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Abstract

We construct a new topology on the space of stopped
paths and introduce a calculus for causal function-
als on generic domains of this space. We propose a
generic approach to pathwise integration without any
assumption on the variation index of a path and obtain
functional change of variable formulae which extend the
results of Follmer [Séminaire de probabilités 15 (1981),
143-150] and Cont and Fournié [J. Funct. Anal. 259
(2010), no. 4, 1043-1072] to a larger class of functionals,
including Follmer’s pathwise integrals. We show that a
class of smooth functionals possess a pathwise analogue
of the martingale property. For paths that possess finite
quadratic variation, our approach extends the Follmer-
Ito calculus and removes previous restriction on the time
partition sequence. We introduce a foliation structure on
this path space and show that harmonic functionals may
be represented as pathwise integrals of closed 1-forms.
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1 | INTRODUCTION
1.1 | Motivation

Let 7 := (7,),>; be a sequence of interval partitions of [0, o) and denote Q™ the set of cadlag
paths with finite quadratic variation along 7 in the sense of Féllmer [14]. Then for any f € C2(R%),
the It6 formula holds pathwise along any path x € Q" [14]:

T 1 T
F&(T)) = f(x(0)) + /0 VfG=)dx(t) + 5 / V2 f(x(©)-d[x]°(0) @

0

+ 2 AS(() = Vi (x(s=).Ax(s),

0<s<t

where the second term fOT V f(x(t—))dx(t) is a ‘Follmer integral’, defined as a pointwise limit of
left Riemann sums:

T
[ VAnax@ = im Y VAGrt) = X, @

0 7, 24<T

without resorting to any probabilistic notion of convergence. Based on the key observation that,
for any semi-martingale X, there exists a sequence of partitions 7 such that the sample paths of
X lie almost surely in Q7, Féllmer showed [14] that for any integrand of the form V f o X, where
f € C%(RY), the pathwise integral (2) coincides with probability one with the Ité integral, thus
providing a pathwise interpretation of the It6 stochastic integral.

The extension of this result to path-dependent functionals has been the focus of several recent
works [1, 7, 8, 22]. In particular, a change of variable formula for a class of regular functionals of
cadlag paths was obtained in [7, Theorem 4]. Moreover, [7] (see also [1, Theorem 3.2]) establishes
that, for F € C1?(A;), one may define a pathwise integral fOT V, F(t,x,_).d"x as a pointwise limit
of Riemann sums as in (2).

The key idea behind these results [5-7] can be summarized as follows [5]. First, one constructs a
calculus for continuous functionals on piecewise constant paths. Second, this calculus is extended
to all cadlag paths using a density argument, using piecewise-constant approximations of paths.
This second step is where topology plays a role. The original construction of the functional It6
calculus was based on the uniform topology [6, 7,12]. As is well known, piecewise constant approx-
imation of a cadlag path under the uniform topology requires exact knowledge of all points of
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CAUSAL FUNCTIONAL CALCULUS | 239

discontinuity, which leads to a requirement [7, Remark 7] that the sequence of partitions exhausts
the set J(x) of discontinuity points of the path x:

J(x) :={t e [0,0), x(t—)#x()}cC limninf T,. 3)

This condition, which links the partition with the path, is not required for Féllmer’s [14] results,
but plays a key role in the proof of [7, Theorem 4].

The following result, whose proof is given in the Appendix, shows that this condition (3) is
restrictive and need not be satisfied, even for semi-martingales:

Proposition 1.1. There exists a semi-martingale X such that for any partition sequence 7, P(J(X) C
liminf, 7,) = 0.

A related issue is the differentiability and regularity of the pathwise integral. The F6llmer
integral [ : (t,x) — /Ot V.F.d"x, which is a central object in the pathwise It6 calculus, is not
continuously differentiable in the sense of [7], even for F € C2(A7).

To address these issues one needs to replace the uniform topology with another topology. Unfor-
tunately, the usual topologies on the Skorokhod space D [21, s5] do not fit this purpose. For
example, the pointwise evaluation map

F(x) := x(t)

is not J; continuous on D [20, VI. 2.3] and the same applies to all weaker topologies. It may thus
be a lost cause to obtain a functional calculus built on top of weak topologies on D.

In this work we circumvent these obstacles by introducing a new topology on the space D of
cadlag paths. The Follmer pathwise integral and the pathwise quadratic variation functional are
shown to be continuous functionals with respect to this topology. We define a class of continuously
differentiable functionals with respect to this topology and derive change of variable formulae for
such functionals without requiring the restrictive condition (3). In the case of paths with finite
quadratic variation along a partition sequence, our change of variable formula extends results
[1, 7, 14, 18] on the Follmer-Ito calculus and relaxes previous assumptions relating the partition
sequence to the discontinuities of the underlying path. In particular we obtain a pathwise identity
of It6 (Theorem 6.4) in the spirit of Beiglbdck and Siorpaes’ pathwise Burkholder-Davis-Gundy
inequality [2].

Pathwise integration concepts and It6-type change of variable formulae have been obtained by
Cont & Perkowski [8] using an extension of Féllmer’s ideas to paths with p-th order variation and
by Friz and Zhang [17] using rough path theory. In contrast to these results, we define pathwise
integrals as limits of (left-)Riemann sums, which naturally appear in applications, not compen-
sated Riemann sums, and we are able to treat a greater class of functionals, notably including
Fo6llmer integrals.

1.2 | Outline

After introducing some definitions and notations in Section 2 we prove, in Section 2.2, a new limit
theorem which is useful for studying functionals involving quadratic variation. In Section 3, we
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240 | CHIU AND CONT

introduce a new topology the space of cadlag paths, discuss its relation with other well-known
topologies and give examples of continuous functionals for this topology. In Section 4, we intro-
duce classes of smooth causal functionals and discuss their properties. In particular, we introduce
a class of functionals which are shown to satisfy a pathwise analogue of the martingale property
(Theorem 5.13).

Section 5 discusses pathwise integration and functional change of variable formulae. We show
in particular that pathwise integrals may be defined for class M functionals without any condition
on the variation index (p-variation) of the underlying path. Section 6 discusses in more detail the
case of functionals of cadlag paths with finite quadratic variation and the relation of class M
functionals to a class of path-dependent partial differential equations.

2 | PRELIMINARIES
2.1 | Notations
Denote by D,, the Skorokhod space of R"-valued cadlag functions
t— x(t) 1= (x,(0), ., X, (D)

onR, :=[0, ). Denote S,, (resp. BV,,) the subset of step functions (resp. locally bounded vari-
ation functions) in D,,,. For m = 1, we will omit the subscript m. By convention, x(0—) := x(0)
and Ax(t) := x(t) — x(t—). We denote by x; € D,, (resp. x,_ € D,,) the path x € D,, stopped at ¢
(resp. t—):

x(s) =x(sAt), X, (8) = x($)15; + x(t—)x(5)1 ;.

We equip (D,,, by, ) with a metric d; which induces the Skorokhod (a.k.a. J;) topology.
Let 7w := (7,),>; be a fixed sequence of partitions 7, = (¢, ... t” ) of [0, 00) into intervals 0 =

ty <. < t” < oo such that t” — o0, with vanishing mesh |7, | = supl 1.k, |t" — t” /= 0on
compacts By convention, max(ﬂ Nnmx,) :=0,mn@nz,) = t”
We denote
t! :=max{t; < t|t; € m,}, x" = Z XD g, (4)
LEm,

and by x( the (continuous) piecewise-linear approximations of x along Ty,
We denote Q7 C D,, the subset of cadlag paths with finite quadratic variation along 7, defined
as follows:

Definition 2.1 (Quadratic variation along a sequence of partitions). We say that x € D,,, has finite
quadratic variation along 7 if the sequence of step functions:

Gu() 1= Y0 (eltin) = X)) — x(8)

FETAN;
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CAUSAL FUNCTIONAL CALCULUS | 241

converges in the Skorokhod topology. The limit [x]; 1= ([X;, X;]:)1<i j<m € Dmxm 18 called the
quadratic variation of x along 7.

