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Coordination Cages

Diastereoselective Self-Assembly of Low-Symmetry PdnL2n

Nanocages through Coordination-Sphere Engineering**

Paulina Molinska, Andrew Tarzia, Louise Male, Kim E. Jelfs, and James E. M. Lewis*

Abstract: Metal-organic cages (MOCs) are popular host
architectures assembled from ligands and metal ions/
nodes. Assembling structurally complex, low-symmetry
MOCs with anisotropic cavities can be limited by the
formation of statistical isomer libraries. We set out to
investigate the use of primary coordination-sphere
engineering (CSE) to bias isomer selectivity within
homo- and heteroleptic PdnL2n cages. Unexpected differ-
ences in selectivities between alternative donor groups
led us to recognise the significant impact of the second
coordination sphere on isomer stabilities. From this,
molecular-level insight into the origins of selectivity
between cis and trans diastereoisomers was gained,
highlighting the importance of both host–guest and host-
solvent interactions, in addition to ligand design. This
detailed understanding allows precision engineering of
low-symmetry MOC assemblies without wholesale rede-
sign of the ligand framework, and fundamentally
provides a theoretical scaffold for the development of
stimuli-responsive, shape-shifting MOCs.

Introduction

Metal-organic cages (MOCs) are discrete, porous
supramolecular architectures assembled from metal ions/nodes
and coordinating ligands.[1] The ability to encapsulate guest
molecules within the cavities of MOCs has led to investigations

for their use in catalysis,[2] sensing,[3] drug delivery[4] and
stabilising reactive species.[5]

Detailed principles behind the self-assembly of high-
symmetry MOCs have been elucidated over the last four
decades. To generate more sophisticated systems[6] with
advanced functionality,[7] attention has recently turned to the
development of methodologies to access lower symmetry
cages.[8] These include the design of mixed-ligand
(heteroleptic)[9] (Figure 1a) and mixed-metal (heteronuclear)
MOCs (Figure 1b),[10] as well as those assembled from low-
symmetry ligands (Figure 1c).[11] Using these approaches, low-
symmetry MOCs have been realised that exhibit shape-[12] and
orientation-selective[13] guest binding.

The inherent directionality of unsymmetrical ligands gives
rise to multiple possible constitutional isomers of their metal-
organic assemblies (Figure 1c). Various strategies have been
investigated towards the high-fidelity, isomer-selective self-
assembly of low-symmetry ligands.[11] Aside from developing
ligands with mixed-denticity donors,[14] these include geometric
design parameters,[15,16] use of non-covalent interactions within
the ligand backbone,[17] and coordination-sphere engineering
(CSE; also known as side-chain directing).[18] CSE strategies
can be subdivided into two further categories: those that use
attractive interactions, such as hydrogen-bonding,[19] and those
that use repulsive interactions, such as steric hindrance.

The use of CSE approaches in the metal-organic self-
assembly of low-symmetry ligands has been limited,[20] despite
its success in directing the self-assembly of heteroleptic
MOCs.[21–24] We have previously reported preliminary findings
of two systems that use steric parameters, by themselves and in
combination with geometric designs,[15] whilst Crowley and co-
workers have used hydrogen-bonding interactions to direct[*] P. Molinska, Dr. L. Male, Dr. J. E. M. Lewis
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Figure 1. Schematic representations of different unsymmetrical MOCs:
a) cis- and trans-M2L2L’2 heteroleptic cages, b) MM’L4 heteronuclear
cage, and c) potential isomers of M2L4 cages assembled from an
unsymmetrical ditopic ligand.
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formation of a cis-Pd2L4 cage.[19] Aside from these individual
examples, CSE strategies to direct the isomer-selective
assembly of homoleptic MOCs remains a significant, and
under-investigated, challenge.

It was envisaged that combinations of unsubstituted and
sterically bulky coordinating groups in unsymmetric ditopic
ligands would bias self-assembly with Pd(II) ions towards
specific isomers of MnL2n cages. Given their prior utility in
directing the self-assembly of heteroleptic MOCs, picoline[22]

(LP) and quinoline[24] (LQ) coordinating groups were chosen
for investigation.

