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Abstract
We construct a new topology on the space of stopped
paths and introduce a calculus for causal function-
als on generic domains of this space. We propose a
generic approach to pathwise integration without any
assumption on the variation index of a path and obtain
functional change of variable formulaewhich extend the
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143–150] and Cont and Fournié [J. Funct. Anal. 259
(2010), no. 4, 1043–1072] to a larger class of functionals,
including Föllmer’s pathwise integrals. We show that a
class of smooth functionals possess a pathwise analogue
of the martingale property. For paths that possess finite
quadratic variation, our approach extends the Föllmer–
Ito calculus and removes previous restriction on the time
partition sequence.We introduce a foliation structure on
this path space and show that harmonic functionalsmay
be represented as pathwise integrals of closed 1-forms.
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1 INTRODUCTION

1.1 Motivation

Let 𝜋 ∶= (𝜋𝑛)𝑛⩾1 be a sequence of interval partitions of [0, ∞) and denote 𝑄𝜋 the set of càdlàg
pathswith finite quadratic variation along𝜋 in the sense of Föllmer [14]. Then for any𝑓 ∈ 𝐶2(ℝ𝑑),
the Itô formula holds pathwise along any path 𝑥 ∈ 𝑄𝜋 [14]:

𝑓(𝑥(𝑇)) = 𝑓(𝑥(0)) + ∫
𝑇

0
∇𝑓(𝑥(𝑡−))𝑑𝑥(𝑡) +

1

2 ∫
𝑇

0
∇2𝑓(𝑥(𝑡)).𝑑[𝑥]𝑐(𝑡) (1)

+
∑

0⩽𝑠⩽𝑡

Δ𝑓(𝑥(𝑠)) − ∇𝑓(𝑥(𝑠−)).Δ𝑥(𝑠),

where the second term ∫ 𝑇
0 ∇𝑓(𝑥(𝑡−))𝑑𝑥(𝑡) is a ‘Föllmer integral’, defined as a pointwise limit of

left Riemann sums:

∫
𝑇

0
∇𝑓(𝑥(𝑡−)).𝑑𝑥(𝑡) ∶= lim

𝑛→∞

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

∇𝑓(𝑥(𝑡𝑖))(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)), (2)

without resorting to any probabilistic notion of convergence. Based on the key observation that,
for any semi-martingale 𝑋, there exists a sequence of partitions 𝜋 such that the sample paths of
𝑋 lie almost surely in 𝑄𝜋, Föllmer showed [14] that for any integrand of the form ∇𝑓 ◦𝑋, where
𝑓 ∈ 𝐶2(ℝ𝑑), the pathwise integral (2) coincides with probability one with the Itô integral, thus
providing a pathwise interpretation of the Itô stochastic integral.
The extension of this result to path-dependent functionals has been the focus of several recent

works [1, 7, 8, 22]. In particular, a change of variable formula for a class of regular functionals of
càdlàg paths was obtained in [7, Theorem 4]. Moreover, [7] (see also [1, Theorem 3.2]) establishes
that, for𝐹 ∈ ℂ1,2(Λ𝑇), onemay define a pathwise integral ∫ 𝑇

0 ∇𝑥𝐹(𝑡, 𝑥𝑡−).𝑑𝜋𝑥 as a pointwise limit
of Riemann sums as in (2).
The key idea behind these results [5–7] can be summarized as follows [5]. First, one constructs a

calculus for continuous functionals on piecewise constant paths. Second, this calculus is extended
to all càdlàg paths using a density argument, using piecewise-constant approximations of paths.
This second step is where topology plays a role. The original construction of the functional Itô
calculuswas based on the uniform topology [6, 7, 12]. As iswell known, piecewise constant approx-
imation of a càdlàg path under the uniform topology requires exact knowledge of all points of
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CAUSAL FUNCTIONAL CALCULUS 239

discontinuity, which leads to a requirement [7, Remark 7] that the sequence of partitions exhausts
the set 𝐽(𝑥) of discontinuity points of the path 𝑥:

𝐽(𝑥) ∶= {𝑡 ∈ [0, ∞), 𝑥(𝑡−) ≠ 𝑥(𝑡)} ⊂ lim inf
𝑛

𝜋𝑛. (3)

This condition, which links the partition with the path, is not required for Föllmer’s [14] results,
but plays a key role in the proof of [7, Theorem 4].
The following result, whose proof is given in the Appendix, shows that this condition (3) is

restrictive and need not be satisfied, even for semi-martingales:

Proposition 1.1. There exists a semi-martingale𝑋 such that for any partition sequence𝜋,ℙ(𝐽(𝑋) ⊂

lim inf𝑛 𝜋𝑛) = 0.

A related issue is the differentiability and regularity of the pathwise integral. The Föllmer
integral 𝕀 ∶ (𝑡, 𝑥) ↦ ∫ 𝑡

0 ∇𝑥𝐹.𝑑𝜋𝑥, which is a central object in the pathwise Itô calculus, is not
continuously differentiable in the sense of [7], even for 𝐹 ∈ ℂ1,2(Λ𝑇).
To address these issues one needs to replace the uniform topologywith another topology.Unfor-

tunately, the usual topologies on the Skorokhod space 𝐷 [21, s5] do not fit this purpose. For
example, the pointwise evaluation map

𝐹(𝑥) ∶= 𝑥(𝑡)

is not J1 continuous on 𝐷 [20, VI. 2.3] and the same applies to all weaker topologies. It may thus
be a lost cause to obtain a functional calculus built on top of weak topologies on 𝐷.
In this work we circumvent these obstacles by introducing a new topology on the space 𝐷 of

càdlàg paths. The Föllmer pathwise integral and the pathwise quadratic variation functional are
shown to be continuous functionalswith respect to this topology.Wedefine a class of continuously
differentiable functionals with respect to this topology and derive change of variable formulae for
such functionals without requiring the restrictive condition (3). In the case of paths with finite
quadratic variation along a partition sequence, our change of variable formula extends results
[1, 7, 14, 18] on the Föllmer–Ito calculus and relaxes previous assumptions relating the partition
sequence to the discontinuities of the underlying path. In particular we obtain a pathwise identity
of Itô (Theorem 6.4) in the spirit of Beiglböck and Siorpaes’ pathwise Burkholder–Davis–Gundy
inequality [2].
Pathwise integration concepts and Itô-type change of variable formulae have been obtained by

Cont & Perkowski [8] using an extension of Föllmer’s ideas to paths with p-th order variation and
by Friz and Zhang [17] using rough path theory. In contrast to these results, we define pathwise
integrals as limits of (left-)Riemann sums, which naturally appear in applications, not compen-
sated Riemann sums, and we are able to treat a greater class of functionals, notably including
Föllmer integrals.

1.2 Outline

After introducing some definitions and notations in Section 2 we prove, in Section 2.2, a new limit
theorem which is useful for studying functionals involving quadratic variation. In Section 3, we
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240 CHIU and CONT

introduce a new topology the space of càdlàg paths, discuss its relation with other well-known
topologies and give examples of continuous functionals for this topology. In Section 4, we intro-
duce classes of smooth causal functionals and discuss their properties. In particular, we introduce
a class of functionals which are shown to satisfy a pathwise analogue of the martingale property
(Theorem 5.13).
Section 5 discusses pathwise integration and functional change of variable formulae. We show

in particular that pathwise integralsmay be defined for class functionals without any condition
on the variation index (𝑝-variation) of the underlying path. Section 6 discusses in more detail the
case of functionals of càdlàg paths with finite quadratic variation and the relation of class 
functionals to a class of path-dependent partial differential equations.

2 PRELIMINARIES

2.1 Notations

Denote by 𝐷𝑚 the Skorokhod space of ℝ𝑚-valued càdlàg functions

𝑡 ⟼ 𝑥(𝑡) ∶= (𝑥1(𝑡), … , 𝑥𝑚(𝑡))′

on ℝ+ ∶= [0, ∞). Denote 𝕊𝑚 (resp. 𝐵𝑉𝑚) the subset of step functions (resp. locally bounded vari-
ation functions) in 𝐷𝑚. For 𝑚 = 1, we will omit the subscript 𝑚. By convention, 𝑥(0−) ∶= 𝑥(0)

and Δ𝑥(𝑡) ∶= 𝑥(𝑡) − 𝑥(𝑡−). We denote by 𝑥𝑡 ∈ 𝐷𝑚 (resp. 𝑥𝑡− ∈ 𝐷𝑚) the path 𝑥 ∈ 𝐷𝑚 stopped at 𝑡
(resp. 𝑡−):

𝑥𝑡(𝑠) = 𝑥(𝑠 ∧ 𝑡), 𝑥𝑡−(𝑠) = 𝑥(𝑠)1𝑠<𝑡 + 𝑥(𝑡−)𝑥(𝑠)1𝑠⩾𝑡.

We equip (𝐷𝑚, 𝔡J1 ) with a metric 𝔡J1 which induces the Skorokhod (a.k.a. J1) topology.
Let 𝜋 ∶= (𝜋𝑛)𝑛⩾1 be a fixed sequence of partitions 𝜋𝑛 = (𝑡𝑛

0
, … , 𝑡𝑛

𝑘𝑛
) of [0, ∞) into intervals 0 =

𝑡𝑛
0

< … < 𝑡𝑛
𝑘𝑛

< ∞ such that 𝑡𝑛
𝑘𝑛

→ ∞, with vanishing mesh |𝜋𝑛| = sup𝑖=1..𝑘𝑛
|𝑡𝑛

𝑖
− 𝑡𝑛

𝑖−1
| → 0 on

compacts. By convention, max(∅ ∩ 𝜋𝑛) ∶= 0, min(∅ ∩ 𝜋𝑛) ∶= 𝑡𝑛
𝑘𝑛
.

We denote

𝑡′𝑛 ∶= max{𝑡𝑖 < 𝑡|𝑡𝑖 ∈ 𝜋𝑛}, 𝑥𝑛 ∶=
∑

𝑡𝑖∈𝜋𝑛

𝑥(𝑡𝑖+1)1I[𝑡𝑖 ,𝑡𝑖+1)
(4)

and by 𝑥(𝑛) the (continuous) piecewise-linear approximations of 𝑥 along 𝜋𝑛.
We denote 𝑄𝜋

𝑚 ⊂ 𝐷𝑚 the subset of càdlàg paths with finite quadratic variation along 𝜋, defined
as follows:

Definition 2.1 (Quadratic variation along a sequence of partitions).We say that 𝑥 ∈ 𝐷𝑚 has finite
quadratic variation along 𝜋 if the sequence of step functions:

𝑞𝑛(𝑡) ∶=
∑

𝜋𝑛∋𝑡𝑖⩽𝑡

(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
′
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CAUSAL FUNCTIONAL CALCULUS 241

converges in the Skorokhod topology. The limit [𝑥]𝜋 ∶= ([𝑥𝑖, 𝑥𝑗]𝜋)1⩽𝑖,𝑗⩽𝑚 ∈ 𝐷𝑚×𝑚 is called the
quadratic variation of 𝑥 along 𝜋.

In the sequel, we shall fix such a sequence of partitions 𝜋 and drop the subscript 𝜋 unless we
want to emphasize the dependence on 𝜋.
As shown in [4, Theorem 3.6], Definition 2.1 is equivalent to the one given by Föllmer [14]:

Proposition 2.2 [4]. Let 𝑥 ∈ 𝐷𝑚, then 𝑥 ∈ 𝑄𝜋
𝑚 if and only if 𝑥𝑖, 𝑥𝑖 + 𝑥𝑗 ∈ 𝑄𝜋 . If 𝑥 ∈ 𝑄𝜋

𝑚, then we
have the polarization identity

[𝑥𝑖, 𝑥𝑗](𝑡) =
1

2

(
[𝑥𝑖 + 𝑥𝑗] − [𝑥𝑖] − [𝑥𝑗]

)
(𝑡) ∈ 𝐵𝑉

= [𝑥𝑖, 𝑥𝑗]
𝑐(𝑡) +

∑
𝑠⩽𝑡

Δ𝑥𝑖(𝑠)Δ𝑥𝑗(𝑠). (5)

We set lim𝑛 𝑎𝑛 ∶= ∞whenever a real sequence (𝑎𝑛)does not converge. For real-valuedmatrices
of equal dimension, we write ⟨⋅, ⋅⟩ to denote the Frobenius inner product and | ⋅ | to denote the
Frobenius norm. If 𝑓 (resp. g) are ℝ𝑚×𝑚-valued functions on [0, ∞), we write

∫
𝑡

0
𝑓𝑑g ∶=

∑
𝑖,𝑗

∫
𝑡

0
𝑓𝑖,𝑗(𝑠−)𝑑g𝑖,𝑗(𝑠) (6)

whenever the RHS makes sense. If 𝑥 ∈ 𝑄𝜋
𝑚 and 𝑓 ∈ 𝐶2(ℝ𝑚), we write

∫
𝑡

0
(∇𝑓 ◦𝑥)𝑑𝜋𝑥 ∶= ∫

𝑡

0
∇𝑓(𝑥(𝑠−))𝑑𝜋𝑥(𝑠)

to denote the Föllmer integral [14], defined as a pointwise limit of left Riemann sums along 𝜋.
The superscript 𝜋 may be dropped in the sequel as 𝜋 is fixed throughout.

2.2 Quadratic Riemann sums

In this section, we focus on pathswith finite quadratic variation along a sequence of partitions and
extend certain limit theorems obtained in [7] for the convergence of ‘quadratic Riemann sums’ (in
particular [7, Lemma 12]) to amore general setting. Themain result of this section is Theorem 2.7,
which is a key ingredient in the proof of change of variable formula for functionals of paths with
quadratic variation.
The following result [4, Lemma 2.2] will be useful in the sequel:

Lemma 2.3. Let 𝑣𝑛, 𝑣 be non-negative Radon measures on ℝ+ and 𝐽 be the set of atoms of 𝑣. Then
𝑣𝑛 → 𝑣 vaguely on ℝ+ if and only if 𝑣𝑛 → 𝑣 weakly on [0, 𝑇] for e5very 𝑇 ∉ 𝐽.

Lemma 2.4. Let 𝑥 ∈ 𝑄𝜋, 𝜇 = 𝑑[𝑥] be the Radon measure associated with [𝑥]. For every [0, 𝑇],
𝑇𝑛 ∶= max{𝑡𝑖 < 𝑇|𝑡𝑖 ∈ 𝜋𝑛},𝑇𝑛+1 ∶= min{𝑡𝑖 ⩾ 𝑇|𝑡𝑖 ∈ 𝜋𝑛}. Define a sequence of non-negative Radon
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242 CHIU and CONT

measures on ℝ+ by

𝜇𝑛([0, 𝑇]) ∶=
∑

𝑡𝑖∈𝜋𝑛

(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
2𝛿𝑡𝑖+1

([0, 𝑇)) + (𝑥(𝑇𝑛+1) − 𝑥(𝑇𝑛))2.

