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Abstract. Amodular proof-theoretic framework was recently developed
to prove Craig interpolation for normal modal logics based on general-
izations of sequent calculi (e.g., nested sequents, hypersequents, and la-
belled sequents). In this paper, we turn to uniform interpolation, which is
stronger than Craig interpolation. We develop a constructive method for
proving uniform interpolation via nested sequents and apply it to reprove
the uniform interpolation property for normal modal logics K, D, and T.
While our method is proof-theoretic, the definition of uniform interpola-
tion for nested sequents also uses semantic notions, including bisimula-
tion modulo an atomic proposition.

Keywords: Uniform interpolation · Modal logic · Nested sequents.

1 Introduction

A propositional (modal) logic L admits the Craig interpolation property (CIP)
if for any formulas φ and ψ such that ⊢L φ → ψ, there is an interpolant θ
containing only atomic propositions that occur in both φ and ψ such that
⊢L φ → θ and ⊢L θ → ψ. Logic L has the uniform interpolation property (UIP)
if for each formula φ and each atomic proposition p there are uniform inter-
polants ∃pφ and ∀pφ built from atomic propositions occurring in φ except for p,
such that for all formulas ψ not containing p:

⊢L φ→ ψ ⇔ ⊢L ∃pφ→ ψ and ⊢L ψ → φ ⇔ ⊢L ψ → ∀pφ.

It is well known that this property is stronger than Craig interpolation.
To prove the CIP (UIP) constructively, one can use analytic (terminating) se-

quent calculi. Whereas for the CIP the syntactic proofs are often straightforward,
the case of the UIP is more complicated. Pitts provided the first syntactic proof
of this kind, establishing the UIP for IPC [19]. B́ılková successfully adjusted the
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method to (re)prove the UIP for several modal logics including K, T, and GL [2].
Iemhoff provided a modular method for (intuitionistic) modal logics and inter-
mediate logics based on sequent calculi consisting of the so-called focused rules,
among others establishing the UIP for D [12,13].

There are also algebraic and model-theoretic methods. The UIP for GL and K
is due to Shavrukov [21] and Ghilardi [8] respectively. Interestingly, modal log-
ics S4 and K4 do not enjoy the UIP [2,9] despite enjoying the CIP. Visser provided
semantic proofs for K, GL, and IPC based on bounded bisimulation up to atomic
propositions [24]. This method was later used for the stronger Lyndon UIP [14].
The semantic interpretation of uniform interpolation is called bisimulation quan-
tifiers, see [6] for an overview. Bisimulation will also play a role in this paper.

The proof-theoretic approach has two advantages. First, it enables one to find
interpolants constructively rather than merely prove their existence.4 Second,
negative results were obtained in [12,13] stating that logics without the UIP
cannot have certain natural sequent calculi. As a consequence, K4 and S4 do
not possess such proof systems. Similar negative results were obtained for modal
and substructural logics in [22] and [23] using the CIP and UIP.

The goal of this paper is to extend the same line of research to multisequent
formalisms starting with nested sequents5. Multisequent formalisms, such as
nested sequents, hypersequents, and labelled sequents, are (commonly believed
to be) more expressive than sequents and offer modular and analytic calculi for a
wide range of logics. E.g., S5 has well-known cut-free hypersequent calculi [1,17]
but no known cut-free sequent calculus while modal logics K5 and B possess
cut-free nested sequent calculi, but no hypersequent calculi [5]. Nested sequent
calculi were recently used to prove the CIP for modal logics [7]. A modular proof-
theoretic framework encompassing them and other multisequents was provided
in [15]. The same ideas, which combine syntactic and semantic reasoning, were
extended to multisequent calculi for intermediate logics [16].

We provide a method to prove the UIP for K, D, and T using terminating
nested sequent calculi from [5]. These calculi are used to construct uniform in-
terpolants syntactically, whereas the correctness proof for the constructed inter-
polants relies on semantic reasoning, including model modifications and bisimu-
lation. While the UIP for these three logics has been previously shown via ana-
lytic sequent calculi, our constructive method is also applicable to logics based
on multisequent formalisms that lack a sequent representation. In particular, in
an extended version [10] of this paper, we successfully adapted our method to
hypersequents for S5.

B́ılková [3] also provided a syntactic proof for the UIP for K based on nested
sequents. The main difference with our method is that we exploit the treelike
structure of nested sequents, thus reflecting the treelike models for K, by using se-
mantic reasoning while the algorithm for the interpolants remains fully syntactic.

4 More precisely, it enables one to find interpolants efficiently rather than by an ex-
haustive search that terminates due to the existence of the interpolant.

5 Nested sequents are also known as tree-hypersequents [20] or deep sequents [5].
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The paper is organized as follows. In Sect. 2 the nested sequent calculi
for K, T, and D, as well as model modifications invariant under bisimulation,
are introduced. In Sect. 3, we prove uniform interpolation for K, T, and D. Fi-
nally, in Sect. 4 we summarize the results and outline future work. An extended
version [10] of this paper provides more detailed proofs of these results and, in
addition, includes a direct proof of the UIP for S5 via hypersequents.

2 Preliminaries

Definition 1. Modal formulas in negation normal form are defined by the gram-
mar φ ::= ⊥ | ⊤ | p | p | (φ∧φ) | (φ∨φ) | □φ | ♢φ where ⊥ and ⊤ are Boolean
constants, p is an atomic proposition (atom) from a countable set Prop, and
p is its negation. An element ℓ of the set Lit of literals is either an atom or its
negation. Literals and Boolean constants are atomic formulas.

We define φ (or ¬φ) recursively as usual using De Morgan’s laws to push the
negation inwards. We define φ→ ψ := φ ∨ ψ as usual.

Definition 2. A nested sequent Γ is recursively defined in the following form:

φ1, . . . , φn, [Γ1], . . . , [Γm]

where φ1, . . . , φn are modal formulas for n ≥ 0 and Γ1, . . . , Γm are nested se-
quents for m ≥ 0. We call brackets [ ] a structural box. The formula interpre-
tation ι of a nested sequent is defined recursively by

ι(φ1, . . . , φn, [Γ1], . . . , [Γm]) := φ1 ∨ · · · ∨ φn ∨□ι(Γ1) ∨ · · · ∨□ι(Γm).

One way of looking at a nested sequent is to consider a tree of ordinary (one-
sided) sequents, i.e., multisets of formulas. Each structural box in the nested
sequent creates a child in the tree. In order to be able to reason about formulas
in a particular tree node, we introduce labels. A label is a finite sequence of
natural numbers. We denote labels by σ, τ, . . . ; a label σ ∗ n denotes the label σ
extended by the natural number n. We sometimes write σn instead of σ ∗ n,
unless it is ambiguous, as, e.g., for 1 ∗ 2 ∗ 3, which is different from 1 ∗ 23.

Definition 3 (Labeling). For a nested sequent Γ and label σ we define a label-
ing function lσ to recursively label structural boxes in nested sequents as follows:

lσ(φ1, . . . , φn, [Γ1], . . . , [Γm]) := φ1, . . . , φn, [lσ1(Γ1)]σ1, . . . , [lσm(Γm)]σm.

Let Lσ(Γ ) be the set of labels occurring in lσ(Γ ) plus label σ (for formulas outside
all structural boxes). Define l(Γ ) := l1(Γ ), and let L(Γ ) := L1(Γ ).

6

Formulas in a nested sequent Γ are labeled according to the labeling of the
structural boxes containing them. We write 1 : φ ∈ Γ iff the formula φ occurs
in Γ outside all structural boxes. Otherwise, σ : φ ∈ Γ whenever φ occurs in l(Γ )
within a structural box labeled σ.
6 Labeled nested sequents are closely related to labelled sequents from [18] but retain
the nested notation.
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idP
Γ{p, p}

id⊤
Γ{⊤}

Γ{φ ∨ ψ,φ, ψ}
∨

Γ{φ ∨ ψ}
Γ{φ ∧ ψ,φ} Γ{φ ∧ ψ,ψ}

∧
Γ{φ ∧ ψ}

Γ{□φ, [φ]}
□

Γ{□φ}
Γ{♢φ, [∆,φ]}

k
Γ{♢φ, [∆]}

Γ{♢φ, [φ]}
d

Γ{♢φ}
Γ{♢φ,φ}

t
Γ{♢φ}

Fig. 1. Terminating nested rules: the principal formula is not K- (D-, T-) saturated.

The set L(Γ ) can be seen as the set of nodes of the corresponding tree of Γ ,
with 1 being the root. Often, we do not distinguish between a nested sequent Γ
and its labeled sequent l(Γ ). For instance, we write σ ∈ Γ if σ ∈ L(Γ ).

Whether X is a formula, a sequence/set/multiset of formulas, a nested se-
quent/context, or some other formula-based object, we denote by Var(X) ⊆ Prop
the set of atoms occurring in X (note that p may also occur in the form of p).

Recall that the normal modal logic K consists of all classical tautologies,
the k-axiom □(φ → ψ) → (□φ → □ψ) and is closed under modus ponens
(from φ→ ψ and φ, infer ψ) and necessitation (from φ, infer □φ). Further, the
modal logics D and T are defined as D := K+□φ→ ♢φ and T := K+□φ→ φ.

The nested calculus NK for the modal logic K consists of the rules in the first
row in Fig. 1 plus the rules □ and k. This calculus is an extension of the multiset-
based version from [5] to the language with Boolean constants ⊥ and ⊤, neces-
sitating the addition of the rule id⊤ for handling these. The calculus ND (NT)
for the logic D (T) is obtained by adding to NK the rule d (t). As shown in [5],
the nested sequent calculi NK, ND, and NT are sound and complete for modal
logics K, D, and T respectively.

Definition 4 (Saturation). Let Γ = Γ ′{θ}σ, i.e., σ : θ ∈ Γ . The formula θ is
K-saturated in Γ if the following conditions hold based on the form of θ:
– θ is an atomic formula;
– if θ = φ ∨ ψ, then both σ : φ ∈ Γ and σ : ψ ∈ Γ ;
– if θ = φ ∧ ψ, then either σ : φ ∈ Γ or σ : ψ ∈ Γ ;
– if θ = □φ, then there is a label σn ∈ L(Γ ) such that σn : φ ∈ Γ .

The formula θ = ♢φ is
– K-saturated in Γ w.r.t. σn ∈ L(Γ ) if σn : φ ∈ Γ ;
– D-saturated in Γ if there is some label σn ∈ L(Γ );
– T-saturated in Γ if σ : φ ∈ Γ .

A nested sequent Γ is K-saturated if (1) it is neither of the form Γ ′{p, p} for
some p ∈ Prop nor of the form Γ ′{⊤}; and (2) all its formulas σ : ♢φ are K-
saturated w.r.t. every child of σ; and (3) all its other formulas are K-saturated
in Γ . A nested sequent is D-saturated (T-saturated) if it is K-saturated and all
its formulas σ : ♢φ are D-saturated (T-saturated) in Γ .

Theorem 5 ([5]). The calculi NK, ND, and NT in Fig. 1 are terminating.
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Definition 6. A Kripke model is a triple M = (W,R, V ), where W ̸= ∅,
R ⊆ W ×W , and V : Prop → 2W is a valuation function. Define M, w |= φ as
usual: M, w |= ⊤ and M, w ̸|= ⊥; for p ∈ Prop, we have M, w |= p iff w ∈ V (p)
and M, w |= p iff w /∈ V (p); we have M, w |= φ∧ψ (M, w |= φ∨ψ) iff M, w |= φ
and (or) M, w |= ψ; finally, M, w |= □φ iff M, v |= φ whenever wRv and
M, w |= ♢φ iff M, v |= φ for some wRv. A formula φ is valid in M, denoted
M |= φ, when M, w |= φ for all w ∈W .

A model M′ = (W ′, R′, V ′) is a submodel of M = (W,R, V ) when W ′ ⊆W ,
R′ = R ∩ (W ′ ×W ′), and V ′(p) = V (p) ∩W ′ for each p ∈ Prop. A submodel
generated by w ∈ W , denoted Mw := (Ww, Rw, Vw), is the smallest submodel
M′ = (W ′, R′, V ′) of M such that w ∈W ′ and v ∈W ′ when xRv and x ∈W ′.

We will use models based on finite intransitive directed trees, usually denot-
ing the root ρ. For K, we require the accessibility relation R to be irreflexive,
i.e., ∀w ∈W¬(wRw). For T, R is reflexive, i.e., ∀w ∈WwRw. And for D, R is se-
rial, i.e., ∀w ∈W∃v ∈WwRv. Note that seriality implies reflexivity of the leaves
of the tree. We call these models K-models, T-models, and D-models respectively.

Theorem 7 ([11, Sect. 4.20]). If L ∈ {K,D,T}, then φ ∈ L iff M |= φ for
each L-model M.

Following [15], we extend definitions of truth and validity to nested sequents,
recall relevant facts about bisimulation, and introduce some model modifications.

Definition 8. A (treelike) multiworld interpretation of a nested sequent Γ into
a model M = (W,R, V ) is a function I : L(Γ ) →W from labels in Γ to worlds
of M such that I(σ)RI(σn) whenever {σ, σn} ⊆ L(Γ ). Then

M, I |= Γ ⇐⇒ M, I(σ) |= φ for some σ : φ ∈ Γ.

Γ is valid in M, denoted by M |= Γ , means that M, I |= Γ for all multiworld
interpretations I of Γ into M.

The following lemma, which can be easily proved by induction on the struc-
ture of Γ , implies completeness for validity of nested sequents.

Lemma 9. M |= Γ iff M |= ι(Γ ) for any nested sequent Γ and model M.

We now define bisimulations modulo an atom p, similar to the ones from [6,24],
where uniform interpolation is studied on the basis of bisimulation quantifiers.
While those papers focus on purely semantic methods, we embed the semantic
tools of bisimulation into our constructive proof-theoretic approach in Sect. 3.
Our bisimulations behave largely like standard bisimulations except they do not
have to preserve the truth of formulas with occurrences of p.

Definition 10 (Bisimilarity). A bisimulation up to an atom p between models
M = (W,R, V ) and M′ = (W ′, R′, V ′) is a non-empty relation Z ⊆ W ×W ′

such that the following hold for all w ∈W and w′ ∈W ′ with wZw′:
atomsp. w ∈ V (q) iff w′ ∈ V ′(q) for all q ∈ Prop \ {p};
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forth. if wRv, then there exists v′ ∈W ′ such that vZv′ and w′R′v′; and
back. if w′R′v′, then there exists v ∈W such that vZv′ and wRv.
When wZw′, we write (M, w) ∼p (M′, w′). Further, we write (M, I) ∼p (M′, I ′)
for I : X →W and I ′ : X →W ′ with a common domain X if there is a bisim-
ulation Z up to p between M and M′ such that I(σ)ZI ′(σ) for each σ ∈ X.

The main property of bisimulations is truth preservation for modal formulas.
The following theorem is proved the same way as [4, Theorem 2.20].

Theorem 11. If (M, w) ∼p (M′, w′), then for all formulas φ with p /∈ Var(φ),
we have M, w |= φ iff M′, w′ |= φ.

We are interested in manipulations of treelike models that preserve bisimu-
lation up to p, in particular, in duplicating a part of a model or replacing it with
a bisimilar model.

Definition 12 (Model transformations). Let M = (W,R, V ) be an intransi-
tive tree (possibly with some reflexive worlds), Mw = (Ww, Rw, Vw) be its subtree
with root w ∈ W , and N = (WN , RN , VN ) be another tree with root ρN ∈ WN .
A model M′ = (W ′, R′, V ′) is the result of replacing the subtree Mw with N
in M if W ′ := (W \Ww)⊔WN , V ′(q) := (V (q) \Ww)⊔ VN (q) for all q ∈ Prop,
and R′ := (R ∩ (W \Ww)

2) ⊔RN ⊔ {(v, ρN ) | vRw}.
A model M′′ = (W ′′, R′′, V ′′) is the result of duplicating (cloning) Mw

in M if another copy7 Mc
w = (W c

w, R
c
w, V

c
w) of Mw is inserted alongside (as a

subtree of ) Mw, i.e., if W
′′ :=W ⊔W c

w, V
′′(q) := V (q)⊔V cw(q) for all q ∈ Prop,

and, in case of duplicating, R′′ := R ⊔Rcw ⊔ {(v, wc) | vRw} (in case of cloning,
R′′ := R⊔Rcw ⊔{(w,wc)}). Finally, for a reflexive world w, the result of unrav-
eling Mw in M is obtained by first cloning Mw in M and then removing the
reflexive loop (w,w) from the accessibility relation.

Lemma 13. In the setup from Def. 12, let Z ⊆ WN ×Ww be a bisimulation
demonstrating that (N , ρN ) ∼p (Mw, w). Then, for M′ obtained by replac-
ing Mw with N in M we have that (M′, v) ∼p (M, v) for all v ∈ W \ Ww

and that (M′, uN ) ∼p (M, u) whenever uNZu. Moreover, if both M and N are
K-models (D-models, T-models), then so is M′.

For M′′ obtained by duplicating Mw in M, we have (M′′, v) ∼p (M, v) for
all v ∈ W and, in addition, (M′′, uc) ∼p (M, u) for all u ∈ Ww. If M is a K-
model (D-model, T-model) not rooted at w, so is M′′. The same holds for cloning
and unraveling if wRw except that unraveling does not preserve T-models.

Proof. It is easy to see that Z ′ := {(v, v) | v ∈ W \Ww} ⊔ Z for replacing or
that Z ′′ := {(v, v) | v ∈ W} ⊔ {(uc, u) | u ∈ Ww} for duplicating, cloning, and
unraveling witnesses all the stated bisimilarities in each respective case. Both
the tree structure and reflexivity of worlds are preserved by all operations other
than unraveling, which turns a reflexive w into an irreflexive world, violating
T-model requirements. Seriality is preserved by all operations. ⊓⊔
7 Here vc := (v, c), W c

w := {vc | v ∈ Ww}, Rc
w := {(vc, uc) | (v, u) ∈ Rw}, and

V c
w(q) := {vc | v ∈ Vw(q)}.
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3 Uniform interpolation for nested sequents

In this section we prove the UIP for K, T, and D via NK, NT, and ND. We define
two new notions of UIPs for nested sequents that involve Kripke semantics:
the nested-sequent UIP (NUIP) in Def. 22 that closely follows the structure of
the UIP and the more convenient to use bisimulation NUIP (BNUIP) in Def. 25.
Lemma 24 and Cor. 28 extract back the standard definition of the UIP.

Definition 14 (UIP). A logic L in a language containing an implication → and
Boolean constants ⊥ and ⊤ (primary or defined) has the uniform interpolation
property, or UIP, if for every formula φ in the logic and atom p, there exist
formulas ∀pφ and ∃pφ such that
(i) Var(∃pφ) ⊆ Var(φ) \ {p} and Var(∀pφ) ⊆ Var(φ) \ {p},
(ii) ⊢L φ→ ∃pφ and ⊢L ∀pφ→ φ, and
(iii) for each formula ψ with p /∈ Var(ψ):

⊢L φ→ ψ ⇒ ⊢L ∃pφ→ ψ and ⊢L ψ → φ ⇒ ⊢L ψ → ∀pφ.

For classical-based logics, the existence of left-interpolants ensures the exis-
tence of right-interpolants, and vice versa (e.g., ∃pφ := ¬∀pφ). Thus, from now
on, we focus on ∀pφ. In the following, we import some notation from [15].

Definition 15. Multiformulas are defined by ℧ ::= σ : φ | (℧ 7 ℧) | (℧ 6 ℧),
where σ is a label and φ is a formula. We write L(℧) for the set of labels in ℧.

Definition 16 (Suitability). A multiworld interpretation I of a sequent Γ
into a model M is suitable for a multiformula ℧ if L(℧) ⊆ L(Γ ), in which case
we call it a multiworld interpretation of ℧ into M.

Definition 17 (Truth for multiformulas). Let I be a multiworld interpreta-
tion of a multiformula ℧ into a model M. Define M, I |= ℧ recursively as:
M, I |= σ : φ iff M, I(σ) |= φ,
M, I |= ℧1 7 ℧2 iff M, I |= ℧i for both i = 1, 2,
M, I |= ℧1 6 ℧2 iff M, I |= ℧i for at least one i = 1, 2.

Since L(℧i) ⊆ L(℧), I is also a multiworld interpretation of each ℧i into M.

We define the label-erasing function from multiformulas to formulas, as well
as multiformula equivalence and some of the latter’s easily provable properties.

Definition 18. The label-erasing function form from multiformulas to formulas
is defined as follows: form(σ : φ) := φ, form(℧1 7 ℧2) := form(℧1) ∧ form(℧2),
and form(℧1 6 ℧2) := form(℧1) ∨ form(℧2).

Definition 19 (Multiformula equivalence). Multiformulas ℧1 and ℧2 are
equivalent, denoted ℧1 ≡ ℧2, iff L(℧1) = L(℧2) and M, I ⊨ ℧1 ⇔ M, I ⊨ ℧2

for any multiworld interpretation I of ℧1 into a model M.

Lemma 20 (Equivalence property). For any multiformula ℧, label σ, and
formulas φ and ψ, we have ℧7℧ ≡ ℧6℧ ≡ ℧, and σ : φ7σ : ψ ≡ σ : (φ∧ψ),
and σ : φ6 σ : ψ ≡ σ : (φ ∨ ψ).
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Lemma 21 (Normal forms). For any multiformula ℧, there is an equivalent
multiformula ℧d (℧c) in SDNF (SCNF ) such that ℧d (℧c) is a 6-disjunction
(7-conjunction) of 7-conjunctions (6-disjunctions) of labeled formulas σ : φ
and each disjunct (conjunct) contains exactly one occurrence of each σ ∈ L(℧).8

Proof. Since 6 and 7 behave classically, one can employ the standard transfor-
mation into the DNF/CNF. In order to ensure one label per disjunct/conjunct
rule, multiple labels can be combined using Lemma 20, whereas missing labels
can be added in the form of σ : ⊥ (σ : ⊤). ⊓⊔

We now introduce the uniform interpolation property for nested sequents.
Here, the uniform interpolants are multiformulas instead of formulas.

Definition 22 (NUIP). Let a nested sequent calculus NL be sound and com-
plete w.r.t. a logic L. We say that NL has the nested-sequent uniform interpo-
lation property, or NUIP, if for each nested sequent Γ and atom p there exists
a multiformula Ap(Γ ), called a nested uniform interpolant, such that
(i) Var

(
Ap(Γ )

)
⊆ Var(Γ ) \ {p} and L

(
Ap(Γ )

)
⊆ L(Γ ),

(ii) for each multiworld interpretation I of Γ into an L-model M

M, I |= Ap(Γ ) implies M, I |= Γ,

(iii) for each nested sequent Σ with p /∈ Var(Σ) and L(Σ) = L(Γ ) and for each
multiworld interpretation I of Γ into an L-model M,

M, I ̸|= Ap(Γ ) and M, I ̸|= Σ imply M′, I ′ ̸|= Γ and M′, I ′ ̸|= Σ

for some multiworld interpretation I ′ of Γ into some L-model M′.

NUIP(i) ensures that interpretations of Γ are suitable for Ap(Γ ).

Remark 23. B́ılková’s definition in [3] differs in several ways. Apart from a mi-
nor difference in NUIP(iii), our definition involves semantic notions and uses
multiformula interpolants instead of formulas.

Lemma 24. If a nested calculus NL has the NUIP, then its logic L has the UIP.

Proof. To show the existence of ∀pφ, consider a nested uniform interpolantAp(φ)
of the nested sequent φ, with L(φ) = {1}. By Lemma 21, w.l.o.g. we can
assume that Ap(φ) = 1 : ξ. Let ∀pφ := ξ. We establish the UIP proper-
ties based on the corresponding NUIP properties. By NUIP(i), we have that
Var(∀pφ) = Var(1 : ξ) ⊆ Var(φ) \ {p} which establishes UIP(i) (cf. Def. 14).

For UIP(ii) we use a semantic argument. Assume towards a contradiction
that ⊬L ξ → φ, in which case by completeness M, w ̸|= ξ → φ for some L-model
M = (W,R, V ) and w ∈W . Consider a multiworld interpretation I of sequent φ

8 Here ‘S’ in SDNF and SCNF stands for special to account for the additional require-
ment of one occurrence per label.
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into M such that I(1) := w. Then M, I |= 1 : ξ but M, I ̸|= φ, in contradiction
to NUIP(ii). Hence, ⊢L ∀pφ→ φ as required.