In this work, the successful use of CSE in the selective
synthesis of PdnL2n MOC isomers is reported. For both
quinoline and picoline ligands, biasing towards assemblies with
a 2:2 stoichiometry of donors at the metal nodes was observed.
Intriguingly, the different coordinating groups were selective
for alternative donor arrangements around the metal ions,[25]

namely cis (LQ) and trans (LP).
Through careful investigation, the diastereoselectivities

between cis and trans cages were rationalised, and molecular
origins for this effect identified, demonstrating the importance
of considering the combined effects of both first and second
coordination sphere interactions in the design of these
supramolecular systems. This detailed understanding has
ramifications for the future design of MOCs, particularly those
of low-symmetry, and also stimuli-responsive systems using
CSE approaches.

CSE strategies allow the targeted assembly of MOCs with
different symmetries whilst maintaining the structural formula-
tion resulting from the design of the core ligand scaffold. As
such, this nuanced approach provides a route for precision
engineering the shape of low-symmetry MOCs, and the cavity
spaces within, towards the development of more sophisticated,
functional supramolecular hosts.

Results and Discussion

Pd2L4 cages

Based on a dipyridyl ligand motif originally reported by Chand
and co-workers,[26] L1Q and L1P (Figure 2a) were synthesised
by ester condensation between commercially available 3-
(hydroxymethyl)pyridine and the appropriate carboxylic acid.
Each ligand was then combined with Pd(NO3)2 ·2H2O in a 2:1
ratio in d6-DMSO ([L1]=40 mM) and heated at 50°C for 24 h;
no further changes were observed by 1H NMR with prolonged
heating.

Analysis by electrospray ionisation mass spectrometry
(ESI-MS) indicated formation of Pd2L4 assemblies (C1) for
both systems (Figure S22–25 and S53–56). Diffusion-orientated
spectroscopy (DOSY) further supported this, with each system
displaying diffusion coefficients (D=9.51×10� 11 and
11.0×10� 11 mss� 1 for C1Q and C1P, respectively) consistent with
related systems.[26]

In both cases a mixture of isomers of C1 was observed to
form by 1H NMR (Figure 2b and 2c), but with a major
component arising at a compositional fraction greater than
expected from a statistical library (i.e. 25%), demonstrating

successful induction of isomer selectivity. The percentage
composition of the predominant species was estimated through
a comparison of integrals between methylene signals (He) and
isolated signals in the aromatic region of the 1H NMR spectra,
giving values of approximately 70% and 50% for C1Q and
C1P, respectively (Figure S21 and S52).

For both major species of C1, nuclear Overhauser effect
spectroscopy (NOESY) revealed through-space interactions
between signals assigned to the different coordinating groups
of L1 (Figure S17 and S50), identifying these as either the cis
or trans isomers (Figure 1c). In the case of C1Q, apparent

Figure 2. a) Ligands L1Q and L1P. Partial 1H NMR spectra (500 MHz, d6-
DMSO, 298 K) of b) C1Q, and c) C1P. SCXRD structures of d) cis-C1Q

�Cl (only one crystallographically independent conformer shown), and
e) trans-C1P�Cl. Exohedral interactions of BF4

� counteranions with the
Pd(II) coordination sphere in f) C1Q (F···H 2.31–2.45 Å, C� H···F 139–
156°), and g) C1P.
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diastereotopic splitting of the CH2 signal (J�14 Hz; Figure 2b)
was consistent with formation of cis-C1Q as the major species.
The absence of diastereotopic splitting for the major isomer of
C1P led to the conclusion that this was most likely trans-C1P.

It was also possible to observe second, minor isomers for
C1Q (�9%) and C1P (�14%) that were identified as the
alternative diastereoisomers trans-C1Q (ESI section S2.3) and
cis-C1P (ESI section S2.8), respectively.

