluation of automatic class iii designation for Banyan Brain
Trauma Indicator” (2018; https://accessdata.fda.gov/cdrh_docs/reviews/DEN170045.pdf ).

75. S. M. Cansler, N. K. Evanson, Connecting endoplasmic reticulum and oxidative stress to
retinal degeneration, TBI, and traumatic optic neuropathy. John Wiley and Sons Inc. (2020),
98, 571, 574.

76. M. Das, X. Tang, J. Y. Han, K. Mayilsamy, E. Foran, M. R. Biswal, R. Tzekov, S. S. Mohapatra,
S. Mohapatra, CCL20-CCR6 axis modulated traumatic brain injury-induced visual pathol-
ogies. J. Neuroinflammation 16, 1–12 (2019).

77. A. C. Duhaime, Large animal models of traumatic injury to the immature brain. Dev.
Neurosci. 28, 380–387 (2006).

78. U.S. Department Of Health And Human Services, (CDC), “Traumatic brain injury in the
United States- emergency department visits, hospitalizations, and deaths 2002–2006”
(CDC, 2006) https://cdc.gov/traumaticbraininjury/pdf/blue_book.pdf.

79. Danh, “Laser class EN 60825–1” (2012) https://commons.wikimedia.org/wiki/File:Laser_
class_EN_60825-1.en.png.

80. Y. Wang, S. Kang, A. Khan, G. Ruttner, S. Y. Leigh, M. Murray, S. Abeytunge, G. Peterson,
M. Rajadhyaksha, S. Dintzis, S. Javid, J. T. C. Liu, Quantitative molecular phenotyping with
topically applied SERS nanoparticles for intraoperative guidance of breast cancer lump-
ectomy. Sci. Reports 6, 21242 (2016).

Acknowledgments:We thank A. Khan and A. Belli for helpful discussions about the technology
and insights into clinical biomarkers aspects. Components of the developed device were

fabricated using the facilities at the Cavendish Laboratory at the Department of Physics and the
Nanoscience Centre for Fabrication, University of Cambridge. Funding: We acknowledge
funding from the Wellcome Trust (grant no. 174ISSFPP), the Engineering and Physical Science
Research Council (grant refs: EP/V029983/1, EP/L016346/1, and EP/Y030206/1), and the
National Institute for Health Research. Author contributions: C.B., M.C., and P.G.O.
conceptualized the study and designs. C.B., M.C., J.J.S.R., and PGO designed the methodology,
and C.B., M.C., G.H., and J.J.S.R. carried out the investigation and experimental work. R.J.B. and P.
G.O. provided the oversight and vitalization along with the clinical data interpretation. J.J.S.R.
and P.G.O. supervised the study. C.B., G.H., J.J.S.R., R.J.B., and P.G.O. written the original draft,
and all authors reviewed and edited the paper. Competing interests: C.B., M.C., R.J.B., J.J.S.R.,
and P.G.O. are inventors on patent application (US20220338788A1/WO2018/138488)
submitted by the University of Birmingham that covers the device optical comments and
engineering. All other authors declare they have no competing interests. Data and materials
availability: All data needed to evaluate the conclusions in the paper are present in the paper
and/or the Supplementary Materials.

Submitted 4 January 2023
Accepted 19 October 2023
Published 15 November 2023
10.1126/sciadv.adg5431

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Banbury et al., Sci. Adv. 9, eadg5431 (2023) 15 November 2023 15 of 15

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 19, 2023

https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170045.pdf
https://www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdf
https://commons.wikimedia.org/wiki/File:Laser_class_EN_60825-1.en.png
https://commons.wikimedia.org/wiki/File:Laser_class_EN_60825-1.en.png


Use of this article is subject to the Terms of service

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science. 1200 New York Avenue
NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS. 

Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

Window into the mind: Advanced handheld spectroscopic eye-safe technology for
point-of-care neurodiagnostic
Carl Banbury, Georgia Harris, Michael Clancy, Richard J. Blanch, Jonathan James Stanley Rickard, and Pola Goldberg
Oppenheimer

Sci. Adv. 9 (46), eadg5431.  DOI: 10.1126/sciadv.adg5431

View the article online
https://www.science.org/doi/10.1126/sciadv.adg5431
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 19, 2023

https://www.science.org/content/page/terms-service

	INTRODUCTION
	RESULTS AND DISCUSSION
	MATERIALS AND METHODS
	Porcine eye study
	Murine samples
	Artificial neural network data analysis and classification
	Non-negative least squares analysis
	Raman spectroscopy
	Design and fabrication of the EyeD technology
	Receiver operating characteristic curves and box plots

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments

