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 18 

Modelling the air pollutant concentrations within-vehicles is an essential step to estimate our 19 

daily exposure to air pollution. This is a challenging issue however, since the processes that affect the 20 

exposures within-vehicles change with different driving patterns and ventilation settings. This study 21 

introduces an innovative approach that combines mass-balance principles and machine learning 22 

techniques, leveraging ambient air quality, on-road and within-vehicle measurements of particulate 23 

matter (PM10, PM2.5, PM1), nitrogen dioxide (NO2), nitrogen oxides (NOx), aerosol lung surface 24 

deposited area (LSDA) and ultrafine particles (UFP) under different ventilation settings to estimate air 25 

pollution exposure levels within vehicles. The first model (MB) includes basic physical and chemical 26 

processes and follows a mass-balance approach to estimate the within-vehicle concentrations. The 27 

second model (ML) applies data driven machine learning algorithms to a training set of observations 28 

to predict unseen within-vehicle concentrations. By using a number generator, the whole 29 
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observational dataset was divided to 80:20 and 80% was used to build and train the ML model, while 30 

20% was used for validation. Both models demonstrated good predictions of observations apart from 31 

an underestimation in UFP and LSDA. The ML model showed better predictive power than the MB 32 

model and had skill in predicting the unseen within-vehicle exposures. The ML model predictions were 33 

as good as the MB model for most of the species and improved for NO2. The ML model demonstrated 34 

good index of agreement (IOA > 0.69) and Pearson correlation coefficient (r > 0.80) for all the species. 35 

The inclusion of air quality data from nearby monitoring stations instead of on-road (sampled while 36 

driving), in the ML model showed promising and new capabilities to within-vehicle exposure 37 

predictions.  In an era where air pollution is a growing concern, understanding and predicting within-38 

vehicle air pollution exposure is of great importance for public health and environmental research. 39 

This research not only advances the field of exposure assessment but (at no extra cost) also 40 

demonstrates practical implications for real-time exposure mapping and health impact assessment of 41 

vehicle occupants with existing infrastructure. 42 

 43 

Keywords: within-vehicle cabin modelling, daily exposure, air pollution, machine learning, indoor air 44 

quality 45 

 46 

Introduction 47 

Road traffic is the dominant source of nitrogen dioxide (NO2) and a significant contributor to 48 

particulate matter (PM10, PM2.5, PM1 and ultrafine particles – UFP) in the atmospheres of urban 49 

environments. Numerous studies have highlighted the relationship between traffic related air 50 

pollution and adverse health effects such as cardiopulmonary disease, respiratory symptoms, reduced 51 

lung function changes in cardiac function and increased lung cancer risk (Adam et al., 2015; Hamra et 52 

al., 2015; IARC, 2014; Heal et al., 2012; Atkinson et al., 2010; De Hartog et al., 2010; Delfino et al., 53 

2005). The road traffic dominance of many primary air pollutant emissions in urban areas leads to 54 

strong roadside concentration increments relative to urban background and rural areas (Harrison, 55 

2018).  56 

The interior of vehicles represents a further microenvironment where exposure to traffic 57 

related air pollution can occur, enhanced or reduced relative to the roadside environment, moderated 58 

through air exchange with the ambient environment, and within-vehicle sources, physical and 59 

chemical processing which can affect species concentrations. The significance of within-vehicle 60 

exposure varies with travel mode, environment, duration and personal commuting behaviour. In the 61 
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UK, there are approximately 32 million registered full driving license holders, of which 6% are 62 

professional drivers (DfT, 2017) who may be subject to particularly extended and elevated exposures 63 

of within-vehicle air pollution (Frederickson et al., 2020). Previous studies measuring exposure inside 64 

vehicles have found within-vehicle concentrations of PM2.5 to be a factor of 2-3 larger than in other 65 

transport modes (e.g. De Nazelle et al., 2012; Zuurbier et al., 2010; Kumar et al., 2018), while BC and 66 

NO2 levels inside cars can be 4.5 and 1.4 times greater than ambient concentrations (Delgado-Saborit, 67 

2012). Other studies investigated the impact of ventilation settings on within-vehicle exposure and 68 

found that exposure was highly dependent on the air intake, vehicle age and air leaks (Kumar et al., 69 

2021; Martin et al., 2016; Hudda et al., 2012; Knibbs et al., 2010). To inform policies, studies have also 70 

identified filtration media and usage as important factors that can help reduce within-vehicle 71 

exposures (Hachem et al., 2021; Lim et al., 2021; Matthaios et al., 2023a; Matthaios et al., 2023b). 72 

Limited studies have also directly compared pollutant levels within-vehicle with those immediately 73 

outside/adjacent to the vehicle, for both particulate and gaseous species highlighting the potentially 74 

greater health impact of NO2 over PM exposure (Yamada et al., 2016). However, measuring within-75 

vehicle exposure to air pollution with direct certified methods is very expensive and challenging and, 76 

given that it needs continuous monitoring, only offers a snapshot of the actual exposures. Therefore, 77 

alternative indirect approaches, such as the modelling that utilize already available air quality 78 

measurements from monitoring sites need to be explored.  79 

Knowing that transport microenvironments represent on average 6% of our time, but account 80 

for 26% of daily total BC exposure (Dons et al., 2011); modelling the within-vehicle concentrations is 81 

an important step to assess and hence minimize personal air pollution exposure. Vehicle use changes 82 

not only from region to region but also due to meteorological conditions (e.g. more people may 83 

commute by car under cold weather). This increase in vehicle use results in more vehicle emissions 84 

not only due to the higher number of vehicles on road, but also due to the way their after-treatment 85 

abatement technologies work under cold weather (Matthaios et al., 2019). In turn these elevated 86 

vehicle emissions can result in greater exposure for vehicle occupants, depending upon ventilation 87 

and filtration media choices. 88 

In light of the range of potential implications of improving the air quality in one of the most 89 

common microenvironments, and to provide new capabilities in real-time predicting and regulating 90 

the exposure of vehicle occupants, this study reports the development of two innovative and 91 

complementary approaches to simulate within-vehicle passenger exposure to air pollutants as a 92 

function of outside (ambient) levels and vehicle ventilation conditions. The first approach involves the 93 

development of a mass-balance (MB) model, which explicitly represents the aforementioned 94 

