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Abstract
The computational approach to psychiatric disorders, including delusions, promises 
explanation and treatment. Here, we argue that an information processing approach 
might be misleading to understand psychopathology and requires further refine-
ment. We explore the claim of computational psychiatry being a bridge between 
phenomenology and physiology while focussing on the ontological commitments 
and corresponding methodology computational psychiatry is based on. Intercon-
necting ontological claims and methodological practices, the paper illustrates the 
structure of theory-building and testing in computational psychiatry.

First, we will explain the ontological commitments computational psychiatry 
is grounded in, the Bayesian Brain hypothesis (BBH) of unconscious inference, 
paired with normative deontic approaches applied to gauge psychopathology. We 
then turn to the steps taken in empirical paradigms, from definitions, which are 
used as starting points, to the operationalisation and isolation of cognitive processes 
and hypothesis testing based on algorithmic models, to consecutive interpretations 
regarding the aetiology of psychiatric disorders. We outline how experimental para-
digms in computational psychiatry are specifically designed to confirm aberrations 
in assumed inferential processes, which are thought of as being the underlying core 
invariant features.

We will illustrate a gap between the ontological commitments of computational 
psychiatry and the operationalisation and testing of the cognition assumed to be 
relevant for psychopathology. This conceptual gap is of utmost importance when 
designing computational paradigms and may impede a crisp understanding of the 
approach. Lastly, in evaluating the conceptual gap, it becomes apparent that the in-
formation processing formalism used in computational psychiatry is still grounded 
in rational cognitive psychology.

Keywords Delusions · Predictive Processing · Bayes theorem · Deontic 
approach · Unconscious inference
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1 Introduction

How similar are human mental processes to computational algorithms? In artificial 
intelligence (AI) research and in advances in cognitive simulations (CS), it has long 
been asked if and how human mental processes could be formalized and simulated 
with computational algorithms.

To formalize or simulate a mental capacity, we must know how inputs, i.e., 
incoming sensory information, can be transformed into outputs, hence, into the tar-
get cognition, and what algorithms could be used for that transformation. A specific 
algorithm captures more than the input-output mapping, since assumptions and con-
straints embedded into the input structure, meaning for instance characteristics of the 
incoming data, such as its distribution, and the agent are needed to make a hypothesis 
about an appropriate algorithm linking input to output, given the assigned constraints. 
Computational psychiatry operates in a similar way to these AI assumptions: It takes 
inputs from an experiment and behavioural outputs, summarized in parameters, and 
asks under what conditions as well as constraints the output could be created from 
the input. This is then formalized in an algorithm that becomes the hypothesis of the 
realisation of the input- to output mapping. Thus, mental capacities are defined by 
the mapping of input and output terms. Thereby, computational psychiatry aims to 
simulate unobservable mental processes, which are assumed to be algorithmic and 
underlie human cognition, thought, behaviour and psychopathology.

However, since the beginning of simulation research in AI, it has been questioned 
whether these transformation processes from input into output, when applied to 
human mental processes, are really of an algorithmic kind and can therefore be fully 
formalized. Dreyfus (1992), for instance, claimed that important human capacities, 
such as fringe consciousness or the broader insight structure of a problem cannot be 
formalized. Weizenbaum (1976) stated that love and respect are not technical prob-
lems. This builds on the idea that even if we would be technically able to formalize 
mental processes, that would not mean that this formalization would conceptually 
and meaningfully help us to overcome problems related to these capacities, as the 
solution might not be of a technical or mechanistic kind.

Computational psychiatry builds on the assumption that cognition and behaviour, 
can be explained computationally with algorithmic models, mapping input to output. 
While computational psychiatry is somewhat aiming to reform treatment approaches, 
more fundamental motivations target the formalisation of human cognition gener-
ally, and psychopathology specifically, which largely intersects with motivations of 
predicting and controlling human behaviour. As in Marr’s levels of analysis (Marr, 
1982), the computational level serves as a theoretical foundation, defining the map-
ping between an input, or initial state, and output, or resulting state, constituting a 
(i.e. mental) capacity. This highlights the dependency of the mental capacity or form 
of cognition on the incoming sensory information or other input structure. The algo-
rithmic level describes the mechanism of how this capacity is realised and optimized, 
hence how the input is transferred into the output. Lastly, the implementation level 
states where in the physiological or technological system the capacity is realised. 
Whereas defining and mapping inputs and outputs is needed as theoretical embed-
ding, the algorithmic level serves as the explanation of the mapping of input and out-
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put that constitutes the phenomenon. Thus, computational models of cognition aim 
to uncover the mechanistic computations behind our emotions, thoughts, behaviours, 
and symptoms of psychopathology. Likewise, aberrations in algorithms are thought 
of as being the underlying causes and explanations of specific psychopathological 
phenomena.

Explaining cognition computationally means to describe phenomena mechani-
cally in terms of inputs that lead to specific outputs and to find the algorithms of 
that transformation. In computational psychiatry, the realising algorithms are mainly, 
though not exclusively, thought of as being inferential. In terms of theory-building 
it remains to be seen to what extent computational psychiatry gives us new insights, 
rather than just being a formalized re- description of inferential processes.

The computational approach has been applied to various psychiatric and neuro-
logical disorders, i.e. positive, often isolated symptoms of schizophrenia (Adams et 
al., 2013; Corlett et al., 2019; Sterzer et al., 2018); autism (Lawson et al., 2014); 
Parkinson’s disease (O’Callaghan et al., 2017); anorexia (Gadsby & Hohwy, 2019); 
addiction (Schwartenbeck et al., 2016), and depression (Barrett et al., 2016). As clini-
cal delusions, now referred to as delusions, are one of the most commonly studied 
psychopathological phenomena in computational psychiatry (Adams et al., 2013; 
Corlett et al., 2019; Sterzer et al., 2018), they will be used as an example to illustrate 
how computational models are applied to psychopathology.

Inference generally is a method of (rational) reasoning based on evidence, whereas 
Bayesian inference, that is abductive inferences under uncertainty (Coltheart et al., 
2010; Mathys et al., 2011), is mostly used in computational psychiatry and is a spe-
cific type of inferential computation. The role of uncertainty (Hohwy, 2013) as well 
as the notion of evidence to reduce that uncertainty are central to Bayes, where uncer-
tainty of the outside world is dealt with through Bayes decision rule (Fahlman et al., 
1983; Huys et al., 2011). Within the Bayesian Brain hypothesis (BBH), Bayes rule 
refers to the aim of the organism to predict what is happening next, in terms of a state 
in the world, a perception, an emotion, etc., where prior knowledge, hence internally 
generated predictions, are combined with new sensory evidence from the environ-
ment or the body, leading to new estimates (posterior) of what is about to happen. 
Thereby, the goal is to minimise the error resulting from the prediction, called predic-
tion error (Clark, 2013; Friston, 2005; Hohwy, 2013). This has firstly been conceptu-
alised with the notion of free energy as a measure of the discrepancy between actual 
features of the outside world and their internal representations (Hinton & Zemel, 
1993), where action (active inference) and perception (perceptual inference) result 
from free energy minimization (Friston et al., 2006). If a prediction error occurs, it 
is typically transmitted back to an internal hierarchical knowledge system to update 
higher-level prior expectations, leading to dynamic interactions. Most theories on 
delusions focus on alterations in hierarchical inferences (Adams et al., 2013; Friston, 
2005; Sterzer et al., 2018) across various interdependent levels of processing, starting 
from lower inferences at less abstract levels (i.e. perception of lower-level features) to 
higher-level inferences on abstract concepts (i.e. estimation of hidden world states). 
Two relevant hierarchical inference frameworks for delusion are Belief Propagation/
Circular Inference (Jardri & Denève, 2013) and Predictive Coding, including active 
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inferences (Adams et al., 2013; Corlett et al., 2019; Sterzer et al., 2018,). A detailed 
distinction about their characteristics can be found here (Ashinoff et al., 2021).