Related Pd(II) cages are known to encapsulate an NO3
�

anion that can be exchanged for stronger binding halide
anions.[27] Upon addition of 1 eq. of Bu4NCl to C1Q and C1P,
encapsulation of Cl� was evidenced by notable downfield shifts
of signals assigned to the endohedral protons of the cage (e.g.
Ha and Hh Δδ=0.49 and 0.65, respectively, for C1P; Figure S30
and S60).

C1�Cl� were subsequently prepared and isolated through
self-assembly of L1 with [Pd(CH3CN)4](BF4)2 in the presence
of 1 eq. of Bu4NCl. Unexpectedly, although the switch to BF4

�

counterions and encapsulation of a Cl� guest in place of NO3
�

anions did not change the identity of the major host isomer,
the selectivity values were altered:[28] for C1Q the cis isomer fell
to �40% of the mixture (Figure S32), whilst the trans isomer
of C1P increased to �70% (Figure S68).

The solid-state structures of C1�Cl� were determined by
single-crystal X-ray diffraction (SCXRD) analysis, which
revealed the anticipated cis- and trans-[Pd2(L1)4�Cl]

3+ assem-
blies for C1Q (Figure 2d) and C1P (Figure 2e), respectively.[29]

For C1P, steric clash of the methyl groups was avoided through
induction of a helical twist, with an azimuthal angle (α) of
�27°. Whilst C1Q displayed no significant helical twist (α�1–
3°), resulting in a slightly larger Pd···Pd distance (6.94–7.05 Å
compared to 6.81 Å for C1P), the planes of pyridine and
quinoline units trans to each other were rotated to reduce
interactions (Θ=3–28°; Figure S250 and Table S2).

Molecular origins of diastereoselectivity

Interestingly, the relative energies of the cis and trans isomers
of both C1Q and C1P, computed using density functional theory
(DFT) calculations (HSE06 functional and def2-SVP basis set
with implicit DMSO solvation), suggested the trans isomer
should be most stable for both systems (ESI section S3). This
implied that additional external influences, beyond inherent
structural factors, were responsible for the observed speciation.
Thus, the question arose: why did C1Q exhibit selectivity
towards the cis isomer?

The SCXRD structures showed exohedral BF4
� anions

located in proximity to the Pd(II) ions[30] for both assemblies
(Figure 2f and 2g). For C1P the steric bulk of the methyl
groups resulted in a greater F···Pd distance compared to C1Q.
Indeed, for C1Q, interactions between the counterions and
C� H of both pyridine and quinoline donors were observed
(F···H 2.3–2.8 Å, C� H···F 139–166°, Figure 2f). This initially led
us to consider that the different diastereoselectivities resulted
from differences in interactions between cage and counter-
anions. Specifically, non-covalent interactions between the
BF4

� anions and C1Q stabilised the cis isomer to such an extent

as to make it lower in energy than the more sterically
favourable trans isomer.

This hypothesis was probed on two fronts: through dilution
([C1] 10–1 mM) in d6-DMSO (Figure 3b, 3c, S75 and S76) to
investigate the effect of reducing the anion concentration, and
the synthesis of C1Q�NO3 in the presence of excess BF4

� or
� OTf to monitor the effect of increased anion concentration
and stoichiometry (Figure S71). No impact on the diastereose-
lectivity was observed from either study (ESI section 2.11).

The thought occurred that, whilst the BF4
� anions were

located around the Pd(II) nodes in the solid-state, in solution
the concentration of strongly hydrogen-bond accepting DMSO
molecules would be orders of magnitude higher. The idea that
solvent molecules, rather than anions, interacting with the
coordination sphere of the cages were responsible for stabilisa-
tion of the cis assemblies was thus examined experimentally.

The dilution studies were revisited using CD3CN—a
weaker hydrogen bond acceptor—as titrant (DMSO and
MeCN have hydrogen bond acceptor parameters, β, of 8.9 and
4.7, respectively[31]). In this instance, the proportion of the trans
isomer of C1P increased slightly with dilution (Figure S81 and
S82). Meanwhile, for C1Q, the percentage of the cis cage
decreased; as the proportion of CD3CN increased, the minor
trans isomer became more prominent (Figure S77 and S78). At
a solvent ratio of 9 :1 CD3CN/d6-DMSO, the percentage
composition of trans-C1Q actually superceded that of the cis
isomer (Figure 3d). Similarly, addition of D2O (β=4.5)[31] to a
d6-DMSO solution of C1Q also resulted in enhancement of the
trans isomer at the expense of the cis (Figure S72 and S74).

