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Let X be a smooth complex projective curve of genus g ≥ 2, and let D ⊂ X be a reduced divisor. We prove
that a parabolic vector bundle E on X is (strongly) wobbly, that is, E has a non-zero (strongly) parabolic
nilpotent Higgs field, if and only if it is (strongly) shaky, that is, it is in the image of the exceptional
divisor of a suitable resolution of the rational map from the (strongly) parabolic Higgs moduli to the
vector bundle moduli space, both assumed to be smooth. This solves a conjecture by Donagi–Pantev
[14] in the parabolic and the vector bundle context. To this end, we prove the stability of strongly very
stable parabolic bundles, and criteria for very stability of parabolic bundles.

1 Introduction
Let X be a smooth complex projective curve of genus g ≥ 2, and let K be its canonical bundle. Consider
the moduli spaces N(n, d) of vector bundles of rank n and degree d, and M(n, d) of Higgs bundles with
the same invariants. These are schemes parametrising vector bundles (resp. Higgs bundles, namely
pairs (E, ϕ) where E is a vector bundle and ϕ ∈ H0(X, End(E) ⊗ K) is the Higgs field) of fixed rank and
degree. This article is concerned with two loci in N(n, d): the wobbly and the shaky loci. Wobbly bundles
are semistable bundles in N(n, d) admitting a non-zero nilpotent Higgs field. Shaky bundles are more
involved to define. To do this, consider the dense open embedding T∗Ns(n, d) ⊂ M(n, d), where Ns(n, d)

denotes the stable locus in N(n, d). This yields a surjective rational map , which
is a morphism away from the locus Un ⊂ M(n, d) of semistable Higgs bundles whose underlying bundle
is unstable. Suppose that the moduli space of bundles is smooth. Then, by Hironaka’s theorem on
the elimination of indeterminacies [24], a finite number of blowups allows to resolve r to a morphism

. An element in the image under r̂ of the exceptional divisor Ex is called a shaky
bundle [14].

The name wobbly first appeared in [14], but the interest in these objects dates back to the works
of Drinfeld and Laumon from the 80s [20, 25]. The focus of the earlier works was on the non-wobbly
bundles, also known as very stable bundles. Very stable bundles are open dense in the moduli space
of bundles (as in particular they are always stable). Hence, they play a crucial role in the geometry
of the global nilpotent cone and, by extension, that of the moduli space of Higgs bundles. Investigation
has however more recently also concentrated on wobbly bundles, after the conjecture by Donagi–Pantev
that these are precisely the shaky bundles [14, §6.1]. Shaky bundles appear naturally in their programme
to prove geometric Langlands via abelianization of Higgs bundles and non-abelian Hodge theory. In the
words of the authors [14, §6.1] “A major step towards carrying out our program is the identification
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2 | A. Peón-Nieto

of shaky bundles”. Indeed, their programme aims at constructing the Hecke eigensheaves predicted by
geometric Langlands via simpler abelianized ones [16]. The nature of the construction itself implies that
these eigensheaves have to be singular along the shaky divisor. This is the case of the sphere minus five
points [15], where the Hecke eigensheaves are proven to have polar singularities along the shaky locus,
as expected after Drinfeld and Laumon’s work [26]. The equality of the shaky and wobbly loci [15, Prop.
5.10], done by an explicit description of the objects involved, proves crucial in the identification of the
singularities of the sheaves [15, §6.3.2].

For general smooth Riemann surfaces, the geometric criterion for very stability proven by Pauly and
the author [32] suggests the equality of the wobbly and shaky locus. This criterion was subsequently
generalised to principal bundles by H. Zelaci [42].