Predictive coding in conjunction with the BBH of delusions will further be used 
to illustrate one methodological approach in computational psychiatry, out of many 
other existing approaches. Conceptualizing the brain as a hierarchical prediction 
and information processing machine, the BBH aims to establish a mechanistic link 
between biological processes that implement information processing (Friston, 2010), 
quantitative computational models and symptoms of psychopathology. The assump-
tion that cognition generally, and psychopathology, correspond to information pro-
cessing as well as to aberrations thereof, represents an ontological assumption, or 
background belief (Maatman, 2021), about the nature of cognition and the causal 
structure of the world. It also lies within the deficit approach of psychopathology, 
where inferential aberrations and psychopathology generally are thought of as def-
icits. However, what constitutes an aberration in information processing must be 
defined. Thus, we need a framework that determines how information is best and 
most optimally processed, based on given inputs and outputs, to then establish aber-
rations thereof. Based on Marr’s levels, theories on the computational level are often 
regarded as normative, e.g. rational or optimal normative (Oaksford & Chater, 2009). 
I.e. Bayesian modellers argue that computational theories are idealised optimization, 
serving rational goals (Anderson, 1990). Since Bayes rule is a rational, logico-math-
ematical rule, within the classical BBH, information processing follows a strategy 
where minimizing the prediction error is considered optimal. However, this Bayesian 
rule is only optimal if no other contingent factors are present. If, in a given situation 
or task, contingent facts are known to influence the relationship of input and output, 
what is optimal may become contingent on these other, known, influential factors. 
The optimal processing strategy, which is defined a priori in order to establish aber-
rations thereof, therefore also depends upon the structure and contingent facts of a 
given situation or task, which can be called context-dependency of optimality (Giger-
enzer, 2008), or embedded optimality. Contingent factors could be the structure of 
the environment or task, limitations of the agent, or factors that have previously been 
considered “irrational” in comparison to processing in accordance with Bayes rule, 
such as processing costs of motivational influences (Williams, 2020). Importantly, 
when we define a framework of optimal information processing to map input to out-
put, we assume to have knowledge of all contingent factors this mapping depends on, 
which then gives leverage to interpret what is most optimal.

Thus, optimality is defined a priori, in a fixed, general, and universally applicable 
way, as well as in reference to a causal structure of the world. In computational psy-
chiatry, contingent factors are often controlled for, so that underlying Bayesian forms 
of rational processing can be laid bare.

Crucially, next to Bayesian and mathematical frameworks, other frameworks of 
rationality can be used, which then changes what is considered optimal or rational, 
for instance procedural rationality, epistemic rationality or agential rationality (Miya-
zono & Bortolotti, 2021). Lastly, an aberration in information processing can also be 
shown as abnormal biases, constituted by a statistical deviation (i.e., from a control 
group), without necessarily referring to an optimality framework.
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Thus, the goal of computational psychiatry is to show aberrations in information 
processing algorithms, however, the aberrations depend on the way how optimal pro-
cessing is predetermined which can change from study to study. After establishing 
aberrations from optimal algorithms and correlating them to symptomology, these 
aberrations are often assumed to underlie, hence, give rise to psychiatric symptoms 
(Griffin & Fletcher, 2017). Computational psychiatry assumes that at the computa-
tional level, symptoms can be re-constructed in an experimental task based on inputs 
and outputs, or simply simulated (Adams et al., 2015).

Importantly, the algorithms realising mental capacities are mostly conceptualised 
as operating indirectly, automatically and unconsciously (Mishara, 2007), as underly-
ing mechanisms behind emotions, thoughts and behaviours. This dates back to early 
Bayesian inference theories, where perceptual inference was conceptualized as a 
basic unconscious mechanism (Helmholtz, 1925). Helmholtz (1925) further claimed 
that perception involves inferential processes somewhat conceptually similar to 
deliberate reasoning, an assumption often used to equate “seeing is believing”, and to 
suspend the boundaries between perception, reasoning and beliefs. Thus, it has been 
argued that agents make rational but unconscious decisions.

Using the BBH as a theoretical framework implies several ontological commit-
ments, meaning fundamental assumptions about the nature of cognition and psycho-
pathology. Ontological commitments and auxiliary assumptions determine how we 
investigate and measure concepts, the proposed mechanisms, the confounds and the 
statistical analysis (Maatman, 2021). For one, there is the assumption that mental 
capacities consist of unconscious information processing algorithms and can there-
fore be formalized. This has also been called psychological assumption (Dreyfus, 
1992). Next, it is assumed that psychopathology evolves around minimizing general 
uncertainty (free energy) of the immediate external environment, thus, pathology 
evolves in the realm of a shared single, external, objective world that entails uncer-
tainties and hidden states of the world. Thus, uncertainty refers to a predefined situ-
ation or task rather than being a function of subjective needs. Thus, computational 
psychiatry entails a direct assumption that aberrations in free-energy minimisation 
are driving psychopathology. Further, it is assumed that psychopathology unfolds in 
rational decision-making processes, as these are mostly captured in the experimen-
tal paradigms and computational models. It is therefore assumed that rationality, in 
terms of an optimal strategy within decision-making, is a useful concept to gauge 
psychopathology. In terms of coherent theory-building in psychiatry, using the BBH 
with its ontological commitments connects a theory of psychopathology to a theory 
of the contingent facts that go into defining the optimal context and optimal infor-
mation processing strategy, which are then used as an exhaustive explanation of the 
phenomenon. However, paradigmatically, we would need a theory of how minimis-
ing environmental structural uncertainty is related to psychopathology or delusions, 
for instance, how an intolerance of perceptual or decisional uncertainty is connected 
to symptomatology.

We will now discuss the methodological steps involved in the computational psy-
chiatry of delusions.
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2 Taxonomic considerations

Classification has long been thought of to reveal the nature of a disorder   as well as 
the structural features (Kendell & Jablensky, 2003).

2.1 Taxonomy of origin (aetiology) vs. manifestation

Before a phenomenon can be studied empirically, or expressed in Marr’s terms, and 
before the input and output mapping can be established, it has to be defined and 
classified. Both phenomenology and computational psychiatry typically search for 
core invariant features, meaning underlying characteristics of a phenomenon, such 
as particular symptoms, which then typically become the criteria by which a disorder 
is classified. Since the notion of core invariant features assumes that a disorder has 
defining characteristics, it unfolds within realism, though the characteristics can, but 
do not have to be of a natural kind (Broome, 2007). Within realism, it is assumed 
that the classifications are translatable into testable empirical sciences (Mishara & 
Sterzer, 2015; Parnas & Zahavi, 2002).

In contrast to that, anti-essentialists assume that classifications fulfil certain pur-
poses, such as reflecting value-judgements (Thornton, 2002) but disorders do not 
necessarily have a discrete essence (Agich, 2002; Horwitz, 2002; Skene, 2002). 
Thus, since there is no essence, classification is driven by theories and values (Coo-
per, 2004; Haslam, 2002). Phenomena are seen as perspectival, incomplete, and 
infected with interests (Sadler, 2004). Classification itself, within anti-essentialism, 
is therefore distinct from nosology and most importantly from the assumed aetiology 
of a disorder. Thus, from an anti-essentialist point of view, using taxonomy as a start-
ing point for empirical inquiry is misleading, as it does not represent core invariant 
features.

Computational psychiatry research typically starts with a definition of a phenom-
enon that it wishes to explain. In recent years, definitions used as starting points for 
research have moved towards DSM-5 based classification (behavioural criteria), in 
which delusions are defined as thoughts held with rigidity and certainty in light of 
contrary evidence (Apa, 2013)). The focus has been shifted from earlier definitions 
including broader self-concepts (such as sense of agency, minimal self) to delusions 
as a thought-based phenomenon, which is called doxastic account.