It was concluded that, in the absence of additional effects,
the trans isomer is favoured for both C1P and C1Q purely on
grounds of steric hindrance. The cis isomers, however, provide
a suitable site around the coordination sphere for interacting

Figure 3. a) Second coordination sphere effects with solvent molecules
alter the equilibrium between cis- and trans-C1Q. Partial 1H NMR
spectra (300 MHz, 298 K) of C1Q�NO3 b) 10 mM (d6-DMSO) with cis
isomer peaks labelled, c) 1 mM (d6-DMSO), and d) 1 mM (9 :1
CD3CN/d6-DMSO) with trans isomer peaks labelled.
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with hydrogen bond acceptors (Figure 3a). Consequently,
employing as solvent DMSO—a strong hydrogen bond accept-
or—led to a reduction in the relative energy of the cis isomer.
For C1Q this effect was more pronounced due to the four
polarised aromatic C� H bonds (Hb and Hj) around each Pd(II)
ion (compared to just two for C1P� Hb).

The difference in isomer selectivity between C1�NO3
� and

C1�Cl� is proposed to arise partly from a reduction in Pd···Pd
distance, with the smaller guest inducing an increased helical
pitch.[32] This increased the offset of bulky donor groups in the
trans isomer, further reducing its relative energy, observed as
an increase in diastereoselectivity towards trans-C1. For C1Q,
the conformational changes upon guest exchange may also
impact the complementarity between the external binding
pocket and solvent molecules, reducing effective stabilisation
of the cis isomer. This was suggested by a lack of shift in the
quinoline resonance Hj for trans-C1Q (Δδ=0.01 ppm), in
contrast to cis-C1Q (Δδ=0.11 ppm), upon increasing CD3CN
composition (Figure 3b–d), indicative of Hj being incapable of
significant interactions with solvent molecules in the trans cage
isomer.

From the combined data, we have constructed a molec-
ular-level picture of the multiple interactions that influence the
observed diastereoselectivities between cis and trans cages.
The ligand design, endohedral interactions between host and
guest, and exohedral interactions with solvent molecules all
contribute to the relative energies of the diastereomers. Thus,
both first and second coordination spheres[33] play an important
role in directing the self-assembly process. Modulation of these
factors enables control over isomer selectivity, and opens up
the possibility for stimuli-responsive switching of the equili-
brium position within isomer libraries.[34] More detailed
investigations into this effect are underway and will be
reported in due course.

Larger Pd2L4 cages

To probe the utility of these designs with alternative ligand
scaffolds, ligand L2Q (Figure 4a) was investigated. We have
previously reported the self-assembly of ligand L2P; in d6-
DMSO a mixture of the cis- and trans-Pd2L4 cage (C2) isomers
formed, whilst in CD3CN trans-C2P formed essentially
exclusively.[15] It had been suggested that this behaviour arose
from the higher polarity DMSO solvent stabilising the more
polar cis isomer,[35] without being able to provide a more
detailed explanation. In light of the new investigations with C1,
it is now proposed that the stronger hydrogen bond acceptor
nature of DMSO, compared to CH3CN, leads to enhanced
stabilisation of the cis-C2P isomer specifically through hydro-
gen bonding interactions between solvent molecules and the
exohedral face of the Pd(II) coordination sphere. These
interactions are less favoured with the trans isomer which,
excluding other factors, provides the least sterically hindered
primary coordination sphere.

Self-assembly of L2Q with Pd(II) (as the BF4
� salt) in d6-

DMSO resulted in what, superficially, appeared to be near-
quantitative (estimated at 70% by NMR integration; Fig-
ure S114) formation of a single species, C2Q (Figure 4b). In

combination, the high-symmetry NMR spectra (Figure 4b
and S104–106), ESI-MS (Figure S115–118) and NOESY
(Ha···Hn, Hb···Hm; Figure S112) data identified C2Q as either
cis- or trans-Pd2(L2

Q)4. The absence of prochiral units within
the ligand structure prevented the use of diastereotopic
splitting (or lack thereof) as a diagnostic tool to differentiate
the two isomers in solution.