The above applies to usual Higgs bundles. However, since the beginning of their programme, it was
understood by Donagi–Pantev that parabolic bundles were the right setup to prove geometric Langlands
via Higgs bundles [15, §1.3], [17]. This is why we have chosen to concentrate on the parabolic setup in
the present proof of the equality of wobbly and shaky bundles. In fact, the arguments in this paper
can be adapted to prove the equality of wobbly and shaky bundles with no parabolic structure, but this
result follows also as a corollary of the parabolic case hereby presented. Let us point out that unlike in
the case of P1 minus five points, there is no elementary explicit description of the objects involved, and
thus the techniques hereby used are totally different in nature. As an intermediate step, we generalise
the results in [32, 42] to this setup.

1 Structure of the paper and summary of results
Let D ⊂ X be a reduced divisor, and let P := {Px : x ∈ D} be a set of conjugacy classes of parabolic
subgroups of GL(n, C) indexed by D, identified with partitions {mx = (mx,1, . . . , mx,rx ), x ∈ D} of the rank
n. A quasi-parabolic vector bundle of rank n and flag type P is a pair E = (E, σ) where E is a rank n
vector bundle and σ is a reduction of the structure group to the given parabolic subgroup at each point
of D. Equivalently, we may identify σ with a set of flags {Ex,0 = 0 ⊆ Ex,1 � · · · � Ex,rx = Ex}x∈D. Let
αx = (αx,1, . . . , αx,rx ) be an increasing rx-uple of non-positive real numbers in the interval (−1, 0]. The
assignment of the weights αx,i to the steps Ex,i of the flag defines a parabolic structure on the quasi-
parabolic bundle E . A parabolic Higgs bundle is a pair (E , ϕ) where E is a parabolic vector bundle and
ϕ ∈ H0(X, ParEnd(E) ⊗ K(D)), with ParEnd(E) ⊂ End(E) the subsheaf of endomorphism of E preserving
the flags at the prescribed points.

Each α as above defines a stability notion, yielding moduli spaces of parabolic bundles N(P , α) and
parabolic Higgs bundles M(P , α). The latter is Poisson with symplectic leaves given by Higgs fields
whose residues belong to fixed adjoint orbits in the associated Levi group. Particularly important are
the strongly parabolic leaf (corresponding to the zero orbit), and the regular semisimple leaves (which
are generic). Strongly parabolic Higgs bundles have Higgs fields belonging to the subsheaf SParEnd(E) ⊂
ParEnd(E) of strongly parabolic endomorphisms, that is, endomorphism strictly compatible with the
filtration.

Consider the Hitchin fibration

hP,α : M(P , α) −→ HD =
n⊕

i=1

H0(X, Ki(iD)),

defined by associating to a parabolic Higgs bundle (E , ϕ) the coefficients of the characteristic polynomial
of ϕ. If E is a stable parabolic vector bundle of type (P , α), there is an embedding

H0(X, ParEnd(E) ⊗ K(D)) ↪→ M(P , α)

given by E 	→ (E , 0). Motivated by [32, 42], we consider the restriction hE,st (respectively hE,nilp) of the
Hitchin map to the vector space VE,st = H0(X, SParEnd(E)⊗K(D)) of strongly parabolic Higgs fields (resp.
VE,nilp = H0(X, ParEnd(E) ⊗ K(D))nilp, of Higgs fields with nilpotent residue with respect to the parabolic
subgroup given by the flag). If E is stable, this corresponds to the intersection of H0(X, ParEnd(E)⊗K(D))

with the strongly parabolic symplectic leaf (resp., the closure of the regular nilpotent symplectic leaf).
These and other notions are explained in Section 2.
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Equality of the Wobbly and Shaky Loci | 3

In Section 3, we define the notion of a strongly very stable parabolic bundle (respectively, very stable),
that is, a parabolic bundle admitting no non-zero strongly parabolic Higgs field (resp. no non-zero
nilpotent parabolic Higgs field). Paralleling the case of vector bundles [25], we prove:

Lemma (Lemma 3.5). Let E be parabolic of type (P , α). If it is strongly very stable, then it is
α-stable. In particular, if it is very stable, then it is α-stable.