DSM categories, specifically the symptoms listed under the DSM categories, are 
often used as starting points to define the phenomena for which a computational 
explanation, hence model, is being sought out. Thus, the unit of investigation often 
is the (DSM) disorder or specifically listed DSM symptoms, such as rigid beliefs. It 
is important to emphasise what DSM taxonomy, hence DSM diagnosis and the listed 
symptoms, represent and how these come into existence. Crucially, the formation 
process of DSM diagnoses underlies a descriptive operationalism approach, which 
is not always scientifically driven, but results from conventions and intersects with 
hidden motives, political, economic, social, and pharmaceutical interests, and values 
(Ghaemi, 2009; Pickersgill, 2014). It is this interaction with various other interest 
groups and the operationalism approach which makes it questionable to what extent 
DSM diagnosis and symptoms represent valid scientifically proven (disease, bio-
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logical, social, etc.) entities and can thus be the starting point for further academic 
endeavours. For instance, the American Psychiatry Association (APA), which pro-
duces the DSM, receives substantial pharmaceutical industry funding, panel mem-
bers of the DSM committees hold drug industry ties (Cosgrove et al. 2011, 228–32). 
Generally, the influence of industry, especially pharmaceutics, has been said to have 
led to an expansion of psychiatric diagnosis and over-diagnosing ‘nosologomania’ 
(Ghaemi, 2009), as well as the ‘medicalisation of normality’ (Pickersgill, 2014). On 
the scientific level, the interference of different interest groups can lead to ill defini-
tions of clinical and research subject groups. In sum, the DSM and science generally 
are always embedded into a greater socio-economic context, which heavily influence 
the dominant paradigms and makes it extremely unlikely that DSM diagnoses cor-
respond to specific disease-entities, for which underlying computational mechanisms 
can be found.

Given the realism approach of empirical science, taking rigidity and certainty of 
thoughts as defining characteristics (e.g. Baker et al., 2019), gives them the status 
of core invariant features of delusions, though not all paradigms define delusions in 
terms of rigidity and certainty (e.g. Bansal et al., 2022).

Alongside the emphasis on rigidity and certainty of thoughts comes the focus on 
the form, the structural criteria, rather than the content or meaning of delusions, which 
have also been proven important for delusions (Ritunnano et al., 2022). The form of 
phenomena, thus, the structural criteria refer to formal aspects, as how something is 
or can be described from the outside, rather than what it is, what content it entails. In 
other words, structural, hence formal features refer to a category of phenomena gen-
erally, without specifying the specificities that each lived experience has individually.

In this sense, the form becomes the core invariant feature. Furthermore, by refer-
ring to the form, rationality and optimality directly relate to the structure. Akin to an 
algorithm not understanding the meaning, computational psychiatry is mostly con-
cerned with the structure. Focusing on the form rather than on content and mean-
ing not only makes the definition content- and context-neutral, but it also makes the 
classification quantitative and structural. As criticized by Williams and Montagnese 
(2020), abnormalities are suggested to be domain-general, ranging over all possible 
contents of thought and all delusional types and themes.

Given the focus on the form as a definition and starting point for empirical expla-
nations of delusions, it can now be asked if the form of a phenomenon represents 
the origin or rather a manifestation of it. Thus, if the form of a phenomenon can 
be a meaningful explanation of that very phenomenon. Importantly, in contrast to 
the DSM being only descriptive and not asserting aetiological or ontological claims, 
computational research takes DSM definitions as starting point not only for for-
malized re-descriptions, but also for the explanation of a given phenomenon, i.e., 
delusions.

To summarise, while research definitions of delusions have become increasingly 
based upon the DSM, computational research on delusions has endeavoured to focus 
on the form rather than the content. However, there are newer paradigms that do focus 
on the content, which will be addressed later on. While taxonomy does not look for 
an origin of a disorder and does not make ontological claims but can be arbitrary or 
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practical in its classifications, the goal of empirical research, including computational 
research, is often to find the apparent cause, hence explanation of a phenomenon.

Using taxonomy, in particular the formal structures of a phenomenon as the start-
ing point of aetiological endeavours illustrates that computational psychiatry runs 
the risk of confusing a manifestation for an explanation or origin. Thus, it should be 
asked if, and under which premises, the form of a phenomenon can lead to an expla-
nation of the origin and cause. This question is tantamount to asking what the shape 
of a raindrop can tell us about the causes of rain.

Importantly, formalization in general requires adequate and concise definitions of 
the constructs,entering the models as input and output, as robust phenomena (Eronen 
& Bringmann, 2021). Here, it could be questioned to which extent DSM classifica-
tions represent robust and concise phenomena, rather than conventional categories 
with loose boundaries (i.e., spectra).

3 Rationality as modus operandi of the mind

3.1 Beliefs as central parts of delusion categorisation and their appeal to (ir)
rationality

The mind has long been conceptualised as rational, in philosophy as well as in psy-
chology and cognitive science (Ellis, 1957). In a broader philosophical sense, ratio-
nality refers to the coherence of human thought in a structurally and intersubjectively 
understandable way. However, in computational psychiatry, rationality refers to a 
predefined optimal. This forces the question to what extent understandability and 
optimality are conceptually related.

Central to the definition of delusions are beliefs, which have been ascribed dif-
ferent attributions, from being false in DSM 4, 5 (Apa, 1987) to being irrational, as 
well as rigid and certain. These attributes typically gain their meaning in reference 
to shared evidence and shared frameworks of meaning, that stipulate how to relate 
to that evidence, which can be called propositional framework (Wittgenstein, 1974), 
or shared and single objective reality, which possesses a causal structure. Thus, delu-
sional beliefs are typically characterised in reference to shared, external evidence. It 
should be noted that there are non-doxastic accounts of delusions that explicitly do 
not refer to delusions as beliefs, but i.e. as attitudes towards mental acts (Stephens & 
Graham, 2004). It has been outlined by Bortolotti and Broome (2008) that (ir)ratio-
nality as such is not sufficient to explain delusions, as (ir)rationality has been shown 
in all humans, i.e. in deductive, statistical reasoning (Samuels et al., 2002; Stanovich, 
1999) as well as in syllogistic reasoning. Furthermore, various cognitive biases to 
deductive reasoning (i.e. confirmation bias), have been shown in healthy popula-
tions as well, so that their causal role for delusions can be ruled out (Sullivan-Bissett 
& Noordhof, 2020). However, the aforementioned authors referred to (ir)rationality 
mainly as logic or deductions. Whereas, as we will see further below in the chapter, 
(ir)rationality can refer to logical (ir)rationality as well as to probabilistic (ir)rational-
ity, which are two different types of mathematically defined (ir)rationalities that can 
be applied to delusional beliefs. In recent years, the conception of the mind as a logi-
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cal rational engine (Piaget, 1957), has been replaced by the conception of the mind as 
a probabilistic rational engine (Oaksford & Chater, 2009).

Concepts such as rigidity and certainty, that do not seem to explicitly refer to (ir)
rationality at first, can appeal to the notion of rationality in a probabilistic sense. 
One form of probabilistic rationality is Bayesian rationality. The difference between 
logical rationality and probabilistic Bayesian rationality, as stated out by Oaksford & 
Chater, (2009) is that the former involves a monotonicity assumption, meaning that 
the inferential relations are held with certainty, are truth-preserving, and contingent 
facts cannot be accommodated. Whereas within the probabilistic Bayesian rational-
ity approach, rationality is defined as the ability to reason about uncertainty, while 
accommodating contingent facts. This non-monotonicity seems to suit the everyday 
world better than an absolute certainty assumption. Within non-monotonicity, any 
conclusion can be overturned if more information is acquired, as inference itself is 
uncertain. Furthermore, probability itself refers to a degree of belief rather than to 
objective facts. In short, probability theory seems, as stated by Oaksford & Chater, 
(2009), much more suitable to deal with the non-monotonic, uncertain character of 
everyday reasoning.

However, although probability theory does not assume absolute certainty, it 
assumes certainty to a specific degree of precision. Thus, it assumes truths that are 
more or less likely and thereby builds on the same operational premises as logic, 
while taking away the absolute certainty of the assumptions made. Within non-
monotonicity, statistical or probabilistic truth gets the pretence of absolute truth. This 
also becomes apparent in the juxtaposition of deductive to abductive and inductive 
inference, whereas the former refers to premises as being true and conclusions being 
certain, the latter one refers to premises being possibly true and conclusions being 
probable. In computational psychiatry, probable truth is treated as absolute truth, 
although it only represents precision. In sum, within a mathematical approach to 
beliefs, the rationality of beliefs can either be logical or probabilistic, however, in the 
Bayesian Brain hypothesis, rationality is thought of as being the latter.