Then

(i) 𝜉𝑛 ∶=
∑

𝑡𝑖∈𝜋𝑛
(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))

2𝛿𝑡𝑖
⟶ 𝜇 vaguely on ℝ+,

(ii) 𝜇𝑛 ⟶ 𝜇 vaguely on ℝ+.

Proof. (i) follows from [4, Theorem 2.7]. By Lemma 2.3, we may assume 𝑇 to be a continuity point
of 𝑑[𝑥]. Let 𝑓 be a continuous function on [0, 𝑇]. If 𝑇 = 0, then 𝜇𝑛({0}) ≡ 𝑑[𝑥]({0}) = 0. If 𝑇 > 0,
observe that 𝜉𝑛([0, 𝑇)) ⟶ 𝑑[𝑥]([0, 𝑇)) (by (i)), 𝑓 is uniform continuous on [0, 𝑇] and that 𝑥 is
right-continuous. Let 𝑇′

𝑛+1
∶= min{𝑡𝑖 > 𝑇|𝑡𝑖 ∈ 𝜋𝑛}, it follows that for sufficiently large 𝑛

|||||∫
𝑇

0
𝑓𝑑𝜉𝑛 − ∫

𝑇

0
𝑓𝑑𝜇𝑛

||||| ⩽
∑

𝜋𝑛∋𝑡𝑖<𝑇

|𝑓(𝑡𝑖) − 𝑓(𝑡𝑖+1 ∧ 𝑇)|(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
2

+𝑓(𝑇)(𝑥(𝑇′
𝑛+1) − 𝑥(𝑇𝑛+1))

2

⩽ sup
𝑡𝑖∈𝜋𝑛∩[0,𝑇]

|𝑓(𝑡𝑖) − 𝑓(𝑡𝑖+1 ∧ 𝑇)|𝜉𝑛([0, 𝑇))

+‖𝑓‖𝑇(𝑥(𝑇′
𝑛+1) − 𝑥(𝑇𝑛+1))

2 ⟶ 0. □

Lemma 2.5. Let (𝑣𝑛, 𝑛 ⩾ 1) be a sequence of non-negative Radon measures on ℝ+ converging
vaguely to a Radonmeasure 𝑣 and 𝐽 be the set of atoms of 𝑣. If for every 𝑇 ∈ 𝐽, there exists a sequence
(𝑇𝑛) in ℝ+, 𝑇𝑛 ↑ 𝑇 such that

𝑣𝑛({𝑇𝑛}) ⟶ 𝑣({𝑇}), (7)

then 𝑣𝑛 ⟶ 𝑣 weakly on [0, 𝑇] for all 𝑇 ⩾ 0.

Proof. For every 𝑇 ⩾ 0, 𝑣𝑛([0, 𝑇]) ∶= 𝑣𝑛([0, 𝑇]) − 𝑣𝑛({𝑇𝑛}) and 𝑣([0, 𝑇]) ∶= 𝑣([0, 𝑇]) − 𝑣({𝑇}). If
𝑇 ∉ 𝐽, the claim follows immediately from Lemma 2.3. Thus, we may assume 𝑇 ∈ 𝐽. If 𝑇 = 0 ∈ 𝐽,
then 𝑇𝑛 ≡ 0. Let 𝑇 > 0 and 𝑓 ∈ 𝐶([0, 𝑇], ‖ ⋅ ‖∞). Since 𝑓 = (𝑓)+ − (𝑓)−, we may take 𝑓 ⩾ 0 and
for sufficiently small 𝜖 > 0, we define the following extensions:

𝑓
𝜖
(𝑡) ∶= 𝑓(𝑡)1I[0,𝑇](𝑡) + 𝑓(𝑇)

(
1 +

𝑇 − 𝑡

𝜖

)
1I(𝑇,𝑇+𝜖](𝑡),

𝑓𝜖(𝑡) ∶= 𝑓(𝑡)1I[0,𝑇−𝜖](𝑡) + 𝑓(𝑇)
(

𝑇 − 𝑡

𝜖

)
1I(𝑇−𝜖,𝑇](𝑡),

then 𝑓
𝜖
, 𝑓𝜖 ∈ 𝐾([0, ∞)), 0 ⩽ 𝑓𝜖 ⩽ 𝑓1I[0,𝑇] ⩽ 𝑓

𝜖
⩽ ‖𝑓‖∞ and we have

∫
∞

0
𝑓𝜖𝑑𝑣𝑛 ⩽ ∫

𝑇

0
𝑓𝑑𝑣𝑛 ⩽ ∫

∞

0
𝑓

𝜖
𝑑𝑣𝑛.
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CAUSAL FUNCTIONAL CALCULUS 243

Since 𝑣𝑛 → 𝑣 vaguely and (7) holds, we obtain

0 ⩽ lim sup
𝑛 ∫

𝑇

0
𝑓𝑑𝑣𝑛 − lim inf

𝑛 ∫
𝑇

0
𝑓𝑑𝑣𝑛 ⩽ ∫

∞

0
𝑓

𝜖
− 𝑓𝜖𝑑𝑣

⩽ 𝑓(𝑇)(𝑣([𝑇 − 𝜖, 𝑇 + 𝜖]) − 𝑣({𝑇}))
𝜖

⟶ 0,

hence by monotone convergence

lim
𝑛 ∫

𝑇

0
𝑓𝑑𝑣𝑛 = lim

𝜖 ∫
∞

0
𝑓𝜖𝑑𝑣 = ∫

𝑇

0
𝑓𝑑𝑣.

By (7), it follows lim𝑛 ∫ 𝑇
0 𝑓𝑑𝑣𝑛 = ∫ 𝑇

0 𝑓𝑑𝑣. □

Lemma 2.6. Let (𝑣𝑛, 𝑛 ⩾ 1) be a sequence of non-negative Radon measures on ℝ+ converging
vaguely to a Radon measure 𝑣 and 𝐽 be the set of atoms of 𝑣. Let 𝑓𝑛, 𝑓 be real-valued left-continuous
functions on ℝ+ and 𝐽 be the set of atoms of 𝑣. If

(i) for every 𝑇 ∈ 𝐽 there exists a sequence (𝑇𝑛) ∈ [0, 𝑇) with 𝑇𝑛 ↑ 𝑇 such that 𝑣𝑛({𝑇𝑛}) ⟶ 𝑣({𝑇}),
and

(ii) (𝑓𝑛) is locally bounded and converges pointwise to 𝑓,

then for every 𝑇 ⩾ 0,

∫
𝑇

0
𝑓𝑛𝑑𝑣𝑛 ⟶ ∫

𝑇

0
𝑓𝑑𝑣.

Proof. Let 𝑣 = 𝑣𝑐 + 𝑣𝑑 be the Lebesgue decomposition of 𝑣 into an absolutely continuous part 𝑣𝑐

and a singular (discrete)measure 𝑣𝑑. By (i) and Lemma 2.5, we immediately see that (𝑣𝑛 − 𝑣𝑑) ⟶

𝑣𝑐 weakly for every [0, 𝑇]. Since 𝑣𝑐 has no atoms, by an application of [7, Lemma 12] we have

∫
𝑇

0
𝑓𝑛𝑑(𝑣𝑛 − 𝑣𝑑) ⟶ ∫

𝑇

0
𝑓𝑑𝑣𝑐.

By (ii) and dominated convergence, the proof is complete. □

Theorem 2.7. Let 𝑥 ∈ 𝑄𝜋, 𝑓𝑛, 𝑓 be real-valued left-continuous functions on ℝ+ such that (𝑓𝑛) is
locally bounded and converges pointwise to 𝑓 on ℝ+. Then for any 𝑇 > 0,

(𝑖)
∑

𝜋𝑛∋𝑡𝑖⩽𝑇

𝑓𝑛(𝑡𝑖)(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
2 ⟶ ∫

𝑇

0
𝑓𝑑[𝑥].

(𝑖𝑖)
∑

𝜋𝑛∋𝑡𝑖⩽𝑇

𝑓𝑛(𝑡𝑖+1 ∧ 𝑇)(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
2 ⟶ ∫

𝑇

0
𝑓𝑑[𝑥].

(𝑖𝑖𝑖)
∑

𝜋𝑛∋𝑡𝑖<𝑇

𝑓𝑛(𝑡𝑖)(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
2 ⟶ ∫

𝑇

0
𝑓𝑑[𝑥].

(𝑖𝑣)
∑

𝜋𝑛∋𝑡𝑖<𝑇

𝑓𝑛(𝑡𝑖+1 ∧ 𝑇)(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
2 ⟶ ∫

𝑇

0
𝑓𝑑[𝑥].
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244 CHIU and CONT

Proof. If 𝑇 = 0, then by (5) and that 𝑥 is right-continuous and has no discontinuity at 𝑇 = 0,
the claims follow. If 𝑇 > 0, put 𝑇𝑛 ∶= max{𝑡𝑖 < 𝑇|𝑡𝑖 ∈ 𝜋𝑛}, 𝑇𝑛+1 ∶= min{𝑡𝑖 ⩾ 𝑇|𝑡𝑖 ∈ 𝜋𝑛}, 𝑇′

𝑛+1
∶=

min{𝑡𝑖 > 𝑇|𝑡𝑖 ∈ 𝜋𝑛}, then 𝑇𝑛 ↑ 𝑇 and by Lemma 2.4, we observe that

𝜉𝑛({𝑇𝑛}) = (𝑥(𝑇𝑛+1) − 𝑥(𝑇𝑛))2 ⟶ 𝑑[𝑥]({𝑇}),

𝜇𝑛({𝑇}) = (𝑥(𝑇𝑛+1) − 𝑥(𝑇𝑛))2 ⟶ 𝑑[𝑥]({𝑇}),

and that

∑
𝜋𝑛∋𝑡𝑖<𝑇

𝑓𝑛(𝑡𝑖)(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
2 = ∫

𝑇

0
𝑓𝑛𝑑𝜉𝑛 − 𝑓(𝑇𝑛+1)(𝑥(𝑇′

𝑛+1) − 𝑥(𝑇𝑛+1))
2,

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

𝑓𝑛(𝑡𝑖+1 ∧ 𝑇)(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
2 = ∫

𝑇

0
𝑓𝑛𝑑𝜇𝑛 + 𝑓(𝑇)(𝑥(𝑇′

𝑛+1) − 𝑥(𝑇𝑛+1))
2.

By the right continuity of 𝑥, Lemma 2.4 and Lemma 2.6, the proof is complete. □

As a consequence of Proposition 2.2 and Theorem 2.7 we have:

Corollary 2.8 (Multidimensional paths). Let 𝑥 ∈ 𝑄𝜋
𝑚, 𝑓𝑛, 𝑓 ∶ ℝ+ ↦ ℝ𝑚×𝑚 be left-continuous

functions with (𝑓𝑛) locally bounded and converging pointwise to 𝑓 on ℝ+. Then

(𝑖)
∑

𝜋𝑛∋𝑡𝑖⩽𝑇

⟨𝑓𝑛(𝑡𝑖), (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
′⟩ ⟶ ∫

𝑇

0
𝑓𝑑[𝑥],

(𝑖𝑖)
∑

𝜋𝑛∋𝑡𝑖⩽𝑇

⟨𝑓𝑛(𝑡𝑖+1 ∧ 𝑇), (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
′⟩ ⟶ ∫

𝑇

0
𝑓𝑑[𝑥],

for every 𝑇 ⩾ 0. In particular, the convergence also holds if the sum is replaced by
∑

𝜋𝑛∋𝑡𝑖<𝑇 .

Remark 2.9. 𝑡 ⟼ ∫ 𝑡
0 𝑓𝑑[𝑥] is in 𝐵𝑉 and has Lebesgue decomposition:

∫
𝑡

0
𝑓𝑑[𝑥] = ∫

𝑡

0
𝑓𝑑[𝑥]𝑐 +

∑
𝑠⩽𝑡

⟨𝑓(𝑠−), Δ𝑥(𝑠)Δ𝑥(𝑠)′⟩.

3 CONTINUOUS FUNCTIONALS

We now construct a topology on suitable subsets of

𝐸 ∶= ℝ+ × 𝐷𝑚,

for which the Föllmer integral 𝑥 ↦ ∫ 𝑇
0 𝜙.𝑑𝜋𝑥 will be a continuous functional of the integrator

𝑥.
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CAUSAL FUNCTIONAL CALCULUS 245

3.1 Domains for causal functionals

We are interested in causal (non-anticipative) functionals [5, 13], whose natural domain of
definition is a set of stopped paths

{(𝑡, 𝑥𝑡)|𝑡 ∈ ℝ+, 𝑥 ∈ Ω} ⊂ 𝐸,

for a suitable set of paths Ω ⊂ 𝐷𝑚, where 𝑥𝑡 = 𝑥(𝑡 ∧ .) [7].
In order to deploy our functional calculus on such functionals we requireΩ ⊂ 𝐷𝑚 to be closed

under certain operations:

∙ stopping: 𝑥 ∈ Ω ⟹ ∀𝑡 ⩾ 0, 𝑥𝑡 = 𝑥(𝑡 ∧ .) ∈ Ω;
∙ vertical perturbations, in order to define the vertical (Dupire) derivative:

𝑥 ∈ Ω ⟹ 𝑥𝑡 + 𝑒1I[𝑡,∞) ∈ Ω;

∙ piecewise constant approximation along 𝜋.

We will call generic a set of paths stable under these operations:

Definition 3.1 (Generic sets of paths). Anon-empty subsetΩ ⊂ 𝐷𝑚 is called generic if it satisfies:

i) Stability under piecewise constant approximation along 𝜋: For every 𝑥 ∈ Ω, 𝑇 > 0, ∃𝑁 ∈ ℕ;
𝑥𝑛

𝑇
∈ Ω, ∀𝑛 ⩾ 𝑁.

ii) Stability under vertical perturbation: For every 𝑥 ∈ Ω, 𝑡 ⩾ 0, there exists a convex neighbour-
hood of 0 such that

−Δ𝑥(𝑡) ∈  and 𝑥𝑡 + 𝑒1I[𝑡,∞) ∈ Ω, ∀𝑒 ∈  .

We will call a domain a set Λ of stopped paths of the form

Λ ∶= {(𝑡, 𝑥𝑡)|𝑡 ∈ ℝ+, 𝑥 ∈ Ω},

where Ω ⊂ 𝐷𝑚 is generic.

Remark 3.2. Definition 3.1(ii) implies that − is a convex neighbourhood of 0 containing Δ𝑥(𝑡)

such that

𝑥𝑡− + 𝑒1I[𝑡,∞) ∈ Ω, ∀𝑒 ∈ − .