Finally, for UIP(iii), let p /∈ Var(ψ) and suppose ⊬L ψ → ξ. Once again, by
completeness, M, w ̸|= ψ → ξ for some L-model M = (W,R, V ) and w ∈ W .
Consider the nested sequent ψ, with L(ψ) = L(φ) = {1}, and a multiworld
interpretation I of sequent φ into M with I(1) := w. Then M, I ̸|= 1 : ξ and
M, I ̸|= ψ. By NUIP(iii), there must exist an L-model M′ and a multiworld
interpretation I ′ of sequent φ into M′ such that M′, I ′ ̸|= φ and M′, I ′ ̸|= ψ.
In other words, M′, I ′(1) ̸|= φ and M′, I ′(1) |= ψ. Thus, by soundness of L, we
have ⊬L ψ → φ, thus completing the proof of UIP(iii). ⊓⊔

We replace NUIP(iii) with a (possibly) stronger condition (iii)′ that uses
bisimulations up to p to find a model M′:

Definition 25 (BNUIP). A nested sequent calculus NL has the bisimulation
nested-sequent uniform interpolation property, or BNUIP, if, in addition to
conditions NUIP(i)–(ii) from Def. 22,
(iii)′ for each L-model M and multiworld interpretation I of Γ into M, if

M, I ̸|= Ap(Γ ), then there are an L-model M′ and multiworld interpre-
tation I ′ of Γ into M′ such that (M′, I ′) ∼p (M, I) and M′, I ′ ̸|= Γ .

It easily follows from Theorem 11 that, like formulas, both nested sequents
and multiformulas are invariant under bisimulations:

Lemma 26. Let Γ (℧) be a sequent (multiformula) not containing p and I and I ′

be multiworld interpretations of Γ (℧) into M and M′ respectively such that
(M, I) ∼p (M′, I ′). Then M, I |= Γ iff M′, I ′ |= Γ (M, I |= ℧ iff M′, I ′ |= ℧).

Lemma 27. If Γ,Ap(Γ ) satisfy (iii)′ of Def. 25, then they satisfy (iii) of Def. 22.

Proof. Let Σ be a nested sequent with p /∈ Var(Σ) and L(Σ) = L(Γ ). Let
M, I ̸|= Ap(Γ ) and M, I ̸|= Σ. By condition (iii)′ we find an L-model M′

and I ′ from Γ into M′ such that (M′, I ′) ∼p (M, I) and M′, I ′ ̸|= Γ . By
Lemma 26, we also conclude M′, I ′ ̸|= Σ. ⊓⊔

Corollary 28. If a calculus NL has the BNUIP, then its logic L has the UIP.

3.1 Uniform interpolation for K

Now we present our method of constructing nested uniform interpolants satisfy-
ing the BNUIP for NK. Interpolants Ap(Γ ) are defined recursively on the basis
of the terminating calculus from Fig. 1. If Γ is not K-saturated, Ap(Γ ) is defined
recursively in Table 1 based on the form of Γ . For rows 3–5, we assume that
the formula in the left column is not K-saturated in Γ , whereas in the last row
we assume ♢φ not to be K-saturated w.r.t. σn in Γ .9 Each row in the table
corresponds to a rule in the proof search.

9 Strictly speaking, this is a non-deterministic algorithm. Since the order does not
affect our results, we do not specify it. However, it is more efficient to apply rows 1–2
of Table 1 first and row 5 last.
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Table 1. Recursive construction of Ap(Γ ) for NK for Γ that are not K-saturated.

Γ matches Ap(Γ ) equals

Γ ′{⊤}σ σ : ⊤

Γ ′{p, p}σ σ : ⊤

Γ ′{φ ∨ ψ} Ap

(
Γ ′{φ ∨ ψ,φ, ψ}

)
Γ ′{φ ∧ ψ} Ap

(
Γ ′{φ ∧ ψ,φ}

)
7Ap

(
Γ ′{φ ∧ ψ,ψ}

)
Γ ′{□φ}σ

m

7
i=1

(
σ : □δi 6 6

τ ̸=σn
τ : γi,τ

)
where n is the smallest integer such that σn /∈ L(Γ ) and the SCNF

of Ap

(
Γ ′{□φ, [φ]σn}

)
is

m

7
i=1

(
σn : δi 6 6

τ ̸=σn
τ : γi,τ

)
,

Γ ′{♢φ, [∆]σn} Ap

(
Γ ′{♢φ, [∆,φ]}

)
For K-saturated Γ , we define Ap(Γ ) recursively as follows:

Ap(Γ ) := 6
σ:ℓ∈Γ

ℓ∈Lit\{p,p}

σ : ℓ 6 6
τ∈L(Γ )

(∃ψ)τ :♢ψ∈Γ

τ : ♢Aform
p

(∨
τ :♢ψ∈Γ

ψ
)
, (1)

where Aform
p (Γ ) := form

(
Ap(Γ )

)
. Since we apply form to a multiformula ℧ with

1 being its only label, we have M, I |= ℧ iff M, I(1) |= form(℧). As usual, we

define the empty disjunction to be false, which here means 6∅ := 1 : ⊥. The
construction of Ap(Γ ) is well-defined (modulo a chosen order) because it termi-
nates w.r.t. the following ordering on nested sequents. For a nested sequent Γ , let
d(Γ ) be the number of its distinct diamond subformulas. Let ≪ be the ordering
in which the rules of NK terminate (see Lemma 5). Consider the lexicographic
ordering based on the pair (d,≪). For each row in Table 1, d stays the same
but the recursive calls are for premise(s) lower w.r.t. ordering ≪. The recursive
call in step (1) for K-saturated sequents, on the other hand, decreases d because
the set of diamond subformulas of

∨
τ :♢ψ∈Γ ψ is strictly smaller than that of Γ .

When d(Γ ) = 0 for a K-saturated Γ , the second disjunct of the recursive call (1)
is empty and, thus, no new recursive calls are generated.

Before we prove the main theorem, we provide some examples.

Example 29. Consider the sequent □p,□p. We use Lemmas 20 and 21 as nec-
essary. The algorithm for Ap(□p,□p) calls the calculation of Ap (□p,□p, [p]11),
which in turn calls Ap (□p,□p, [p]11, [p]12). The latter sequent is K-saturated,
and the algorithm returns 1 : ⊥ 6 1 : ⊥, the first disjunct corresponding to the
empty disjunction of literals other than p and p and the second one representing
the absent diamond formulas. Computing its SCNF we get

Ap (□p,□p, [p]11, [p]12) ≡ 1 : ⊥ 6 11 : ⊥ 6 12 : ⊥.

Applying the transformation from the penultimate line of Table 1, we first get

Ap (□p,□p, [p]11) = 1 : ⊥ 6 11 : ⊥ 6 1 : □⊥ ≡ 1 : □⊥ 6 11 : ⊥,
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and finally Ap (□p,□p) = 1 : □⊥ 6 1 : □⊥ ≡ 1 : □⊥. It is easy to check that
□⊥ is indeed a uniform interpolant of □p ∨□p.