3.2 The harmony of the computational model and empirical paradigm

After defining the phenomenon that is to be modelled (i.e., rigid, and certain beliefs), 
it needs to be outlined how a mathematical theory (i.e., logic, probability/Bayes) can 
be connected to the empirical data from the behavioural- or model-based measures 
obtained in an experimental task. The model-based measures are typically captured 
in the parameter estimates of the computational model to quantify the behaviour. 
Further, the model-based measures are usually designed to align with the definition 
of the examined phenomenon, i.e., rigid, and certain beliefs. Thus, the definition 
directly influences operationalisation and measurement. Parameter estimates, hence, 
behavioural measures are collected in tasks that, in the case of delusions, usually 
though not always, isolate probabilistic reasoning problems, e.g., reasoning about a 
hidden state or estimating a probability. Thus, computational paradigms on delusions 
mostly operationalize and isolate active reasoning behaviours in tasks like the beads 
task or other tasks targeting probabilistic thinking. In that way, the isolated behaviour 
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(i.e., a type of reasoning) can be selectively attributed and linked to altered inferential 
processes, as well as to specific symptoms.

After collecting the model-based measures, a computational model links the input, 
information given and relevant in a task, and output, parameter estimates represent-
ing the behaviour. This algorithmic level provides the hypothesis for the mapping and 
is the level where aberrations relevant for psychopathology are assumed to reside. 
Importantly, the type of cognition assessed, or behaviour isolated in these tasks is 
often of an explicit, deliberate, and conscious kind. Using the distinction made by 
Shea and Frith, (2016) into type 0, 1 and 2 cognition, Type 0 cognition represents 
automatic processing and unconscious representations, whereas type 1 represents 
automatic processing and conscious representation, and type 2 represents deliber-
ate processing and conscious representation. With this classification, the isolated 
behaviour in most, though not all, computational task design on delusions (Corlett et 
al., 2019; Reed et al., 2020; Sterzer et al., 2018) represents type 2 cognition, which 
is explicit, deliberate and conscious, and thus fundamentally different from uncon-
scious and automatic types of cognition.

Further, the algorithmic level simulating the underlying processes is mainly based 
on isolated decision-making, hence, type-II cognition. Thus, the design of inferential 
reasoning tasks seems contrary to the theoretical assumption that Bayesian infer-
ential processes take place automatically and unconsciously. If Bayesian inferential 
processes were to take place unconsciously, most current computational paradigms, 
isolating deliberate reasoning and decision making don’t capture unconscious and 
automatic processes.

For reasoning tasks (e.g. the beads task, i.e. to elicit jumping to conclusions or data-
gathering biases, that is often used in computational psychiatry), Oaksford & Chater, 
(2009) suggested that normative analysis, as a component of rational analysis, can be 
used to connect mathematical models to the observed behaviour, leading to explana-
tory accounts. Rational analysis (Anderson, 1990) is a way to capture and describe 
empirical data concerning thoughts and behaviour, as well as the optimal way for 
these behaviours to unfold. When using a normative approach, computational psy-
chiatry applied to delusions (mainly) uses Bayesian rational analysis to describe the 
empirical data. Rational analysis is a procedure that follows several different steps: 
(1) Specification of a precise goal of what the cognitive system wants to achieve; (2) 
Specification of a formal model of the environment with specific constraints (includ-
ing the structure of statistical regularities); (3) Specification of the constraints of the 
organism. (4) Consecutively, optimal behaviour is derived from steps 1–3, which 
requires using formal rational norms, such as probability theory (Anderson, 1990). 
Using Bayesian analysis as a modelling frame defines the optimal way to map input 
to output, depending on predefined goals and contingent facts. Importantly, what 
makes rational analysis normative is the definition of optimal behaviour, hence, an 
optimal algorithm, depending on predetermined goals, constraints, as well as contin-
gent facts.

Bayesian rational analysis appeals to behavioural tasks as deontic tasks. These are 
tasks that express rules of conduct and norms rather than facts about the world, as in 
logic. In deontic selection tasks, conditionals describe rules not how people neces-
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sarily behave, but how they should be behaving (inferentially optimal), regarding a 
specific, predetermined goal.

The rule is not a hypothesis under test, but a regulation that should be obeyed 
(Manktelow & Over, 1991). The conditionals now do not concern veracity and there-
fore can neither be confirmed nor disconfirmed by any observations of actual behav-
iour (Oaksford & Chater, 2009). The law is that people ought to behave to maximise 
expected utility, hence achieve an a priori stipulated goal or minimize uncertainty. 
Rational analysis then aims to detect violators from the law, rather than finding the 
truth. What further underlies the deontic approach is the assumption that the brain 
operates in evolutionary nearly (Friston, 2010) or approximately (Williams, 2020) 
optimal ways, which is expressed in the ideal observer, or in philosophy, this has 
been called idealized rationality.

Crucially, the deontic and normative approach represent what is claimed to make 
Bayesian rational analysis more than a mathematical re-description of the behaviour, 
as it describes why a particular algorithm is used to solve a predefined problem and 
how it might be optimized. The problem or goal is determined by what we know 
about the environment and the agent, in other words, the input or sensory evidence 
structure and noise. A goal or utility is then extrapolated from that structure to deter-
mine how the agent ought to behave. A specifically fixed and predetermined goal 
or value attached to specific contingencies is also called utility function in compu-
tational modelling. Thus, the optimal algorithm arises from the problem itself, the 
problem drives the solution (Anderson, 1990). This could also be called: problem-
dependency or goal dependency.

Within theory-building, in regard to the problem-dependency of the algorithm, 
representing the explanatory level, we need to identify whether the problems and 
input structure stated in tasks where rational analysis is applied to (i.e., beads task, 
conditional reasoning task), structurally mimics real-world problems as well as prob-
lems relevant for the symptoms of psychopathology. In the following, two accounts 
will be described and critically evaluated that argue for the explanatory value of 
computational psychiatry:

3.3 Failure modes as deviations from optimal algorithms – 1st explanatory, 
aetiological account of computational psychiatry

Computational psychiatry, building on rational analysis and the deontic approach, 
is explicitly normative, which means that it describes psychopathology in terms of 
aberrations from what is considered optimal cognition or behaviour. Thus, rationality, 
which is now optimality, is used as a benchmark to gauge psychopathology. Norma-
tive models move from pure description to an apparent explanation of why a phe-
nomenon occurs by looking at optimal behavior, under specific constraints and in 
relation to specific goals. While optimality refers to the optimal algorithm underlying 
that behavior, deviations or aberrations from the optimal algorithm are considered 
to underly psychopathology. These deviations are called failure mode (Ashinoff et 
al., 2021; Redish et al., 2008), mostly relating to form, not the content, as stipulated 
in the definition and subsequent operationalisation. Crucially, failure mode means 
what deviates from a stipulated norm, regardless of whether it is less or even more 

1 3



M. D. Broeker, M. R. Broome

optimal (Baker et al., 2019). Further, underlying failure modes are thought of as lead-
ing to specific behaviours and phenomenological states related to psychopathology, 
i.e., delusions. In addition, failure modes give a computational explanation for the 
observed and as aberrant classified task behaviours. For instance, specific behav-
iours, such as increased information sampling, can, through the normative, deontic 
approach be identified as underlying inferential failure mode (i.e., here overweight-
ing of priors at different hierarchical levels). Hence, to label something as failure 
mode, the normative model needs to act as a benchmark to gauge psychopathology. 
Further, the failure mode is accompanied by an explanation of what led to that failure 
mode (e.g., under- or overestimation of noise or environmental volatility), which then 
becomes the central explanation of a (pathological) phenomenon. Depending on the 
input structure and specifically set goals, which can enter models as utility functions, 
different failure modes can be determined. Failure modes are therefore completely 
contingent on predetermined fixed goals, and do not allow for flexibility.

Importantly, also a utility function adds a fixed goal, rather than flexible one, as it 
adds further determined facts to the already determined facts, which are then often 
called values. In other words, per-determined values are embedded into the experi-
ment at different stages.