Example 3.3. 𝕊𝑚, 𝐵𝑉𝑚, 𝑄𝜋
𝑚, 𝑄

𝜋
𝑚

+ (that is, positive paths in 𝑄𝜋
𝑚) and 𝐷𝑚 are all generic sets. IfΩ

is generic, then

Ω𝑏
𝑎 ∶= {𝑥 ∈ Ω|𝑎 < 𝑥𝑖 < 𝑏}

for all constants 𝑎, 𝑏 are all generic. Subsets of continuous paths are not generic.

Example 3.4. Let Ω be generic. Then Ω ∩ 𝑄𝜋
𝑚 is generic.

Proof. We observe 𝕊𝑚 ⊂ 𝑄𝜋
𝑚 and if 𝑥 ∈ 𝑄𝜋

𝑚, then 𝑥 + 𝕊𝑚 ∈ 𝑄𝜋
𝑚. □
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246 CHIU and CONT

On𝐸, there already exist twowell-known (product) topologies, generated by the standard topol-
ogy on ℝ+ and local uniform (resp. the Skorokhod J1) topology on 𝐷𝑚. On a domain Λ ⊂ 𝐸, we
define the uniform (U) and J1 topologies as the corresponding topology induced on Λ.

Remark 3.5. Every J1-continuous functional isU-continuous: The local uniform topology is strictly
finer than the J1 topology on 𝐷𝑚 [20, VI].

Wewill now show that, ifΩ is ‘rich enough’ to contain a path with non-zero quadratic variation
as well as its piecewise-linear approximations along 𝜋, then important examples of functionals
such as quadratic variation or the Föllmer integral fail to be continuous on Ω in the uniform
topology. We use the following assumption:

Assumption 3.6. Ω is a generic subset and contains a path 𝑥 ∈ 𝑄𝜋
𝑚 with [𝑥]𝜋 continuous and

strictly increasing, as well as its piecewise linear approximations along 𝜋:

∃𝑁 ∈ ℕ, ∀𝑛 ⩾ 𝑁, 𝑥(𝑛) ∈ Ω,

where 𝑥(𝑛) denotes the piecewise-linear approximation of 𝑥 along 𝜋𝑛.

Example 3.7. 𝑄𝜋
𝑚 and 𝑄𝜋

𝑚
+ satisfy Assumption 3.6, 𝕊𝑚 and 𝐵𝑉𝑚 do not.

Lemma 3.8. LetΩ satisfy Assumption 3.6 and Λ = {(𝑡, 𝑥𝑡)|𝑡 ∈ ℝ+, 𝑥 ∈ Ω}. Then the functionals

𝐹(𝑡, 𝑥𝑡) ∶= |[𝑥](𝑡)| 𝐺(𝑡, 𝑥𝑡) ∶= ∫
𝑡

0
2𝑥𝑑𝑥

are not U-continuous on Λ.

Proof. IfΩ satisfiesAssumption 3.6, there exists𝑇 > 0, continuous𝑥, 𝑥(𝑛) ∈ Ω such that |[𝑥](𝑇)| >

0. Since 𝑥
(𝑛)
𝑇

⟶ 𝑥𝑇 in the local uniform topology on [0, ∞), it follows that

(𝑇, 𝑥
(𝑛)
𝑇

)
U

⟶ (𝑇, 𝑥𝑇)

on Λ. Since 𝑥
(𝑛)
𝑇

is a continuous function of bounded variation on [0, ∞), it follows that

|[𝑥(𝑛)](𝑇)| = 0, ∀𝑛 ⩾ 1,

so 𝐹 is not U-continuous. Using the above and the fact that 𝑥, 𝑥(𝑛) ∈ 𝑄𝜋
𝑚, we obtain by an

application of the pathwise Itô formula [14]:

lim
𝑛

|||||∫
𝑇

0
2𝑥𝑑𝑥 − ∫

𝑇

0
2𝑥(𝑛)𝑑𝑥(𝑛)

|||||
= lim

𝑛

|||||𝑥(𝑇)|2 − |𝑥(0)|2 − 𝑡𝑟([𝑥](𝑇)) −
(|𝑥(𝑛)(𝑇)|2 − |𝑥(𝑛)(0)|2)||||

= 𝑡𝑟([𝑥](𝑇)) > 0,

hence 𝐺 is not U-continuous on Λ. □
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CAUSAL FUNCTIONAL CALCULUS 247

We shall now define a new topology on a domain Λ for which these examples of functionals
will be continuous.

3.2 The 𝝅-topology

Definition 3.9 (The 𝜋-topology). For every 𝑡 ∈ ℝ+, 𝑥 ∈ Ω, we define 𝑡′𝑛 ∶= max{𝑡𝑖 < 𝑡|𝑡𝑖 ∈ 𝜋𝑛}

and

𝑥𝑛 ∶=
∑

𝑡𝑖∈𝜋𝑛

𝑥(𝑡𝑖+1)1I[𝑡𝑖 ,𝑡𝑖+1)
. (8)

Denote 𝔛 the set of functionals 𝐹 ∶ Λ ⟼ ℝ satisfying:

1.(𝑎) lim
𝑠↑𝑡;𝑠⩽𝑡

𝐹(𝑠, 𝑥𝑠−) = 𝐹(𝑡, 𝑥𝑡−),

(𝑏) lim
𝑠↑𝑡;𝑠<𝑡

𝐹(𝑠, 𝑥𝑠) = 𝐹(𝑡, 𝑥𝑡−),

(𝑐) 𝑡𝑛 ⟶ 𝑡; 𝑡𝑛 ⩽ 𝑡′𝑛 ⟹ 𝐹(𝑡𝑛, 𝑥𝑛
𝑡𝑛−) ⟶ 𝐹(𝑡, 𝑥𝑡−),

(𝑑) 𝑡𝑛 ⟶ 𝑡; 𝑡𝑛 < 𝑡′𝑛 ⟹ 𝐹(𝑡𝑛, 𝑥𝑛
𝑡𝑛

) ⟶ 𝐹(𝑡, 𝑥𝑡−),

2.(𝑎) lim
𝑠↓𝑡;𝑠⩾𝑡

𝐹(𝑠, 𝑥𝑠) = 𝐹(𝑡, 𝑥𝑡),

(𝑏) lim
𝑠↓𝑡;𝑠>𝑡

𝐹(𝑠, 𝑥𝑠−) = 𝐹(𝑡, 𝑥𝑡),

(𝑐) 𝑡𝑛 ⟶ 𝑡; 𝑡𝑛 ⩾ 𝑡′𝑛 ⟹ 𝐹(𝑡𝑛, 𝑥𝑛
𝑡𝑛

) ⟶ 𝐹(𝑡, 𝑥𝑡),

(𝑑) 𝑡𝑛 ⟶ 𝑡; 𝑡𝑛 > 𝑡′𝑛 ⟹ 𝐹(𝑡𝑛, 𝑥𝑛
𝑡𝑛−) ⟶ 𝐹(𝑡, 𝑥𝑡),

for all (𝑡, 𝑥𝑡) ∈ Λ. The initial topology generated by 𝔛 on Λ is called the 𝜋-topology.

We note that the definition of this topology depends on the partition sequence 𝜋.

Remark 3.10. Every U-continuous functional satisfies Definition 3.9.1(a),(b) and 2(a),(b).

Definition 3.11 (Continuous functionals). We denote 𝐶(Λ) the set of functionals 𝐹 ∶ Λ ⟼ ℝ

that are continuous with respect to the 𝜋-topology.
𝐹 is called left- (resp. right-) continuous if it satisfies property 1 (resp. property 2) in Definition

3.9.

Remark 3.12. Since

𝑧𝑛

Λ
⟶ 𝑧 ⟺ 𝐹(𝑧𝑛) → 𝐹(𝑧) ∀𝐹 ∈ 𝔛,

we have 𝐶(Λ) ⊂ 𝔛 so in fact 𝐶(Λ) = 𝔛. We remark here that 𝐶(Λ) is an algebra and that the
topological space (Λ, 𝜏𝜋) is Tychonoff (that is, completely regular and Hausdorff†).

†Due to the fact that (𝑡, 𝑥𝑡) ↦ 𝑡 & (𝑡, 𝑥𝑡) ↦ 𝑥(𝑡 ∧ 𝑠) are continuous.
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248 CHIU and CONT

The following concept was introduced in [7] under the name ‘predictable functional’; we
redefine it here without any reference to measurability considerations:

Definition 3.13 (Strictly causal functionals). For 𝐹 ∶ Λ → ℝ𝑑 denote 𝐹−(𝑡, 𝑥𝑡) = 𝐹(𝑡, 𝑥𝑡−). 𝐹 is
strictly causal if 𝐹 = 𝐹−.

The following lemma follows from Definition 3.9.1(a) and (b) and Definition 3.9.2(a) and (b).

Lemma 3.14 (Pathwise regularity). Let 𝐹 ∶ Λ → ℝ𝑑 and 𝑥 ∈ Ω.

(i) If 𝐹 is left-continuous, then 𝑡 ⟼ 𝐹−(𝑡, 𝑥𝑡) is left-continuous and 𝑡 ⟼ 𝐹(𝑡, 𝑥𝑡) has left limits.
(ii) If 𝐹 is right-continuous, then 𝑡 ⟼ 𝐹(𝑡, 𝑥𝑡) is right-continuous and 𝑡 ⟼ 𝐹−(𝑡, 𝑥𝑡) has right

limits.
(iii) If 𝐹 is continuous, then 𝑡 ⟼ 𝐹−(𝑡, 𝑥𝑡) (resp. 𝑡 ⟼ 𝐹(𝑡, 𝑥𝑡)) is càglàd (resp. càdlàg ) and its

jump at time 𝑡 is equal to Δ𝐹(𝑡, 𝑥𝑡).

Example 3.15. Assume Ω ⊂ 𝑄𝜋
𝑚. Then the functionals

(i) 𝐹(𝑡, 𝑥𝑡) ∶= 𝑓(𝑥(𝑡)); 𝑓 ∈ 𝐶(ℝ𝑚),
(ii) 𝐹(𝑡, 𝑥𝑡) ∶= 𝑓([𝑥](𝑡)); 𝑓 ∈ 𝐶(ℝ𝑚×𝑚),
(iii) 𝐹(𝑡, 𝑥𝑡) ∶= ∫ 𝑡

0 (𝑓 ◦𝑥)𝑑[𝑥]; 𝑓 ∈ 𝐶(ℝ𝑚, ℝ𝑚×𝑚),
(iv) 𝐹(𝑡, 𝑥𝑡) ∶= ∫ 𝑡

0 (∇𝑓 ◦𝑥)𝑑𝑥; 𝑓 ∈ 𝐶2(ℝ𝑚),

belong to 𝐶(Λ).

Proof. In the light of Remark 3.12, 𝐹 is continuous if and only if 𝐹 satisfies Definition 3.9 for
all (𝑡, 𝑥) ∈ Λ. Since conditions Definition 3.9.1(a),(b) and 2(a),(b) are easy to verify, we focus on
Definition 3.9.1(c),(d) and 2(c),(d). (i) is trivial. For (ii), we first remark fromDefinition 2.1 and (5)
that

𝑞𝑛

J1
⟶ [𝑥];

Δ𝑞𝑛(𝑡′𝑛) = Δ𝑥𝑛(𝑡′𝑛)Δ𝑥𝑛(𝑡′𝑛)′ ⟶ Δ𝑥(𝑡)Δ𝑥(𝑡)′ = Δ[𝑥](𝑡). (9)

Since [𝑥𝑛](𝑡) = 𝑞𝑛(𝑡) and by (9), if 𝑡𝑛 ⟶ 𝑡, the limits of 𝑞𝑛(𝑡𝑛) and 𝑞𝑛(𝑡𝑛−) are readily determined
according to the rules laid down in [4, s4.2] and (ii) immediately follows from the continuity of 𝑓.
To show (iii) and (iv), it is suffice to assume 𝑡𝑛 ⟶ 𝑡; 𝑡𝑛 ⩾ 𝑡′𝑛 (that is, the other criteria follow

similar lines of proof, see [4, s4.2]). By (9) and [4, s4.2]

|𝑞𝑛(𝑡𝑛) − 𝑞𝑛(𝑡′𝑛)| ⟶ 0. (10)

A closer look at (iii), combined with Corollary 2.8, leads to

𝐹(𝑡𝑛, 𝑥𝑛
𝑡𝑛

) = ∫
𝑡𝑛

0
(𝑓 ◦𝑥𝑛)𝑑[𝑥𝑛]

=
∑

𝜋𝑛∋𝑡𝑖<𝑡

⟨𝑓(𝑥(𝑡𝑖)), (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
′⟩ ⟶ 𝐹(𝑡, 𝑥𝑡)

+
∑

𝜋𝑛∋𝑡𝑖∈(𝑡′𝑛,𝑡𝑛]

⟨𝑓(𝑥(𝑡𝑖)), (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
′⟩.
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CAUSAL FUNCTIONAL CALCULUS 249

By (10) and that 𝑓 ◦𝑥 is locally bounded on ℝ+, we see that the absolute value of the last term is
bounded by const|𝑞𝑛(𝑡𝑛) − 𝑞𝑛(𝑡′𝑛)| ⟶ 0.
For (iv), from the properties of the Föllmer integral [14], we first observe that

𝐹(𝑡𝑛, 𝑥𝑛
𝑡𝑛

) = ∫
𝑡𝑛

0
∇(𝑓 ◦𝑥𝑛)𝑑𝑥𝑛

=
∑

𝜋𝑛∋𝑡𝑖<𝑡

∇𝑓(𝑥(𝑡𝑖)) ⋅ (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)) ⟶ 𝐹(𝑡, 𝑥𝑡)

+
∑

𝜋𝑛∋𝑡𝑖∈(𝑡′𝑛,𝑡𝑛]

∇𝑓(𝑥(𝑡𝑖)) ⋅ (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)).

Define 𝑡𝑛 ∶= min{𝑡𝑖 > 𝑡′𝑛|𝑡𝑖 ∈ 𝜋𝑛}, 𝑡𝑛 ∶= min{𝑡𝑖 > 𝑡𝑛|𝑡𝑖 ∈ 𝜋𝑛} and note that 𝑡𝑛 ⩾ 𝑡𝑛 ⩾ 𝑡, hence

|𝑓(𝑥(𝑡𝑛)) − 𝑓(𝑥(𝑡𝑛))| ⟶ 0.