The solid-state structure of C2Q was determined by
SCXRD and revealed, as expected, a cis arrangement of
ligands within the assembly (Figure 4c–e).[29] Consequently,
it seemed the preference under these conditions for cis and
trans coordination environments when pairing pyridine with
quinoline and picoline, respectively, holds for different
ligand scaffolds.

Pd3L6 ‘double-walled’ triangles

To explore higher nuclearity systems, L3Q and L3P (Fig-
ure 5a) were synthesised. Symmetric, dipyridyl analogues of
these ditopic ligands[26] have been shown to assemble into
‘double-walled’ Pd3L6 triangles (Figure 5b).[36,37] For such
structures assembled from an unsymmetrical ligand, one
instance of which has been reported by Chand and co-
workers,[38] there are 9 possible isomers. Two of these
provide all-cis or all-trans arrangements of donors at the
three metal nodes (Figure 5b). From our understanding of
isomer selectivities induced by CSE, it was hypothesised

Figure 4. a) Ligands L2Q and L2P; b) Partial 1H NMR spectrum
(500 MHz, d6-DMSO, 298 K) of C2Q; SCXRD structure of cis-C2Q

showing c) cis-C2Q�DMSO2, d) view down the Pd···Pd axis, and e) cis
coordination environment around a Pd(II) ion.
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that self-assembly of L3Q with Pd(II) in DMSO would
favour formation of the cis-Pd3L6 isomer of C3, whilst L3P

would be biased towards the trans assembly.
C3Q exhibited a set of dominant signals in the 1H NMR

spectrum (Figure 5c). The diffusion coefficient of this major
species, derived from DOSY, corresponded to a solvody-
namic radius of 15 Å, whilst isotopic patterns observed by
ESI-MS were consistent with assemblies possessing the
anticipated Pd3L6 formulation (Figure S139–146). This major
species was estimated by integration of 1H NMR signals to
constitute �35% of the isomeric mixture (Figure S138),
over three-fold that of a statistical library (11%). As with
the previous systems, the high symmetry of the NMR
spectra and through-space interactions observed by NOESY

(Ha···Hn and Hb···Hm) were consistent with only the all-cis or
all-trans isomers (Figure 5b).

Weakly diffracting crystals were grown that required the
use of synchrotron radiation to obtain satisfactory SCXRD
data.[29] The solid-state structure (Figure 5d–f), however,
unambiguously revealed each pair of ligands along the three
“walls” to be aligned parallel, with a ‘head-to-tail’ arrange-
ment of the ligands on each face of the triangle. This gave,
at each of the three metal nodes, the anticipated cis
arrangement of quinoline and pyridine donors.

In contrast to L3Q, the equilibrated self-assembly
mixture of L3P and Pd(II) in d6-DMSO resulted in a 1H
NMR spectrum that appeared to show formation of a
mixture of assemblies, with no clear dominant species.
Given the established impact of solvent on the equilibrium
between cis and trans isomers, self-assembly with L3P was
re-examined in CD3CN. This yielded a much simpler 1H
NMR spectrum (Figure 5g), with a clear dominant species
(�25% of mixture, Figure S175).

The major product was of high symmetry, as observed
by both 1H (Figure 5g) and 13C NMR (Figure 5h) which,
combined with NOE interactions between the pyridyl and
picolyl donor groups (Hb···Hl; Figure S174) and ESI-MS data
(Figure S176–186) again indicated formation of either the
cis- or trans-Pd3L6 assembly as the major species. Despite
multiple attempts, single crystals suitable for X-ray diffrac-
tion could not be obtained in our hands and the lack of
prochiral units prevented the use of NMR spectroscopy to
distinguish between the two possible isomers. Consequently,
we turned to DFT to investigate the relative energies of the
cis and trans assemblies.