(predominant) physical and chemical processes which drive changes in within-vehicle air pollutant 95 
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abundance. The second approach uses machine-learning algorithms (ML model), which seek to 96 

replicate the observed within-vehicle data based upon a training set of observations of internal and 97 

external (outside, ambient) pollutant concentrations, and which does not include any mechanistic 98 

representation. The results from the MB model are compared with time series measurements of 99 

within-vehicle concentrations, while the results from the ML model are compared with a subset of 100 

observations which were excluded from the training dataset. The performance of both models in 101 

estimating within-vehicle air pollution exposure is evaluated using two contrasting measures of 102 

outside (ambient) pollutant levels: (i) observations obtained directly outside the test vehicles and (ii) 103 

observations from roadside air quality monitoring stations within the same locality as the vehicle, but 104 

at some distance away from its immediate location.  The objective of this study is not only to evaluate 105 

the effectiveness of this approach but to unveil its far-reaching implications for real-time exposure 106 

mapping, health impact assessment, and policy development. 107 

 108 

2. Methods 109 

 110 

2.1 Measurements, tested vehicles and ventilation conditions 111 

Model development and validation was supported by measurements of NO, NO2, O3, PM10, 112 

PM2.5, PM1, ultrafine particle number (UFP) and aerosol lung surface deposited area (LSDA), which 113 

were performed concurrently within vehicle cabins (in the breathing zone of the driver) and directly 114 

outside (at the side window of) the tested vehicle. CO2 measurements were performed with two LICOR 115 

LI-820 infra-red analysers, NOx (NO + NO2) with chemiluminescent 42i and 42C thermo-scientific 116 

analysers, O3 with 49i thermo-scientific analysers, PM with alphasense OPC-N2, and UFP/LSDA with 117 

DiSCmini. Temperature and relative humidity were also measured inside the vehicle cabin using HOBO 118 

sensors. Measurements were performed during two periods in 2017 in four study vehicles (see Table 119 

1) in Birmingham (UK). Five core ventilation settings were investigated and a sixth setting was applied 120 

in two out of four vehicles: (a) front windows (of driver and co-driver) fully open, fans and AC off, (b) 121 

all windows closed; ventilation fans on (c) all windows closed; ventilation fans on with air-conditioning 122 

(AC) (d) all windows closed, ventilations fans on, recirculation mode (no AC) (e) all windows closed, 123 

ventilation fans on, recirculation mode, AC on (in two vehicles) and (f) all windows closed, ventilation 124 

system off. Fan power (air flow setting) was varied in some vehicles as outlined later.  Details of the 125 

sampling campaign and quality assurance of the measurements are discussed elsewhere (Matthaios 126 

et al., 2020).  127 

  128 
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 129 

Vehicle characteristics Ford Focus Vauxhall Insignia Hyundai i800 Ford Transit 

Vehicle type Estate Estate 9 seater van Closed cabin van 

Model year 2013 2016 2017 2009 

AC Yes Yes Yes No 

Estimated cabin 

volume (m3) 

11.66 13.27 19.03 2.813 

Estimated cabin 

geometric surface 

area (m2) 

34.04 37.92 47.02 14.59 

Internal cabin 

surface:volume ratio 

2.92 2.86 2.47 5.19 

Air filter (as supplied) Pollen Pollen Pollen None 

Table 1. Vehicles and their characteristics used in this study. 130 

 131 

2.2 Description of within-vehicle processes and modelling 132 

Physical air exchange processes are represented schematically in Figure 1. These give rise to 133 

an overall cabin air exchange rate from a combination of active ventilation options, passive in-built 134 

ventilation and/or leaks.  The introduction of ambient pollutants may be further modified by filtering 135 

(in the case of the ventilation system). These physical processes may be described by the parameters 136 

summarised in Table 2. Considering mechanical flow alone, under recirculatory ventilation conditions, 137 

Qleakin = Qleakout and Qvent = 0, while under non-recirculatory ventilation settings, Qvent + Qleakin = Qleakout 138 

and Qrecirc = 0. The penetration (or removal) of air pollutants through each cabin entry mechanism can 139 

be represented by a dimensionless filtration efficiency, f, which represents the fraction of a given 140 

pollutant removed by each entry process. Deposition characterises the rate at which pollutants have 141 

losses to surfaces.  142 

 143 

 144 

 145 

Table 2. Parameters describing the physical processes inside the vehicle cabin. Note that windows 146 

open is considered as a ventilation setting with associated values for Qvent and Qleakin. 147 
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Process Parameter Nature Units Value Used 

Ambient air entering 

through ventilation 

system 

Qvent Flow rate m3 h-1 Vehicle & ventilation 

setting specific 

Recirculation flow 

through the 

ventilations system 

Qrecirc Flow rate m3 h-1 Vehicle & ventilation 

setting specific 

Leakage: Ambient air 

into cabin 

Qleakin Flow rate m3 h-1 Vehicle specific 

Leakage: Ambient air 

in and out of cabin 

Qleakout Flow rate m3 h-1 Vehicle specific 

Occupant 

Respiration 

Qresp Flow rate m3 h-1 Fixed value used for all 

simulations (2 occupants 

assumed) 

Fraction of air 

pollutant species 

removed from 

ventilation system 

inflow (non-

recirculatory) 

fvent  Dimensionless Species specific – flow 

rate dependent 

Fractions of air 

pollutants species 

removed during 

recirculation 

frecirc  Dimensionless Species-specific values 

used, recirculation flow 

rate dependent 

Fraction of air 

pollutant species 

removed during leak 

in (penetration) 

fleakin  Dimensionless Species-specific values 

used 

Fraction of pollutants 

lost through 

respiration 

𝑅𝐷𝑝 Fraction of 

air pollutants 

removed 

during 

inhalation/ex

halation 

Dimensionless Species-specific values 

used (two occupants 

assumed) 
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Losses through 

surface deposition

  

DpO3 

DpNO  

DpNO2 

Species 

deposition 

rate 

coefficient

  

h-1 Species-specific values 

used 

Vehicle volume V volume m3 Vehicle specific 

 148 

 149 

 150 

 151 

Figure 1. Schematic representation of the principal physical air exchange processes inside a typical 152 

vehicle cabin with windows closed. 𝑓𝑓𝑖𝑙𝑡𝑒𝑟: filtration of air supply via cabin air filter; 𝑄𝑣𝑒𝑛𝑡: ventilation 153 

supplied flow (blue arrow). 𝑄𝑟𝑒𝑐𝑖𝑟𝑐: recirculated supplied flow (orange arrow). 𝑄𝑟𝑒𝑠𝑝: occupant 154 

breathing rate;  𝐷𝑝: deposition; 𝑓𝑙𝑒𝑎𝑘𝑖𝑛: penetration/leaks of outside pollutants inside and vehicle 155 