Applying a second-order Taylor expansion to 𝑓 and using (10), we obtain

||||||
∑

𝜋𝑛∋𝑡𝑖∈(𝑡′𝑛,𝑡𝑛]

∇𝑓(𝑥(𝑡𝑖)) ⋅ (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))

|||||| ⩽ |𝑓(𝑥(𝑡𝑛)) − 𝑓(𝑥(𝑡𝑛))|
+ const|𝑞𝑛(𝑡𝑛) − 𝑞𝑛(𝑡′𝑛)| ⟶ 0. □

Remark 3.16. If 𝑥 ∈ 𝐷𝑚, so are 𝑥𝑇 and 𝑥𝑇− and the corresponding piecewise constant
approximation(s) in (8) shall be denoted by (𝑥𝑇)𝑛 and (𝑥𝑇−)𝑛.

The following property may be derived from [3, Lemma 12.3] and [20, VI]:

Lemma 3.17. Let 𝑇 ⩾ 0, 𝑥 ∈ 𝐷𝑚, then (𝑥𝑇)𝑛
J1

⟶ 𝑥𝑇 .

Lemma 3.18. Let (𝑡, 𝑥) ∈ Λ, 𝑡𝑛 ⟶ 𝑡 and denote 𝑡′𝑛 ∶= max{𝑡𝑖 < 𝑡|𝑡𝑖 ∈ 𝜋𝑛}. Then

(𝑖) 𝑡𝑛 ⩽ 𝑡′𝑛 ⟹ 𝑥𝑛
𝑡𝑛−

J1
⟶ 𝑥𝑡−,

(𝑖𝑖) 𝑡𝑛 < 𝑡′𝑛 ⟹ 𝑥𝑛
𝑡𝑛

J1
⟶ 𝑥𝑡−,

(𝑖𝑖𝑖) 𝑡𝑛 ⩾ 𝑡′𝑛 ⟹ 𝑥𝑛
𝑡𝑛

J1
⟶ 𝑥𝑡,

(𝑖𝑣) 𝑡𝑛 > 𝑡′𝑛 ⟹ 𝑥𝑛
𝑡𝑛−

J1
⟶ 𝑥𝑡.

Proof. Let 𝑡𝑛 ⩽ 𝑡′𝑛, by Lemma 3.17, we have (𝑥𝑡−)𝑛
J1

⟶ (𝑥𝑡−). Since 𝑥 is càdlàg we observe

‖𝑥𝑛
𝑡𝑛− − (𝑥𝑡−)𝑛‖∞ ⩽ sup

𝑠∈[𝑡𝑛,𝑡′𝑛]

|𝑥(𝑡𝑛) − 𝑥(𝑠)| + |𝑥(𝑡𝑛) − 𝑥(𝑡−)| ⟶ 0,

and (i) follows immediately from [20, VI.1.23]. (ii)–(iv) follow similar lines of proof. □
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250 CHIU and CONT

Theorem 3.19. LetΩ satisfy Assumption 3.6. Then,

(i) every J1-continuous functional is continuous,
(ii) there exists a continuous functional which is not U-continuous,
(iii) there existsU-continuous functionals which are not continuous.

Proof. If 𝐹 is J1-continuous, then 𝐹 satisfies Definition 3.9.1(a),(b) and 2(a),(b) due to Remark 3.5
and 3.10. (i) now follows immediately fromLemma 3.18. (ii) is due to Example 3.15 and Lemma 3.8.
It remains to show (iii). We first note that the U topology on Λ is metrisable, hence sequential

continuity is equivalent to continuity. Let us fix a 𝑡0 > 0; 𝑡0 ∉ ∪𝑛𝜋𝑛, define

𝐹(𝑡, 𝑥𝑡) ∶= |Δ𝑥𝑡(𝑡0)|
on Λ. Observe that if 𝑥𝑛

U
⟶ 𝑥 in 𝐷𝑚 then it is well known that:

Δ𝑥𝑛(𝑠) ⟶ Δ𝑥(𝑠) (11)

for 𝑠 ⩾ 0. In particular, if 𝑡𝑛 ⟶ 𝑡; 𝑥𝑛(⋅ ∧ 𝑡𝑛)
U

⟶ 𝑥𝑡 then (11) implies Δ𝑥𝑛(⋅ ∧ 𝑡𝑛)(𝑠) ⟶ Δ𝑥𝑡(𝑠) for
𝑠 ⩾ 0, hence 𝐹 is U-continuous on Λ.
On the other hand, we take an 𝑥 ∈ Ω0; Δ𝑥(𝑡0) ≠ 0, it follows from our choice of 𝑡0 that

𝐹(𝑡0, 𝑥
𝑛
𝑡0
) = |Δ𝑥𝑛(𝑡0)| ≡ 0,

hence by Definition 3.9.2(c), 𝐹 is not continuous on Λ and (iii) follows. □

So, if Ω satisfies Assumption 3.6, Theorem 3.19 and Remark 3.5 imply that

∙ the 𝜋−topology is strictly finer than the J1 topology,
∙ the 𝜋−topology and the U topology are not comparable.

4 SMOOTH FUNCTIONALS

The change of variable formulae in [14] make use of the concepts of local boundedness and the
existence of amodulus of continuity. In this section, we shall introduce weaker notions of bound-
edness and modulus of continuity for causal functionals and define a corresponding notion of a
𝐶1,2 functional on Λ, and use these notions to derive a functional change of variable formula. We
then introduce (Λ) and(Λ), two important subspaces of 𝐶1,2(Λ).
WhenΩ ⊂ 𝑄𝜋

𝑚, we will show that functionals such as quadratic variation and Föllmer integrals
are not only 𝐶1,2 but also belong to class , a sub-class of infinitely differentiable functionals.
Recall the definition of Dupire’s horizontal and vertical derivatives [6, 7, 12]:

Definition 4.1 (Horizontal derivative).𝐹 ∶ Λ ⟼ ℝ is called differentiable in time or horizontally
differentiable if the following limit exists for all (𝑡, 𝑥𝑡) ∈ Λ:

𝐹(𝑡, 𝑥𝑡) ∶= lim
ℎ↓0

𝐹(𝑡 + ℎ, 𝑥𝑡) − 𝐹(𝑡, 𝑥𝑡)

ℎ
.
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CAUSAL FUNCTIONAL CALCULUS 251

Definition 4.2 (Vertical derivative). 𝐹 ∶ Λ ⟼ ℝ is called vertically differentiable if for every
(𝑡, 𝑥𝑡) ∈ Λ, the map 𝑓 ∶ 𝑡(𝑥) ⟼ ℝ:

𝑒 ⟼ 𝐹
(
𝑡, 𝑥𝑡 + 𝑒1I[𝑡,∞)

)
is differentiable at 0. ∇𝑥𝐹(𝑡, 𝑥𝑡) ∶= ∇𝑒𝑓(0) is called the vertical derivative of 𝐹 at (𝑡, 𝑥𝑡) ∈ Λ.

𝐹 is called differentiable on Λ if it is vertically and horizontally differentiable at every (𝑡, 𝑥) ∈ Λ.
We extend the above definitions to vector-valued maps 𝐹 ∶ Λ → ℝ𝑑×𝑛 whose components 𝐹𝑖,𝑗

satisfy the respective conditions.

Proposition 4.3. A causal functional 𝐹 ∶ Λ → ℝ is strictly causal if and only if it is vertically
differentiable with vanishing vertical derivative.

Proof. The first assertion follows from the mean value theorem. To prove the converse, let 𝑥 ∈ Ω

and put 𝑧 ∶= 𝑥𝑡 + 𝑒1I[𝑡,∞) then 𝑧𝑡− = 𝑥𝑡− and

𝐹(𝑡, 𝑥𝑡 + 𝑒1I[𝑡,∞)) = 𝐹(𝑡, 𝑧𝑡) = 𝐹−(𝑡, 𝑧𝑡) = 𝐹−(𝑡, 𝑥𝑡) = 𝐹(𝑡, 𝑥𝑡),

by the strict causality of 𝐹 (Definition 3.13). □

Definition 4.4 (Locally bounded functional). 𝐹 ∶ Λ → ℝ is called locally bounded if for every
𝑥 ∈ Ω and 𝑇 ⩾ 0, there exists 𝑛0 ⩾ 𝑁𝑇(𝑥) such that the family of maps

(𝑡 ⟼ 𝐹(𝑡, 𝑥𝑛
𝑡 ), 𝑛 ⩾ 𝑛0)

is locally bounded on [0, 𝑇].

Lemma 4.5. Every continuous function on Λ is locally bounded.

Proof. Let 𝐹 be continuous; if 𝐹 is not locally bounded, there exists 𝑥 ∈ Ω, 𝑇 ⩾ 0, and a sub-
sequence (𝑛𝑘);

|𝐹(𝑡𝑛𝑘
, 𝑥

𝑛𝑘
𝑡𝑛𝑘

)| > 𝑘, ∀𝑘 ⩾ 1; (12)

(𝑡𝑛𝑘
) is bounded on [0, 𝑇]. For ease of notation, assume 𝑡𝑛𝑘

⟶ 𝑡 ∈ [0, 𝑇] without pass-
ing through to a sub-sequence. Observe that one can always choose another sub-sequence,
bounded (either above or below) by 𝑡′𝑛𝑘

= max{𝑡𝑖 < 𝑡|𝑡𝑖 ∈ 𝜋𝑛𝑘
}. Since 𝐹 is continuous, if

𝑡𝑛𝑘
< 𝑡′𝑛𝑘

(resp. 𝑡𝑛𝑘
⩾ 𝑡′𝑛𝑘

), then Definition 3.9.1(d) (resp. 2(c)) would contradict (12) as 𝑘 ↑ ∞. □

Lemma 4.6. Let 𝐹 be locally bounded and denote 𝐹−(𝑡, 𝑥) = 𝐹(𝑡, 𝑥𝑡−).

(i) If 𝐹 is left-continuous then 𝐹− is locally bounded.
(ii) If 𝐹 is left-continuous then 𝑡 ⟼ 𝐹−(𝑡, 𝑥𝑡) is locally bounded.
(iii) If 𝐹 is right-continuous then 𝑡 ⟼ 𝐹(𝑡, 𝑥𝑡) is locally bounded.

Proof. Since 𝐹 is locally bounded, there exists a constant 𝐾 > 0 such that

|𝐹(𝑡, 𝑥𝑛
𝑡 )| ⩽ 𝐾
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252 CHIU and CONT

for all 𝑡 ⩽ 𝑇 and all 𝑛 sufficiently large. If 𝐹 is left-continuous, then Definition 3.9.1(b) implies

K ⩾ lim
𝑠↑𝑡;𝑠<𝑡

|𝐹(𝑠, 𝑥𝑛
𝑠 )| = |𝐹(𝑡, 𝑥𝑛

𝑡−)|,
so (i) follows. If 𝑡𝑛 ⟶ 𝑡; 𝑡𝑛 < 𝑡′𝑛, then by the left-continuity of 𝐹 (that is, Definition 3.9.1(d)),

K ⩾ |𝐹(𝑡𝑛, 𝑥𝑛
𝑡𝑛

)| ⟶ |𝐹(𝑡, 𝑥𝑡−)|,
so (ii) follows. If 𝐹 is right-continuous, then by Definition 3.9.2(c),

K ⩾ |𝐹(𝑡′𝑛, 𝑥𝑛
𝑡′𝑛

)| ⟶ |𝐹(𝑡, 𝑥𝑡)|,
so (iii) follows. □

Definition 4.7 (Modulus of vertical continuity). We say that a function 𝐹 on Λ admits a mod-
ulus of vertical continuity if for every 𝑥 ∈ Ω, 𝑇 ⩾ 0 and 𝑟 > 0 there exists an increasing function
𝜔 ∶ ℝ+ ⟼ ℝ+ with 𝜔(0+) = 0;

|𝐹(𝑡, 𝑥𝑛
𝑡− + 𝑎1I[𝑡,∞)) − 𝐹(𝑡, 𝑥𝑛

𝑡− + 𝑏1I[𝑡,∞))| ⩽ 𝜔(|𝑎 − 𝑏|), (13)

for all 𝑎, 𝑏 ∈ 𝑡−(𝑥𝑛) ∩ 𝐵𝑟(0), 𝑡 ⩽ 𝑇 and sufficiently large 𝑛.

Example 4.8. Let 𝑓 ∈ 𝐶(ℝ+ × ℝ𝑚). Then 𝐹 ∶ Λ → ℝ defined by 𝐹(𝑡, 𝑥𝑡) ∶= 𝑓(𝑡, 𝑥(𝑡)) admits a
modulus of vertical continuity.

Proof. For a given 𝑥 ∈ Ω and 𝑇 ⩾ 0, 𝑟 > 0, put ‖𝑥‖𝑇 ∶= sup𝑡⩽𝑇 |𝑥(𝑡)|, 𝑟0 ∶= 𝛼‖𝑥‖𝑇 + 𝑟; 𝛼 > 1,
then𝑓 is uniform continuous on [0, 𝑇] × 𝐵𝑟0

(0) and amodulus of continuity of𝑓 on [0, 𝑇] × 𝐵𝑟0
(0)

is given by

𝜔(𝛿) ∶= sup|𝑡−𝑠|+|𝑢−𝑣|⩽𝛿

||𝑓(𝑡, 𝑢) − 𝑓(𝑠, 𝑣)||
which satisfies (13). □

Remark 4.9. If 𝐹, 𝐺 admit moduli of vertical continuity, then 𝛼𝐹 + 𝛽𝐺 admits a modulus. If in
addition, 𝐹−, 𝐺− are locally bounded, then 𝐹𝐺 admits a modulus of vertical continuity.

Lemma 4.10. Let 𝐹 be vertically differentiable and (∇𝑥𝐹)− be locally bounded, if ∇𝑥𝐹 admits a
modulus of vertical continuity then so does 𝐹.

Proof. Since 𝐹 is vertically differentiable and ∇𝑥𝐹 admits a modulus of vertical continuity 𝜔, by
the mean value theorem and the local boundedness of (∇𝑥𝐹)−, we obtain

|𝐹(𝑡, 𝑥𝑛
𝑡− + 𝑎1I[𝑡,∞)) − 𝐹(𝑡, 𝑥𝑛

𝑡− + 𝑏1I[𝑡,∞))| ⩽ (𝜔(𝑟) + const)|𝑎 − 𝑏|. □

Definition 4.11 (𝐶1,2 functionals). We define 𝐶1,2(Λ) as the set of continuous functionals
𝐹 ∈ 𝐶𝜋(Λ) such that𝐹, ∇𝑥𝐹 and ∇2

𝑥𝐹 are defined on Λ and
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CAUSAL FUNCTIONAL CALCULUS 253

(i) 𝐹 is right-continuous and locally bounded,
(ii) (∇𝑥𝐹)− is left-continuous,
(iii) (∇2

𝑥𝐹)− is left-continuous, locally bounded and admits a modulus of vertical continuity.