There are simple Bayesian optimal models (ideal observer), which do not specify 
specific constraints, and there are more specific models. Given a specific normative 
model, what is defined as optimal and contrarily as failure mode will vary based on 
the internal or external constraints as well as the consecutively stipulated goals: In 
prescriptive or functional models, parameters vary as a function of given external or 
theorised internal constraints (e.g., noise) in information processing. The stipulation 
of goals under constraints gives prescriptive models the ability to deliver not only a 
definition of optimal but also, contingent on the goals, a mechanistic explanation of 
the cause. There are many prescriptive models, e.g., the volatility uncertainty and 
bounded rationality account.

3.3.1 Volatility environmental uncertainty account

The structure, including uncertainty embedded in the environment, which is recre-
ated in the experiment as input structure, determines the goal and consecutively what 
is considered optimal. In this account, the important dimension is environmental 
volatility, which is experimentally operationalised as the frequency of unannounced 
changes, i.e., in hidden states. Depending on the specific model constraints, over- 
or underestimating environmental volatility becomes the optimal behaviour or the 
failure mode and thereby the explanation for a given deviant behaviour. Empirically, 
within computational accounts of delusions, this model has been used in social and 
non-social environments (Reed et al., 2020). However, the explanation by Reed et 
al. (2020) has been criticised as it is less clear how greater expectations of envi-
ronmental (social and non-social) volatility are connected to the specific content of 
paranoia or persecutory delusions (Williams & Montagnese, 2020). However, Reed’s 
hypothesis explains the form of delusions (rigidity and certainty), which explicitly 
excludes the content.
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3.3.2 Internal noise (bounded rationality model)

In this model, optimality depends on the noisy neural sample, meaning an internal 
representation of the prior belief. Optimal prior weighting is governed by the internal 
cost of improving the precision of these representations. Thus, prior weighting is an 
adaptive response that depends on the internal constraints of information processing. 
Prior overweighting as failure mode might result from alterations in prior sampling 
or the strategies used to resolve the trade-offs.

Looking at empirical findings, it seems less clear whether persons with delu-
sions exhibit any significant domain-general inferential impairments that could be 
explained with an algorithmic failure mode, as studies trying to identity failure modes 
have been inconclusive (Ashinoff et al., 2021), and typically identify diverse rather 
than one coherent failure mode. Different failure modes, connected to aberrant (infer-
ential) reasoning behaviours, have been proposed and consecutively discounted, such 
as the JTC bias (precision-overweighting of sensory information) (Adams et al., 
2013; Corlett et al., 2019; Sterzer et al., 2018), which seem to be related to schizo-
phrenia, but not to delusions in particular. Although, also the relation to schizophre-
nia has been explained through non-inferential processes, such as general cognitive 
impairments (Ashinoff et al., 2021; Tripoli et al., 2020) which have often not been 
controlled for in meta-analyses (McLean et al., 2017).

3.4 Measuring unobservable states − 2nd explanatory, aetiological account of 
computational psychiatry

Input and output structures are directly observable; the input is given and controlled 
for in the experimental task and the output is measured in the response behaviour. 
The algorithmic level, which simulates the cognitive process transferring the input 
into the output, is, however, not directly observable but can be inferred from the 
input and the behaviour, with various parameters. This illustrates that the algorithmic 
level is still dependent on the input and output structure, it is a hypothesis of how 
the input and the output are optimally connected. Computational psychiatry assumes 
its algorithmic models represent unobservable states, hence underlying implicit pro-
cesses that the brain performs to produce the behaviour, but which are still distinct 
from the behaviour. This algorithmic hence inferential level is mostly assumed to be 
unconscious and automatic.

At this point, some concerns about the ontological commitments of computational 
psychiatry can be raised: Firstly, it can be asked if the underlying cognitive process 
that transfers input into output really simulate something that takes place automati-
cally and unconsciously, or if the cognitive process isolated in the task is rather a 
formal re-description of explicit and deliberate reasoning.

An underlying psychological process, even if explicit and deliberate, is still not 
directly observable and still distinct from the explicit output, the behavioural result. 
Therefore, it follows that only because the process itself cannot directly be observed 
and measured, it does not make the (underlying) process any more or less explicit, 
conscious, or deliberate. Thus, whether the transformation of the input to the output 
is a type 0, 1, or 2 cognitive process is determined by the task itself and the cogni-
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tion isolated in it. Even if there might be other processes contributing to a conscious 
and deliberate reasoning task, which might be automatic and below awareness, the 
targeted cognition is still the reasoning or decision-making process itself. Thus, 
depending on the isolated behaviour in a task, the computational model is simulating 
the underlying process of that very isolated behaviour or cognition. Thus, it should 
be stipulated based on the isolated task behaviour or cognition itself, whether the 
underlying process represents type 0, 1 or 2 cognition, perception, or a reasoning-
based process. The underlying process might not necessarily be unobservable for the 
individual, but it is unobservable for the experimental observer. To gauge whether 
the algorithm simulates something automatic and unconscious, it should be asked 
whether the type of cognition the algorithm is simulating is more explicit or implicit, 
and if that type of cognition can be captured based on input and output. For explicit 
behaviour for instance, an algorithm might capture processes that are themselves 
explicit but not directly observable. The algorithm goes beyond the observable, but 
this does not make the simulated process itself any more or less conscious.

Lastly, even if conceptualised as unconscious and implicit, the assumed underly-
ing algorithmic mechanisms represent an explicit process in itself. Computational 
processes in themselves, due to their stepwise and rule-based nature, inherently 
represent explicit processes. Thus, it could be asked whether the idea of implicit 
underlying processes should perhaps be detached from explicit computations. Fur-
thermore, there is also very little reason to believe that unconscious processes follow 
explicit, step-by-step rules, as these mostly require deliberation. Now, it seems less 
surprising that algorithms are particularly good in simulating higher-order functions, 
such as reasoning.

In terms of theory- building, if we were to appreciate the role of higher-order 
reasoning in psychopathology, we would need a characterisation and aligning back-
ground theory of how reasoning and higher-order cognition (in decision-making) 
relates to pathology.

To summarize, predictive coding models assume that human cognition is driven 
by reducing uncertainty, which can be uncertainty of internal representations or of 
external, environmental structures. Thereby, normative models stipulate the optimal 
algorithm to establish a mechanistic relationship between input and output. Impor-
tantly, uncertainty is assumed to influence every individual in the same way, it has 
a fixed, objective, “ontic” and “deontic” structure. As uncertainty resides within a 
fixed structure, and relates to a causal structure of a single, objective reality, it does 
not arise for individuals in an independent way and it is deprived of content, context, 
meaning as well as flexibility. What is rational, and in the case of computational 
psychiatry optimal, and what is a failure mode, therefore directly depends on the 
structure of the internal or external uncertainty and the goals contingent on that struc-
ture. Rationality, hence, optimality, refer to managing uncertainty in a given evidence 
structure, rather than a meaning. Understandability becomes of a mathematical kind.

In sum, a model can be seen as a hypothesis and simulation of the aetiological 
process of a disorder or phenomenon, i.e., delusions, based on the failure modes 
on the algorithmic level, which are assumed to be implemented within a biological 
structure. Lastly, specific deviation from optimal, hence failure mode, are linked back 
to specific clinical phenomena by correlational analysis (Baker et al., 2019), typically 
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with clinical questionnaires, which also mainly focus on structural criteria, in fewer 
cases, causal analysis (Suthaharan et al., 2021), using clinical interventions, such as 
medication or TMS, to measure change in parameter fits.

For rational analysis generally two caveats have been pointed out by Oaksford & 
Chater (2009), which will be related to computational approaches of psychopathol-
ogy: (1) Bayesian rational analysis generally is not intended to be a theory of psycho-
logical processes, which questions its suitability as a theory of psychopathological 
processes. This means that it does not specify the processes or algorithms that are 
actually used to carry out the solution, as those can take many different forms (Ander-
son, 1990). Instead, processes arise because the cognitive system is well adapted to 
solving a particular problem. In short: Bayesian rational analysis explains the rational 
reasoning processes that are isolated in experimental designs, but not the operating 
processes that underly rational reasoning.