leaks 𝑄𝐿𝑖𝑛𝑎𝑛𝑑 𝑄𝐿𝑜𝑢𝑡: vehicle leaked flows in and out of the cabin. 156 

 157 

2.3. Mass balance modelling approach (MB) 158 

2.3.1 Mechanism 159 

The mass balance (MB) model developed in this study predicts air pollutant concentrations 160 

within vehicles taking into account the physical processes illustrated in Figure 1 and a representation 161 

of the gas-phase NOx-O3 photostationary steady state chemistry; no other physical or chemical 162 
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processes are considered here. For a given time interval, the MB model defines the rate of change of 163 

the within-vehicle air pollution concentration (following Xu and Zhu, 2009; Knibbs et al., 2010) as 164 

arising from the sum of pollutant inflow from outside (ambient) air, adjusted for filtration factors, 165 

pollutant outflow from the vehicle (both ventilation dependent), cabin surface and occupant 166 

inhalation deposition, and photochemical formation and removal (for NOx - O3).  Air is assumed to be 167 

instantaneously homogeneously mixed within the vehicle cabin. No chemical processing of PM is 168 

considered. The mathematical equation for the MB model is given in Eq (1): 169 

 170 

𝑑(𝐶𝑖𝑛𝑗𝑉)

𝑑𝑡
= 𝐶𝑜𝑢𝑡𝑗 [ 𝑄𝑣𝑒𝑛𝑡(1 − 𝑓𝑣𝑒𝑛𝑡) +  𝑄𝐿𝑖𝑛𝑓𝑙𝑒𝑎𝑘𝑖𝑛𝑗

] −  𝐶𝑖𝑛𝑗[𝑄𝑟𝑒𝑠𝑝𝑅𝐷𝑝 +  𝐷𝑝𝑗𝑉 + (𝑄𝑣𝑒𝑛𝑡 +171 

 𝑄𝐿𝑜𝑢𝑡) + ∑ 𝑅𝑖𝑗
𝑛
𝑗=1 ]                  [1], 172 

 173 

where 𝐶𝑖𝑛𝑗  is the j concentration inside the vehicle, 𝐶𝑜𝑢𝑡𝑗  is the j concentration outside the vehicle, 174 

𝑄𝑣𝑒𝑛𝑡  is the mechanical supply flow, 𝑄𝐿 is the leakage flow (in and out as indicated by the subscript), 175 

𝑄𝑟𝑒𝑠𝑝 is the respiratory breathing rate of the vehicle occupants, 𝑉 is the volume of the vehicle, 𝑓𝑣𝑒𝑛𝑡  176 

is the filtration efficiency, 𝑓𝑙𝑒𝑎𝑘𝑖𝑛𝑗
 is the leak of pollutants that enter the cabin through cracks 177 

(penetration factor), 𝑅𝐷𝑝 is the deposition rate coefficient of the respiratory system of vehicle 178 

occupants, 𝐷𝑝 is the deposition rate coefficient inside the vehicle, and 𝑅𝑖𝑗 represents the chemical / 179 

photochemical reactions (consumption and production) of species i and j. Equation (1) can be 180 

integrated numerically using a time-step approach, initial conditions and knowledge of the (time 181 

varying) outside concentrations. The different ventilation options are described in Table S1. For gases, 182 

only the NOx-O3 photostationary steady state reactions were included.  183 

 184 

 185 

 186 

2.3.2 Parameters and initial conditions for Mass Balance (MB) model 187 

 188 

Ventilation supply flow (𝑸𝒗𝒆𝒏𝒕): The supply flow is calculated by multiplying the number of 189 

vents that were used with the surface area of the air vent and the air flow speed. Within the model, 4 190 

vents with a constant size of 40 cm2 were assumed for all vehicles. For full fan power an air flow speed 191 

of 6 m s-1 was selected, while for intermediate fan power levels a value of 2.5 m s-1 was applied from 192 
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Xu and Zhu, (2009). The calculated mechanical flows were 346 m3 h-1, and 173 m3 h-1 for full and 193 

intermediate fan power levels respectively, while for the two front fully open windows a flow of 692 194 

m3 h-1 was used (assuming two-fold amplification of the fan full power; Ott et al.,2008; Knibbs et al., 195 

2009; Mathai et al., 2021). 196 

Leakage flow (𝑸𝑳𝒊𝒏; 𝑸𝑳𝒐𝒖𝒕): Leakage flow in and out of the vehicles is driven by the pressure 197 

difference between the interior and outdoor environment. The leakage flow depends on the 198 

ventilation settings, the vehicle characteristics, and the driving speed of the vehicle. Here leakage QL 199 

was based upon experiments measuring CO2 equilibrium inside 50 vehicle cabins as reported by Hudda 200 

et al., (2012), assuming a speed of 30 km/h as per Eq (2):  201 

 202 

ln(𝑄𝐿) = 2.79 + (0.019 × 𝑆) + (0.015 × 𝑣. 𝑎𝑔𝑒 + 3.3 ×  10−3𝑣. 𝑎𝑔𝑒2) + (−0.023 × 𝑉 +  6.6 ×203 

 10−5𝑉2) + 𝑚,                            [2] 204 

where, S is the vehicle speed, V is the volume of the cabin, v.age is the vehicle’s age and m is 205 

the manufacturer adjustment (Hudda et al., 2012).  206 

Human Respiratory inhalation flow (𝑸𝒓𝒆𝒔𝒑): The Inhalation flow represents the breathing rate 207 

of the vehicle occupants. A breathing rate of 1.38 m3 h-1 for males and 1.16 m3 h-1 for female according 208 

to the study of Adams, (1993) was used (to match vehicle occupation during the measurements). 209 

Exhalation is a very small source for the (non-VOC) species considered here and may be neglected for 210 

most air pollutants (Knibbs et al., 2011). 211 

Respiratory deposition coefficient (𝑹𝑫𝒑): Respiratory deposition is the net loss of particles in 212 

the human respiratory system. Here, the respiratory deposition coefficient can be considered 213 

analogous to filtration efficiency, where it represents the fractional loss of pollutant species during 214 

breathing. For UFP and LSDA (median measured value of 50 nm) we adopted the 𝑅𝐷𝑝 from Hinds, 215 

(1999) for light exercise (0.55): For PM10 and PM2.5 the equivalent 𝑅𝐷𝑝 is 0.65 while for PM1 it is 0.55. 216 

For NO and NO2 a respiratory deposition coefficient of 0.67 as reported in Postlethwait and Bidani, 217 

(1990) was used. 218 

Deposition rate coefficient (𝑫𝒑): Dry deposition is a surface loss mechanism inside vehicles 219 