If in addition, (∇𝑥𝐹)− is locally bounded, then we denote 𝐹 ∈ 𝐶1,2
𝑏

(Λ).

We now introduce two classes of functionals which, as we will observe later, play a special role
in the context of stochastic analysis:

Definition 4.12 (Class ). A continuous and differentiable functional 𝐹 is of class  if 𝐹 is
right-continuous and locally bounded, ∇𝑥𝐹 is left-continuous and strictly causal. We denote by
(Λ) the vector space of class  functionals.

Definition 4.13 (Class). A functional 𝐹 ∈ (Λ) is of class if𝐹 = 0. We denote(Λ) the
set of class functionals and𝑏(Λ) the set of functionals 𝐹 ∈ (Λ) whose vertical derivative
∇𝑥𝐹 is locally bounded.

Remark 4.14. Every functional of class is infinitely differentiable by Proposition 4.3.

Remarks 4.9, Lemma 4.6 and 4.10 imply that 𝐶1,2(Λ), (Λ), (Λ), 𝑏(Λ) are vector spaces;
𝐶1,2

𝑏
(Λ) is an algebra.

Lemma 4.15. Let Ω ⊂ 𝑄𝜋
𝑚. If 𝜙 ∶ Λ ⟼ ℝ𝑚×𝑚 is such that 𝜙− is left-continuous and locally

bounded, then

(𝑡, 𝑥𝑡) ∈ Λ ↦ 𝐹(𝑡, 𝑥𝑡) ∶= ∫
𝑡

0
𝜙(𝑠, 𝑥𝑠−)𝑑[𝑥](𝑠)

is a continuous functional.

Proof. Since 𝑡 ⟼ 𝜙(𝑡, 𝑥𝑡−) is left-continuous and locally bounded (Lemma 3.14(i)) and that 𝑡 ⟼

[𝑥𝑖, 𝑥𝑗](𝑡) is in 𝐵𝑉, càdlàg with Δ[𝑥𝑖, 𝑥𝑗] ≡ Δ𝑥𝑖Δ𝑥𝑗 (Proposition 2.2), it follows 𝐹 is a finite sum
of Lebesgue–Stieltjes integrals and satisfies conditions Definition 3.9.1(a),(b) and 2(a),(b). For the
other conditions in Definition 3.9, it is suffice to assume 𝑡𝑛 ⟶ 𝑡; 𝑡𝑛 ⩾ 𝑡′𝑛 (that is, the other criteria
follow similar lines). Define

𝜙𝑛(𝑠) ∶= 𝜙(𝑡0, 𝑥
𝑛
𝑡0−

)1I{0}(𝑠) +
∑

𝑡𝑖∈𝜋𝑛

𝜙(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

)1I(𝑡𝑖 ,𝑡𝑖+1]
(𝑠),

which is anℝ𝑚×𝑚-valued left-continuous function onℝ+. By the local boundedness of 𝜙−, we see
that ∃𝑛0 ⩾ 𝑁(𝑥); (𝜙𝑛)𝑛⩾𝑛0

is locally bounded onℝ+ and converges pointwise to 𝑠 ⟼ 𝜙(𝑠, 𝑥𝑠−) on
ℝ+. By Corollary 2.8(ii), we obtain

𝐹(𝑡𝑛, 𝑥𝑛
𝑡𝑛

) = ∫
𝑡𝑛

0
𝜙(𝑠, 𝑥𝑛

𝑠−)𝑑[𝑥𝑛]

=
∑

𝜋𝑛∋𝑡𝑖<𝑡

⟨𝜙(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

), (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)
′⟩ ⟶ 𝐹(𝑡, 𝑥𝑡)

+
∑

𝜋𝑛∋𝑡𝑖∈(𝑡′𝑛,𝑡𝑛]

⟨𝜙(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

), (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)
′⟩.

 20524986, 2022, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.12050 by U

niversity O
f B

irm
ingham

 E
resources A

nd Serials T
eam

, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



254 CHIU and CONT

Since 𝑞𝑛

J1
⟶ [𝑥] and by [4, s4.2], the last term is bounded by

const|𝑞𝑛(𝑡𝑛) − 𝑞𝑛(𝑡′𝑛)| ⟶ 0. □

As we shall see in the following examples, path-independent functionals of class are simply
affine functions, but in the path-dependent case this class includes many examples, in particular
Föllmer integrals.

Example 4.16. Let 𝕊𝑚 ⊂ Ω, 𝑓 ∈ 𝐶1,2(ℝ+ × ℝ𝑚) and

𝐹(𝑡, 𝑥𝑡) ∶= 𝑓(𝑡, 𝑥(𝑡)),

then 𝐹 is of class if and only if 𝑓(𝑡, 𝑢) = 𝛼 + 𝛽.𝑢 for some constants 𝛼 ∈ ℝ, 𝛽 ∈ ℝ𝑚.

Proof. For the if part: We can write 𝑓(𝑡, 𝑢) = 𝛼 + 𝛽 ⋅ 𝑢 and hence

𝐹(𝑡, 𝑥𝑡) = 𝛼 + 𝛽𝑥(𝑡)

on Λ for some constants 𝛼 ∈ ℝ, 𝛽 ∈ ℝ𝑚. By Example 3.15(i) and computing the derivatives of 𝐹,
we see that 𝐹 is of class. Conversely, fromDefinition 4.13 and Proposition 4.3, we first obtain

(i) 𝜕𝑡𝑓(𝑡, 𝑥(𝑡)) = 𝐹(𝑡, 𝑥𝑡) = 0,
(ii) ∇2𝑓(𝑡, 𝑥(𝑡)) = ∇2

𝑥𝐹(𝑡, 𝑥𝑡) = 0,

∀ 𝑡 ⩾ 0, 𝑥 ∈ Ω. Since 𝕊𝑚 ⊂ Ω, we have

𝑅 ∶= {(𝑡, 𝑥(𝑡))|𝑡 ∈ ℝ+, 𝑥 ∈ Ω} = ℝ+ × ℝ𝑚,

hence 𝜕𝑡𝑓 ≡ ∇2𝑓 ≡ 0 on ℝ+ × ℝ𝑚. By the mean value theorem, we deduce that ∇𝑓 ≡ 𝛽 on 𝑅, for
some 𝛽 ∈ ℝ𝑚. □

Remark 4.17. The condition 𝕊𝑚 ⊂ Ω may be weakened to simply requiring that 𝑅 ⊂ ℝ+ × ℝ𝑚 is
convex. In this case, the converse statement holds on 𝑅.

Example 4.18 (Path-dependent examples). Let Ω ⊂ 𝑄𝜋
𝑚, 𝜙 ∶ Λ ⟼ ℝ𝑚×𝑚 such that 𝜙− is left-

continuous and locally bounded, 𝑓 = (𝑓1, … , 𝑓𝑚) ∈ 𝐶2(ℝ𝑚). Then the functionals

(i) 𝐹(𝑡, 𝑥𝑡) ∶= ∫ 𝑡
0 𝜙(𝑠, 𝑥𝑠−)𝑑[𝑥],

(ii) 𝐹(𝑡, 𝑥𝑡) ∶= ∫ 𝑡
0 (∇𝑓 ◦𝑥)𝑑𝑥,

(iii) 𝐹(𝑡, 𝑥𝑡) ∶=
∑𝑚

𝑖=1(∫ 𝑡
0 (𝑥𝑖(𝑡) − 𝑥𝑖(𝑠))𝑓𝑖(𝑥𝑖(𝑠))𝑑𝑥𝑖(𝑠) − ∫ 𝑡

0 (𝑓𝑖 ◦𝑥𝑖)𝑑[𝑥𝑖])

belong to 𝐶1,2
𝑏

(Λ) and (ii) and (iii) are of class𝑏.

Proof. The functional in (iii) is well defined, since

𝐹(𝑡, 𝑥𝑡) =
∑

𝑖

(
𝑥𝑖(𝑡)∫

𝑡

0
𝑓𝑖 ◦𝑥𝑖𝑑𝑥𝑖 − ∫

𝑡

0
𝑥𝑖𝑓𝑖 ◦𝑥𝑖𝑑𝑥𝑖 − ∫

𝑡

0
𝑓𝑖 ◦𝑥𝑖𝑑[𝑥𝑖]

)
. (14)
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CAUSAL FUNCTIONAL CALCULUS 255

The first two integrals in (14) are Föllmer integrals, defined as a limit of Riemann sums along 𝜋,
while the last one is a Lebesgue–Stieltjes integral. Continuity of 𝐹 in (i), (ii) and (iii) follows from
Lemma 4.15 and Example 3.15. Since𝐹 ≡ 0 in all cases, let us first compute∇𝑘

𝑥𝐹 for 𝑘 = 1, 2 and
demonstrate that 𝐹 possesses the required properties. In case of (i), we have

∇𝑥𝐹(𝑡, 𝑥𝑡) = (𝜙 + 𝜙′)(𝑡, 𝑥𝑡−)Δ𝑥(𝑡), ∇2
𝑥𝐹(𝑡, 𝑥𝑡) = (𝜙 + 𝜙′)(𝑡, 𝑥𝑡−),

which are left-continuous, locally bounded and ∇2
𝑥𝐹 is strictly causal, so by Proposition 4.3,

Lemma 4.6(ii) and (4.10), 𝐹 is 𝐶1,2
𝑏
. In case of (ii), we obtain

∇𝑥𝐹(𝑡, 𝑥𝑡) = ∇𝑓(𝑥(𝑡−)),

which is left-continuous, locally bounded and strictly causal, hence 𝐹 is of class 𝑏. In case of
(iii), we apply ∇𝑥 to (14) and verify that

∇𝑥𝑖
𝐹(𝑡, 𝑥𝑡) = ∫

𝑡

0
𝑓𝑖 ◦𝑥𝑖𝑑𝑥𝑖 − 𝑓𝑖(𝑥𝑖(𝑡−))Δ𝑥𝑖(𝑡)

=

(
∫ 𝑓𝑖 ◦𝑥𝑖𝑑𝑥𝑖

)
(𝑡−). (15)

Applying 𝑓(𝑥) ∶= ∫ 𝑥𝑖

0
𝑓𝑖(𝜆)𝑑𝜆; 𝑥 ∈ ℝ𝑚 to (ii) and by Proposition 4.5 and Lemma 4.6(i), we see

that each∇𝑥𝑖
𝐹 is left-continuous and locally bounded and so is∇𝑥𝐹. Since∇𝑥𝐹 is strictly causal,

𝐹 is of class𝑏. □

5 PATHWISE INTEGRATION AND CHANGE OF VARIABLE
FORMULAE

We now discuss pathwise integration for causal functionals along paths in a generic domain. In
contrast to rough integration theory [16] and the one-form approach, that is, [14], [7], and [8],
we define integrals as uncompensated left Riemann sums, when such limits exist and form a
continuous functional.
We then obtain change of variable formulae and an analogue of the classical Fundamental

theorem of calculus for functionals of class . For paths that possess quadratic variation, we
obtain a functional Föllmer-Itô formula which extends [7, Theorem 4].
In particular, we show that pathwise integral is of class and that functionals of class are

primitives, that is, are representable as pathwise integrals, a fact that facilitates the computation
of pathwise integrals, as in classical calculus.

Lemma 5.1. Let 𝐹 be a left-continuous functional, differentiable in time, if𝐹 is right-continuous
and locally bounded, then

𝐹(𝑡, 𝑥𝑠) − 𝐹(𝑠, 𝑥𝑠) = ∫
𝑡

𝑠
𝐹(𝑢, 𝑥𝑢)𝑑𝑢, (16)

for all 𝑥 ∈ Ω, 𝑡 ⩾ 𝑠 ⩾ 0.
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256 CHIU and CONT

Proof. Put 𝑧 ∶= 𝑥𝑠 ∈ Ω, then 𝑧𝑡 = 𝑥𝑠 for 𝑡 ⩾ 𝑠 and 𝑧𝑡− = 𝑥𝑠 for 𝑡 > 𝑠. Define 𝑓(𝑡) ∶= 𝐹(𝑡, 𝑥𝑠) for
𝑡 ⩾ 𝑠, then 𝑓(𝑡) = 𝐹(𝑡, 𝑧𝑡) on [𝑠, ∞) and 𝑓(𝑡) = 𝐹(𝑡, 𝑧𝑡−) on (𝑠, ∞). Since 𝐹 is differentiable in
time, 𝑓 is right differentiable (hence right-continuous) on [𝑠, ∞) and the right derivative 𝑓′(𝑡)

is𝐹(𝑡, 𝑥𝑠) on [𝑠, ∞). Since 𝐹 is left-continuous, it follows from Lemma 3.14 that 𝑓(𝑡) = 𝐹(𝑡, 𝑧𝑡−)

is left-continuous on (𝑠, ∞), hence we have first established that 𝑓 is continuous on [𝑠, ∞). Next,
we observe that

𝑓′(𝑢) = 𝐹(𝑢, 𝑥𝑠) = 𝐹(𝑢, 𝑧𝑢)

on [𝑠, ∞). The right continuity of𝐹 andLemma3.14 implies that𝑓′ is right-continuous on [𝑠, ∞).
Since𝐹 is right-continuous and locally bounded, it follows from Lemma 4.6(ii) that

𝑢 ⟶ 𝐹(𝑢, 𝑧𝑢)

is locally bounded. Hence, 𝑓′ is right-continuous and bounded on [𝑠, 𝑇], hence Riemann
integrable. We can conclude using a stronger version [11] of the Fundamental theorem of
calculus. □

Lemma 5.2. Let 𝜙 be a right-continuous and locally bounded on Λ, then

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

∫
𝑡𝑖+1

𝑡𝑖

𝜙(𝑡, 𝑥𝑛
𝑡𝑖
)𝑑𝑡 ⟶ ∫

𝑇

0
𝜙(𝑡, 𝑥𝑡)𝑑𝑡,

for all 𝑥 ∈ Ω, 𝑇 ⩾ 0.

Proof. Define

𝜙𝑛(𝑡) ∶=
∑

𝜋𝑛∋𝑡𝑖⩽𝑇

𝜙(𝑡, 𝑥𝑛
𝑡𝑖
)1I[𝑡𝑖 ,𝑡𝑖+1)

(𝑡) =
∑

𝜋𝑛∋𝑡𝑖⩽𝑇

𝜙(𝑡, 𝑥𝑛
𝑡 )1I[𝑡𝑖 ,𝑡𝑖+1)

(𝑡).