In the sequel, we shall fix such a sequence of partitions 7z and drop the subscript 7z unless we
want to emphasize the dependence on 7.
As shown in [4, Theorem 3.6], Definition 2.1 is equivalent to the one given by Follmer [14]:

Proposition 2.2 [4]. Let x € D,,, then x € Q7 if and only if x;, x; + x; €Q". If x € QF, then we
have the polarization identity

[ 7106 = 3 (xi+ ;1 = Bl = [x;1)(6) € BV

= [, X100 + ) Ax(s)Ax;(s). ®)

s<t

Wesetlim, a,, := oo whenever areal sequence (a,,) does not converge. For real-valued matrices
of equal dimension, we write (-, -) to denote the Frobenius inner product and | - | to denote the
Frobenius norm. If f (resp. g) are R™*™-valued functions on [0, c0), we write

t t
/0 fdg :=;j /0 Fii(s=)dg, (8) ©)

whenever the RHS makes sense. If x € Q77 and f € C%(R™), we write

t t
/ (Vfox)d™x := / Vf(x(s—))d™ x(s)
0 0

to denote the Follmer integral [14], defined as a pointwise limit of left Riemann sums along 7.
The superscript 7 may be dropped in the sequel as 7 is fixed throughout.

2.2 | Quadratic Riemann sums

In this section, we focus on paths with finite quadratic variation along a sequence of partitions and
extend certain limit theorems obtained in [7] for the convergence of ‘quadratic Riemann sums’ (in
particular [7, Lemma 12]) to a more general setting. The main result of this section is Theorem 2.7,
which is a key ingredient in the proof of change of variable formula for functionals of paths with
quadratic variation.

The following result [4, Lemma 2.2] will be useful in the sequel:

Lemma 2.3. Let v,, v be non-negative Radon measures on R, and J be the set of atoms of v. Then
v, — vvaguely on R if and only ifv, — v weakly on [0, T] for e5very T & J.

Lemma 2.4. Let x € Q", u = d[x] be the Radon measure associated with [x]. For every [0, T],
T, :=max{t; < T|t; € m,}, T,;; :=min{t; > T|t; € m,}. Define a sequence of non-negative Radon
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242 CHIU AND CONT

measures on R, by

1 ([0,T]) 1= Z (e(ti41) = x(6)%8,,, ([0, T)) + (e(T}y40) = x(T,,))*.

ten,

lit1

Then

() &, := zhEﬂn (x(tiyy) — x(ti))25[i — uvaguely on R,
(ii) m, — uvaguelyonR,.

Proof. (i) follows from [4, Theorem 2.7]. By Lemma 2.3, we may assume T to be a continuity point
of d[x]. Let f be a continuous function on [0, T]. If T = 0, then w,({0}) = d[x]({0}) = 0.If T > 0,
observe that &£,([0,T)) — d[x]([0,T)) (by (i), f is uniform continuous on [0, T] and that x is
right-continuous. Let T”, 41 ‘= min{t; > T|t; € 7}, it follows that for sufficiently large n

‘/Odein—/Odeun

< Z [f(t) = ftigr ATI(X(t141) — x(ti))z

T, Dt <T
+f (DT ) = X(Ty))?

< sup  |f(E) = f(tiz AT)IEL(0,T))

tiem,n[0,T]

HI (T, ) = %(Tppy1))* — 0. O

Lemma 2.5. Let (v,,n > 1) be a sequence of non-negative Radon measures on R, converging
vaguely to a Radon measure v and J be the set of atoms of v. If for every T € J, there exists a sequence
(T,)inR,, T, 1 T such that

v, ({T,}) — v(T), (7

then v, — v weakly on [0,T] forall T > 0.

Proof. For every T >0, 0,([0,T]) :=v,([0,T]) —v,({T,}) and 0([0,T]) := v([0,T]) — v({T}). If
T ¢ J, the claim follows immediately from Lemma 2.3. Thus, we may assume T € J.If T =0 € J,
then T, =0.LetT > 0and f € C([0,T], || - |l)- Since f = (f)* — (f)~, we may take f > 0 and
for sufficiently small € > 0, we define the following extensions:

F® = fO1n 0 + fD(1+ T )T @)
£ = fOTgr_g® + FO( ) 1 @),

—€ ¢ ¢ —€
then f°, f€ € Cx([0,00)),0 < f° < fTjo7) < f < IIflloo and we have

s T 0 __
[ o< [ gao, < [ TFao,
0 - 0 0
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CAUSAL FUNCTIONAL CALCULUS 243

Since v,, — v vaguely and (7) holds, we obtain
T T o _
0< limsup/ fdo, —liminf/ fdo, S/ f —fedo
n 0 n 0 0 -

< FMO(T =6, T +€]) — v({TD) —> 0,

hence by monotone convergence

T 0 T
lim / fdo, = lim / fedo = / fdo.
m Jo ¢ Jo — 0
By (7), it follows lim,, /" fdv, = /' fdv. O

Lemma 2.6. Let (v,,n > 1) be a sequence of non-negative Radon measures on R, converging
vaguely to a Radon measure v and J be the set of atoms of v. Let f,, f be real-valued left-continuous
functions on R and J be the set of atoms of v. If

(i) forevery T € J there exists a sequence (T,,) € [0,T) with T,, T T such that v,,{T,}) — v({T}),
and
(ii) (f,) islocally bounded and converges pointwise to f,

/OTfndvn — /Odev.

Proof. Letv = v° + v? be the Lebesgue decomposition of v into an absolutely continuous part v°
and a singular (discrete) measure v¢. By (i) and Lemma 2.5, we immediately see that (v, - vd) —
v° weakly for every [0, T]. Since v° has no atoms, by an application of [7, Lemma 12] we have

/OTfnd(vn v — /OT fdve.

By (ii) and dominated convergence, the proof is complete. O

then for every T > 0,

Theorem 2.7. Let x € Q7, f,,, f be real-valued left-continuous functions on R, such that (f,,) is
locally bounded and converges pointwise to f on R . Then forany T > 0,

T
0 % Fat)xtp) =50 — [ pdix),

7, 2t;<T

T
() ¥, fultis AD) = xR — [ gl

T, <T

T
i) ¥, Sttt ) =2 — [ rdixl

7, 2t;<T

T
() T Fultis Al =x@) — [ flx,

7, 2t;<T
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244 | CHIU AND CONT

Proof. If T =0, then by (5) and that x is right-continuous and has no discontinuity at T = 0,
the claims follow. If T > 0, put T, := max{t; < T|t; € 7}, Typy; :=min{t; > T|t; € w1, T}, :=
min{t; > T|t; € m,}, then T, T T and by Lemma 2.4, we observe that

E.(T, D = (x(Tpy1) — X(T))* — dIx]{TY),
Hn(T}) = (x(T41) = X(T,))* — dlx]({TY),

and that

T
Z fn(ti)(x(tiﬂ) - x(ti))z = /0 fndgn - f(Tn+1)(x(T:z+1) - x(Tn+1))2’

7,2t <T

T
S Fulti ATYxCt ) — X)) = /O Fadiin + FOET!, ) = x(Toi).

7, 2t <T
By the right continuity of x, Lemma 2.4 and Lemma 2.6, the proof is complete. O
As a consequence of Proposition 2.2 and Theorem 2.7 we have:

Corollary 2.8 (Multidimensional paths). Let x € Q7, f,.f : R, = R™™ be left-continuous
functions with (f,) locally bounded and converging pointwise to f on R,. Then

T
DY (Fult) Ol ) = X)) xtyyy) = 2(1))) — /0 fdlxl,

7, 26<T

T
W)Y, (Faltisr AT, (c41) = XA 1) = X)) ) — /0 fdlxl,

7, 4;<T

forevery T > 0. In particular, the convergence also holds if the sum is replaced by Zﬁnati <

Remark 2.9. t —> fot fd[x]isin BV and has Lebesgue decomposition:

t t
dix]= | fdlx]*+ Y (f(s-), .
/0 fdlx] /0 fdlx]® + ) (f(s—), Ax(s)Ax(s))

s<t

3 | CONTINUOUS FUNCTIONALS
We now construct a topology on suitable subsets of
E =R, XD,

for which the Follmer integral x — fOT ¢.d™x will be a continuous functional of the integrator
X.
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CAUSAL FUNCTIONAL CALCULUS 245

3.1 | Domains for causal functionals

We are interested in causal (non-anticipative) functionals [5, 13], whose natural domain of
definition is a set of stopped paths

{t,x)lteR,,x € Q}CE,

for a suitable set of paths Q € D,,, where x; = x(t A .) [7].
In order to deploy our functional calculus on such functionals we require Q C D,, to be closed
under certain operations:

* stoppingi x € Q= V>0, x, =x(tA.)EQ;
* vertical perturbations, in order to define the vertical (Dupire) derivative:

xX€Q= x,+el; )€

* piecewise constant approximation along 7.