(Thutcher et al., 2002). Deposition rate coefficients differ between within-cabin and indoor 220 

microenvironments, as air exchange rates are much greater inside vehicles (Ott et al., 2007; Knibbs et 221 

al., 2010; Hudda et al., 2012) comparing to buildings (Yamamoto et al., 2010) if there is no indoor 222 

particle source. For UFP and LSDA (50nm size) we used the fixed deposition rate coefficient of 10 h-1, 223 

as in Gong et al., (2009). This value was applied for two reasons: 1) the mean size of our UFP and LSDA 224 

for particles was 50 nm which is possibly due to the nature of the particles (i.e. coming from diesel 225 

exhaust) and 2) the deposition rate for particles  in the range of 100 – 30 nm in the observational study 226 
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of Gong et al., 2009 showed little variation from deposition rate spanning from 9.5 – 11.5 h-1. For PM 227 

deposition values in Table 3 for different ventilation options we used the values provided by Ott et al., 228 

(2007). For NO and NO2 we used values from Nazaroff and Cass, (1987) for indoor NO2 decay rates in 229 

a house. Values were applied to all study vehicles. 230 

Ventilation filtration efficiency (𝒇𝒗𝒆𝒏𝒕): The filtration efficiency is how well the vehicle’s air 231 

filtration system removes pollutants in the incoming airflow.  This filtration efficiency varies for PM10 232 

and PM2.5 depending on the experimental conditions and filter characteristics. However, since the 233 

filtration efficiency was not tested in this study, values from Qi et al., (2008), who tested vehicle 234 

particle filter efficiency in two different velocities representing low and full power fan settings, were 235 

adopted (see Table 3). Pollen filter efficacy of 0.10 based on Matthaios et al., (2023a) was applied for 236 

gases, as none of the test vehicles had activated charcoal filtration for NO2 removal (three of the 237 

vehicles were equipped with pollen filters and one had no filter). 238 

Fraction of species removed during leak in (penetration) 𝒇𝒍𝒆𝒂𝒌𝒊𝒏: fleak determined the 239 

transmission efficiency for pollutants during leak entry to the vehicle. The values of fleak for each 240 

particle size used in this study are summarized in Table 3 and were adjusted from indoor air quality in 241 

buildings (Chen and Zhao, 2011). It has to be noted here that no factors could be found gaseous 242 

species therefore we assumed an equivalent behaviour to fine particles (PM2.5). 243 

Reaction and Photolysis rates: The only reactions considered here are the (overall) 244 

photostationary steady state reactions of 𝑁𝑂2 + ℎ𝑣 → 𝑁𝑂 + 𝑂, 𝑁𝑂 +  𝑂3  → 𝑁𝑂2 + 𝑂2 and 𝑂 +245 

 𝑂2 + 𝑀 → 𝑂3 + 𝑀.  The NO + O3 reaction rate constant was calculated using the Arrhenius 246 

expression with the measured temperatures within-cabin, and the O + O2 recombination reaction was 247 

assumed to be instantaneous. The photolysis frequency varies based on the window design, vehicle 248 

orientation and incident sunlight (time, location). These variations can result in differences in the 249 

experienced actinic flux (Carslaw, 2007). A ratio of photolysis frequencies of 1:10 for 250 

j(NO2)indoor:j(NO2)outdoor values reported in Carslaw, (2007) for buildings was used. The corresponding 251 

outdoor photolysis rates j(NO2) outdoor were taken from the TUV model (Madronich, 1993) for each 252 

measurement time / location, assuming clear-sky conditions. 253 

The model was used to simulate the time-varying within-cabin pollutant concentrations for 254 

each vehicle, and each ventilation setting. This typically corresponded to a total run-time of 35 255 

minutes, using a model timestep of 1 second. The timescale for PSS reactions is approximately 50s 256 

(under typical continental boundary layer daytime conditions), while the typical air residence time 257 

inside the vehicle can be as little as 16s (for an inflow of 0.192 m3/s under windows open) and 31s and 258 

63s (for an inflow of 0.096 m3/s and 0.048 m3/s under full and intermediate fan power ventilation 259 

settings respectively). In each case, outside pollutant concentrations were set to their actual 260 
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(measured, time-varying) levels. The model was initiated with actual measured within-cabin pollutant 261 

concentrations.  262 

 263 

Table 3: Parameters used for the Eq (1), (2) and (3); a) from Ott et al., 2008, b) Calculated in the study, 264 

c) Values from Gong et al., (2009) for the median UFP (50nm) size in this study d) Values from Nazaroff 265 

and Cass, (1987) for indoor NO2 decay rates in a house e) Values from Thatcher et al., (2003), f) Values 266 

from Williams et al., (2003), g) average value from the studies reported in Chen and Zhao, (2011), h) 267 

According to light exercise and sitting from Hinds (1999) for UFP size 50nm, i) Postlethwait and Bidani, 268 

(1990) j) Values from Qi et al., (2008); +: Values used for Windows open, ++: Values used for Fan on, 269 

AC on, +++: Values used for All closed, Recirculation on; *: Full fan power, **: Low fan power; ‡: No 270 

filter efficiency was applied none of the cars was equipped with charcoal filter. 271 

Species Deposition rate 

coefficient (Dp) 

Penetration 

factor (P) 

Respiratory deposition 

coefficient (RDp) 

Filter efficiency 

(f.ef) 

PM10 123.76b+, 27.03b++, 

13.26b+++ 

0.6e 0.65h 0.8j*, 0.6j** 

PM2.5 72.8a+,15.9a++,7.8a+++ 0.72f 0.65h 0.65j*, 0.45j** 

PM1 54.82b+,11.93b++, 

5.85b+++ 

0.8g 0.55h 0.4j 

UFP 10c 0.8g 0.55h 0.25j 

LSDA 10c 0.8g 0.55h 0.25j 

NO2 39.6d 0.7 0.67i 0.1‡ 

NO 39.6d 0.7 0.67i 0.1‡ 

 272 

 273 

Table 4: Parameters changed during the modelling between different vehicles. Qs: Mechanical 274 

supplied air, QL: vehicle leakage, **: full fan strength; *: intermediate fan strength; +: front windows 275 

fully open; ++ leakage at 30 kmh.  276 

 Ford Focus Vauxhall Insignia Hyundai i800 Ford Transit 

Qvent (m3 h-1) 692+/346** 692+/346** / 173* 692+/346** 692+/346** / 

173* 
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QLin; QLout (m3 h-1) 28++ 27++ 25++ 39++ 