We note that this fact is implicit in the assertion in [15, §5.4] that all results from [25] adapt to the
strongly parabolic setup in virtue of [4, 7]. We hereby include a detailed proof of the aforementioned
lemma, improving a result by [37] (see Remark 3.6).

Similarly, the following result extends [32, Theorem 1] to the parabolic setup.

Theorem (Theorems 3.8 and 3.14). Let E be a stable parabolic bundle, and let hE,nilp (respectively
hE,st) be the restriction of the Hitchin map to VE,nilp (resp. VE,st). Then,

E is (resp. strongly) very stable ⇐⇒ hE,nilp (resp. hE,st) is finite
⇐⇒ hE,nilp (resp. hE,st) is quasi-finite
⇐⇒ hE,nilp (resp. hE,st) is proper
⇐⇒ VE,nilp ↪→ M(P , α) is proper

(resp. VE,st ↪→ M(P , α) is proper).

It is worth noting that finiteness follows from very stability as a corollary of [42, Lemma 1.3], of which
we provide an alternative elementary proof. Moreover, in the case of nilpotent Higgs fields, properness
of hE,nilp is equivalent to properness of hE := hP,α |VE (cf. Theorem 3.14).

An immediate corollary is the fact that if E is strongly very stable, then VE,st is a Lagrangian
multisection of the restriction hP,α,st of the Hitchin map (Corollary 3.9) to the strongly parabolic leaf. This
was shown in the usual setup in [19, Corollary 7.3]. A similar result holds for hE,nilp, except that in that
case it will be Lagrangian in a symplectic leaf possibly of lower dimension than the regular nilpotent
(Corollary 3.15). Finally, Lemma 3.16 characterises the strong wobbly locus in terms of intersections of
irreducible components of the nilpotent cone in the moduli space of strongly parabolic Higgs bundles
with the moduli space of parabolic bundles.

Section 4 addresses the identification of wobbly and shaky bundles. In this setup, wobbliness can
be defined with respect to the full moduli space or different symplectic nilpotent leaves. We consider
strongly wobbly parabolic bundles Wst[...] and wobbly parabolic bundles W[...] (i.e., the complement
of the strongly very stable locus in the moduli space) and wobbly parabolic bundles (namely, the
complement to the very stable locus). Regarding the corresponding shaky loci, let r̂ be a resolution
of r obtained by blowup along the locus Un of stable parabolic Higgs bundles with underlying unstable
parabolic bundle (say, when the moduli space is regular). Let Ex be the exceptional divisor, and let
S = r̂(Ex). By construction, r̂ restricted to M(P , α)nilp and M(P , α)st is again a succession of blowups, and
we denote by Snilp and Sst the images of the exceptional divisors. Then:

Theorem (Theorem 4.4). There is an equality W = Snilp = S, where W ⊂ N(P , α) denotes the
wobbly locus.
Similarly, the strong wobbly locus Wst satisfies Wst = Sst.

This was proven in [15] for rank two parabolic bundles on the projective line minus five points. In this
case, strongly parabolic bundles and nilpotent parabolic bundles coincide, so there is just one wobbly
locus to consider. Let me point out that these authors work on the non-smooth case, so shakiness is
defined with respect to a specific point of the Hitchin base. They prove that the definition is independent
of this choice.

In the vector bundle setup, shakiness of wobbly bundles has been known since [2, 25], and follows
from similar arguments to those of [2, §4.1]. The proof of this fact can be adapted to the parabolic setup,
with a bit of extra work for nilpotent parabolic Higgs bundles given the existence of different leaves and
images of the Hitchin map. This is achieved in Theorem 3.14 (see the proof of Theorem 4.4).

Finally, Section 5 explains how our results yield analogous statements in the non-parabolic case.
Motivated by Brill–Noether theory, we introduce the notion of (P, D)-strong very stability on vector
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4 | A. Peón-Nieto

bundles for a parabolic group P ≤ GLn(C) and a reduced divisor D. For P = GL(n,C) and arbitrary non-
empty D, this recovers the notion of very stability defined by Drinfeld [25]. Using the results in Sections 3
and 4, we recover the criteria from [32] and stability of very stable bundles [25], and prove the equality
of the usual wobbly and shaky bundles.