Unexpectedly, use of different functionals for the
geometry optimisations resulted in a switching of the cis
(HSE) or trans (PBE0) C3P isomer being lower in energy
(ESI section S3). It has been demonstrated how environ-
mental perturbations significantly impact the stability of the
individual isomers. Thus, without the suitable inclusion of
explicit encapsulated and exohedral solvent molecules and
anions within these models, the balance of calculated
energies between isomers can be easily swayed. Based on
the experimental data obtained for C1, and the DFT
calculations previously performed on the more rigid C2
systems, it is tentatively suggested that the most likely
identity of the major isomer of C3P is the trans assembly.

Heteroleptic self-assembly

Preliminary investigations to extend these CSE designs to
Pd4L8 ‘double-walled’ tetrahedra[37,39,40] assembled from
ligands L4 (Figure 6a)—synthesised through copper-free
Sonogashira couplings[41]—proved prohibitively difficult,
with complex NMR spectra obtained from equilibrated
mixtures with Pd(II) (ESI Section S2.22 and S2.24). This is
perhaps unsurprising. In a statistical library, each of the
35 possible isomers[42] would constitute <3% of the mixture,
with even the most symmetrical cages (i.e. cis and trans)
possessing two ligand environments. Without near quantita-
tive selectivity, identification of NMR signals for a particular

Figure 5. a) Ligands L3Q and L3P; b) schematic representations of Pd3L6

‘double-walled’ triangle isomers with all-cis and all-trans donor arrange-
ments; c) 1H NMR spectrum (500 MHz, d6-DMSO) of C3Q; SCXRD
structure of cis-C3Q showing d) cis-C3Q�DMF2DMSO, and space filling
representation e) from the top, and f) from the side; g) 1H NMR
spectrum (500 MHz, CD3CN) and h) 13C NMR spectrum (126 MHz,
CD3CN) of C3P.
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isomer would likely be an insurmountable challenge. Con-
sequently, further exploration of these systems was not
attempted.

Inspired by a recent report of a heteroleptic cis-Pd2L2L’2
MOC,[40] there was motivation to investigate the potential
integrative self-assembly between L4 and symmetric ligand
L2H. From such a mixed-ligand assembly there would be two
possible isomers: the syn and the (chiral) anti isomer, with
the pair of L4 ligands arranged in the same or opposite
directions, respectively (Figure 6c).

After equilibrating a stoichiometric mixture of L2H and
L4Q with Pd(II) in CD3CN, DOSY (Figure S224) and ESI-
MS (Figure S226–230) confirmed formation of heteroleptic
assemblies with the anticipated Pd2(L2

H)2(L4
Q)2 formulation.

Meanwhile, NMR analysis demonstrated the presence of
two spectroscopically similar species in an approximately
3 :1 ratio (Figure 6b and S225).

The lack of bilateral symmetry in L4Q induced a lowering
of the symmetry of L2H in both cage isomers, resulting in
distinct signals for all 12 protons, corroborated by the 13C
NMR spectrum (Figure S211). Whilst analysis of the 1H
NMR spectrum was made challenging by significant signal
overlap, 2D NMR techniques (COSY, HMBC and TOCSY)
enabled assignment of all peaks for both isomers (Fig-
ure S205).

NOESY and ROESY were employed to determine the
identities of the two isomers (Figure 6c). Observation of
particular through-space interactions (HB···HB’ and
Hb···Hi···HB’) for the minor species (Figure 6d) led to the
conclusion that this was the less sterically congested anti
isomer. The more limited NOE interactions observed for
the major assembly demonstrated that this was the syn
isomer, with both L4Q ligands arranged parallel. This result
further supported the conclusion that, rather than selectivity
towards the cis isomers of C1� C3 being purely driven by
repulsive steric effects, additional stabilising interactions
promoted this ligand arrangement. In this instance, presum-
ably the two different second coordination sphere sites
around the Pd(II) ions in the syn isomer provide more
favourable interactions with solvent molecules compared to
those of the anti cage.