We will call generic a set of paths stable under these operations:

Definition 3.1 (Generic sets of paths). A non-empty subset Q C D, is called generic if it satisfies:

i) Stability under piecewise constant approximation along 7z: For every x € Q, T > 0, AN € N;
x? e€eQ, Vn>N.

ii) Stability under vertical perturbation: For every x € Q,t > 0, there exists a convex neighbour-
hood U" of 0 such that

-Ax(t) eV and x, +el; ) €Q, Veel.

We will call a domain a set A of stopped paths of the form
A={tx)lt eR,,x € QY

where Q C D,, is generic.

Remark 3.2. Definition 3.1(ii) implies that —" is a convex neighbourhood of 0 containing Ax(t)
such that

X_+el; ) €Q, Vee-U.

Example3.3. S, BV, Q7 , QZ“L (that is, positive paths in Q7 ) and D,,, are all generic sets. If Q
is generic, then

b ._
Q) :={x €Qla<x; <b}
for all constants a, b are all generic. Subsets of continuous paths are not generic.

Example 3.4. Let Q be generic. Then Q N Q7 is generic.

Proof. We observe S,,, C Q7 and ifx € Q7 ,thenx + S, € Q7 . [l
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246 | CHIU AND CONT

On E, there already exist two well-known (product) topologies, generated by the standard topol-
ogy on R, and local uniform (resp. the Skorokhod J;) topology on D,,,. On a domain A C E, we
define the uniform (U) and J, topologies as the corresponding topology induced on A.

Remark 3.5. Every J;-continuous functional is U-continuous: The local uniform topology is strictly
finer than the J; topology on D,, [20, VI].

We will now show that, if Q is ‘rich enough’ to contain a path with non-zero quadratic variation
as well as its piecewise-linear approximations along 7, then important examples of functionals
such as quadratic variation or the Follmer integral fail to be continuous on Q in the uniform
topology. We use the following assumption:

Assumption 3.6. Q is a generic subset and contains a path x € Q7 with [x], continuous and
strictly increasing, as well as its piecewise linear approximations along 7:

aN eN,Vn = N,x™ e Q,

where x(") denotes the piecewise-linear approximation of x along 7,,.
Example 3.7. Q7 and QZJ“ satisfy Assumption 3.6, S,, and BV, do not.

Lemma 3.8. Let Q satisfy Assumption 3.6 and A = {(t, x,)|t € R, x € Q}. Then the functionals

t
F(t,x,) = [x]0) Gam»:=/"nﬂx
0
are not U-continuous on A.

Proof. If Q satisfies Assumption 3.6, there exists T > 0, continuous x, x"” € Q such that |[x](T)| >

0. Since x(T") — X in the local uniform topology on [0, o), it follows that

U
(T, ") — (T, xp)

(n)

on A. Since Xy

is a continuous function of bounded variation on [0, c0), it follows that
XD =0, Vn>1,

so F is not U-continuous. Using the above and the fact that x, xM e QZ, we obtain by an
application of the pathwise It formula [14]:

T T
/ 2xdx—/ 2xMWdx™
0 0

(D) = [xO)F = tr(x)(T) = (XD =[x )

lim
n

= lim
n

= tr([x])(T)) > 0,

hence G is not U-continuous on A. O

a ‘T ‘2202 '986v2502

Jwouy

NIPUOD PUB SULL | 34} 205 *[£202/ZT/6T] U0 ARiqI72UIIUO AB]IM 'WES L SLOS PUY S80in0sai3 weybu g JO ASAIIN AQ 0S0ZT EWIZTTT OT/I0PALIOY A1

|

35001 SUOLLIUIGD AT 3IGeol|dce aU) Aq PoUIBAOE 92 I O 8N J0 SBINI 10j A1 SUIIUO ABIA UO (SUONIPUGO-p
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We shall now define a new topology on a domain A for which these examples of functionals
will be continuous.

3.2 | The 7-topology

Definition 3.9 (The 7-topology). For every t € R, ,x € Q, we define t/ := max{t; < t|t; € m,}
and

X" = Z x(ti+1)]I[tzJi+1)' v

ten,
Denote X the set of functionals F : A — R satisfying:
1.(a) lim F(s,x,_) = F(¢t,x;_),
sTts<t
(b) lim F(s,x,) =F(t, x;_),
sTt;s<t
(©) t, — tit, <t = F(t,,x!' ) — F(t,x,_),

(d) t, — tit, <t = F(tn,x{’n) — F(t,x,_),

2.(a) lim F(s,x,) =F(t, x,),

slt;s>t

(b) lim F(s,x,_) = F(t,x;),

slt;s>t
@) ty — tit, 2t = F(tn,xl’;) — F(t,x,),
(d) t, — tit, >t = F(tn,xl’;_) — F(t,x,),
for all (t, x;) € A. The initial topology generated by X on A is called the 7-topology.
‘We note that the definition of this topology depends on the partition sequence 7.

Remark 3.10. Every U-continuous functional satisfies Definition 3.9.1(a),(b) and 2(a),(b).

Definition 3.11 (Continuous functionals). We denote C(A) the set of functionals F : A — R
that are continuous with respect to the 7z-topology.

F is called left- (resp. right-) continuous if it satisfies property 1 (resp. property 2) in Definition
3.9.

Remark 3.12. Since
A
z, — z < F(z,) - F(z) VF € X,

we have C(A) C X so in fact C(A) = X. We remark here that C(A) is an algebra and that the
topological space (A, 7,;) is Tychonoff (that is, completely regular and Hausdorff").

" Due to the fact that (¢, x,) = t & (t,x,) = x(t A s) are continuous.

a ‘T ‘2202 '986v2502

Jwouy

IMPUOD pue SWIS | U 885 *[E202/2T/6T] U0 ARIqIT8UIIUO AB|IM ‘Wes L S[e1eS puY $201n0sai3 weybuiuig JO AISRAIN AQ 0S0ZT EW/ZTTT OT/I0P/LOD’

|

35001 SUOLLIUIGD AT 3IGeol|dce aU) Aq PoUIBAOE 92 I O 8N J0 SBINI 10j A1 SUIIUO ABIA UO (SUONIPUGO-p



248 | CHIU AND CONT

The following concept was introduced in [7] under the name ‘predictable functional’; we
redefine it here without any reference to measurability considerations:

Definition 3.13 (Strictly causal functionals). For F : A — R? denote F_(t,x,) = F(t,x,_). F is
strictly causal if F = F_.

The following lemma follows from Definition 3.9.1(a) and (b) and Definition 3.9.2(a) and (b).

Lemma 3.14 (Pathwise regularity). Let F : A — R? and x € Q.

(i) IfF is left-continuous, then t — F_(t, x;) is left-continuous and t — F(t, x;) has left limits.
(ii) If F is right-continuous, then t — F(t, X,) is right-continuous and t — F_(t, x,) has right
limits.
(iii) If F is continuous, then t — F_(t,x,) (vesp. t — F(t,x;)) is caglad (resp. cadlag ) and its
jump at time t is equal to AF(t, x,).

Example 3.15. Assume Q C Q7 . Then the functionals

() F(t,x,) = f(x(t); fec®m),
(i) F(t,x,) 1= f([x])0)); f € cRmm),
(iii) F(t,x,) 1= fj(fox)d[x];  f&CER™ R™™M),

(iv) F(t,x,)) := [y(Vfox)dx;  fe&CXR™),
belong to C(A).

Proof. In the light of Remark 3.12, F is continuous if and only if F satisfies Definition 3.9 for
all (¢,x) € A. Since conditions Definition 3.9.1(a),(b) and 2(a),(b) are easy to verify, we focus on
Definition 3.9.1(c),(d) and 2(c),(d). (i) is trivial. For (ii), we first remark from Definition 2.1 and (5)
that
5
g, — [x];

Aq,(t)) = Ax"(t))AX" (1)) — Ax(H)Ax(t) = Alx](t). )

Since [x"](t) = q,,(t) and by (9), if t,, — ¢, the limits of q,,(¢,)) and q,,(t,,—) are readily determined
according to the rules laid down in [4, s4.2] and (ii) immediately follows from the continuity of f.