Example 30. Consider the nested sequent Γ = p,♢q ∧ ♢p, [q]. In the absence
of boxes, the algorithm amounts to processing the K-saturated sequents in the
leaves of the proof search tree.

p,♢q ∧ ♢p,♢q, [q]11
p,♢q ∧ ♢p,♢p, [q, p]11
p,♢q ∧ ♢p,♢p, [q]11

p,♢q ∧ ♢p, [q]11
We have

Ap(p,♢q ∧ ♢p,♢q, [q]11) = 11 : q 6 1 : ♢Aform
p (q),

Ap(p,♢q ∧ ♢p,♢p, [q, p]11) = 11 : q 6 1 : ♢Aform
p (p).

Since formulas Aform
p (q) and Aform

p (p) can be simplified to q and ⊥ respectively,
we obtain Ap(Γ ) ≡ (11 : q 6 1 : ♢q) 7 (11 : q 6 1 : ♢⊥), which is equivalent
to 11 : q since ♢⊥ can never be true. Again, it is easy to see that 11 : q is a
bisimulation nested uniform interpolant of p,♢q ∧ ♢p, [q]11 with respect to p.

Theorem 31. The nested calculus NK has the BNUIP.

Proof. BNUIP(i) is easily satisfied. To prove BNUIP(ii), let Γ be a nested se-
quent and I a multiworld interpretation of Γ into a K-model M = (W,R, V )
such that M, I |= Ap(Γ ) (by BNUIP(i) I is suitable for Ap(Γ )). We show
M, I |= Γ by induction on the lexicographic ordering (d,≪). Considering the
construction of Ap(Γ ), we treat the cases of Table 1 first and deal with the
case of K-saturated Γ last. Cases in rows 1–2 of Table 1 are trivial. Those in
rows 3, 4, and 6 are similar (see [10]), so we only discuss row 5:

Let Γ = Γ ′{□φ}σ, and Ap
(
Γ ′{□φ, [φ]σn}

)
≡

m

7
i=1

(
σn : δi 6 6

τ ̸=σn
τ : γi,τ

)
for

some σn /∈ L(Γ ), and

M, I |=
m

7
i=1

(
σ : □δi 6 6

τ ̸=σn
τ : γi,τ

)
. (2)

For any v with I(σ)Rv, define a multiworld interpretation Iv := I ⊔ {(σn, v)}
of Γ ′{□φ, [φ]σn} into M. By (2) we have, for each i, either M, Iv(τ) |= γi,τ for
some τ ∈ L(Γ ) or M, Iv(σn) |= δi, meaning that M, Iv |= Ap(Γ

′{□φ, [φ]σn}).
By the induction hypothesis, M, Iv |= Γ ′{□φ, [φ]σn} whenever I(σ)Rv. Clearly,
M, I |= Γ if M, I(σ) |= □φ. Otherwise there exists a v such that I(σ)Rv and
M, v ̸|= φ. For this world M, Iv |= Γ ′{□φ, [φ]σn} implies M, Iv |= Γ ′{□φ}σ,
which yields M, I |= Γ because Iv agrees with I on all labels from Γ .

Finally, for the case when Γ is K-saturated, let M, I |= Ap(Γ ) from (1).
Clearly, M, I |= Γ if we have M, I(σ) |= ℓ for some σ : ℓ ∈ Γ . Thus, it remains
to consider the case when M, I(τ) |= ♢Aform

p

(∨
τ :♢ψ∈Γ ψ

)
for some τ ∈ L(Γ ).
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I(σ)

v

Mv

I(σn)
I(σm)

Mw

in M

I′(σ)

ρσ,v

Nσ,v

I′(σn)

Mw

I′(σm)

Mc
w

in M′

⇝

Fig. 2.Main transformations for constructing modelM′: circles are worlds in Range(I).

Then M, v |= Aform
p

(∨
τ :♢ψ∈Γ ψ

)
for some v such that I(τ)Rv and, accord-

ingly, M,J |= Ap
(∨

τ :♢ψ∈Γ ψ
)
for J := {(1, v)}. By induction hypothesis (for a

smaller d), M,J |=
∨
τ :♢ψ∈Γ ψ, and, hence, M, v |= ψ for some τ : ♢ψ ∈ Γ . Now

M, I |= Γ follows from I(τ)Rv. This case concludes the proof for BNUIP(ii).

It only remains to prove BNUIP(iii)′. Let I be a multiworld interpretation
of Γ into a K-model M such that M, I ̸|= Ap(Γ ). We must find another multi-
world interpretation I ′ into some K-model M′ such that (M′, I ′) ∼p (M, I) and
M′, I ′ ̸|= Γ . We construct M′ and I ′ while simultaneously proving BNUIP(iii)′

by induction on the lexicographic order (d,≪).

Let Γ be K-saturated and M, I ̸|= Ap(Γ ) for Ap(Γ ) from (1). The following
steps are schematically depicted in Fig. 2 (see [10] for more details).

(1) First, we make the interpretation injective. It is easy to see (though tedious
to describe in detail) that by a breadth-first recursion on nodes σ in Γ ,
one can duplicate MI(σn) according to Def. 12 whenever I(σm) = I(σn)
for some n < m to obtain a model N and an injective multiworld inter-
pretation J of Γ into it such that (N ,J ) ∼p (M, I). Thus, J (σ) ̸= J (τ)
whenever σ ̸= τ and N ,J ̸|= Ap(Γ ) by Lemma 26.

(2) Then we deal with out-of-range children. A model N ′ is constructed from N
by applying the following ♢-processing step for each node τ ∈ L(Γ ) that
contains at least one formula of the form ♢φ (nodes can be chosen in any
order). Start by setting N 0 := N and j := 0:
• ♢-processing step for τ : Since N j ,J ̸|= Ap(Γ ), it follows from (1) that