(2) Understanding the structure of reasoning (i.e. from a Bayesian or logical per-
spective), should be distinguished from measuring people’s performance on logical 
or inference problems (Kahneman et al., 1982). Behavioural performance on logical 
or probabilistic problems results from explicit application of instructions and reason-
ing, rather than illustrating the capacities and structures immanent to the mind. Even 
if the mind would be a computational organ, it’s not possible to engage this machin-
ery with verbally or numerically stated probabilistic tasks (Oaksford & Chater, 2009).

Thus, it becomes questionable to what extent probabilistic reasoning tasks should 
be used to evaluate underlying implicit and unconscious mechanisms, especially 
since the evidence collected in most computational paradigms illustrates patterns of 
qualitative type-2 reasoning that people find natural. Bayesian rational analysis, as 
mostly applied to computational paradigms on delusions, provides a rational analysis 
of human reasoning (as isolated behaviour) however, in alignment to the argument 
by Oaksford & Chater (2009), it remains questionable how claims about underlying 
computational mechanisms could be derived from these kind of experiments.

Most tasks in computational psychiatry claim to test underlying implicit inferen-
tial mechanisms, which would be captured in type-0 cognition, automatic and uncon-
scious processes. However, what is collected in the tasks, such as the beads task, are 
qualitative, deliberate, explicit patterns of reasoning, hence, type-2 cognition. This 
becomes evident in biases unfolding around processes such as evidence gathering 
and integration of evidence or belief evaluation and shows the inherent connection of 
computational psychiatry to cognitive psychology. Thus, the computational Bayesian 
approach is still based on rational analysis and therefore technically places psycho-
pathology within the realm of a reasoning problem or disorder of thought (disorder of 
beliefs). This seems quite contradictory to the one-factor theory (Corlett et al., 2019; 
Sterzer et al., 2018), equating perception to higher-order processes, by lifting the dis-
tinction between them and assuming that the same mechanisms underlie both, based 
on the Helmholtzian claim. This then leads to the claim that either perception or rea-
soning can experimentally be looked at, as both result from the same underlying cog-
nitive mechanism. However, on the functional and experiential level alone, it could 
be questions to which extent perception represents higher-order functioning and vice 
versa. In other words, equating perception with higher-order cognition only makes 
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sense on the computational level, which remains hypothetical, and which applies the 
same algorithms to phenomena ranging from perception to planet trajectories.

In conjunction with the one-factor theory, it should be noted that there are more 
recent attempts by Corlett and colleagues (Bansal et al., 2022; Rossi-Goldthorpe et 
al., 2021) to address the limitations of the beads task or similar experimental para-
digms that mainly target and isolate deliberate reasoning related cognition, and 
instead to focus on perceptual cognition, actively bypassing deliberate reasoning, 
as the accounts assume that pathology manifests in implicit processes. Furthermore, 
there are experimental studies using a Bayesian framework that deliberately includes 
irrational, hence non- Bayesian, and content related factors, such as motivational 
biases or social vs. non-social influences, contributing to a cognitive outcome. For 
instance, the study by Rossi-Goldthorpe et al. (2021) used a perceptual classifica-
tion task, where not the classification as scene vs. image, which still represents a 
deliberate and explicit albeit perceptual decision, but the switches in decision under 
social influence was the primary variable of interest, in conjunction with confidence 
in one’s own and a social collaborators or competitors’ choice. Paranoia was thus 
operationalised as a function of higher self-deception (distrusting one’s own but 
trusting someone else’s judgement) and over-confidence, in the context of a percep-
tual classification task. Self-deception was, in the context of this study, operation-
alised as something that is irrational, but can nevertheless be explained in Bayesian 
terms. To evaluate whether the claims of the study hold depend to a significant extent 
on the operationalisation of paranoia as self-deception, its construct validity as well 
as its ecological validity in reference to clinical phenomena, and their connection to 
reducing externally given uncertainty. Further, this example shows how social vs. 
non-social influences, as content, are integrated into the paradigm, where modelling 
is used to quantify the social influence vs. the influence of external structural uncer-
tainty on the Bayesian decision process. Thus, it illustrates the integration of cir-
cumscribed, predetermined content-related factors that enter separate models based 
on group affiliation. Lastly, self-deception represents a specific form of irrationality, 
where generalisations outside the experimental context should be made carefully. 
Although the variables of interest were only dependent on but did not directly repre-
sent cognitive mechanisms, the underlying ontological commitment still seems to be 
that paranoia arises within decision-making processes, which again represent active 
and explicit cognitive mechanism.

Another example where deliberate conscious reasoning components have deliber-
ately been bypassed is the study by Bansal et al. (2022), which used a belief-updating 
paradigm in a simple perceptual decision task to dissociate belief-updating processes 
in delusions at perceptual and higher cognitive levels. While these studies go in the 
right direction by moving away from isolating deliberate reasoning, and the random-
dot motion paradigm used in this study already represented a less complex cognitive 
capacity, the judgement of direction in a dot-paradigm still represents an active eval-
uation and decision-making process, a form of cognition that is, at closer inspection, 
less of a perceptual, lower-level kind.

In summary, paradigms utilising algorithmic models, since the optimal solution 
is problem-, dependent but context- and content-independent, it should be asked 
whether the problems given in these experimental tasks resemble problems that 
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play important roles in every-day life as well as in psychopathology. The normative 
approach claims to make computational psychiatry more than a mathematical re-
description of a psychopathological symptom, e.g., delusions. However, for it to be 
more than a re-description, it needs to assume universal behavioural laws, which are 
contingent on the chosen model. These deontic laws thereby replace facts but have 
a similar status after claiming to establish not how people actually act, but how they 
ought to. Having a law-like, normative status, they appeal to the truth in a similar 
way, although a probability is now enough to establish truth, rather than proving 
something with absolute certainty. Furthermore, these laws abide to a mathematical 
or otherwise fixed and predetermined optimal solution, which is entirely contingent 
on the constraints, hence the statistical regularities of a given input structure. Going 
back to delusions, it should be asked whether a deontic law is a useful concept for 
psychopathology, if psychological health can be described as obeying some ideal 
norms of rationality, describable in mathematical ways. Or in other words, whether 
(ir)-irrationality ascribed to psychopathology is of an inferential and formal kind.

3.5 (Synthesis) points of paradox

Based on the discussion above, we will now summarize the key points of tension in 
the computational approach and how they could be reconciled.

Whereas the idea of the brain as working in inferential way was initially meant 
to describe automatic and implicit perceptual processes (Helmholtz, 1867, 1925), 
which has been extended to the claim that delusions and hallucinations are similarly 
based on automatic and unconscious inferences (Adams et al., 2021; Mishara, 2007), 
most computational paradigms on clinical delusions operationalize and isolate delib-
erate reasoning, which relies on type 2 cognition, is explicit, deliberate and routed 
in rational theory and cognitivism. Computational psychiatry thus seems to repre-
sent a fusion of ideas, conceptually merging cognitivism, and rationalism with auto-
matic, unconscious inferential Bayesian accounts. However, conclusions for type 0 
unconscious cognition should not be drawn from isolated type 2 cognition, hence, 
we cannot infer underlying implicit and unconscious inferential mechanisms from 
behavioural manifestations of deliberate reasoning. This is an inherent contradic-
tion in computational psychiatry, which is claiming to look at underlying implicit, 
automatic inferential processes while experimentally isolating overt manifestations, 
hence explicit reasoning. In other words, experiments are claiming to get behind the 
hidden structures of implicit cognition, which are assumed to be inferential, although, 
with the commonly used paradigms i.e., the beads task, they are targeting type-2 
cognition, hence, explicit reasoning or decision-making. Even in tasks that target 
more perceptual processes, delusions are mostly still operationalised as unfolding 
not within the perceptual process, but within perceptual decision-making. This math-
ematical re-description of the isolated explicit form of cognition is, through formal-
ization, then given a law-like normative status.

It should be kept in mind that computational approaches currently re-describe and 
formalize overt functional manifestations. And manifestation rarely represent the 
underlying route cause or core invariant feature of a phenomenon. There might be 
underlying inferential processes that contribute to cognition, but these would require 
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actual empirical prove, confirming the psychological assumption that the mind func-
tions like a digital computer, by following heuristic unconscious operations.