To show (iii) and (iv), it is suffice to assume t, — t; t, >t/ (that is, the other criteria follow
similar lines of proof, see [4, s4.2]). By (9) and [4, s4.2]

|qn(tn) - qn(t;)l — 0. (10)

A closer look at (iii), combined with Corollary 2.8, leads to

tn
Fnxt) = [ (ol

= D (), Geltigy) = X)) — x(8)) ) — F(t,x,)

T2t<t

+ ) (F), Geltig) = XU xe(tp) — X()').

T OLE( ]
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CAUSAL FUNCTIONAL CALCULUS | 249

By (10) and that f o x is locally bounded on R, we see that the absolute value of the last term is
bounded by const|g,(t,) — q,(t)| — 0.
For (iv), from the properties of the Follmer integral [14], we first observe that

tn
F(tn,xt’;) / V(f o x™)dx"
0

D VLG)) - (xltgr) — x(1) — F(t,x,)

T, It<t

Y VAE)) - (Xt — X().

T 2LE( ]

Define t, 1= min{t; > ¢/ |t; € w,}, t, 1= min{t; > 1,|t; € m,} and note that ¢, > t, > t, hence
|f Ge(t)) = fe(t )] — .
Applying a second-order Taylor expansion to f and using (10), we obtain
> VA - (i) = x| < 1F(x(E,)) = F&(@))l
2t E(h ]
+ const|q,(t,) — g, )] — 0. 0

Remark 3.16. If x €D,,, so are x; and xy_ and the corresponding piecewise constant
approximation(s) in (8) shall be denoted by (x)" and (xr_)".

The following property may be derived from [3, Lemma 12.3] and [20, VI]:

]
Lemma3.17. LetT > 0, x € D,,, then (x;)" LN Xr-

Lemma 3.18. Let (t,x) € A, t, —> t and denotet) := max{t; < t|t; € m,}. Then

. / n ‘Il
) by St =X, — X,

5
.. ! n
(iD) t, <t, =X, —X_,

J
P ’ n 1
(iii) ty2t, =X, — X,
. Jl
(iv) >t = xt';_ — X,

]
Proof. Lett, <t’,by Lemma 3.17, we have (x,_)" SN (x,_). Since x is cadlag we observe
n n y t t g

Iy — = ()" Mo < sup [x(t,,) = x(s)| + |x(2,) — x(t=)| — O,
s€lt,ty]

and (i) follows immediately from [20, VI.1.23]. (ii)-(iv) follow similar lines of proof. O
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Theorem 3.19. Let Q satisfy Assumption 3.6. Then,

(i) everyJ;-continuous functional is continuous,
(ii) there exists a continuous functional which is not U-continuous,
(iii) there exists U-continuous functionals which are not continuous.

Proof. If F is J;-continuous, then F satisfies Definition 3.9.1(a),(b) and 2(a),(b) due to Remark 3.5
and 3.10. (i) now follows immediately from Lemma 3.18. (ii) is due to Example 3.15 and Lemma 3.8.

It remains to show (iii). We first note that the U topology on A is metrisable, hence sequential
continuity is equivalent to continuity. Let us fix a ¢, > 0; t, & U, 7,,, define

F(t,x;) 1= |Ax,(ty)]

U
on A. Observe that if x, — x in D,,, then it is well known that:

Ax,(s) — Ax(s) €1))

U
for s > 0.In particular, ift, — t; x,(- A t,) — X, then (11) implies Ax, (- A t,,)(s) — Ax,(s) for
s = 0, hence F is U-continuous on A.

On the other hand, we take an x € Q,; Ax(t,) # 0, it follows from our choice of ¢, that

F(to,xt’:)) = |Ax"(ty)| =0,
hence by Definition 3.9.2(c), F is not continuous on A and (iii) follows. O

So, if Q satisfies Assumption 3.6, Theorem 3.19 and Remark 3.5 imply that

* the w—topology is strictly finer than the J; topology,
» the 7—topology and the U topology are not comparable.

4 | SMOOTH FUNCTIONALS

The change of variable formulae in [14] make use of the concepts of local boundedness and the
existence of a modulus of continuity. In this section, we shall introduce weaker notions of bound-
edness and modulus of continuity for causal functionals and define a corresponding notion of a
C12 functional on A, and use these notions to derive a functional change of variable formula. We
then introduce S(A) and M(A), two important subspaces of C12(A).

When Q C Q7 , we will show that functionals such as quadratic variation and Follmer integrals
are not only C'? but also belong to class M, a sub-class of infinitely differentiable functionals.
Recall the definition of Dupire’s horizontal and vertical derivatives [6, 7, 12]:

Definition 4.1 (Horizontal derivative). F : A — R is called differentiable in time or horizontally
differentiable if the following limit exists for all (¢, x;) € A:

F(t +h,x;) — F(t,x;)
A .

DF(t, =1
(t,x;) lim
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CAUSAL FUNCTIONAL CALCULUS | 251

Definition 4.2 (Vertical derivative). F : A — R is called vertically differentiable if for every
(t,x;) € A,themap f : Vi(x) — R:

e— F(t,x, + el )
is differentiable at 0. V F(t,x,) := V,f(0) is called the vertical derivative of F at (t,x,) € A.

F is called differentiable on A if it is vertically and horizontally differentiable at every (¢, x) € A.
We extend the above definitions to vector-valued maps F : A — R¥" whose components F;;
satisfy the respective conditions.

Proposition 4.3. A causal functional F : A — R is strictly causal if and only if it is vertically
differentiable with vanishing vertical derivative.

Proof. The first assertion follows from the mean value theorem. To prove the converse, let x € Q
andputz :=x; +ell}, . thenz,_ = x,_and

F(t,x; + el o)) = F(t,z,) = F_(t,2,) = F_(t,x;) = F(t,x,),
by the strict causality of F (Definition 3.13). O

Definition 4.4 (Locally bounded functional). F : A — R is called locally bounded if for every
x € Qand T > 0, there exists n, > Ny(x) such that the family of maps

(t — F(t,x}),n > ng)

is locally bounded on [0, T1].
Lemma 4.5. Every continuous function on A is locally bounded.

Proof. Let F be continuous; if F is not locally bounded, there exists x € Q, T > 0, and a sub-
sequence (1;);

|F(ty,, %, ) >k, Vk>1; (12)
ng
(tnk) is bounded on [0,T]. For ease of notation, assume ty, — L E [0, T] without pass-
ing through to a sub-sequence. Observe that one can always choose another sub-sequence,
bounded (either above or below) by t;k =max{t; <t|t; € ﬂ'nk}. Since F is continuous, if
tn, < t;k (resp. tn, 2 t;lk ), then Definition 3.9.1(d) (resp. 2(c)) would contradict (12) ask T 0. [
Lemma 4.6. Let F be locally bounded and denote F_(t,x) = F(t,x,_).

(i) IfF is left-continuous then F_ is locally bounded.
(ii) IfF is left-continuous then t — F_(t, x;) is locally bounded.
(iii) IfF is right-continuous then t — F(t, x;) is locally bounded.

Proof. Since F is locally bounded, there exists a constant K > 0 such that

IF(6, x| < K
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252 | CHIU AND CONT

for all t < T and all n sufficiently large. If F is left-continuous, then Definition 3.9.1(b) implies

3 n — n
K > STI%;ISILt |F(S,XS)| - IF([7xt_)|’

so (i) follows. If t, — t;t, < t;l, then by the left-continuity of F (that is, Definition 3.9.1(d)),

K Z |F(tn7x )l i |F(tax[—)|’

n
tn
so (ii) follows. If F is right-continuous, then by Definition 3.9.2(c),

K > [F(ty, x;)| — [F(t,x)l,
so (iii) follows. O

Definition 4.7 (Modulus of vertical continuity). We say that a function F on A admits a mod-
ulus of vertical continuity if for every x € Q, T > 0 and r > 0 there exists an increasing function
w : R, — R, with w(0+) = 0;

|F(¢,x;" + al; o)) — F(t, x_ + bTj; o)) < w(|a - b)), 13)
foralla,b € V;_(x")n E,(O), t < T and sufficiently large n.

Example 4.8. Let f € C(R, X R™). Then F : A — R defined by F(¢,x,) := f(t, x(t)) admits a
modulus of vertical continuity.