By the local boundedness of 𝜙, we see that ∃𝑛0 ⩾ 𝑁(𝑥); (𝜙𝑛)𝑛⩾𝑛0
is locally bounded on [0, 𝑇]. Since

𝜙 is right-continuous, it follows fromLemma 3.14 that 𝑡 ⟼ 𝜙𝑛(𝑡) is right-continuous (hencemea-
surable) on [0, 𝑇] and from Definition 3.9.2(c) that 𝜙𝑛 converges to 𝑡 ⟼ 𝜙(𝑡, 𝑥𝑡) pointwise on
[0, 𝑇]. and (i) follows from dominated convergence. □

Corollary 5.3. Let 𝜙 be a right-continuous and locally bounded Λ, then

(𝑡, 𝑥𝑡) ⟼ ∫
𝑡

0
𝜙(𝑠, 𝑥𝑠)𝑑𝑠

is continuous.

Proof. The path 𝑡 ⟼ ∫ 𝑡
0 𝜙(𝑠, 𝑥𝑠)𝑑𝑠 is continuous. The rest follows from the local boundedness of

𝜙 and Lemma 5.2. □

Definition 5.4 (Pathwise integrability). Let 𝜙 ∶ Λ ⟼ ℝ𝑚 such that 𝜙− is left-continuous. For
every 𝑥 ∈ Ω, define

𝐈𝜙(𝑡, 𝑥𝑛
𝑡 ) ∶=

∑
𝜋𝑛∋𝑡𝑖⩽𝑡

𝜙(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

) ⋅ (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)). (17)

 20524986, 2022, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.12050 by U

niversity O
f B

irm
ingham

 E
resources A

nd Serials T
eam

, W
iley O

nline L
ibrary on [19/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CAUSAL FUNCTIONAL CALCULUS 257

𝜙 is said to be Λ−integrable if

∙ the limit 𝐈𝜙(𝑡, 𝑥𝑡) ∶= lim𝑛 𝐈𝜙(𝑡, 𝑥𝑛
𝑡 ) exists for each (𝑡, 𝑥𝑡) ∈ Λ, and

∙ the map 𝐈𝜙 ∶ Λ ↦ ℝ is continuous.

Note that the pathwise integral is defined as a limit of (left) Riemann sums, and not compen-
sated Riemann sums as in rough path theory [15, 16]. One case in which such Riemann sums are
known to converge is for gradients of 𝐶2 functions along paths of finite quadratic variation:

Example 5.5. LetΩ = 𝑄𝜋
𝑚. Then by the results of [14], for any𝑓 ∈ 𝐶2(ℝ𝑚),𝜙 ∶ Λ ⟼ ℝ𝑚 defined

by 𝜙(𝑡, 𝑥) = ∇𝑥𝑓(𝑡, 𝑥𝑡) is Λ-integrable and 𝐈𝜙(𝑡, 𝑥) is the Föllmer integral [5]. Note that the con-
tinuity property of 𝐈𝜙 is a consequence (and indeed, the main motivation) of the construction of
the 𝜋-topology in Section 3.

Theorem5.6. Let𝜙 ∶ Λ ⟼ ℝ𝑚 such that𝜙− is left-continuous and 𝐈𝜙 the integrationmap defined
as in (17). If for every 𝑥 ∈ Ω, 𝑇 > 0 the sequence of step functions on [0, 𝑇]

g𝑛(𝑡) ∶= 𝐈𝜙(𝑡, 𝑥𝑛
𝑡 ),

is a Cauchy sequence in (𝐷[0, 𝑇], 𝔡J1 ), then 𝜙 is Λ-integrable.

Proof. If (g𝑛, 𝑛 ⩾ 1) is a Cauchy sequence in (𝐷[0, 𝑇], 𝔡J1 ), there exists a𝐺 ∈ 𝐷 such that g𝑛

J1
⟼ 𝐺.

Hence g𝑛(𝑡) ↦ 𝐺(𝑡) for every continuity point of 𝐺 on [0, 𝑇]. Observe that

Δg𝑛(𝑡) =

{
𝜙(𝑡𝑖, 𝑥

𝑛
𝑡𝑖−

) ⋅ (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)), if 𝑡 = 𝑡𝑖 ∈ 𝜋𝑛.

0, otherwise.
(18)

If Δ𝐺(𝑡) > 0, there exists [20, VI.2.1(a)] a sequence 𝑡∗𝑛 → 𝑡; Δg𝑛(𝑡∗𝑛) → Δ𝐺(𝑡). Using the fact that
𝜙− is left-continuous, 𝑥 is càdlàg and (18), we see that

lim
𝑛

Δg𝑛(𝑡∗𝑛) = 𝜙(𝑡, 𝑥𝑡−) ⋅ Δ𝑥(𝑡) = lim
𝑛

𝜙(𝑡′𝑛, 𝑥𝑛
𝑡′𝑛−

) ⋅ Δ𝑥𝑛(𝑡′𝑛) = lim
𝑛

Δg𝑛(𝑡′𝑛), (19)

else wewill contradictΔ𝐺(𝑡) > 0. Applying [20, VI.2.1(b)], we deduce that (𝑡∗𝑛)must coincide with
(𝑡′𝑛) for all 𝑛 sufficiently large and by [20, VI.2.1(b.3)], we have established that

g𝑛(𝑡) ⟶ 𝐺(𝑡), (20)

hence we can define 𝐈𝜙(𝑡, 𝑥𝑡) ∶= 𝐺(𝑡) on [0, 𝑇]. Let 𝑡′′𝑛 ∶= min{𝑡𝑖 > 𝑡′𝑛|𝑡𝑖 ∈ 𝜋𝑛}, 𝑧 ∶= 𝑥𝑡− ∈ Ω, it
follows from (17), (19) and (20) that

𝐈𝜙(𝑡, 𝑥𝑡−) = lim
𝑛

𝐈𝜙(𝑡, 𝑧𝑛
𝑡 ) = lim

𝑛

(
𝐈𝜙(𝑡, 𝑥𝑛

𝑡 ) − 𝜙(𝑡′𝑛, 𝑥𝑛
𝑡′𝑛−

) ⋅ (𝑥(𝑡′′𝑛 ) − 𝑥(𝑡−))
)

= 𝐺(𝑡−),

hence 𝑡 ⟼ 𝐈𝜙(𝑡, 𝑥𝑡) is càdlàg and its jump at time 𝑡 is 𝐈𝜙(𝑡, 𝑥𝑡) − 𝐈𝜙(𝑡, 𝑥𝑡−). If 𝑡𝑛 ⟶ 𝑡, the limits
of g𝑛(𝑡𝑛) and g𝑛(𝑡𝑛−) are readily determined according to (19) and [20, VI.2.1(b)]. The continuity
criteria in Definition 3.9 are thus satisfied. □
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258 CHIU and CONT

Proposition 5.7. Let 𝜙 be Λ-integrable. Then𝐈𝜙 = 0 and ∇𝑥𝐈𝜙 = 𝜙− on Λ.

Proof. Let (𝑡, 𝑥) ∈ Λ and 𝑧 ∶= 𝑥 + 𝑒1I[𝑡,∞) ∈ Λ. Then

𝐈𝜙(𝑡, 𝑧𝑡) − 𝐈𝜙(𝑡, 𝑥𝑡) = lim
𝑛

(
𝐈𝜙(𝑡, 𝑧𝑛

𝑡 ) − 𝐈𝜙(𝑡, 𝑥𝑛
𝑡 )
)

= lim
𝑛

𝜙(𝑡′𝑛, 𝑧𝑛
𝑡′𝑛−

) ⋅ 𝑒

= lim
𝑛

𝜙(𝑡′𝑛, 𝑥𝑛
𝑡′𝑛−

) ⋅ 𝑒 = 𝜙(𝑡, 𝑥𝑡−) ⋅ 𝑒,

by the continuity of 𝐈𝜙 and left-continuity of 𝜙−. □

Theorem 5.8 (Change of variable formula for class  functionals). Let 𝐹 ∈ (Λ). Then for any
(𝑇, 𝑥𝑇) ∈ Λ, the limit

∫
𝑇

0
∇𝑥𝐹(𝑡, 𝑥𝑡−)𝑑𝑥 ∶= lim

𝑛→∞

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

∇𝑥𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

) ⋅ (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)) (21)

exists and

𝐹(𝑇, 𝑥𝑇) = 𝐹(0, 𝑥0) + ∫
𝑇

0
𝐹(𝑡, 𝑥𝑡)𝑑𝑡 + ∫

𝑇

0
∇𝑥𝐹(𝑡, 𝑥𝑡−)𝑑𝑥.

Proof. See the Appendix. □

Remark 5.9. By Proposition 5.7, we see that all pathwise integrals are functionals of class, hence
by Theorem 5.8, we can write

𝐈𝜙(𝑡, 𝑥𝑡) = ∫
𝑡

0
𝜙𝑑𝑥. (22)

As we shall see, the converse is also true, all integrals that may be defined by (21) are pathwise
integrals in the sense of Definition 5.4:

Corollary 5.10 (Decomposition for class ). Let 𝐹 ∈ (Λ). Then𝑀 ∶ Λ → ℝ defined by

𝑀(𝑡, 𝑥𝑡) ∶= 𝐹(𝑡, 𝑥𝑡) − 𝐹(0.𝑥0) − ∫
𝑡

0
𝐹(𝑠, 𝑥𝑠)𝑑𝑠

is of class  and ∇𝑥𝑀 = ∇𝑥𝐹. In particular, 𝑀 may be represented as a pathwise integral: there
exists a Λ-integrable functional 𝜙 ∶ Λ → ℝ𝑚 such that𝑀 = 𝐈𝜙:

∀(𝑡, 𝑥) ∈ Λ, 𝑀(𝑡, 𝑥) = ∫
𝑡

0
𝜙.𝑑𝑥.

Proof. By differentiating 𝑀, we obtain 𝑀 = 0 and ∇𝑥𝑀 = ∇𝑥𝐹. Continuity of 𝑀 follows from
Corollary 5.3 and Theorem 5.8, hence by (21), 𝑀 satisfies Definition 5.4. □
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CAUSAL FUNCTIONAL CALCULUS 259

In fact, all functionals of class  have an integral representation. We obtain as a corollary a
Fundamental theorem of calculus for functionals:

Corollary 5.11.

(i) Let 𝜙 be Λ-integrable. Then the map 𝐈𝜙 ∶ (𝑡, 𝑥𝑡) ∈ Λ ↦ ∫ 𝑡
0 𝜙.𝑑𝑥 is continuous, differentiable

and

∇𝑥𝐈𝜙 = 𝜙−.

(ii) Let 𝜙 ∶ Λ → ℝ. If 𝐹 ∈ (Λ) such that ∇𝑥𝐹 = 𝜙−, then 𝜙 is Λ-integrable and

∫
𝑡

0
𝜙𝑑𝑥 = 𝐹(𝑡, 𝑥𝑡) − 𝐹(0, 𝑥0).

Proof. (i) is due to Proposition 5.7 and Remark 5.9. (ii) is due to (21) and Corollary 5.10. □

Example 5.12. Let Ω ⊂ 𝑄𝜋
𝑚, 𝑓𝑖 ∈ 𝐶1(ℝ), then

∫
𝑇

0

(
∫ 𝑓1 ◦𝑥1𝑑𝑥1, … ,∫ 𝑓𝑚 ◦𝑥𝑚𝑑𝑥𝑚

)′

𝑑𝑥

=
∑

𝑖

(
∫

𝑇

0
(𝑥𝑖(𝑇) − 𝑥𝑖)𝑓𝑖 ◦𝑥𝑖𝑑𝑥𝑖 − ∫

𝑇

0
𝑓𝑖 ◦𝑥𝑖𝑑[𝑥𝑖]

)
, (23)

by an application of Corollary 5.11(ii) to the RHS of (23), Example. 4.18(iii) and (15).

An important consequence of Theorem5.8 is to show that class functionals satisfy a pathwise
analogue of themartingaleproperty. The concept ofmartingalewas originally introduced tomodel
the outcomeof a fair game [24] across a set of outcomes. The following result, which does notmake
use of any probabilistic notion, shows that a class functional represents the outcome of such a
‘fair game’, where the underlying set of outcomes is a generic subset of paths:

Theorem 5.13 (Fair game). Let𝑀 ∈ (Λ). If there exists 𝑇 > 0 such that

∀𝑥 ∈ Ω, 𝑀(𝑇, 𝑥𝑇) − 𝑀(0, 𝑥0) ⩾ 0

then

∀𝑥 ∈ Ω, 𝑀(𝑇, 𝑥𝑇) = 𝑀(0, 𝑥0).

This result suggests that class functionals may be considered pathwise analogues of martin-
gales.

Proof. Since𝑀 vanishes, by Lemma 5.1 we obtain

𝑀(𝑡, 𝑥𝑡) = 𝑀(𝑡, 𝑥𝑡) + ∫
𝑇

𝑡
𝑀(𝑠, 𝑥𝑡)𝑑𝑠 = 𝑀(𝑇, 𝑥𝑡) ⩾ 0 (24)
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260 CHIU and CONT

for all 𝑡 ⩽ 𝑇, where the last inequality is due to 𝑥𝑡 ∈ Ω. Suppose there exists 𝑧 ∈ Ω;𝑀(𝑇, 𝑧𝑇) > 0.
By Theorem 5.8 and the continuity of 𝑀, it follows

𝑀(𝑇, 𝑧𝑛
𝑇) =

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

∇𝑥𝑀(𝑡𝑖, 𝑧
𝑛
𝑡𝑖−

)(𝑧(𝑡𝑖+1) − 𝑧(𝑡𝑖)) > 0 (25)

for all 𝑛 sufficiently large. Define 𝑡∗𝑛 ∶= min{𝑡𝑖 ∈ 𝜋𝑛|𝑀(𝑡𝑖, 𝑧
𝑛
𝑡𝑖
) > 0}, then 𝑡∗𝑛 ⩽ 𝑇. By (24), (25), the

left-continuity of 𝑀 and the fact that 𝑧𝑛 ∈ Ω, we obtain

𝑀(𝑡∗𝑛, 𝑧𝑛
𝑡∗𝑛

) > 𝑀(𝑡∗𝑛, 𝑧𝑛
𝑡∗𝑛−

) = 0,

hence𝑀(𝑡∗𝑛, 𝑧𝑛
𝑡∗𝑛

) = ∇𝑥𝑀(𝑡∗𝑛, 𝑧𝑛
𝑡∗𝑛−

)Δ𝑧(𝑡∗𝑛) > 0. Definition 3.1(ii) implies that there exists 𝜖 > 0 such
that

𝑧∗ ∶= 𝑧𝑛
𝑡∗𝑛−

− 𝜖Δ𝑧(𝑡∗𝑛)1I[𝑡∗𝑛,∞) ∈ Ω,

hence𝑀(𝑡∗𝑛, 𝑧∗
𝑡∗𝑛

) = ∇𝑥𝑀(𝑡∗𝑛, 𝑧𝑛
𝑡∗𝑛−

)(−𝜖Δ𝑧(𝑡∗𝑛)) < 0, which contradicts (24). □

The following change of variable formula for causal functionals extends [7, Theorem 4] to
𝐶1,2(Λ), removing the condition linking the partition sequence 𝜋 with the jump times of a path:

Theorem 5.14 (Change of variable formula for 𝐶1,2 functionals). Let 𝑥 ∈ Ω ∩ 𝑄𝜋
𝑚. For any

𝐹 ∈ 𝐶1,2(Λ) the following Föllmer–Itô formula holds:

𝐹(𝑇, 𝑥𝑇) = 𝐹(0, 𝑥0) + ∫
𝑇

0
𝐹(𝑡, 𝑥𝑡)𝑑𝑡 + ∫

𝑇

0
∇𝑥𝐹(𝑡, 𝑥𝑡−)𝑑𝑥 (26)

+
1

2 ∫
𝑇

0
∇2

𝑥𝐹(𝑡, 𝑥𝑡−)𝑑[𝑥]𝑐 +
∑
𝑡⩽𝑇

(Δ𝐹(𝑡, 𝑥𝑡) − ∇𝑥𝐹(𝑡, 𝑥𝑡−) ⋅ Δ𝑥(𝑡)),

where the series is absolute convergent and the pointwise limit

∫
𝑇

0
∇𝑥𝐹(𝑡, 𝑥𝑡−)𝑑𝑥 ∶= lim

𝑛→∞

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

∇𝑥𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

) ⋅ (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)) (27)

exists.