 277 

 278 

2.4 Machine learning model (ML) and cross validation. 279 

Machine learning (ML) algorithms learn directly from the data and can be broadly categorised 280 

into supervised or unsupervised approaches. In the former case, a known dataset is used to combine 281 

input variables in such a way as to predict the outcome using classification or regression methods. In 282 

unsupervised learning, methods such as clustering are used to recognise patterns in the data without 283 

reference to the outputs. The majority of practical machine learning uses supervised learning. 284 

There are several supervised ML algorithms that can be used for model training and 285 

prediction. As a rule, no single learning algorithm can uniformly outperform other algorithms over all 286 

datasets. However, they can be evaluated for their (1) accuracy, (2) speed of learning, (3) speed of 287 

classification, (4) ability to deal with discrete/binary and continuous data, (5) danger of overfitting, (6) 288 

attempts required for incremental learning, (7) ability to handle model parameters and explain 289 

classifications, (8) tolerance to missing values and noise. In this study the k-Nearest Neighbour (kNN) 290 

algorithm was used. kNN is a statistical instance-based learning method used for regressions and 291 

classifications that matches which already stored instance is mostly similar to the new instance (Cover 292 

and Hart, 1975; Weinberger et al., 2006). When a new instance is inputted, the algorithm searches 293 

similar instances from memory using the distance metric (Euclidean, Manhattan, Minkowski, etc.) and 294 

then matches the new record by identifying the single most frequent label. This method is robust to 295 

noisy and large training datasets (Wettschereck et al., 1997) since it considers the query instance when 296 

deciding how to generalize beyond the training data, whereas a different machine learning method 297 

may have chosen the time where the query instance was observed (Aquilina et al., 2018). However, 298 

kNN algorithms require large storage for the model training, are sensitive to the choice of the similarity 299 

function (function which is used to compare instances) and lack of universal way to choose the best k 300 

(number of nearest neighbour) except through cross-validation (Kotsiantis, 2007). 301 

The machine learning applied in this study used the original 80% of the within-vehicle 302 

observations of the complete dataset, selected using a random number generator. The remaining 20% 303 

was reserved to validate and test the model’s predictability and response (after the ML training) to 304 

fresh unseen data. In detail, the ML training dataset used within-vehicle concentrations as the 305 

response variable, and the training was built upon the variables of on-road concentrations, time of 306 
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day, day of week ventilation power (expressed as 0, 50 and 100), ventilation type (expressed from 1 307 

to 6), and cabin surface area and cabin volume of the vehicles. The kNN ML training and 308 

hyperparameter tuning (number of neighbours (k); distance metric; weighing of neighbours) followed 309 

the repeated grid search and k-fold cross validation approach. Mathematical description of the kNN 310 

algorithm used here can be found in supplementary information. In this method, after randomly 311 

splitting the training data into k-folds (10 in this case), a ML model was trained for k-1 folds (training 312 

fold) of the dataset and tested on the kth (testing fold). For each fold/subset that was held out, the 313 

model was trained on all other subsets. This training process was repeated 1000 times and the final 314 

model accuracy was taken as the average of those repeats. More repetitions provide better accuracy 315 

for each instance in the dataset, however it should be mentioned that this requires more 316 

computational power. This process maximizes the training and the testing of the ML algorithm and 317 

has the advantage that for a single dataset all the available values are used for training and testing. 318 

This method is robust for estimating the accuracy of the model and the size of k and tunes the amount 319 

of bias in the predictions; Principles which are critical when using a kNN approach (Kotsiantis, 2007). 320 

Finally, the ML model (built from k-1 folds and tested on the kth fold with 1000 repeats) was evaluated 321 

against the 20% of the initially randomly excluded data to assess its performance. A comparison of the 322 

three machine learning algorithms tested are listed in Table S2. 323 

 324 

2.5 Model evaluation and real-world application scenarios 325 

To evaluate / validate the MB and ML models we used the statistical indices of: 1) Root mean 326 

square error (RMSE) between the predicted and observed pollutant concentrations, where the closer 327 

the RMSE is to 0 the better the model prediction (Aidaoui et al., 2015; Matthaios et al., 2017); 2) 328 

fraction of predictions within a factor of 2 of observations (FAC2), where the predictions vary between 329 

0.5 ≤ FAC2 ≤ 2 and  FAC2 = 1 is the perfect prediction; 3) mean bias (MB), which is the relative mean 330 

over or under estimation of the model predictions; 4) Mean Gross Error (MGE), which provides an 331 

indication of the mean error of the model regardless of whether it is an over or under estimate; 5) 332 

Pearson correlation coefficient (r), which represents the strength of the linear relationship between 333 

two variables; 6) Index of agreement (IOA) which is a measure of how well the predicted variations 334 

are represented around the mean observations and ranges from 0 to 1, and 7) comparison of means 335 

(for observed and predicted values). The model evaluation statistics were performed with openair 336 

package in R (Carslaw, 2019; Carslaw and Ropkins, 2012) 337 

To examine the predictability of the MB model and the applicability of the ML model, we 338 

tested two further cases: (i) in the MB model we replaced the initial within-vehicle concentrations 339 
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with the median observed within-vehicle concentration (for each ventilation setting in each car) and 340 

we re-ran the MB model to ensure that there was minimal dependence upon the model initial 341 

conditions.  In case (ii), the ML model was retrained with initial concentrations set to the median 342 

within-vehicle levels, and with the outside levels taken from the closest roadside air quality station, 343 

rather than using the actual on-road measurements measured adjacent to the vehicle. This case was 344 

built to reflect a potential real-world situation i.e. where only monitoring station data is likely to be 345 

available. Again, the ML model followed the 80:20 approach with 1000 iterations. Table 5 summarises 346 

the constructed cases.  347 

 348 

 349 

 350 

 351 

 352 

 353 

Table 5. Modelling cases constructed to test the application of the model.  𝐶′𝑖𝑛𝑚𝑗: denotes predicted 354 

median concentration;  𝐶′𝑖𝑛𝑚𝑗: denotes within-vehicle median levels. All the remaining parameters in 355 

the model are taken from the values in Table 3. 356 

Case Equation 

Initial model 
(𝐶′𝑖𝑛𝑗 − 𝐶𝑖𝑛𝑗)𝑉 = [𝐶𝑜𝑢𝑡𝑗 (𝑄𝑣𝑒𝑛𝑡(1 − 𝑓𝑣𝑒𝑛𝑡) + 𝑄𝐿𝑒𝑎𝑘𝑖𝑛𝑓𝑙𝑒𝑎𝑘𝑖𝑛𝑗

)