2 Parabolic Higgs Bundles
We gather in this section some results that will be useful.

2.1 Parabolic bundles and parabolic Higgs bundles
Let D ⊂ X be a reduced divisor of degree d. Let P := {Px : x ∈ D} be a set of parabolic subgroups of GL(n, C)

indexed by D. Denote by Lx < Px the Levi subgroup, and let lx := Lie(Lx) < px := Lie(Px) be the respective
Lie algebras. We will denote by O = ∏

x∈D Ox an orbit in l := ∏
x∈D lx under conjugation by L := ∏

x∈D Lx

(so that Ox is a adjoint orbit in lx). We define n := ∏
x∈D nx < p := ∏

x∈D px the nilpotent subalgebra.
A quasi-parabolic bundle of flag type P (note that the rank of the bundle is determined by P , as

the subgroups are taken inside a fixed GL(n,C)) is a pair E = (E, σ) where E is a rank n vector bundle
and σ : E|D −→ ∏

x∈D GL(n, C)/Px is a reduction of the structure group to the given parabolic at each
point of D. Without loss of generality, we will assume that Px is associated to the partition n = ∑rx

i=1 mx,i,
and we will identify σ with a collection of flags {Ex,• : 0 = Ex,0 ⊂ Ex,1 ⊂ · · · ⊂ Ex,rx = Ex : x ∈ D}.
Let αx = (αx,1, . . . , αx,rx ) be a increasing rx-uple of negative real numbers, which we may assume to be
contained in (−1, 0] [34]. Moreover, since every moduli space is isomorphic to one with rational weights
[30, §2], we may take αx,i ∈ Q for all x ∈ D, i = 1, . . . , rx. A parabolic vector bundle of type (P , α) is a quasi-
parabolic vector bundle E of type P together with the assignation of the numbers αx,i to each step of the
flag Ex,i i = 1, . . . , rx. The assignment of these tuples to a quasi-parabolic bundle E defines a parabolic
structure on it. The parabolic bundle thus defined can be assigned an invariant called parabolic degree

par- deg(E) := deg(E) −
∑
x∈D

rx∑
i=1

αx,imx,i

where mx,i = dim Ex,i/Ex,i−1 are called the multiplicities. The parabolic slope of E is the invariant

par-μ(E) := par- deg(E)

rkE
.

A parabolic vector bundle F of type (P ′, α′) is a parabolic sub-bundle of a parabolic bundle E of type
(P , α) if F is a subbundle of E, P′

x ≤ Px and α′
x,i ≥ αxi . The parabolic bundle E is α-semistable if for any

proper parabolic sub-bundle F ⊂ E

par-μ(F) ≤ par-μ(E).

Clearly, to elucidate whether a parabolic bundle is semistable, it is enough to consider quasi-parabolic
sub-bundles F with minimal compatible weights.

The moduli space N(P , α) of parabolic bundles of fixed degree and type is a projective variety [30,
Theorem 4.1.] (in particular, it is separated), possibly singular, with closed points parametrising S-
equivalence classes of semistable parabolic bundles (or equivalently, isomorphism classes of polystable
parabolic bundles). Its dimension is [30, Theorem 5.3]

dim N(P , α) = (g − 1)n2 + 1 + 1
2

(∑
x∈D

n2 −
rx∑

i=1

m2
x,i

)
. (2.1)

A parabolic Higgs bundle of type (P , α) is a pair (E , ϕ) where E is a parabolic vector bundle of
type (P , α) and ϕ ∈ H0(X, End(E) ⊗ K(D)) is a Higgs field preserving the quasi-parabolic structure
(namely, the flag at the prescribed points). Endomorphisms satisfying this condition are called parabolic,
and the corresponding sheaf is denoted by ParEnd(E). The subsheaf SParEnd(E) ⊂ ParEnd(E) of
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Equality of the Wobbly and Shaky Loci | 5

endomorphisms that induce the zero Higgs field on the graded object is called the sheaf of strongly
parabolic endomorphisms. Note that there are exact sequences