The anticipated structure of syn-Pd2(L2
H)2(L4

Q)2 was
confirmed by SCXRD, with both L4Q ligands arranged
parallel to each other (Figure 6e–g).[29] The solid-state
structure of the heteroleptic cage was found with one BF4

�

anion encapsulated within the cavity, and external counter-
ions interacting with the external face of the coordination
spheres around the two Pd(II) ions (Figure 6e).

The integrative self-assembly between L2H and L4P was
also attempted. Whilst ESI-MS (Figure S233–241) demon-
strated the presence of the heteroleptic assembly (alongside
minor signals for the homoleptic Pd2(L2

H)4), signal resolu-
tion in the NMR spectrum was insufficient to enable
effective analysis (Figure S232).

We have previously been able to arrange two different
unsymmetrical ligand scaffolds in defined relative orienta-
tions through covalent tethering, forming pseudo-heterolep-
tic MOCs.[43] Using CSE, we now demonstrate the ability to
assemble truly heteroleptic MOCs, derived through integra-
tive self-assembly of ligands with the same denticity,
incorporating unsymmetrical scaffolds in an orientationally-
selective manner.[44]

Figure 6. a) Ligands L4Q, L4P and L2H; b) 1H NMR spectrum (500 MHz,
CD3CN) of [Pd2(L2

H)2(L4
Q)2](BF4)4 with major syn isomer peaks labelled;

c) through-space interactions observed by NOESY in the two
heteroleptic isomers; d) NOESY spectrum (500 MHz, CD3CN) with
minor anti isomer peaks labelled. SCXRD structure of syn-Pd2(L2

H)2-
(L4Q)2 e) with endo- and exohedral BF4

� counteranions, f) viewed down
the Pd···Pd axis, and g) second crystallographically independent
molecule with alternative co-conformation of internal BF4

� anion.
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Conclusion

We have prepared a range of unsymmetrical ditopic ligands,
with varying backbone scaffolds, incorporating a pyridine
donor paired with a sterically bulky quinoline or picoline
moiety, and investigated their self-assembly into PdnL2n

architectures. This coordination-sphere engineering ap-
proach was successful in biasing self-assembly towards
specific isomers from a statistical library. Interestingly,
quinoline and picoline units promoted cis and trans arrange-
ments of donors at the metal centres, respectively, resulting
in diastereoselectivity of the self-assembly process towards
different isomers of particular architectures. The ability to
use this relatively subtle difference to target the formation
of specific metal-organic assembly isomers provides a
nuanced approach towards directing the self-assembly of
unsymmetrical ligand scaffolds.

After probing the source of this difference in selectivity,
it was concluded that interactions between solvent molecules
and the exterior of the cage around the metal nodes play a
crucial role in determining the relative stabilities of isomers.
Thus, not only is the first coordination sphere important in
directing the self-assembly, but second coordination sphere
effects play a critical role and can, in fact, supercede the
directing effects of the primary structure. This insight further
opens up the potential for designing stimuli-responsive,[45]

shape-shifting systems[46] that respond to changes in their
environment.

The orientationally selective incorporation of an unsym-
metrical ligand scaffold into a heteroleptic M2L2L’2 MOC
was also demonstrated. Consistent with the homoleptic
assemblies, the major isomer that formed had both bulky
quinoline donor units coordinating to the same Pd(II) ion.
This result further supported the hypothesis that isomer
selectivity can be affected by interactions beyond those
simply between components within the covalent structure.

This flexible strategy adds a new approach to preparing
metal-organic hosts with increased anisotropy to the metal-
losupramolecular chemist’s toolbox. The continued develop-
ment of methods to access more structurally sophisticated
metal-organic cages[6] will lead to supramolecular hosts
exhibiting higher-level behaviours,[7] reminiscent of the
impressive properties of natural architectures, like enzymes,
that have long provided a source of inspiration for chemists.
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Often overlooked second coordination
sphere effects are shown to be of
significant importance in isomer selec-
tivity with self-assembled, low-symmetry
metal-organic cages. In some instances,
these effects override primary structural
factors that are often the only consider-
ation when designing such systems.
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