N j ,J (τ) ̸|= ♢Aform
p

(∨
τ :♢ψ∈Γ ψ

)
. Thus, N j , v ̸|= Aform

p

(∨
τ :♢ψ∈Γ ψ

)
for

each child v of J (τ) in N j , and, accordingly, N j
v , Iv ̸|= Ap

(∨
τ :♢ψ∈Γ ψ

)
for

the multiworld interpretation Iv := {(1, v)} of sequent
∨
τ :♢ψ∈Γ ψ into the

subtree N j
v of N j with root v. By the induction hypothesis for a smaller d,

there exists a K-model Nτ,v with root ρτ,v such that (N j
v , v) ∼p (Nτ,v, ρτ,v)

and Nτ,v, ρτ,v ̸|=
∨
τ :♢ψ∈Γ ψ. Let N j+1 be the result of replacing each sub-

tree N j
v for children v of J (τ) not in Range(J ) with Nτ,v in N j according

to Def. 12. Note that all these subtrees are disjoint because the models are
intransitive trees and, hence, these replacements do not interfere with one
another. Note also that since Range(J ) is downward closed and the roots
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of the replaced subtrees are outside, no world from the range is modified.
Thus, J remains an injective interpretation into N j+1. Finally, it follows
from Lemma 13 that (N j ,J ) ∼p (N j+1,J ). Hence, N j+1,J ̸|= Ap(Γ ).
Let N ′ = (W ′, R′, V ′) be the model obtained after replacements for all τ ’s
are completed (again they do not interfere with each other). Then we have
(N ,J ) ∼p (N ′,J ) and, for each out-of-range child v of J (τ) in N , the
world ρτ,v is a child of J (τ) in N ′ and N ′, ρτ,v ̸|=

∨
τ :♢ψ∈Γ ψ. This accounts

for all children of J (τ) in N ′.
(3) It remains to adjust the truth values of p. We define M′ := (W ′, R′, V ′

p) by
modifying the valuation V ′ of N ′ as follows. We define V ′

p(q) := V ′(q) for
q ̸= p. And for q = p we define:

V ′
p(p) := V ′(p) ∩

(
W ′ \ Range(J )

)
⊔ {v ∈W ′ | ∃σ(v = J (σ)&σ : p ∈ Γ )}.

For I ′ := J , it immediately follows from the definition that

M′, I ′(σ) ̸|= p if σ : p ∈ Γ and M′, I ′(σ) ̸|= p if σ : p ∈ Γ. (3)

Moreover, since subtrees M′
ρτ,v are disjoint from Range(I ′),

M′, ρτ,v ̸|= ψ whenever τ : ♢ψ ∈ Γ . (4)

After these 3 steps, we have a model (M′, I ′) ∼p (N ′,J ) ∼p (N ,J ) ∼p (M, I)
that satisfies (3) and (4). It remains to prove that M′, I ′ ̸|= Γ by showing that
M′, I ′(σ) ̸|= φ for all σ : φ ∈ Γ , which is done by induction on the structure
of φ. Each case, except for the ♢ case is easy (see [10]). So, let σ : ♢ψ ∈ Γ .
To falsify ♢ψ at I ′(σ), we need to show that M′, u ̸|= ψ whenever I ′(σ)R′u.
If u = I ′(σn) for some label σn ∈ L(Γ ), saturation ensures that σn : ψ ∈ Γ ,
hence, M′, u ̸|= ψ by the induction hypothesis. The only other children of I ′(σ)
are u = ρσ,v, for which M′, u ̸|= ψ follows from (4). This completes the proof
of BNUIP(iii)′ for K-saturated sequents.

To conclude the proof of BNUIP(iii)′, we have to treat all sequents that are
not K-saturated based on Table 1. Here, the only non-trivial case is the □ case.
The other cases are easy (see [10]). Assume M, I ̸|= Ap(Γ

′{□φ}σ), i.e.,

M, I ̸|=
m

7
i=1

(
σ : □δi 6 6

τ ̸=σn
τ : γi,τ

)
(5)

where

Ap
(
Γ ′{□φ, [φ]σn}

)
≡

m

7
i=1

(
σn : δi 6 6

τ ̸=σn
τ : γi,τ

)
. (6)

By (5), for some i we have M, I(σ) ̸|= □δi and M, I(τ) ̸|= γi,τ for all τ ̸= σn.
The former means that M, v ̸|= δi for some v such that I(σ)Rv. Therefore,
a multiworld interpretation J := I ⊔ {(σn, v)} of Γ ′{□φ, [φ]σn} into M falsi-
fies (6), and, by the induction hypothesis, there is a multiworld interpretation J ′

into a K-model M′ such that (M′,J ′) ∼p (M,J ) and M′,J ′ ̸|= Γ ′{□φ, [φ]σn}.
For I ′ := J ′ ↾ Dom(I), we have (M, I) ∼p (M′, I ′) and M′, I ′ ̸|= Γ ′{□φ}σ
because all formulas from Γ ′{□φ}σ are present in Γ ′{□φ, [φ]σn}. ⊓⊔
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Table 2. Additional recursive rules for constructing Ap(Γ ) for Γ that are not
T-saturated (top row) or not D-saturated (bottom row).

Γ matches Ap(Γ ) equals

Γ ′{♢φ} in logic T Ap(Γ
′{♢φ,φ})

Γ ′{♢φ}σ in logic D
m

6
i=1

(
σ : ♢δi 7 7

τ ̸=σ1
τ : γi,τ

)
where the SDNF of

Ap(Γ
′{♢φ, [φ]σ1}) is

m

6
i=1

(
σ1 : δi 7 7

τ ̸=σ1
τ : γi,τ

)

Example 32. As shown in Example 29, Ap(□p,□p) = 1 : □⊥. To see the im-
portance of injectivity in BNUIP(iii)′, suppose M, I ̸|= 1 : □⊥, i.e., I(1) has at
least one child. Assume this is the only child, as in a model depicted on the left:

I(1) J (1)

J (11)
J (12)

For a saturation □p,□p, [p]11, [p]12 of this sequent, we found an interpolant
in SCNF: namely, 1 : ⊥ 6 11 : ⊥ 6 12 : ⊥. A multiworld interpretation J
mapping both 11 and 12 to the only child of J (1) := I(1) yields the picture
on the right. Clearly, the SCNF is false, M,J ̸|= 1 : ⊥ 6 11 : ⊥ 6 12 : ⊥. But,
without forcing J to be injective, it is impossible to make □p,□p false at J (1):
whichever truth value p has at J (11), it makes one of the boxes true.

3.2 Uniform interpolation for D and T

The proof for K can be adjusted to prove the same result for D and T.

Theorem 33. The nested sequent calculi ND and NT have the BNUIP.

Proof. We follow the structure of the proof in Theorem 31 and only describe
deviations from it. If Γ is not D-/T-saturated, then cases in Table 1 are appended
with the bottom (top) row of Table 2, which is applied only if ♢φ is not D-/T-
saturated in Γ . For D-/T-saturated Γ , define Ap(Γ ) by (1) as before. BNUIP(i) is
clearly satisfied by either row in Table 2.