If the psychological assumption cannot be proven, perhaps the epistemological 
assumptions (Dreyfus, 1992) applied to psychopathology, namely that people do not 
follow unconscious inferential operations, but their behaviour may still be descripted 
and formalised in terms of rules. However, the very usefulness of doing so should 
then be stated. Thus, if the psychological assumption can currently not be proven, we 
are left with a formal re-description of the performance, rather than an explanation 
of the very phenomenon. This is best illustrated with the example of a cyclist, that is 
not unconsciously following a rule to keep stable. Yet, formalization might help us 
to understand the competency of keeping stable on a bike. However, it does not tell 
us anything about what is going on in the cyclist’s mind to keep stable. Similarly, 
computational models might tell us what it is to make a decision under specific cir-
cumstances, but they tell us very little of what is actually going on in a delusional 
person’s mind. Thus, there is a huge difference between a timeless and contextless 
theory or description or re-description of competency and an actual theory of human 
behaviour or performance. In other words, to assume that humans unconsciously go 
through a series of Bayesian operations when making a decision or perceiving is as 
saying the plants are solving differential equations when making their way around 
the sun, even if the movement of plants can technically be described in that way. 
Thus, only because we can describe a process in terms of discrete elements does not 
mean that the process is actually achieved like that. In short, while the psychological 
assumptions supposes that the rules used in formalisation of behaviour and cognition 
are the very same rules which produce the behaviour, the epistemological assumption 
only affirms that all non-arbitrary behaviour can potentially be formalised according 
to rules. And in order to formalise a phenomena, we need to know all factors (input, 
goals,.etc) that lead to a phenomenon, which, due to the explanatory pluralism of 
psychiatric phenomena, might be an impossible endeavour. As rational analysis is 
not a theory of underlying psychological processes, it becomes questionable to which 
extent rational analysis can be a theory of underlying algorithmic processes relevant 
for psychopathology. Furthermore, it might thus be useful to ask whether we are 
testing an underlying mechanism or re-describing a manifestation. Both processes 
should be distinguished from one another.

Predictive coding and especially the one-factor account or canonical view (Sterzer 
et al., 2018) as a response to the two-factor theory of delusions explicitly hopes to 
overcome the distinction between lower automatic and perceptual and higher cogni-
tive states, as all states are hierarchically arranged to make a hypothesis about the most 
likely cause of sensory activity (or hidden world states). Proponents of the canonical 
predictive coding account (Corlett et al., 2019; Sterzer et al., 2018) conclude that all 
abnormalities in perception and reasoning (thus two factors), can be explained with 
the same kind of underlying deficit in an abnormally functioning inferential system, 
no longer are two different deficit systems required.

This same type of deficit, in different parts of the system, can then produce a range 
of different phenomena. While defending the canonical view, some paradigms still 
located these deficits more on perceptual levels (Adams et al., 2021; Sterzer et al., 
2018), while other computational paradigms proclaim inferential deficits at higher-
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order prior levels, moving up the cortical hierarchy (Ashinoff et al., 2021; Baker et 
al., 2019). Importantly, we are not able to capture the process of making the most 
likely guess about the cause of sensory activity or a hidden state that unconscious 
inferences might make in behavioural paradigms that target explicit and deliberate 
reasoning. Processes involved in the psychopathology of psychosis may be infer-
ential, automatic, and unconscious, however, current behavioural paradigms do not 
isolate these processes successfully.

To gauge whether the underlying algorithm simulates something that is automatic 
and implicit, it should be asked whether the type of cognition that is isolated is of 
an explicit and deliberate or implicit and automatic kind. Furthermore, even though 
on the computational level the same types of algorithms may be used to describe 
different types of cognitive processes, that does not equate these processes on the 
functional or experiential level, which is the level targeted in experimental tasks to 
collect the outputs going into the model parameters. “Seeing is believing” therefore 
applies cognition and experience, not to the computational level. Depending on the 
type of manifestation, being perceptual or higher-order and cognitive, it could be 
asked how useful an inferential model is as a hypothesis to test that very function. 
Thus, it also becomes questionable how computational psychiatry bridges different 
levels of explanation using the one-factor account; or how the one-factor account can 
bring together phenomenology, behavior and physiology. The one-factor account, 
the argument of one underlying process, has also been used to make inferences from 
translational accounts i.e. animal models (see Schmack et al., (2022)) to phenom-
enology and physiology. However, as we have seen, a shared underlying formalism 
of the assumed mechanism should not be used as an argument for a shared functional-
ity and inferred shared phenomenology or experience, which is of utmost importance 
when designing experimental paradigms.

Computational psychiatry heavily relies on explicit rational optimality, which is 
then given a law-like rather than a monotonic status. However, the underlying algo-
rithms’ inferential rationality is based on functions in a similar way as in logic and 
are both related to a shared truth, hence, single objective reality. Different than in 
logic, probability refers to non-monotonicity, however, within most computational 
paradigms, this probabilistic or statistical truth is still misrepresented as an absolute 
one. Furthermore, the deontic or law-like status of computational psychiatry is rooted 
in assumptions about the most optimally rational solution to deal with uncertainty. 
Computational psychiatry therefore depends on the notion of rationality to define and 
gauge psychopathology, whereas violations of rationality are of an inferential kind.

Reasoning impairments are the central part of computational paradigms. Compu-
tational psychiatry, though often trying to align itself closer with biological and neu-
rological approaches, still entails a fundamental cognitive assumption about human 
psychology as rational agents, and is thereby an extension to the cognitivist tradition, 
which becomes apparent through the normative approach. As stated by (Williams, 
2020, p. 11), “If one abandons the assumption (of cognitivism), that cognition is 
fundamentally determined by rationality and optimality, which dates back to logic 
(the brain as a logical or inferential machine), it becomes less clear what the initial 
motivation for the Bayesian brain hypothesis actually is”.
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Further, rationality is directly contingent on the optimal way of dealing with 
uncertainty embedded in the statistical structure of the immediate environment or 
task, thus, a particular state of the world, which we defined as problem- or goal-
dependency. The optimal or ideal way of integrating evidence in a given model is 
fixed and applies to every agent finding themselves under that evidence in the same 
way. Thus, normative models operate under the assumption of a stable single exter-
nal reality that is used by multiple agents in the same way, unless the agent imposes 
motivational or emotional biases. In short, it is assumed that people reason or make 
inferences about the uncertainty of the world in a uniform way, a way whose ideal 
or optimal form can be predefined with inferential models. In terms of this depen-
dency, when using computational approaches, theories should be built on how the 
input structure of the environment, creating uncertainty, as well as a universally as 
optimal defined way to deal with that structure are related to the aetiology of psycho-
pathology. Fixed uncertainty deprives uncertainty itself of meaning and context, here 
uncertainty is of a mathematical rather than of a semantic kind. Akin to that, we need 
a conceptual justification why a general and rule-based reduction of uncertainty in a 
shared external environment plays a role in psychopathology. Reducing uncertainty 
may play a role in psychopathology, however, uncertainty might not arise in domain-
general ways and might neither influence individuals in a unified way. In contrast to 
the free-energy principle, hence, the rule-based minimisation of uncertainty or pre-
diction error, due to Dreyfus (1992), humans can deal with disambiguation in a way 
that uncertainty is reduced due to subjective goals and concerns in a given situation. 
Thus, it is the situation and the agent that determines how to disambiguate the facts. 
In a sharp contrast to that, to consider a context, an algorithm must either treat some 
features as intrinsically relevant, or it will be faced with infinite regress of contexts. 
Furthermore, humans naturally exhibit an ambiguity tolerance, i.e., for odd, non-rule-
like behaviours. This again stands in sharp contrast to formalization that does not 
tolerate any form of ambiguity. The existence of other forms of rationality, such as 
procedural rationality, epistemic rationality and agential rationality makes it clear that 
rationality, in a mathematical or non-mathematical way, is a concept that is applied to 
behavioural manifestations, rather than to underlying implicit mechanisms. Thus, it 
could be asked how useful rationality is as a concept to think of underlying implicit 
and unconscious mechanisms.