Proof. Foragiven x € Qand T >0, r > 0, put ||x|l; :=sup,cr [X()], ry :=allx|lp +71; a > 1,
then f is uniform continuouson [0, T] X E”o (0) and a modulus of continuity of f on [0, T] X E"o (0)
is given by

w@) = sup |f(t,u)— f(s,0)|

[t—s|+|u—v|<8
which satisfies (13). O

Remark 4.9. If F,G admit moduli of vertical continuity, then aF + G admits a modulus. If in
addition, F_, G_ are locally bounded, then FG admits a modulus of vertical continuity.

Lemma 4.10. Let F be vertically differentiable and (V,F)_ be locally bounded, if V .F admits a
modulus of vertical continuity then so does F.

Proof. Since F is vertically differentiable and V, F admits a modulus of vertical continuity w, by
the mean value theorem and the local boundedness of (V, F)_, we obtain

|F(t, x; + all, o)) — F(¢,x; + b1} o)) < (w(r) + const)|a — b|. 0

Definition 4.11 (C'? functionals). We define C?(A) as the set of continuous functionals
F € C,(A) such that DF, V,F and ViF are defined on A and
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CAUSAL FUNCTIONAL CALCULUS 253

(i) DF is right-continuous and locally bounded,
(i) (V,F)_ isleft-continuous,
(iii) (ViF)_ is left-continuous, locally bounded and admits a modulus of vertical continuity.

If in addition, (V. F)_ is locally bounded, then we denote F € C;’Z(A).

We now introduce two classes of functionals which, as we will observe later, play a special role
in the context of stochastic analysis:

Definition 4.12 (Class S). A continuous and differentiable functional F is of class S if DF is
right-continuous and locally bounded, V,F is left-continuous and strictly causal. We denote by
S(A) the vector space of class S functionals.

Definition 4.13 (Class M). A functional F € S(A) is of class M if DF = 0. We denote M(A) the
set of class M functionals and M, (A) the set of functionals F € M(A) whose vertical derivative
V . F is locally bounded.

Remark 4.14. Every functional of class M is infinitely differentiable by Proposition 4.3.

Remarks 4.9, Lemma 4.6 and 4.10 imply that C12(A), S(A), M(A), M, (A) are vector spaces;
C;’Z(A) is an algebra.

Lemma 4.15. Let QCQJ. If ¢ : A R"™™ is such that ¢_ is left-continuous and locally
bounded, then

t
() € A Fx) = [ 05,51
0
is a continuous functional.

Proof. Since t — ¢(t, x;_) is left-continuous and locally bounded (Lemma 3.14(i)) and that t —
[x;, x;](¢) is in BV, cadlag with A[x;, x;] = Ax;Ax; (Proposition 2.2), it follows F is a finite sum
of Lebesgue-Stieltjes integrals and satisfies conditions Definition 3.9.1(a),(b) and 2(a),(b). For the
other conditions in Definition 3.9, it is suffice to assume ¢, — ¢; ¢, > t;l (that is, the other criteria

follow similar lines). Define

$n(s) 1= lto, X[ IMigy() + 7, by, x] Mg, 1(5),

ten,

which is an R™*"-valued left-continuous function on R, . By the local boundedness of ¢_, we see
that 3n, > N(x); (¢n)n>n0 is locally bounded on R, and converges pointwise to s — ¢(s, x,_) on
R, . By Corollary 2.8(ii), we obtain

tn
Pt = [ ¢ xdl)

D (Bt X)), Cxltiyn) = x()Cxe(tr41) = x()') — F(t,x,)

T, <t

D X)), (eltigy) = X(A)Cxty4y) = x (1))

T E(h ]
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Since g, i» [x] and by [4, s4.2], the last term is bounded by
const|q,(t,) — g,(t,)] — 0. N
As we shall see in the following examples, path-independent functionals of class M are simply
affine functions, but in the path-dependent case this class includes many examples, in particular
Follmer integrals.
Example 4.16. LetS,, C Q, f € CM*(R, X R™) and
F(t,x,) = f(t, x(1)),
then F is of class M if and only if f(¢,u) = o + 5.u for some constants ¢« € R, 3 € R™.
Proof. For the if part: We can write f(t,u) = a + - u and hence
F(t,x,) = o + px(¢)

on A for some constants o € R, § € R™. By Example 3.15(i) and computing the derivatives of F,
we see that F is of class M. Conversely, from Definition 4.13 and Proposition 4.3, we first obtain

(i) 8,f(t, x(t)) = DF(t,x,) = 0,
(i) V2f(t, x(t)) = V2F(t,x,) =0,

Vt20,x € Q.Since S, C Q, we have
R:={t,x(t)|t eR,,x € Q} =R, XR",

hence 8, f = V2f = 0 on R, x R™. By the mean value theorem, we deduce that Vf = 8 on R, for
some § € R™. O

Remark 4.17. The condition S,, C Q may be weakened to simply requiring that R C R, X R™ is
convex. In this case, the converse statement holds on R.

Example 4.18 (Path-dependent examples). Let Q C Q7 , ¢ : A — R™" such that ¢_ is left-
continuous and locally bounded, f = (fy, ..., f,,,) € C>(R™). Then the functionals

() Ft,x,) 1= [y ¢(s,x,_)d[x],
(i) F(t,x,) := [;(Vfox)dx,
(iil) F(t,x,) := X1 (fy 0 () = x,(5) £ (9)dx,(s) = f (fi 0 x)d[x;])

belong to C;’Z(A) and (ii) and (iii) are of class M,,.

Proof. The functional in (iii) is well defined, since

t t t
F(t,x;) = Z (xi(t)/o fi°xidxi—/0 xifioxidxi_/o fioxid[xi]>- 14)
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The first two integrals in (14) are Follmer integrals, defined as a limit of Riemann sums along 7,
while the last one is a Lebesgue-Stieltjes integral. Continuity of F in (i), (ii) and (iii) follows from
Lemma 4.15 and Example 3.15. Since DF = 0 in all cases, let us first compute Vi‘cF fork =1,2and
demonstrate that F possesses the required properties. In case of (i), we have

VL F(t, X)) = (¢ + ¢, %, )AX(),  VIF(t,x) = (¢ +¢)(t, x,),

which are left-continuous, locally bounded and ViF is strictly causal, so by Proposition 4.3,
Lemma 4.6(ii) and (4.10), F is C;’z. In case of (ii), we obtain

Vi F(t,x) = Vf(x(t-)),

which is left-continuous, locally bounded and strictly causal, hence F is of class M. In case of
(iii), we apply V, to (14) and verify that

t
V, F(t,x,) =/ fiox;dx; — fi(x;(t—=))Ax;(¢)
0

- ( / . oxidxi>(t—). (1s)

Applying f(x) := /Oxf fi(DdA; x € R™ to (ii) and by Proposition 4.5 and Lemma 4.6(i), we see
that each V F is left-continuous and locally bounded and so is V.F. Since V . F is strictly causal,
F is of class M,,. L]

5 | PATHWISE INTEGRATION AND CHANGE OF VARIABLE
FORMULAE

We now discuss pathwise integration for causal functionals along paths in a generic domain. In
contrast to rough integration theory [16] and the one-form approach, that is, [14], [7], and [8],
we define integrals as uncompensated left Riemann sums, when such limits exist and form a
continuous functional.

We then obtain change of variable formulae and an analogue of the classical Fundamental
theorem of calculus for functionals of class M. For paths that possess quadratic variation, we
obtain a functional Féllmer-It6 formula which extends [7, Theorem 4].

In particular, we show that pathwise integral is of class M and that functionals of class M are
primitives, that is, are representable as pathwise integrals, a fact that facilitates the computation
of pathwise integrals, as in classical calculus.

Lemma 5.1. Let F be a left-continuous functional, differentiable in time, if DF is right-continuous
and locally bounded, then

F(t,x;) — F(s,x) = /t DF(u, x,,)du, (16)

forallx e Q, t>s>0.
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256 | CHIU AND CONT

Proof. Putz :=x; € Q, then z, = x; for t > s and z,_ = x, for t > s. Define f(¢) := F(t, x,) for
t > s, then f(t) = F(t,z,) on [s,00) and f(t) = F(t,z,_) on (s, ). Since F is differentiable in
time, f is right differentiable (hence right-continuous) on [s, co) and the right derivative f’(t)
is DF(t, x;) on [s, 00). Since F is left-continuous, it follows from Lemma 3.14 that f(t) = F(t, z,_)
is left-continuous on (s, o), hence we have first established that f is continuous on [s, c0). Next,
we observe that

f,(u) = DF(M, xs) = DF(u, Zu)

on [s, 0o). The right continuity of DF and Lemma 3.14 implies that f’ is right-continuous on [s, co).
Since DF is right-continuous and locally bounded, it follows from Lemma 4.6(ii) that

u — DF(u,z,)

is locally bounded. Hence, f’ is right-continuous and bounded on [s,T], hence Riemann
integrable. We can conclude using a stronger version [11] of the Fundamental theorem of
calculus. O

Lemma 5.2. Let ¢ be a right-continuous and locally bounded on A, then
liy1 T
D / o(t, x")dt —> / $(t, x,)dt,
. 26<T 7 i l 0

forallx e Q, T > 0.