Let us first show BNUIP(ii) for NT. Although T-models are reflexive, this
does not affect the reasoning for either saturated sequents or non-saturated
box formulas. The only new case is applying the top row of Table 2 to a
non-T-saturated σ : ♢φ in Γ . AssumeM, I |= Ap(Γ

′{♢φ,φ}σ) for a T-modelM.
By the induction hypothesis, M, I |= Γ ′{♢φ,φ}σ. Since M, I(σ) |= φ implies
M, I(σ) |= ♢φ by reflexivity, the desired M, I |= Γ ′{♢φ}σ follows.
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For BNUIP(iii)′ for T-saturated sequents, we have to modify the construc-
tion in step (1) on p. 12 of an injective multiworld interpretation J into a new
T-model N out of the given I into M where M, I ̸|= Ap(Γ ). In the case of K,
there could be only one situation of σm conflated with some already processed τ :
namely, when τ = σn is a sibling. This can still happen for T-models and is pro-
cessed the same way. But, due to reflexivity, there is now another possibility:
conflating with the parent τ = σ. In this case, cloning is used instead of du-
plication, which produces a bisimilar T-model by Lemma 13. Having reflexive
rather than irreflexive intransitive trees in step (2) on p. 12 does not affect the
argument. The proof that M′, I ′ ̸|= Γ for the given T-saturated Γ in step (3) on
p. 13 requires an adjustment only for the case of σ : ♢ψ ∈ Γ : it is additionally
necessary to show that M′, I ′(σ) ̸|= ψ for the reflexive loop at I ′(σ). This is
resolved by observing that σ : ψ ∈ Γ due to T-saturation and, hence, ψ must
also be false in I ′(σ) by the induction hypothesis.

Finally, for BNUIP(iii)′ for non-T-saturated sequents, a new case comes from
the top row of Table 2, but M′, I ′ ̸|= Γ ′{♢φ,φ} obtained by the IH directly im-
plies M′, I ′ ̸|= Γ ′{♢φ}. This completes the proof of the BNUIP for NT.

For BNUIP(ii) for ND, the only new case is applying the bottom row of
Table 2 to a non-D-saturated σ : ♢φ in Γ = Γ ′{♢φ}σ. So let us assume

M, I |=
m

6
i=1

(
σ : ♢δi 7 7

τ ̸=σ1
τ : γi,τ

)
for some multiworld interpretation I into

a D-model M = (W,R, V ) such that the SDNF of Ap(Γ
′{♢φ, [φ]σ1}) equals

m

6
i=1

(
σ1 : δi 7 7

τ ̸=σ1
τ : γi,τ

)
. Therefore, for some i we have M, I(τ) |= γi,τ for

all τ ∈ L(Γ ) and M, I(σ) |= ♢δi. Therefore, M, v |= δi for some v such
that I(σ)Rv. Formula ♢φ is not D-saturated in Γ ′{♢φ}σ, so Iv := I ⊔ {(σ1, v)}
is a multiworld interpretation of Γ ′{♢φ, [φ]σ1} into M. Moreover, we have
M, Iv |= Ap(Γ

′{♢φ, [φ]σ1}). By induction hypothesis, M, Iv |= Γ ′{♢φ, [φ]σ1},
from which it easily follows that M, I |= Γ ′{♢φ}σ.

For BNUIP(iii)′ for a D-saturated sequent Γ , we change step (1) in such a way
that not only is the multiworld interpretation J injective, but Range(J ) con-
tains only irreflexive worlds. Injectivity is obtained in a similar way as done for T
using duplication and cloning to obtain a bisimilar D-model M′′ by Lemma 13
with injective multiworld interpretation, say J . So (M′′,J ) ∼p (M, I), with in-
jective J . To ensure that the multiworld interpretation only maps to irreflexive
worlds, we repeatedly unravel subtrees rooted in reflexive worlds from Range(J )
while keeping the same multiworld interpretation J . Since each unraveling de-
creases the number of reflexive worlds in Range(J ), this process terminates yield-
ing a modelM′ that is a D-model and satisfies (M′,J ) ∼p (M, I) by Lemma 13.
The replacements of step (2) preserve D-models by Lemma 13 and step (3) re-
quires no changes either. Note that in steps (2) and (3) we do not change the
range of I ′ := J , so it still only maps to irreflexive worlds. We need this con-
struction in the proof that M′, I ′ ̸|= Γ for case σ : ♢ψ ∈ Γ , where the argument
for M′, I ′(σ) ̸|= ♢ψ now works the same way as in K since I ′(σ) is irreflexive by
construction.
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The only remaining new case is the application of the bottom row of Ta-
ble 2 for a non-D-saturated σ : ♢φ, i.e., when node σ is a leaf of the se-

quent tree, in BNUIP(iii)′. Let M, I ̸|=
m

6
i=1

(
σ : ♢δi 7 7

τ ̸=σ1
τ : γi,τ

)
. By seriality

of M, there is a world v ∈ W such that I(σ)Rv. Then J := I ′ ⊔ {(σ1, v)}
is a multiworld interpretation of Γ ′{♢φ, [φ]σ1} into M. Moreover, we have

M,J ̸|=
m

6
i=1

(
σ1 : δi 7 7

τ ̸=σ1
τ : γi,τ

)
. By induction hypothesis, there is a mul-

tiworld interpretation J ′ of Γ ′{♢φ, [φ]σ1} into some D-model M′ such that
(M′,J ′) ∼p (M,J ) and M′,J ′ ̸|= Γ ′{♢φ, [φ]σ1}. Similar to the case of □φ
for K, restricting this J ′ to the labels of Γ yields a multiworld interpretation
bisimilar to I and refuting Γ = Γ ′{♢φ}σ. ⊓⊔

Corollary 34. Logics K, D, and T have the uniform interpolation property.

4 Conclusion

We developed a constructive method of proving uniform interpolation based on
nested sequent calculi. While this is an important and natural step to further uti-
lize these formalisms, much remains to be done. This method works well for the
non-transitive logics K, D, and T but meets with difficulties, e.g., for S5, which
is also known to enjoy uniform interpolation. In [10], we successfully adapted
the method to hypersequents to cover S5. There are other logics in the so-called
modal cube between K and S5 with the UIP, for which it remains to find the right
formalism and adaptation of our method. Another natural direction of future
work is intermediate logics, where exactly seven logics are known to have the UIP.
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