− 𝐶𝑖𝑛𝑗 (𝑄𝑟𝑒𝑠𝑝𝑅𝐷𝑝𝑗 + 𝐷𝑃𝑗𝑉 + (𝑄𝑣𝑒𝑛𝑡 + 𝑄𝐿𝑒𝑎𝑘𝑜𝑢𝑡)) + ∑ 𝑅𝑖𝑗

𝑛

𝑗=1

] 𝛥𝑡 

 

Case (i) (𝐶′𝑖𝑛𝑚𝑗 − 𝐶𝑖𝑛𝑚𝑗)𝑉

= [𝐶𝑜𝑢𝑡𝑗 (𝑄𝑣𝑒𝑛𝑡(1 − 𝑓𝑣𝑒𝑛𝑡) + 𝑄𝐿𝑒𝑎𝑘𝑖𝑛𝑓𝑙𝑒𝑎𝑘𝑖𝑛𝑗
)

− 𝐶𝑖𝑛𝑚𝑗 (𝑄𝑟𝑒𝑠𝑝𝑅𝐷𝑝𝑗 + 𝐷𝑃𝑗𝑉 + (𝑄𝑣𝑒𝑛𝑡 + 𝑄𝐿𝑒𝑎𝑘𝑜𝑢𝑡)) + ∑ 𝑅𝑖𝑗

𝑛

𝑗=1

] 𝛥𝑡 

 357 

3. Results  358 

 359 
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3.1 Measured concentrations. The measurements of ventilation-setting-dependent within-vehicle 360 

concentrations is discussed briefly in section 2.1 and in detail in Matthaios et al., (2020). Here, Table 361 

6 presents the median of the concentrations measured. As anticipated, the highest exposure to 362 

exhaust-related gaseous (NO2 and NOx) and particulate (UFP and LSDA) pollutants was measured with 363 

open windows (ventilation option a). Under closed windows, the highest median exposure to 364 

particulate pollution (PM10, PM2.5, PM1) was measured when the fan was on bringing air from outside 365 

inside (ventilation option b). The lowest mean exposure for PM10, PM2.5, PM1, UFP and LSDA occurs 366 

when ventilation recirculation option is selected (ventilation options d and e). The within-vehicle 367 

measurements show a strong dependence upon ventilation setting, highlighting the importance of 368 

ventilation representation for accurate within-vehicle pollutant prediction.  369 

 370 

Table 6. Median within-vehicle concentrations of PM10, PM2.5, PM1, LSDA, NO2, NOx, UFP and CO2 371 

under ventilation settings: (a) windows open, fans and AC off, (b) Fans on - AC & recirculation off, 372 

windows closed, (c) Fan plus AC on, recirculation off, windows closed (d), Fan plus recirculation on, AC 373 

off, windows closed, (e) Fan plus AC and recirculation on, windows closed and (f) windows closed, AC, 374 

fans and recirculation off. 375 

Species Ventilation 

(a) 

Ventilation 

(b) 

Ventilation 

(c) 

Ventilation 

(d) 

Ventilation 

(e) 

Ventilation 

(f) 

PM10 (µg/m3) 15 24 6 8 3 13 

PM2.5 (µg/m3) 8 15 4 4 3 5 

PM1 (µg/m3) 5 13 3 3 2 3 

LSDA (µm2/cm3) 52 39 38 12 6 26 

NO2 (ppb) 53 48 40 48 32 31 

NO (ppb) 232 210 209 227 245 125 

UFP (pt/cm3) 44816 31960 27265 5466 400 19110 

O3 (ppb) 8.6 4.1 4.4 2 2.2 5 

 376 

 377 

3.2 Modelling results – Comparison with observations 378 

 379 

3.2.1 Mass-Balance model simulations 380 

Figure 3 compares the timeseries of mass-balance (MB) model predictions and measured 381 

levels of (within-vehicle) UFP and NO2 from one of the test vehicles. For UFP, the model performs well 382 
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under windows-open, fan-on and AC-on modes, but overpredicts the observed levels under the no-383 

ventilation and recirculation modes. For NO2, the MB model performs well under no-ventilation and 384 

recirculation conditions but underestimates the observations for windows-open and AC-on, and 385 

overestimates for fan-on and AC-with-recirculation.  386 

To examine the performance of the MB model across all the measurements, the data are 387 

aggregated in Figure 4, which shows the measured vs. MB model values for all measurements. 388 

Individual ventilation setting predictions can be found in supplementary information Figures S2 – S7. 389 

PM10, PM2.5 and PM1 species are predicted well by the model and are within the ±10% of the 1:1 line, 390 

however, a clear under estimation is evident for UFP and LSDA. This is possibly because the model 391 

parameter values for filtration efficiency, deposition rate coefficient and penetration factors were 392 

taken from the literature, rather than reflecting the specific vehicle under evaluation. Furthermore, 393 

internal sources of particle generation were not considered, which could contribute to the under-394 

prediction in those species. For NO we see some overpredictions at mid to high mixing ratios (>250 395 

ppb), however in general the majority of the predictions are well within ±10% of the measured data. 396 

For NO2 the predictions vs observations are clearly more scattered than for the other pollutants, and 397 

the model predicts well the low levels <60 ppb clearly underpredicts levels from 75 – 150 ppb.  398 

 399 

 400 

Figure 3. Time series modelled and observed values for UFP and NO2 in Vauxhall Insignia. Different 401 

colours indicate the different ventilations, while the solid black line shows the modelled data.  402 

 403 
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 404 

Figure 4. Measured vs MB and ML model within-vehicle concentrations of PM10, PM2.5, PM1, LSDA, NO, 405 

NO2 and UFP. The orange dots indicate the ML predictions for 20% of randomly excluded data. The 406 

solid line denotes the perfect model 1:1. The dashed lines indicate the ±10% of the perfect model. 407 

 408 

3.2.2 Machine Learning (ML) model predictions  409 

The machine learning (ML) model training method (80:20) is by definition expected to yield 410 

generally good predictions. In Figure 4 the orange dots also show the comparison between the 411 

observed and the ML modelled values for the 20% of measurements excluded from the training 412 

dataset. The ML model shows similar performance to the MB model and in some cases, such as for 413 

NO2, it improves upon the MB model predictions. Most of the ML model predictions in almost all the 414 
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species are equally spread around the 1:1 line, however, an under-prediction still occurs in the LSDA 415 

and UFP species.  416 

Table 8 summarises the ML and MB model performance statistics against the observations 417 

(20% of withheld data in the ML case) respectively. It can be seen both models show good skill in 418 

predicting within-vehicle concentrations for all species. Pearson correlation coefficients for the ML 419 

model between ML predicted and observed values are higher than 0.80, while an IOA (index of 420 

agreement) is greater than 0.69 for all the species.  For the MB model, the two indices between MB 421 

predicted and observed concentrations were slightly worse, varying between 0.45 – 0.82 and 0.48 - 422 