Proof. Define

$all) 1= Z ¢(t’x2)1[[fi,ti+1)(t): Z qb(t’x:l)ﬂ[fi,fiﬂ)(t)'

7, 4T 7, 24;<T

By the local boundedness of ¢, we see that Iny > N(x); (¢,,) > o islocally bounded on [0, T]. Since
¢ isright-continuous, it follows from Lemma 3.14 that t — ¢,,(¢) is right-continuous (hence mea-
surable) on [0,T] and from Definition 3.9.2(c) that ¢,, converges to t — ¢(t, x;) pointwise on
[0, T]. and (i) follows from dominated convergence. O

Corollary 5.3. Let ¢ be a right-continuous and locally bounded A, then
t
) — [ 6s.xds
0

is continuous.

Proof. The patht +— fot ¢(s, x,)ds is continuous. The rest follows from the local boundedness of
¢ and Lemma 5.2. Cl

Definition 5.4 (Pathwise integrability). Let ¢ : A — R such that ¢_ is left-continuous. For
every x € Q, define

Ltx?) = )ty x] ) - (x(tir) = x(1). 17)

T, 3t<t
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CAUSAL FUNCTIONAL CALCULUS 257

¢ is said to be A—integrable if
* the limit I(¢, x;) := lim, I4(¢, x}") exists for each (¢, x;) € A, and

* themap I, : A — R is continuous.

Note that the pathwise integral is defined as a limit of (left) Riemann sums, and not compen-
sated Riemann sums as in rough path theory [15, 16]. One case in which such Riemann sums are
known to converge is for gradients of C? functions along paths of finite quadratic variation:

Example 5.5. Let Q = Q7 . Then by the results of [14], forany f € C2(R™), ¢ : A —> R™ defined
by ¢(t,x) = V. f(t, x,) is A-integrable and I¢(t, x) is the Follmer integral [5]. Note that the con-
tinuity property of I, is a consequence (and indeed, the main motivation) of the construction of
the 7-topology in Section 3.

Theorem 5.6. Let¢ : A —> R"™ such that ¢_ is left-continuous and Iy the integration map defined
asin (17). If for every x € Q, T > 0 the sequence of step functions on [0, T]

gn(t) = I¢(t9 x?)!

is a Cauchy sequence in (D[0, T], DJI), then ¢ is A-integrable.

J
Proof. If (g,,n > 1)is a Cauchy sequence in (D[0, T], bJ1 ), there existsa G € D such that g, — G.
Hence g,(t) — G(¢) for every continuity point of G on [0, T]. Observe that

(18)

0, otherwise.

Agalt) = {¢<ti,x2_) () = X)), ifE=t € 7,

If AG(¢) > 0, there exists [20, VI1.2.1(a)] a sequence t;; — t; Ag,(t;) = AG(t). Using the fact that
¢_ is left-continuous, x is cadlag and (18), we see that

liyrln Ag,(£5) = ¢(t, x,_) - Ax(t) = lilgn qb(t;,x;z_) CAXM(E) = lirrln Aga(t), (19)

else we will contradict AG(t) > 0. Applying [20, VI.2.1(b)], we deduce that (¢}) must coincide with
(t},) for all n sufficiently large and by [20, VI.2.1(b.3)], we have established that

9n(t) — G(1), (20)

hence we can define I4(t,x,) := G(t) on [0,T]. Let t;) :=min{t; > ] |t; € m,}, z 1= x,_ € Q, it
follows from (17), (19) and (20) that

(6%, ) = lim Ty(e, 20 = lim (L0t = $(e). )y )+ (x(t)) = x(1=)) ) = G(t-),
hence t —> I¢(t, X,) is cadlag and its jump at time ¢ is I¢(t, X)) — I¢(t, x,_). Ift, — ¢, the limits

of g,(t,) and g, (t,,—) are readily determined according to (19) and [20, VI.2.1(b)]. The continuity
criteria in Definition 3.9 are thus satisfied. O

a ‘T ‘2202 '986v2502

Jwouy

NIPUOD PUB SULL | 34} 205 *[£202/ZT/6T] U0 ARiqI72UIIUO AB]IM 'WES L SLOS PUY S80in0sai3 weybu g JO ASAIIN AQ 0S0ZT EWIZTTT OT/I0PALIOY A1

|

35001 SUOLLIUIGD AT 3IGeol|dce aU) Aq PoUIBAOE 92 I O 8N J0 SBINI 10j A1 SUIIUO ABIA UO (SUONIPUGO-p



258 | CHIU AND CONT

Proposition 5.7. Let ¢ be A-integrable. Then DIy = 0and V, 1, = ¢_on A.
Proof. Let (t,x) € Aand z := x + el|; o) € A. Then
I4(t,z,) — 1y(t, x,) = h};n (I¢(t,Z?) —I4(t, X:l))

_ 1 roonoy.

= llzn ¢(tn’zr;—) e

= lim ¢(t:l5xr£ ) e = ¢(tﬁxt—) - e,

n t,—

by the continuity of I, and left-continuity of ¢_. O

Theorem 5.8 (Change of variable formula for class S functionals). Let F € S(A). Then for any
(T, xp) € A, the limit

T
/ Vi F(t,x,_)dx := lim z VxF(ti,xZ__)-(x(ti+1)—x(tl~)) (21)
0 " Sh<T
exists and
T T
F(T,xr) = F(0, x0)+/ DF(t, x;)dt +/ V. F(t,x;_)dx.
0 0

Proof. See the Appendix. O

Remark 5.9. By Proposition 5.7, we see that all pathwise integrals are functionals of class M, hence
by Theorem 5.8, we can write

t
I¢(t,x[)=/0 ¢dx. (22)

As we shall see, the converse is also true, all integrals that may be defined by (21) are pathwise
integrals in the sense of Definition 5.4:

Corollary 5.10 (Decomposition for class S). Let F € S(A). Then M : A — R defined by
t
M(t,x;) :=F(t,x;) — F(0.x,) — / DF(s, x,)ds
0

is of class M and V,M = V_F. In particular, M may be represented as a pathwise integral: there
exists a A-integrable functional ¢ : A — R™ such that M = 1:

t
V(t,x) € A, M(t,x) = / ¢.dx.
0

Proof. By differentiating M, we obtain DM = 0 and V,M = V_F. Continuity of M follows from
Corollary 5.3 and Theorem 5.8, hence by (21), M satisfies Definition 5.4. O
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CAUSAL FUNCTIONAL CALCULUS | 259

In fact, all functionals of class M have an integral representation. We obtain as a corollary a
Fundamental theorem of calculus for functionals:

Corollary 5.11.

(i) Let ¢ be A-integrable. Then the map Iy : (t,x;) € A [0[ ¢.dx is continuous, differentiable
and

VxI¢ = ¢_.

(ii) Let¢ : A - R.IfF € M(A) such that V .F = ¢_, then ¢ is A-integrable and

t
/ ¢dx = F(t,x;) — F(0, x;).
0
Proof. (i) is due to Proposition 5.7 and Remark 5.9. (ii) is due to (21) and Corollary 5.10. O

Example 5.12. Let Q c Q7, f; € C!(R), then

/OT </f1 o x,dx,, ""/fm°xmdxm>/dx
) Z </0T(xi(T) = x)fiox;dx; — /OT fio xid[xi]>, (23)

by an application of Corollary 5.11(ii) to the RHS of (23), Example. 4.18(iii) and (15).