0 −→ ParEnd(E) −→ End(E) −→ gl(n,C)|D|/p −→ 0, (2.2)

where the rightmost arrow are given by restriction to the divisor D, and

0 −→ SParEnd(E) −→ ParEnd(E) −→ p/n ∼= l −→ 0, (2.3)

where the rightmost arrow is given by restriction to the divisor D, followed by the surjection p � l.
Thus, a parabolic Higgs bundle is a pair (E , ϕ) where E is a parabolic vector bundle and ϕ ∈

H0(X, ParEnd(E) ⊗ K(D)). Semistability is defined similarly to the parabolic bundle case, except that the
subsheaves taken into account are those preserved by the Higgs field. The corresponding moduli space
M(P , α) is a quasi-projective variety [40, Theorem 2.4.8] of dimension [41, Theorem 5.2]

dim M(P , α) = (2g − 2 + d)n2 + 1

where d = deg D. See also [21, 38] for strongly parabolic Higgs bundles.

2.2 Poisson structure of the moduli space of Higgs bundles
The moduli space of Higgs bundles is Poisson with hyperkahler leaves. Underlying this rich geometry is
the non-abelian Hodge correspondence, a diffeomorphism between three moduli spaces: the Dolbeault
(or Higgs) moduli space, the De Rham moduli space of meromorphic connections on (X, D), and the Betti
moduli space of representations of the punctured surface fundamental group. The non-abelian Hodge
correspondence is due to the work of numerous authors of which we stress in here [34].

The symplectic geometry of the Betti moduli space has mainly been studied by Boalch [5]. From
the Dolbeault point of view, Bottacin [8] and Markman [28] studied the symplectic geometry for
meromorphic Higgs bundles (see Section 5 for more details).

Following [27, §3.2.4], consider the complex

C• : ParEnd(E)
ad(ϕ)−→ ParEnd(E) ⊗ K(D)

whose dual complex reads

C∗
• : SParEnd(E)

ad(ϕ)−→ SParEnd(E) ⊗ K(D)

by duality of ParEnd(E) and SParEnd(E)(D).
If (E , ϕ) is stable, then the Zariski tangent space of M(P , α) at (E , ϕ) is identified with the hypercoho-

mology group

T(E,ϕ)M(P , α) = H1(C•), T∗
(E,ϕ)M(P , α) = H1(C∗

•),

and the Poisson structure of M(P , α) is given by the natural map

η(E,ϕ) : T∗
(E,ϕ)M(P , α) −→ T(E,ϕ)M(P , α) (2.4)

defined by Serre duality.
More precisely, the space H1(C•) of infinitesimal deformations of any parabolic Higgs bundle sits into

an exact sequence

0 −→ H0(C•) −→ H0(ParEnd(E)) −→ H0(ParEnd(E) ⊗ K(D)) −→ (2.5)

H1(C•) −→ H1(ParEnd(E)) −→ H1(ParEnd(E) ⊗ K(D)) −→
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6 | A. Peón-Nieto

H2(C•) −→ 0 .

The term H1(ParEnd(E)) is the space of infinitesimal deformations of the underlying parabolic bundle,
which is Serre dual to the space of strongly parabolic Higgs fields. This defines the Poisson map (2.4). In
particular, if E is stable

TEN(P , α) = H1(ParEnd(E)). (2.6)

The symplectic leaves are determined by the orbits of gr(ϕx) ∈ End(gr(E•,x)) ⊗ K(D)x for all x ∈ D,
namely, the twisted endomorphism induced by the Higgs field on the graded vector space gr(Ex,•) :=
⊕rx

i=1Ex,i/Ex,i−1 at each of the punctures x ∈ D. Let p := ∏
x∈D px and let l := ∏

x∈D lx be its Levi quotient (so
that gr(ϕx) ∈ lx). There is a short exact sequence of complexes