0.83 for Pearson correlation coefficient and IOA respectively. However, values of IOA greater than 0.5 423 

in general indicate good model predictions (Hurley et al., 2005; Matthaios et al., 2017). The mean 424 

gross error (MGE) of the ML and MB model’s performance was less than 2.4 and 3.4 µg m-3 respectively 425 

for all the particle classes (PM10, PM2.5 and PM1) and 10.4 and 14.1 ppb for NO2. The biggest error is 426 

evidenced in NO and UFP, which is almost the same as the mean bias. The model’s fraction of 427 

predictions within a factor of two of observations (FAC2) is also in good agreement with observations 428 

for the ML model (higher than 0.66 for all the species), while noteworthy is the fact the ML model’s 429 

FAC2 score is very high (0.89) for NO2. For the MB model the FAC2 factor shows low prediction values 430 

for LSDA and UFP. NO had FAC2 greater than 1 values which indicates overprediction. The mean bias 431 

indicates that the ML model under-predicts the particulate species by less than < 1 µg m-3 and the NO2 432 

by less than <5 ppb, while slightly greater mean bias for these species is observed for the MB model. 433 

The biggest under-prediction occurs for UFP and NO. For NO the ML has a mean underprediction of 434 

26 ppb while the MB model has a mean overprediction of 35.4 ppb. Events such as overtaking or 435 

congestion that can result in greater NO outside and consequently inside, and particle leaks from the 436 

engine or generation of already deposited particles (in the seats or fabrics) due to vibration or 437 

movement cannot be captured in the MB model and can generate tails and cause skewness in the 438 

data. kNN algorithms are known to suffer from skewed distributions if those observations are very 439 

frequent in the data (Aha et al., 1991). Overall it can be stated that both MB and ML models showed 440 

good skill in predicting the measurement data however better predictions were observed in the ML 441 

model most likely due to the way the algorithm incorporates the data. The fact that ML improves the 442 

model’s performance was also found in other studies (Ozcift and Gulten, 2011; Aquilina et al., 2018). 443 

 444 

 445 

 446 
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Table 8. Model evaluation statistics against 20% random observation data after the machine learning approach. n: indicates the number of compared values. 448 

FAC2: fraction of predictions within a factor of two of observations –perfect model FAC2 = 1. MB: Mean bias – indication of the mean over or underestimate 449 

of predictions. MGE: Mean gross error – indication of the mean error regardless of whether it is an over or underestimate. RMSE: Root mean squared error 450 

– a measure of how close predicted values are to observed values. r: Pearson correlation coefficient – values from -1 to 1 while values of 0 no prediction. IOA: 451 

Index of Agreement – values from -1 to 1.  𝑚𝑂,  𝑚𝑝: Mean values of observations and predictions respectively. SD: Standard Deviation. 452 

Species nML nMB FAC2ML FAC2MB MBML MBMB MGEML MGEMB RMSEML RMSEMB rML rMB IOAML IOAMB 𝑚𝑂 𝑚𝑀𝐿 𝑚𝑀𝐵 SDo SDML SDMB 

PM10 196 1176 0.76 0.69 -1.06 -1.18 2.4 3.4 6.8 7.5 0.89 0.69 0.80 0.76 15 13.9 12.3 14.6 15.5 11.4 

PM2.5 196 1176 0.78 0.71 0.14 -0.25 2.3 2.8 3.4 4.2 0.94 0.80 0.87 0.83 9.9 10.2 9.4 11.8 13.4 7.8 

PM1 196 1176 0.81 0.74 -0.8 -0.9 1.6 2.1 2.3 2.8 0.96 0.82 0.89 0.83 7.6 6.8 6.7 9.02 11.1 8.2 

LSDA 140 840 0.69 0.38 20.9 -18.8 22.3 29.2 28.8 32.6 0.92 0.48 0.69 0.51 48.5 69.5 26.7 50.9 52.1 82.7 

NO2 256 1536 0.89 0.55 -5.0 -8.8 10.4 14.1 15.4 22.4 0.89 0.52 0.79 0.58 45.5 40.5 36.2 24.27 33.2 49.4 

NO 256 1536 0.83 1.22 -25.9 35.4 23.9 31.5 76.9 89.2 0.84 0.58 0.75 0.63 246.8 197 255.4 144.7 124 145.2 

UFP 140 840 0.66 0.45 13405 18754 16518 21540 13209 26430 0.90 0.45 0.73 0.48 29841 38793 45759 43031 19870 54655 

 453 

 454 
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3.2.3 Extended application of ML model using data from monitoring stations  455 

 456 

In the predictions discussed above, each model utilized external concentrations of air 457 

pollutants measured directly outside the study vehicle, to either to drive the calculated pollutant 458 

exchange (MB model), or as input for the ML model. However, in order to explore the ML model’s 459 

potential wider application under real world circumstances we explored case (ii) where both within 460 

and directly-outside vehicle pollutant concentrations are unknown and the only data available is from 461 

nearby air quality monitoring stations (see 2.5). In this case, the ML model used a median within-462 

vehicle level from all vehicles and hourly outdoor air quality measurements. The air quality levels from 463 

the monitoring sites were taken from urban-traffic locations representing different locations of the 464 

testing route. Figure 6 shows the case (ii) comparison of the ML model predicted within-vehicle 465 

pollutant concentrations, vs those measured. The results generally show some notable discrepancies 466 

for NO greater than 260 ppb and NO2 greater than 60 ppb, of the within-vehicle air quality for a given 467 

air quality value, however the applicability of the method provides an indication of within-vehicle 468 

exposure without the need for directly-outside measurement. The ML predictions would have been 469 

more representative of the actual exposures in case where more information of the accurate 470 

representation of the ventilation system, filtration and air exchange, vehicle number and fleet 471 

composition were available.  472 

 473 
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 474 

Figure 5. Comparison of within-vehicle ML modelled and measured species. For the learning of the ML 475 

model, a median within-vehicle level from all vehicles and hourly outdoor air quality measurements 476 

were used.  477 

 478 

4 Comparison with other studies and limitations 479 

The study investigated in-vehicle air pollution exposure with novel complementary modelling 480 

techniques using mass balance and machine learning approaches. Studies that used ML algorithms to 481 

predict in-vehicle air quality typically used low-cost sensors to calculate an air quality index that 482 

involved CO2 and PM2.5 and tested the performance of supervised ML algorithms against traditional 483 