An important consequence of Theorem 5.8 is to show that class M functionals satisfy a pathwise
analogue of the martingale property. The concept of martingale was originally introduced to model
the outcome of a fair game [24] across a set of outcomes. The following result, which does not make
use of any probabilistic notion, shows that a class M functional represents the outcome of such a
‘fair game’, where the underlying set of outcomes is a generic subset of paths:

Theorem 5.13 (Fair game). Let M € M(A). If there exists T > 0 such that

Vx € Q, M(T,x;) —M(0,x5) >0
then

Vx e Q, M(T,x;)=M(0,x).

This result suggests that class M functionals may be considered pathwise analogues of martin-
gales.

Proof. Since DM vanishes, by Lemma 5.1 we obtain

T
M(t,x;) = M(t,x;) + / DM(s, x;)ds = M(T,x;) 20 (24)
t
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260 | CHIU AND CONT

for all t < T, where the last inequality is due to x; € Q. Suppose there exists z € Q; M(T, z;) > 0.
By Theorem 5.8 and the continuity of M, it follows

M(T,zp) = Y, VM, 2} Yz(t) = 2(t)) > 0 (25)

7, 2t;<T

for all n sufficiently large. Define ¢ := min{t; € 7, |M(¢;,z}') > 0}, then ¢ < T. By (24), (25), the
left-continuity of M and the fact that z"" € Q, we obtain

M,z > (&5, 21 ) =0,

hence M(¢7, zf*) =V, M(¢;, z[”*_)Az(tZ) > 0. Definition 3.1(ii) implies that there exists € > 0 such
that ! !

z¥ = Z?Z— —edz(t)T};; o) € Q,

hence M(t;, z;’;) =V, M(z;, Z:‘*_)(—eAz(tZ)) < 0, which contradicts (24). O

The following change of variable formula for causal functionals extends [7, Theorem 4] to
CY2(A), removing the condition linking the partition sequence 7 with the jump times of a path:

Theorem 5.14 (Change of variable formula for C? functionals). Let x € QN Q- For any
F € CY2(A) the following Follmer-Ito formula holds:

T T
F(T,x7) =F(0,x,) + / DF(t,x,)dt + / V. F(t,x,_)dx (26)
0 0

T
+ 1 / ViF(t,xl_)d[x]c + z (AF(t,x,) — V, .F(t,x,_) - Ax(2)),
2 Jo

t<T

where the series is absolute convergent and the pointwise limit

T
/ V. F(t,x,_)dx := lim Z Vo F(t;, x} ) - (x(tiq) — x(t;)) 27)
0 n—oo i

7, 24;<T
exists.
Proof. See the Appendix. O

An important consequence of Theorem 5.14 is the continuity of the Féllmer integral in the
m-topology:

Proposition 5.15. Let Q C Q7 and F € C'*(A). Then
J:A— R

t
(t,x) —> J(t,x,) :=/ V., F(s, x,)dx
0
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CAUSAL FUNCTIONAL CALCULUS | 261

is continuous. In particular, V F is integrable and J is a pathwise integral in the sense of
Definition 5.4.

Proof. We apply the functional change of variable formula (Theorem 5.14) to F. Rearranging the
terms in (26) we observe that t — J(t, x,) is cadlag whose jump at time ¢ is J(¢, x;) — J(t, x;_).
It remains to show that J satisfies the continuity criteria Definition 3.9.1(c),(d) and 2(c),(d). It is
suffice to assume t, — t; ¢, > t}’q (that is, the other criteria follow similarly). By (27) and that x
is right-continuous, we first obtain

tn
J(tn,xfn) =/ V. F(t,x;' )dx"
0

D VPt X)) - (xe(tiyy) = x(1) — J(t,%,)

T, 3<t

+ D VLF@G ) () — x(0)). (28)

TR

We have to show that the rest term (28) vanishes as n T 0. Applying (26) to the path x" and by
the local boundedness of DF, we have

2 VaFx ) Ax"()| < |F(ty, x7) = F(ty, x|

TR

+ const|t, —t |
+| D ARG, x]) = VL F(, xI) - AxM(1)|.

T 2LE() ]

Sincet, > t/;t,,t/ — t and by the right continuity of F the first two terms vanish. Since (V2F)_
is locally bounded and ViF admits a modulus, applying a second-order Taylor expansion to the
third term, we obtain

D>, AP, x]) = V(X[ ) - Ax™()| < constlg,(t,) — (1))l — 0,

T 2E(h ]

J
by the fact that g, = [x] and [4, Section 4.2]. O

6 | APPLICATION TO PATHS WITH FINITE QUADRATIC
VARIATION

We now examine in more detail the case of paths of finite quadratic variation and apply the results
developed in Section 5 to the case Q C Q7 . As we have already shown, integration and differen-
tiation are inverse operations (Corollary 5.11). Using functionals of class M, we show that these
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262 | CHIU AND CONT

operations may be viewed as isomorphisms between certain spaces. We also obtain a pathwise
identity related to Itd’s isometry (Theorem 6.4).

The key objects here are functionals of class M, which are primitives and may be understood as
pathwise analogues of martingales (Theorem 5.13). In addition, we shall show that class M func-
tionals are canonical solutions to path-dependent heat equations. Let us introduce the following
vector spaces of integrands:

LA) :={V,FIF € C"*(A)},  Ly(A) :={V,FIF € C,*(A)},
L(A) i={V,FIF € M(A)},  Ly(A) i= {V,FIF € M,(A)}
By Proposition 5.15, the integral operator
/¢ €L — Iy RN,

where I is given by (22), is a well-defined linear operator.

Example 6.1 (Path-dependent 1-form). Let f; € CY(R),i=1,..,mthen

$(t,x) = (( [ oxldx1><z—),..., ( [t oxmdxm)(t—>)

defines an element of £, (A).
Proof. See Example 4.18(15). O

Lemma 6.2.
@ IfpeLN)then [ € M(A)and V ([ ¢) =¢_.
(ii) If¢ € Ly(A) then [ ¢ € My(A) and V. .(/ §) = ¢_.
(iii) If¢ € L(A) then [ ¢ € M(A)and V ([ ¢) = ¢.
(iv) If ¢ € L,(A) then [ ¢ € My(A) and V (f $) = ¢.
Proof. 1t is due to Proposition 5.15 and Corollary 5.11(i). O
Corollary 6.3. Define
My(A) 1= {F € My(A)|F(0,x,) = 0},
then the integral operator
I Lp(A) — M(N)

is an isomorphism and the inverse of [ is the differential operator V ,.

Proof. Injectivity follows from Lemma 6.2(iv). Surjectivity is due to Corollary 5.11(ii). O
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CAUSAL FUNCTIONAL CALCULUS | 263

We now obtain a pathwise identity of It6,” and give an application. For ¢,1 € £,(A) define
{¢. 9} € L(A) by

(6,9} : A~ RY

(t,x) — <1,b /0'¢.dx+¢/0'¢.dx>(t,xt_).

Theorem 6.4. Forall $,3 € L, (A), {¢,9} € L, (A) and

(o) ) o oo

Proof. Recall that C;’Z(A) is an algebra. Let ¢,3 € £,(A), put F := [ ¢dx,G := [ pdx, then
F,G € My(A) by Lemma 6.2(iv). Since M (A) C C;’Z(A), it follows FG € C;’Z . Apply the change
of variable formula (Theorem 5.14) to FG; using Lemma 6.2(ii), the proof is complete. O

Corollary 6.5 (Isometry). Let £ C L,(A) be a subspace such that

Ve.peé&, {pPres

and denote I(E) the image of £ under [. IfE is any positive element of the algebraic dual C*(A) such
that I(€) C ker(E), then

< [ ¢ax. [ ¢dx>m = [E( [ ax [ z,bdx> - tE( / ¢¢’d[x]> = ($, 00

holds for all ¢,9 € E.
In particular, the bracket {., .) ¢ induces a semi-norm on €. Denoting € the quotient space induced
by the semi-norm, the integral operator

] E—1&)
pr—Ji=/¢

is an isometric isomorphism between the pre-Hilbert spaces & and I(€). The inverse of | is the
differential operator

V, : I(&)— &,
F+~—V,F:=V.,F.
Proof. The result is a consequence of Corollary 6.3 and Theorem 6.4. O

We conclude with a discussion on the relation between class M(A) and harmonic functionals,
defined as solutions to a class of path-dependent heat equations [5, Chapter 8]. Let = : A — S
be a right-continuous function on A taking values in positive-definite symmetric m X m matrices

¥ First appeared in [19, Lemma 2].
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264 | CHIU AND CONT

and

QZ:={er|%=Z}cQ

the set of paths with absolutely continuous quadratic variation with Lebesgue density X.