Proof. See the Appendix. □

An important consequence of Theorem 5.14 is the continuity of the Föllmer integral in the
𝜋-topology:

Proposition 5.15. LetΩ ⊂ 𝑄𝜋
𝑚 and 𝐹 ∈ 𝐶1,2(Λ). Then

𝐽 ∶ Λ ⟼ ℝ

(𝑡, 𝑥) ⟼ 𝐽(𝑡, 𝑥𝑡) ∶= ∫
𝑡

0
∇𝑥𝐹(𝑠, 𝑥𝑠)𝑑𝑥
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CAUSAL FUNCTIONAL CALCULUS 261

is continuous. In particular, ∇𝑥𝐹 is integrable and 𝐽 is a pathwise integral in the sense of
Definition 5.4.

Proof. We apply the functional change of variable formula (Theorem 5.14) to 𝐹. Rearranging the
terms in (26) we observe that 𝑡 ⟼ 𝐽(𝑡, 𝑥𝑡) is càdlàg whose jump at time 𝑡 is 𝐽(𝑡, 𝑥𝑡) − 𝐽(𝑡, 𝑥𝑡−).
It remains to show that 𝐽 satisfies the continuity criteria Definition 3.9.1(c),(d) and 2(c),(d). It is
suffice to assume 𝑡𝑛 ⟶ 𝑡; 𝑡𝑛 ⩾ 𝑡′𝑛 (that is, the other criteria follow similarly). By (27) and that 𝑥

is right-continuous, we first obtain

𝐽(𝑡𝑛, 𝑥𝑛
𝑡𝑛

) = ∫
𝑡𝑛

0
∇𝑥𝐹(𝑡, 𝑥𝑛

𝑡−)𝑑𝑥𝑛

=
∑

𝜋𝑛∋𝑡𝑖<𝑡

∇𝑥𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

) ⋅ (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)) ⟶ 𝐽(𝑡, 𝑥𝑡)

+
∑

𝜋𝑛∋𝑡𝑖∈(𝑡′𝑛,𝑡𝑛]

∇𝑥𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

) ⋅ (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)). (28)

We have to show that the rest term (28) vanishes as 𝑛 ↑ ∞. Applying (26) to the path 𝑥𝑛 and by
the local boundedness of𝐹, we have

||||||
∑

𝜋𝑛∋𝑡𝑖∈(𝑡′𝑛,𝑡𝑛]

∇𝑥𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

) ⋅ Δ𝑥𝑛(𝑡𝑖)

|||||| ⩽ |𝐹(𝑡𝑛, 𝑥𝑛
𝑡𝑛

) − 𝐹(𝑡′𝑛, 𝑥𝑛
𝑡′𝑛

)|
+ const|𝑡𝑛 − 𝑡′𝑛|
+

||||||
∑

𝜋𝑛∋𝑡𝑖∈(𝑡′𝑛,𝑡𝑛]

Δ𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖
) − ∇𝑥𝐹(𝑡𝑖, 𝑥

𝑛
𝑡𝑖−

) ⋅ Δ𝑥𝑛(𝑡𝑖)

||||||.
Since 𝑡𝑛 ⩾ 𝑡′𝑛; 𝑡𝑛, 𝑡′𝑛 ⟶ 𝑡 and by the right continuity of 𝐹 the first two terms vanish. Since (∇2

𝑥𝐹)−
is locally bounded and ∇2

𝑥𝐹 admits a modulus, applying a second-order Taylor expansion to the
third term, we obtain

||||||
∑

𝜋𝑛∋𝑡𝑖∈(𝑡′𝑛,𝑡𝑛]

Δ𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖
) − ∇𝑥𝐹(𝑡𝑖, 𝑥

𝑛
𝑡𝑖−

) ⋅ Δ𝑥𝑛(𝑡𝑖)

|||||| ⩽ const|𝑞𝑛(𝑡𝑛) − 𝑞𝑛(𝑡′𝑛)| ⟶ 0,

by the fact that 𝑞𝑛

J1
⟶ [𝑥] and [4, Section 4.2]. □

6 APPLICATION TO PATHSWITH FINITE QUADRATIC
VARIATION

Wenow examine inmore detail the case of paths of finite quadratic variation and apply the results
developed in Section 5 to the case Ω ⊂ 𝑄𝜋

𝑚. As we have already shown, integration and differen-
tiation are inverse operations (Corollary 5.11). Using functionals of class, we show that these
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262 CHIU and CONT

operations may be viewed as isomorphisms between certain spaces. We also obtain a pathwise
identity related to Itô’s isometry (Theorem 6.4).
The key objects here are functionals of class, which are primitives andmay be understood as

pathwise analogues of martingales (Theorem 5.13). In addition, we shall show that class func-
tionals are canonical solutions to path-dependent heat equations. Let us introduce the following
vector spaces of integrands:

𝐿(Λ) ∶= {∇𝑥𝐹|𝐹 ∈ 𝐶1,2(Λ)}, 𝐿𝑏(Λ) ∶= {∇𝑥𝐹|𝐹 ∈ 𝐶1,2
𝑏

(Λ)},

(Λ) ∶= {∇𝑥𝐹|𝐹 ∈ (Λ)}, 𝑏(Λ) ∶= {∇𝑥𝐹|𝐹 ∈ 𝑏(Λ)}.

By Proposition 5.15, the integral operator

∫ ∶ 𝜙 ∈ 𝐿(Λ) ⟼ 𝐈𝜙 ∈ ℝΛ,

where 𝐈𝜙 is given by (22), is a well-defined linear operator.

Example 6.1 (Path-dependent 1-form). Let 𝑓𝑖 ∈ 𝐶1(ℝ), 𝑖 = 1, … , 𝑚 then

𝜙(𝑡, 𝑥𝑡) ∶=

((
∫ 𝑓1 ◦𝑥1𝑑𝑥1

)
(𝑡−), … ,

(
∫ 𝑓𝑚 ◦𝑥𝑚𝑑𝑥𝑚

)
(𝑡−)

)′

defines an element of 𝑏(Λ).

Proof. See Example 4.18(15). □

Lemma 6.2.

(i) If 𝜙 ∈ 𝐿(Λ) then ∫ 𝜙 ∈ (Λ) and ∇𝑥(∫ 𝜙) = 𝜙−.
(ii) If 𝜙 ∈ 𝐿𝑏(Λ) then ∫ 𝜙 ∈ 𝑏(Λ) and ∇𝑥(∫ 𝜙) = 𝜙−.
(iii) If 𝜙 ∈ (Λ) then ∫ 𝜙 ∈ (Λ) and ∇𝑥(∫ 𝜙) = 𝜙.
(iv) If 𝜙 ∈ 𝑏(Λ) then ∫ 𝜙 ∈ 𝑏(Λ) and ∇𝑥(∫ 𝜙) = 𝜙.

Proof. It is due to Proposition 5.15 and Corollary 5.11(i). □

Corollary 6.3. Define

0(Λ) ∶= {𝐹 ∈ 𝑏(Λ)|𝐹(0, 𝑥0) ≡ 0},

then the integral operator

∫ ∶ 𝑏(Λ) ⟼ 0(Λ)

is an isomorphism and the inverse of ∫ is the differential operator ∇𝑥 .

Proof. Injectivity follows from Lemma 6.2(iv). Surjectivity is due to Corollary 5.11(ii). □
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CAUSAL FUNCTIONAL CALCULUS 263

We now obtain a pathwise identity of Itô,† and give an application. For 𝜙, 𝜓 ∈ 𝑏(Λ) define
{𝜙, 𝜓} ∈ 𝑏(Λ) by

{𝜙, 𝜓} ∶ Λ ↦ ℝ𝑑

(𝑡, 𝑥) →

(
𝜓 ∫

.

0
𝜙.𝑑𝑥 + 𝜙 ∫

.

0
𝜓.𝑑𝑥

)
(𝑡, 𝑥𝑡−).

Theorem 6.4. For all 𝜙, 𝜓 ∈ 𝑏(Λ), {𝜙, 𝜓} ∈ 𝑏(Λ) and(
∫ 𝜙𝑑𝑥

)(
∫ 𝜓𝑑𝑥

)
= ∫ 𝜙𝜓′𝑑[𝑥] + ∫ {𝜙, 𝜓}𝑑𝑥.

Proof. Recall that 𝐶1,2
𝑏

(Λ) is an algebra. Let 𝜙, 𝜓 ∈ 𝑏(Λ), put 𝐹 ∶= ∫ 𝜙𝑑𝑥, 𝐺 ∶= ∫ 𝜓𝑑𝑥, then
𝐹, 𝐺 ∈ 𝑏(Λ) by Lemma 6.2(iv). Since𝑏(Λ) ⊂ 𝐶1,2

𝑏
(Λ), it follows 𝐹𝐺 ∈ 𝐶1,2

𝑏
. Apply the change

of variable formula (Theorem 5.14) to 𝐹𝐺; using Lemma 6.2(ii), the proof is complete. □

Corollary 6.5 (Isometry). Let  ⊂ 𝑏(Λ) be a subspace such that

∀𝜙, 𝜓 ∈  , {𝜙, 𝜓} ∈ 
and denote 𝐈() the image of  under ∫ . If 𝔼 is any positive element of the algebraic dual 𝐶∗(Λ) such
that 𝐈() ⊂ ker(𝔼), then⟨

∫ 𝜙𝑑𝑥,∫ 𝜓𝑑𝑥

⟩
𝐈()

∶= 𝔼

(
∫ 𝜙𝑑𝑥 ∫ 𝜓𝑑𝑥

)
= 𝔼

(
∫ 𝜙𝜓′𝑑[𝑥]

)
=∶ ⟨𝜙, 𝜓⟩

holds for all 𝜙, 𝜓 ∈  .
In particular, the bracket ⟨., .⟩ induces a semi-norm on  . Denoting ̃ the quotient space induced

by the semi-norm, the integral operator

∫̃ ∶ ̃ ⟼ 𝐈(̃)

�̃� ⟼ ∫̃ �̃� ∶= ∫ 𝜙

is an isometric isomorphism between the pre-Hilbert spaces ̃ and 𝐈(̃). The inverse of ∫̃ is the
differential operator

∇̃𝑥 ∶ 𝐈(̃) ⟼ ̃ ,

�̃� ⟼ ∇̃𝑥�̃� ∶= ∇𝑥𝐹.

Proof. The result is a consequence of Corollary 6.3 and Theorem 6.4. □

We conclude with a discussion on the relation between class(Λ) and harmonic functionals,
defined as solutions to a class of path-dependent heat equations [5, Chapter 8]. Let Σ ∶ Λ → 𝑆+

𝑚

be a right-continuous function on Λ taking values in positive-definite symmetric𝑚 × 𝑚 matrices

† First appeared in [19, Lemma 2].
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264 CHIU and CONT

and

ΩΣ ∶=

{
𝑥 ∈ Ω|𝑑[𝑥]

𝑑𝑡
= Σ

}
⊂ Ω

the set of paths with absolutely continuous quadratic variation with Lebesgue density Σ.

Definition 6.6. 𝐹 ∈ 𝐶1,2(Λ) is called Σ-harmonic if it satisfies

∀𝑥 ∈ ΩΣ, ∀𝑡 ⩾ 0, 𝐹(𝑡, 𝑥𝑡) +
1

2
⟨∇2

𝑥𝐹(𝑡, 𝑥𝑡), Σ(𝑡, 𝑥𝑡)⟩ = 0. (29)

If 𝐹 is Σ-harmonic, then the change of variable formula (Theorem 5.14) gives

𝐹(𝑡, 𝑥𝑡) = 𝐹(0, 𝑥0) + ∫
𝑡

0
∇𝑥𝐹(𝑠, 𝑥𝑠−)𝑑𝑥 (30)

for all 𝑡 ⩾ 0 and 𝑥 ∈ ΩΣ. Equality in (30) then holds on ΩΣ. Every functional of class satisfies
(29), hence is Σ-harmonic for all Σ.

Theorem 6.7 (Representation of Σ-harmonic functionals). If 𝐹 is Σ-harmonic, then there exists a
class functional𝑀 such that

𝑀|ΩΣ
≡ 𝐹.

In particular,𝑀 is uniquely determined by (30) onΩΣ.