regression techniques and deep-learning techniques (Sukor et al., 2022; Goh et al., 2021). Similarly, 484 
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Lohani et al., 2022 compared traditional auto-regressive integrated moving average (ARIMA) and ML 485 

support vector regression (SVR) to investigate their performance against in-vehicle CO2 levels. Chung 486 

and Kim, (2020), developed an anomaly detection system inside cars based on ML algorithms to 487 

prevent fatigue and drowsiness due to CO2 and reduction in PM2.5 exposures. Baldi et al., (2022), 488 

measured the performance of several ML algorithms against observations of PM10, PM2.5, PM1, CO2 489 

and formaldehyde and found good results. Our study, apart from the application of ML to predict in-490 

vehicle exposures, it offered novel expansion upon real-world applications with the implementation 491 

of air quality data from nearby monitoring sites. Several MB models have been reported for the 492 

prediction of within-vehicle concentrations of air pollutants, albeit focusing on different aspects of the 493 

problem, for example the models of Hudda et al., (2012); Knibbs et al., (2010) or Xu and Zhu, (2009). 494 

The model developed by Hudda et al., 2012, used measured data from a large number of vehicles and 495 

multi linear regression approaches and generalized estimating equations to estimate within-vehicle 496 

concentrations of UFP, while the models of Knibbs et al., (2010) and Xu and Zhu, (2009) are mass-497 

balance based models. The differential equations applied in this work build on the mass balance 498 

studies of Knibbs et al., 2010 and Xu and Zhu, (2009), with some modifications in the equations, 499 

including incorporation of key aspects of chemical processing. The reason for the difference in some 500 

modelled vs observed levels is likely due to values such as deposition coefficients, filtration efficiency 501 

and penetration factors were taken from literature and often from experiments conducted in houses 502 

which are larger volumes than vehicle cabins and do not reflect actual within-vehicle values. Another 503 

reason might be due to our simplified approach of not having a speed dependent pressure difference 504 

penetration factor. As highlighted in Lee et al., (2015a), those factors depend on the combined effects 505 

of the ventilation conditions (i.e., ventilation mode and fan settings) and the aerodynamic changes on 506 

the vehicle envelope (i.e., driving speed and vehicle shapes) which have not yet been incorporated in 507 

this model. It should be further noted that the importance of physical air exchange processes of the 508 

outside measurements often dominate comparing to the other indoor sinks and when a rapid change 509 

of the outdoor concentrations (i.e. vehicle overtaking, high emitters etc) occurs it has implications for 510 

the modelling of within-vehicle NO and NO2. This is likely the reason that the model underpredicts the 511 

high levels of within-vehicle NO2. 512 

The current MB model and methodology likely has limitations in the prediction of other more 513 

reactive species within-vehicles, where chemical processing is more important (relatively) to ingress 514 

and deposition and needs to be considered for those species; this also implies a more sophisticated 515 

treatment of physical conditions (including photolysis frequencies). The MB model assumes a well-516 

mixed (within-vehicle) microenvironment, which may not reflect reality. Furthermore, the MB and ML 517 

models are dependent upon the initial parameters (e.g. vehicle characteristics, fan power and other 518 
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within-vehicle parameters to build the model) and therefore they might be case-dependent and their 519 

applicability needs to be tested in other cases. In the model the leakage rate/passive ventilation was 520 

calculated using the equations of Hudda et al., (2012). However, since that method uses generalized 521 

regression models based on vehicle age, driving speed, and fan strength, the method may impose 522 

uncertainty across different vehicle models and other approaches to calculate the leakage 523 

flow/passive ventilation, for example based on the pressure difference (Lee et al.,2015b), or using an 524 

explicit CO2 tracer, may be tested for suitability. Engine/fuel leaks can generate gaseous and 525 

particulate pollution and other organic gas compounds such as, benzene, toluene, xylene, and methyl-526 

tertiary butyl ether (Faber et al., 2013; Fedoruk and Kerger, 2003; Jo and Park, 1998; Duffy and Nelson, 527 

1997) that can enter the interior of the vehicles via the ventilation system. This source is not currently 528 

included in the model of this study. Finally, carcinogenic/toxic species such as volatile organic 529 

compounds which are released from plastics and fabrics on exposure to sunlight and heat (Yoshida 530 

and Matsunaga, 2006, You et al., 2007) and heterogeneous surface reactions or reactions of peroxy 531 

radicals with NO, can play a role in the within-vehicle chemistry and improve NO2 predictions. The 532 

model currently is limited in omitting representation of such detailed chemistry, secondary aerosol 533 

formation and other particle physics processes.  534 

5 Implications 535 

The modelling methodology presented here can be developed into a useful tool that can be 536 

used by policymakers in order to estimate the air pollutant concentration levels inside vehicles. The 537 

approach presented here for the use of machine learning algorithms to predict within-vehicle 538 

exposure, showed promising applicability elsewhere and for different species.  539 

The use of ambient monitoring data (rather than adjacent-to-vehicle measurement) to predict 540 

within-vehicle concentrations gave promising results highlighting that within-vehicle exposure can be 541 

estimated from existing air quality “infrastructure”, and modelling techniques such as those presented 542 

here can be applied to estimate the associated health risks. 543 

Future work should focus on developing more comprehensive exposure predictive models for 544 

car passengers. These models will need to account for various driving conditions (e.g., urban and 545 

motorway driving), driving durations, passenger characteristics (e.g., differing breathing rates, 546 

metabolism, sex, weight), and pathways for pollutant infiltration and penetration, including the 547 

assessment of potential in-cabin sources like engine leaks. Such information will be critical for the 548 

application of air quality management policies and new technologies such as within-vehicle air 549 

purifiers or high selectivity air cabin filters to reduce air pollution exposure. In conclusion, our study 550 

presents a novel method to predict within-vehicle air pollution exposure, which has far-reaching 551 

implications for public health and environmental research. The study has successfully demonstrated 552 
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the effectiveness of the approach in providing real-time exposure estimates and mapping.  We believe 553 

that this work serves as a foundational contribution to the field of real-time air pollution exposure 554 

assessment, offering a path towards cleaner and healthier urban environments. While our study is a 555 

significant step forward, we acknowledge that further research is essential to refine our approach and 556 

enhance its accuracy.  557 
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• Development of a mass-balance and a machine learning model for within-vehicle 
exposures 

• Both models demonstrated good predictions of observations apart from an 
underestimation in UFP and LSDA. 

• The ML model predictions were as good as the MB model for most of the species and 
improved for NO2. 

• Use of air quality monitoring data provides new capabilities for within-vehicle 
exposure predictions 
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