Definition 6.6. F € C1?(A) is called Z-harmonic if it satisfies
Vx e Qs V30,  DF(t,x,)+ %(ViF(t,xt), S(t,x,)) = 0. (29)

If F is Z-harmonic, then the change of variable formula (Theorem 5.14) gives

t
F(t,x,) = F(0,x,) + / V. F(s,x,_)dx (30)
0

for all t > 0 and x € Qy. Equality in (30) then holds on Qs. Every functional of class M satisfies
(29), hence is Z-harmonic for all X.

Theorem 6.7 (Representation of X-harmonic functionals). If F is X-harmonic, then there exists a
class M functional M such that

Mg, =F.
In particular, M is uniquely determined by (30) on Qs.

Proof. Let F € C1?(A) be Z-harmonic. We can define a functional M : A — R by
t
M(t,x) :=F(0,x,) + / V. F(s,x,_)dx. (31)
0

By Lemma 6.2(i), we see that M € M(A) and V,.M = (V,F)_. By (30) and (31), the proof is
complete. 0

APPENDIX: TECHNICAL PROOFS

Proof of Proposition 1.1. For a € R, define w,(f) 1= 1[4 o)(¢) € D =: Q, where D denotes the
Skorokhod space. We assign to the collection (W, ),ep, » @ normalized Lebesgue measure

AMAN][0,n])

5

P({wela € A 1= )

n>1

then P({w,|a € R,})) =1 and X,(w) := w(t) is a finite variation process (that is, a semi-
martingale) under P. Now let 7 = (7r,,),,»; be any sequence of time partitions and denote

Qp :={xe€Q"J(x)C lim”inf T,
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CAUSAL FUNCTIONAL CALCULUS | 265

Since lim inf,, 7r,, is countable, it follows that P({w,|a € liminf, 7,}) = 0 and therefore P({w €

QlX.(w) € Qg}) = 0. d
Proof of Theorems 5.8 and 5.14. By the right continuity of F (Definition 3.9.2(d)), we have

F(T,xp) = F(0,xp) = lim > F(tinx] L )= F X (A1)

7, 24;<T

where for all n sufficiently large, we can decompose each increment
F(t1+1a i _) F(tl’x )

= F(typy, %), )= F(t,x) )+ F(t,x; )= F(t,x;_)

= (F(tiH, xZ) = F(tx) ) + (Fle ) = P, x)

time space

into the sum of a time (‘horizontal’) and a space (‘vertical’) increment.
Since F is left-continuous and differentiable in time, DF is right-continuous and locally
bounded, by Lemma 5.1 each time increment may be expressed as

F(ti, %) — F(t;,x [)—/ DF(t, x;)dt.
By Lemma 5.2, we obtain

T
; ny _ D) =
lim D, Fltir, X)) = Flt, x}) /O DF(t, x,)dt,

7, 2;<T

which in light of (A.1), implies that the sum of space increments converges to

lim Y F@, x) = F(t;,x! ) = F(T,x7) = F(0,x0) - / DF(t, x,)dt. (A2)

7, 2t;<T

AF(t[,xt’;)

If F € S(A) then V_F is strictly causal and by Proposition 4.3, VfCF is vanishing everywhere.
Thus, by a second order Taylor expansion, the remainder term vanishes, so

F(t;, [) F(t;, x" r)=V F(, x" : ) (%) — x(8)

and Theorem 5.8 follows. If F € C?(A) then, by Taylor’s Theorem, each space increment admits
the following second-order expansion:

APty x1) = F (1, X7+ AX" (0T}, o) ) = Pt %)
=V F(t, 2 ) - AX(t) + %(ViF(ti, X ), AX(E)AX(E,)),

+ RZ, (A3)
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where Ax"(t;) = (x(t;.,) — x(t;)) and

1
R} = E(ViF(L Xp_ 4 al AX ()T, o) — VEF(t, X[, AX"(t)Ax™ (1)),

D — iy
where a! € (0,1). Since x € Q, C Q7 , by Corollary 2.8 and Remark 2.9

T
lim Z (V2F(t;, x' ), Ax"(t)AX" (1)) = / V2F(t,x;_)d[x]
n i 0

7, 24T

T
- / V2F(t,x,)dlx] + Y (V2F(E x,), Ax(DAX(Y). (A4)
0

t<T
Let& > 0,1 :=sup;g(or) [AX(0)], s 1= 8 + sup;e(or+5) |Ax(¢)]. Using a result on cadlag func-
tions [7, Lemma 8], we see that |Ax"(¢;)| < r; for n sufficiently large. By Remark 3.2, we see that

oci”Ax"(tl-) € Uti_(x”) N Er 5 (0). Since V)ZCF admits a modulus of vertical continuity, it follows from
Definition 4.7 that there exists a modulus of continuity w such that

1
IRI| < S@(rs)lAx"(1)AX" (1) |
for n sufficiently large, hence by an application of Corollary 2.8(i), we obtain

limsup Y IRI| < So(rs) < w(ra)er(XI(T))

o mat<T

Send § | 0, and by the right continuity of x, we have established that

limsup Y |Rt’lf|<%w(r+)tr([x](T)). (A5)

o oma4<T
Let 0 < € < r, define the following finite sets on [0, T]
J(e) :={t < T|lAx(1)| > €},
Ju(€) i={m, 2 t; <T|3t € (t;, ti1 ], |AX()| > €}.

We can decompose

2 Ri= D R+ )R (A6)

T, 24 <T 1;€7,(¢) LEWT,(6)

into two partial sums. By (A.3), the right-continuity (resp. left-continuity) of F (resp.
(VF)_,(V2F)_) and that x is cadlag we obtain

* n
> (RZ) =y (AF(t,x[)—VxF(t,xt_)-Ax(t)
ti€J,(€) t€J(e)
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L V2P x), AxOax)))
< §w<r+)rr<[x]<T)>, (A7)

where the inequality follows from (A.5) and (A.6). Observe that J(¢) T J(0) as € | 0, by monotone
convergence, we obtain

lim Y (R;:)i = 3 (AF@x) = VR x,) - Ax()

tET () t<T
—%(ViF(t, X, Ax(t)Ax(t)’))i
< %co(r+)tr([x](T)). (A8)

On the other hand, since w is monotonic, by (A.5) and (A.6), it follows that

lim sup Z RZ—limninf Z RZ < w(e)tr([x](T)), (A9)

HETR () HETR ()"

and by (A.2)~(A.4), (A.6), (A.7) and (A.9), so is

limsup )| V.F!-Ax"(t)—liminf )’ V,F!- Ax"(t;)| < w(@)tr([x](T)),
o m,a4<T l " USETRSA '
where we have denoted V,F}! := V,F(t;,x;_).Send ¢ | 0, we obtain
T
/ V., F(t,x;,_)dx := lirIln Z VxF(ti,xZ_) - (x(t;1q) — x(t))- (A.10)
0

T, 4<T

Upon a second look at (A.2)-(A.4), (A.6), (A.7) and in light of (A.10), we immediately see that

lirrln Z RZ::O((—:)

tie(‘]n(f))c

also exists and by (A.5), |o(e)| < %a)(e)tr([x](T)) = 0 which, combined with (A.6) and (A.8)
implies

lim Y RZ:Z(AF(t,xt)—VxF(t,xt_)-Ax(t)

7,20 <T t<T

—%<v§F(t, X, AX(DAX(E)) ). (A1D)
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In view of (A.2)—~(A.4), (A.10) and (A.11), it remains to show that

L /
KZ‘T, (AF(t,xt) = V F(t,x,)Ax(t) — 5(V§F(t,xt_), Ax()Ax(t) >)

= 3 (AR x) = V. F(E,x,Ax(0)) - % 3 (V2F(t, x,), Ax(AX(D)), (A12)

t<T t<T

and the absolute convergence of the series. Since (Vch)_ is left-continuous and locally bounded,
we see from Lemma 4.6(ii) that the map ¢t — Vch(t, X;_) is also bounded on [0, T], hence by (5)

% 3 IV2F(t,x, OlAx(DAX()| < const Y (Z(Axi(t))2>

t<T i t<T

< const - tr([x](T)),

which, combined with (A.8) implies (A.12) and the absolute convergence of the series, hence
Theorem 5.14 is proven. O
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