Further, it should be asked whether an inferential deontic approach is an appro-
priate benchmark to define psychopathology. In terms of rationality playing a con-
ceptual role in psychopathology, it can be questioned to which extent rationality in 
a philosophical sense of being understandability conceptually relates to optimality 
in a mathematical sense and if that conception is applicable to both, automatic and 
deliberate processes.

In terms of rationality becoming optimality, we have seen how the determination 
of the context is crucial for the definition of optimal. In other words, optimality is 
baked into the task design. Here again, we would need a theoretical justification of 
how a specific context, the environmental input structure, is actually relevant for psy-
chopathology. Both, definition of the construct as well as the stipulation of the con-
text, hence, task design, are directly built on ontological commitments. Thus, often 
in computational psychiatry, we see a conceptual gap between the ontological com-
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mitments and what is actually being tested in the experimental paradigms: Processes 
within the BBH do not refer to deliberate decisions but to a strategy of free-energy 
minimisation, that has very little to do with deliberate reasoning. However, this very 
concern is increasingly addressed with paradigms bypassing deliberate reasoning, as 
seen in Corlett’s group and others.

Campbell, (2001) questioned the direct transformation from evidence to a propo-
sitional framework leading to delusions. Rationality, regardless of it being logical 
or probabilistic rationality, appeals to a shared propositional framework, which is 
of a mathematical kind and entails predetermined goals. However, we would need a 
justification why the particular goals and universally predetermined limitations of the 
agent or the predetermined constraints of the environment are relevant for psychopa-
thology. Internalized goals may play a role in psychopathology however, these goals 
might be personal, rather than presenting a generic mathematical reduction of fixed 
input uncertainty. Similarly, to apply inferential laws to psychopathology, Quan-
tum psychopathology (QPP) applies laws and generalisations from quantum phys-
ics to the brain and psychological processes. Thereby, QPP may reach beneath and 
beyond the boundaries of discrete neurons and Newton mechanistic (Tarlacı, 2019; 
Malik and Lindesay, 2009), hence, the inferential logic of computational psychiatry, 
while QPP still also represents a reductionist approach. The inferential determinis-
tic model, in contrast to QPP, aims at the prediction of a later state, given that all 
parameters describing the previous state in the system are known (Tarlacı, 2019). 
In this paper, we have seen that this is an extensive problem for the computational 
modelling of complex states such as delusions, as we do not know all factors that 
determine the state. QPP goes on step further and challenges the general notion of 
cause-and-effect models and deterministic predictions in general, while suggesting 
models from quantum mechanics. The hope of QPP is that new analogies between 
quantum physics and psychiatric illnesses could help to understand the later. Impor-
tantly and in contrast to computational psychiatry, QPP highlights the nature of this 
analogy and that theories might not directly be testable (Tarlacı, 2019; Malik and 
Lindesay, 2009). One application of quantum mechanics to psychopathology is Niels 
Bohr’s multiple or parallel universe model , which questions our understanding of a 
single reality. Psychiatric diagnosis as well as computational psychiatry relies on the 
assumption of a single objective reality in which psychopathology unfolds and can be 
measured against an (inferential) ‘norm’. The entire notion of ‘rationality’, in either 
a logical or Bayesian way, heavily relies on the premise of a single objective reality. 
However, as suggested in this paper, the objectively shared ontological reality might 
not be the realm of psychopathology, an argument that can further be backed up by 
the new insights and epistemological process into the fundamental nature of reality, 
hence, the multiple universe model of quantum mechanics. In that vein, input-output 
determinism has been superseded by quantum physics. Furthermore, it is important 
to mention that computational psychiatry as well as quantum psychopathology both 
represent attempts to apply theoretical models from other disciplines, such as math-
ematics and physics, to psychopathology, which represents a theory-driven approach 
unfolding in the respective paradigms. However, as highlighted in the paper, a full 
theory-driven analogy might sometimes be useful but can also become misleading 
and inappropriate. Further, it represents one way, next to more data-driven (e.g., 
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phenomenologically data driven) approaches, that highlight individual meaning 
detached from underlying theory.

In a similar vein, it remains questionable whether Marr’s levels of explanation 
can be meaningfully related to psychopathology, especially to the direct input-output 
dependency. Using Marr’s levels of computation implies that psychopathology is a 
direct result of a given input-output mapping and therefore also of the immediate 
environmental structure feeding into the input. Thus, it is assumed that the chosen 
type of input is directly relevant and translates into psychopathology.

In other words, dependency on the input directly implies that the concrete input of 
an experiment elicits the phenomena in questions, hence the delusions, in a domain 
general way. Therefore, computational models should be interpreted carefully in 
terms of what the model is actually isolating in terms of input and output, and how all 
of these factors are relate to psychopathology.

In terms of theory-building, we can only formalize what we can sufficiently define, 
which highlights the need for valid, robust, and distinct concepts. This fact alone calls 
the formalization of psychopathological phenomena into question, whose definitions 
are often based on conventions, rather than robust natural phenomena. This directly 
translated into the validity of the operationalisation and measurement technique; a 
task might measure something like believing external advice against evidence, how-
ever, the relevance of this very cognition for psychopathology needs to be stipulated.

It becomes apparent that concepts are often operationalised in a way that makes 
them formalizable.

As (Maatman, 2021) stated, formalization alone does not identify underlying 
mechanisms, these need to be specified beforehand, the elements of the experiment, 
such as the definition or the ontological commitments, will not become apparent nor 
specific due to modelling alone. Neither can we identify causal connections between 
variables on the basis of their mathematical relationship. Formal modelling is not 
suited for phenomena that are too complex, thereby forcing the researcher into sim-
plified operationalisations and designs (Maatman, 2021).

Our critique of the assumptions of computational psychiatry can be integrated 
with the Kuhnian assumption of science being in flux, where the computational 
approach to science, including the mind and psychopathology has become the con-
ventional basis and received view for research for the time being and failures to 
empirical demonstrate theories currently do not cause the rejection of the theory and 
background assumptions themselves. The Quine-Duhem thesis and especially holis-
tic underdetermination (Maatman, 2021), illustrate the web of background theories 
and assumptions empirical computational psychiatry is embedded in. As highlighted 
in the paper, some being background assumptions about the computational and spe-
cially the inferential mode of operation of the mind, rationality as guiding principle 
and cognitivism. A failed hypothesis typically leaves open the possibility of abandon-
ing one of these background beliefs and assumptions rather than the hypothesis itself, 
which is, however, barely done in computational psychiatry. Thus, not questioning 
the background hypotheses, the status of computationalism as the received view 
remains. This could also be described as a disconnect and an underdetermination 
of alternative paradigms or ontological models of psychopathology, i.e., concerning 
the human existence and experience in more humanistic disciplines, such as phenom-
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enology, first-person accounts or enactivism. These accounts or paradigms can cur-
rently not be integrated into the web of computational theories and ontologies, and 
as the result of the immensurability of competing paradigms, described by Kuhnia-
mism, are often rendering unscientific or are not taken seriously. Furthermore, they 
belong to a fundamentally different set/web of theories, which are not grounded in 
the inferential and computational conception of the mind and input-output determin-
ism. Thus, within conceptual underdetermination, the same experimental data might 
be explainable with entirely different paradigms, alternatives to computational ones, 
which are, however, currently not the dominant view. Therefore, more humanistic 
vs. computational approaches represent two contrasting Kuhnian paradigms, with 
entirely different ontological assumptions (Broeker and Broome, in submission).

There are arguments demonstrating that any judgement can be modelled in terms 
of Bayesian inference by making suitable assumptions about priors and likelihoods, 
which does not tell us that it is a useful approach to use. If a computational model 
is applied to psychopathology, it should be clearly stated how explicit inferential 
mechanisms apply to theories of psychopathology. Computational psychiatry often 
fails to notice that human suffering is meaningful and not mechanistically caused 
by an inferential failure mode, where any intrinsic relationship between the com-
ponents is missing. Computational psychiatry has become so focussed on the form 
of the symptoms, that it fails to notice that symptoms are meaningful and a form of 
communication.
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