Proof. Let 𝐹 ∈ 𝐶1,2(Λ) be Σ-harmonic. We can define a functional 𝑀 ∶ Λ → ℝ by

𝑀(𝑡, 𝑥) ∶= 𝐹(0, 𝑥0) + ∫
𝑡

0
∇𝑥𝐹(𝑠, 𝑥𝑠−)𝑑𝑥. (31)

By Lemma 6.2(i), we see that 𝑀 ∈ (Λ) and ∇𝑥𝑀 = (∇𝑥𝐹)−. By (30) and (31), the proof is
complete. □

APPENDIX: TECHNICAL PROOFS

Proof of Proposition 1.1. For 𝛼 ∈ ℝ+, define 𝑤𝛼(𝑡) ∶= 1[𝛼,∞)(𝑡) ∈ 𝐷 =∶ Ω, where 𝐷 denotes the
Skorokhod space. We assign to the collection (𝑤𝛼)𝛼∈ℝ+

, a normalized Lebesgue measure

ℙ({𝑤𝛼|𝛼 ∈ 𝐴}) ∶=
∑
𝑛⩾1

𝜆(𝐴 ∩ [0, 𝑛])

2𝑛+1
,

then ℙ({𝑤𝛼|𝛼 ∈ ℝ+})) = 1 and 𝑋𝑡(𝑤) ∶= 𝑤(𝑡) is a finite variation process (that is, a semi-
martingale) under ℙ. Now let 𝜋 = (𝜋𝑛)𝑛⩾1 be any sequence of time partitions and denote

𝑄𝜋
0 ∶= {𝑥 ∈ 𝑄𝜋|𝐽(𝑥) ⊂ lim inf

𝑛
𝜋𝑛}.
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CAUSAL FUNCTIONAL CALCULUS 265

Since lim inf𝑛 𝜋𝑛 is countable, it follows that ℙ({𝑤𝛼|𝛼 ∈ lim inf𝑛 𝜋𝑛}) = 0 and therefore ℙ({𝜔 ∈

Ω|𝑋⋅(𝜔) ∈ 𝑄𝜋
0
}) = 0. □

Proof of Theorems 5.8 and 5.14. By the right continuity of 𝐹 (Definition 3.9.2(d)), we have

𝐹(𝑇, 𝑥𝑇) − 𝐹(0, 𝑥0) = lim
𝑛

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

𝐹(𝑡𝑖+1, 𝑥
𝑛
𝑡𝑖+1−

) − 𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

), (A.1)

where for all 𝑛 sufficiently large, we can decompose each increment

𝐹(𝑡𝑖+1, 𝑥
𝑛
𝑡𝑖+1−

) − 𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

)

= 𝐹(𝑡𝑖+1, 𝑥
𝑛
𝑡𝑖+1−

) − 𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖+1−

) + 𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖+1−

) − 𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

)

=
(
𝐹(𝑡𝑖+1, 𝑥

𝑛
𝑡𝑖
) − 𝐹(𝑡𝑖, 𝑥

𝑛
𝑡𝑖
)
)

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
time

+
(
𝐹(𝑡𝑖, 𝑥

𝑛
𝑡𝑖
) − 𝐹(𝑡𝑖, 𝑥

𝑛
𝑡𝑖−

)
)

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
space

into the sum of a time (‘horizontal’) and a space (‘vertical’) increment.
Since 𝐹 is left-continuous and differentiable in time, 𝐹 is right-continuous and locally

bounded, by Lemma 5.1 each time increment may be expressed as

𝐹(𝑡𝑖+1, 𝑥
𝑛
𝑡𝑖
) − 𝐹(𝑡𝑖, 𝑥

𝑛
𝑡𝑖
) = ∫

𝑡𝑖+1

𝑡𝑖

𝐹(𝑡, 𝑥𝑛
𝑡𝑖
)𝑑𝑡.

By Lemma 5.2, we obtain

lim
𝑛

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

𝐹(𝑡𝑖+1, 𝑥
𝑛
𝑡𝑖
) − 𝐹(𝑡𝑖, 𝑥

𝑛
𝑡𝑖
) = ∫

𝑇

0
𝐹(𝑡, 𝑥𝑡)𝑑𝑡,

which in light of (A.1), implies that the sum of space increments converges to

lim
𝑛

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖
) − 𝐹(𝑡𝑖, 𝑥

𝑛
𝑡𝑖−

)
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

Δ𝐹(𝑡𝑖 ,𝑥
𝑛
𝑡𝑖
)

= 𝐹(𝑇, 𝑥𝑇) − 𝐹(0, 𝑥0) − ∫
𝑇

0
𝐹(𝑡, 𝑥𝑡)𝑑𝑡. (A.2)

If 𝐹 ∈ (Λ) then ∇𝑥𝐹 is strictly causal and by Proposition 4.3, ∇2
𝑥𝐹 is vanishing everywhere.

Thus, by a second order Taylor expansion, the remainder term vanishes, so

𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖
) − 𝐹(𝑡𝑖, 𝑥

𝑛
𝑡𝑖−

) = ∇𝑥𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

) ⋅
(
𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)

)
and Theorem 5.8 follows. If 𝐹 ∈ 𝐶1,2(Λ) then, by Taylor’s Theorem, each space increment admits
the following second-order expansion:

Δ𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖
) = 𝐹

(
𝑡𝑖, 𝑥

𝑛
𝑡𝑖−

+ Δ𝑥𝑛(𝑡𝑖)1I[𝑡𝑖 ,∞)

)
− 𝐹(𝑡𝑖, 𝑥

𝑛
𝑡𝑖−

)

= ∇𝑥𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

) ⋅ Δ𝑥𝑛(𝑡𝑖) +
1

2
⟨∇2

𝑥𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

), Δ𝑥𝑛(𝑡𝑖)Δ𝑥𝑛(𝑡𝑖)
′⟩,

+ 𝑅𝑛
𝑡𝑖
, (A.3)
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266 CHIU and CONT

where Δ𝑥𝑛(𝑡𝑖) = (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)) and

𝑅𝑛
𝑡𝑖

=
1

2
⟨∇2

𝑥𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

+ 𝛼𝑛
𝑖
Δ𝑥𝑛(𝑡𝑖)1I[𝑡𝑖 ,∞)) − ∇2

𝑥𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

), Δ𝑥𝑛(𝑡𝑖)Δ𝑥𝑛(𝑡𝑖)
′⟩,

where 𝛼𝑛
𝑖

∈ (0, 1). Since 𝑥 ∈ Ω2 ⊂ 𝑄𝜋
𝑚, by Corollary 2.8 and Remark 2.9

lim
𝑛

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

⟨∇2
𝑥𝐹(𝑡𝑖, 𝑥

𝑛
𝑡𝑖−

), Δ𝑥𝑛(𝑡𝑖)Δ𝑥𝑛(𝑡𝑖)
′⟩ = ∫

𝑇

0
∇2

𝑥𝐹(𝑡, 𝑥𝑡−)𝑑[𝑥]

= ∫
𝑇

0
∇2

𝑥𝐹(𝑡, 𝑥𝑡−)𝑑[𝑥]𝑐 +
∑
𝑡⩽𝑇

⟨∇2
𝑥𝐹(𝑡, 𝑥𝑡−), Δ𝑥(𝑡)Δ𝑥(𝑡)′⟩. (A.4)

Let 𝛿 > 0, 𝑟 ∶= sup𝑡∈[0,𝑇] |Δ𝑥(𝑡)|, 𝑟𝛿 ∶= 𝛿 + sup𝑡∈[0,𝑇+𝛿] |Δ𝑥(𝑡)|. Using a result on càdlàg func-
tions [7, Lemma 8], we see that |Δ𝑥𝑛(𝑡𝑖)| ⩽ 𝑟𝛿 for 𝑛 sufficiently large. By Remark 3.2, we see that
𝛼𝑛

𝑖
Δ𝑥𝑛(𝑡𝑖) ∈ 𝑡𝑖−

(𝑥𝑛) ∩ 𝐵𝑟𝛿
(0). Since∇2

𝑥𝐹 admits amodulus of vertical continuity, it follows from
Definition 4.7 that there exists a modulus of continuity 𝜔 such that

|𝑅𝑛
𝑡𝑖
| ⩽

1

2
𝜔(𝑟𝛿)|Δ𝑥𝑛(𝑡𝑖)Δ𝑥𝑛(𝑡𝑖)

′|
for 𝑛 sufficiently large, hence by an application of Corollary 2.8(i), we obtain

lim sup
𝑛

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

|𝑅𝑛
𝑡𝑖
| ⩽

1

2
𝜔(𝑟𝛿) ⩽ 𝜔(𝑟𝛿)𝑡𝑟([𝑥](𝑇)).

Send 𝛿 ↓ 0, and by the right continuity of 𝑥, we have established that

lim sup
𝑛

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

|𝑅𝑛
𝑡𝑖
| ⩽

1

2
𝜔(𝑟+)𝑡𝑟([𝑥](𝑇)). (A.5)

Let 0 < 𝜖 < 𝑟, define the following finite sets on [0, 𝑇]

𝐽(𝜖) ∶= {𝑡 ⩽ 𝑇||Δ𝑥(𝑡)| > 𝜖},

𝐽𝑛(𝜖) ∶= {𝜋𝑛 ∋ 𝑡𝑖 ⩽ 𝑇|∃𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1], |Δ𝑥(𝑡)| > 𝜖}.

We can decompose ∑
𝜋𝑛∋𝑡𝑖⩽𝑇

𝑅𝑛
𝑡𝑖

=
∑

𝑡𝑖∈𝐽𝑛(𝜖)

𝑅𝑛
𝑡𝑖

+
∑

𝑡𝑖∈(𝐽𝑛(𝜖))𝑐
𝑅𝑛

𝑡𝑖
, (A.6)

into two partial sums. By (A.3), the right-continuity (resp. left-continuity) of 𝐹 (resp.
(∇𝑥𝐹)−, (∇2

𝑥𝐹)−) and that 𝑥 is càdlàg we obtain

∑
𝑡𝑖∈𝐽𝑛(𝜖)

(
𝑅𝑛

𝑡𝑖

)± 𝑛
⟶

∑
𝑡∈𝐽(𝜖)

(
Δ𝐹(𝑡, 𝑥𝑡) − ∇𝑥𝐹(𝑡, 𝑥𝑡−) ⋅ Δ𝑥(𝑡)
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−
1

2
⟨∇2

𝑥𝐹(𝑡, 𝑥𝑡−), Δ𝑥(𝑡)Δ𝑥(𝑡)′⟩)±

⩽
1

2
𝜔(𝑟+)𝑡𝑟([𝑥](𝑇)), (A.7)

where the inequality follows from (A.5) and (A.6). Observe that 𝐽(𝜖) ↑ 𝐽(0) as 𝜖 ↓ 0, by monotone
convergence, we obtain

lim
𝑛

∑
𝑡𝑖∈𝐽𝑛(𝜖)

(
𝑅𝑛

𝑡𝑖

)± 𝜖
⟶

∑
𝑡⩽𝑇

(
Δ𝐹(𝑡, 𝑥𝑡) − ∇𝑥𝐹(𝑡, 𝑥𝑡−) ⋅ Δ𝑥(𝑡)

−
1

2
⟨∇2

𝑥𝐹(𝑡, 𝑥𝑡−), Δ𝑥(𝑡)Δ𝑥(𝑡)′⟩)±

⩽
1

2
𝜔(𝑟+)𝑡𝑟([𝑥](𝑇)). (A.8)

On the other hand, since 𝑤 is monotonic, by (A.5) and (A.6), it follows that

||||||lim sup
𝑛

∑
𝑡𝑖∈(𝐽𝑛(𝜖))𝑐

𝑅𝑛
𝑡𝑖

− lim inf
𝑛

∑
𝑡𝑖∈(𝐽𝑛(𝜖))𝑐

𝑅𝑛
𝑡𝑖

|||||| ⩽ 𝜔(𝜖)𝑡𝑟([𝑥](𝑇)), (A.9)

and by (A.2)–(A.4), (A.6), (A.7) and (A.9), so is

||||||lim sup
𝑛

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

∇𝑥𝐹𝑛
𝑡𝑖
⋅ Δ𝑥𝑛(𝑡𝑖) − lim inf

𝑛

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

∇𝑥𝐹𝑛
𝑡𝑖
⋅ Δ𝑥𝑛(𝑡𝑖)

|||||| ⩽ 𝜔(𝜖)𝑡𝑟([𝑥](𝑇)),

where we have denoted ∇𝑥𝐹𝑛
𝑡𝑖

∶= ∇𝑥𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

). Send 𝜖 ↓ 0, we obtain

∫
𝑇

0
∇𝑥𝐹(𝑡, 𝑥𝑡−)𝑑𝑥 ∶= lim

𝑛

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

∇𝑥𝐹(𝑡𝑖, 𝑥
𝑛
𝑡𝑖−

) ⋅ (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)). (A.10)

Upon a second look at (A.2)–(A.4), (A.6), (A.7) and in light of (A.10), we immediately see that

lim
𝑛

∑
𝑡𝑖∈(𝐽𝑛(𝜖))𝑐

𝑅𝑛
𝑡𝑖

=∶ 𝑜(𝜖)

also exists and by (A.5), |𝑜(𝜖)| ⩽
1

2
𝜔(𝜖)𝑡𝑟([𝑥](𝑇))

𝜖
⟶ 0 which, combined with (A.6) and (A.8)

implies

lim
𝑛

∑
𝜋𝑛∋𝑡𝑖⩽𝑇

𝑅𝑛
𝑡𝑖

=
∑
𝑡⩽𝑇

(
Δ𝐹(𝑡, 𝑥𝑡) − ∇𝑥𝐹(𝑡, 𝑥𝑡−) ⋅ Δ𝑥(𝑡)

−
1

2
⟨∇2

𝑥𝐹(𝑡, 𝑥𝑡−), Δ𝑥(𝑡)Δ𝑥(𝑡)′⟩). (A.11)
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In view of (A.2)–(A.4), (A.10) and (A.11), it remains to show that

∑
𝑡⩽𝑇

(
Δ𝐹(𝑡, 𝑥𝑡) − ∇𝑥𝐹(𝑡, 𝑥𝑡−)Δ𝑥(𝑡) −

1

2
⟨∇2

𝑥𝐹(𝑡, 𝑥𝑡−), Δ𝑥(𝑡)Δ𝑥(𝑡)′⟩)
=
∑
𝑡⩽𝑇

(
Δ𝐹(𝑡, 𝑥𝑡) − ∇𝑥𝐹(𝑡, 𝑥𝑡−)Δ𝑥(𝑡)

)
−

1

2

∑
𝑡⩽𝑇

⟨∇2
𝑥𝐹(𝑡, 𝑥𝑡−), Δ𝑥(𝑡)Δ𝑥(𝑡)′⟩, (A.12)

and the absolute convergence of the series. Since (∇2
𝑥𝐹)− is left-continuous and locally bounded,

we see from Lemma 4.6(ii) that the map 𝑡 ⟼ ∇2
𝑥𝐹(𝑡, 𝑥𝑡−) is also bounded on [0, 𝑇], hence by (5)

1

2

∑
𝑡⩽𝑇

|∇2
𝑥𝐹(𝑡, 𝑥𝑡−)||Δ𝑥(𝑡)Δ𝑥(𝑡)′| ⩽ const

∑
𝑖

(∑
𝑡⩽𝑇

(Δ𝑥𝑖(𝑡))
2

)

⩽ const ⋅ 𝑡𝑟([𝑥](𝑇)),

which, combined with (A.8) implies (A.12) and the absolute convergence of the series, hence
Theorem 5.14 is proven. □
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