Note that in particular, when ϕ is strongly parabolic, the left and central columns are the defomation
complexes of the moduli space of strongly parabolic Higgs bundles M(P , α)st and M(P , α), respectively.
Thus, taking hypercohomology of the columns, we get a long exact sequence:

0 −→ C −→ Ker([gr(ϕ), ·]) −→ T∗
(E,ϕ)M(P , α)

η−→ T(E,ϕ)M(P , α) −→ 0. (2.7)

Therefore, the symplectic leaves (i.e., the submanifolds along which the Poisson bracket restricts to a
symplectic form) are in correspondence with adjoint orbits O inside l. Indeed, the rank of η is constant
if and only if so is the rank of the kernel of gr(ϕ). Moreover, by fixing O, or equivalently, by fixing its
centraliser subalgebra z ⊂ l, one obtains the integrable distribution T∗M(P , α)/ad(z) of T(E,ϕ)M(P , α),
whose underlying manifold is precisely the the symplectic leaf M(P , α)O associated to the orbit O. We
will use the following special notation for the main leaves under study: the regular nilpotent symplectic
leaf M(P , α)nilp,reg (corresponding to the regular nilpotent orbit), and the strongly parabolic symplectic
leaf M(P , α)st (corresponding to the zero orbit). Likewise, we define M(P , α)nilp := M(P , α)nilp,reg to be
the closure of the regular nilpotent leaf. Note that M(P , α)st ⊂ M(P , α)nilp is the only closed stratum,
contained in the closure of all the other nilpotent leaves.

Similarly to the case of vector bundles, denoting by N(P , α)s ⊂ N(P , α) the locus of stable points,
the space T∗N(P , α)s is a dense open subset of M(P , α)st [41, Remark 5.1]. In particular, for E ∈ N(P , α),
the space H1(X, ParEnd(E)) = H0(X, SParEnd(E) ⊗ K(D))∗ of infinitesimal deformations of E matches the
Zariski tangent space whenever E is stable.

The next lemma is a straightforward generalisation of [27, Lemma 2.1], so we omit the proof.

Lemma 2.1. Let s ⊂ l be a nilpotent subalgebra. Let E be an α-stable parabolic bundle of
flag-type P , and ParEnd(E)s ⊂ ParEnd(E) be the subsheaf defined by the exact sequence

0 −→ ParEnd(E)s −→ ParEnd(E) −→ l/s −→ 0,

where ParEnd(E) −→ l/s is the composition of the restriction ParEnd(E) −→ p ϕ 	→ ϕ|D, and
the quotients p � l � l/s. Then H0(ParEnd(E)s) = 0.
Moreover, H0(ParEnd(E)) ∼= C.

2.3 The Hitchin map
The Hitchin map

hP,α : M(P , α) −→ HD :=
⊕

H0(X, Ki(iD)) (2.8)
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Equality of the Wobbly and Shaky Loci | 7

assigns to each Higgs bundle the characteristic polynomial of the Higgs field. This is a projective map
[40, Corollary 5.12]. In particular, it is proper and of finite type.

Logares–Martens studied the complete integrability of the restriction of (2.8) to the generic symplectic
leaves. These correspond to semisimple regular orbits (see [27, §3.2.4]). However, many of their
arguments extend verbatim to the non-semisimple regular orbits, and we will mention this when
needed. Baraglia–Kamgarpour extended the study of the integrable system to strongly parabolic bundles
[1]. See also [37] for proofs in arbitrary characteristic.

2.4 C
×-action

By [34, §8], there is an action of C× on M(P , α) given by multiplying the Higgs field by scalars

λ · (E , ϕ) 	→ (E , λ · ϕ).

The Hitchin map is C×-equivariant for this action and a suitable weighted action on HD (with weights
given by the degrees of the generators of the ring of invariants C[gln(C)]GL(n,C)). By properness of the
Hitchin map, the limits

lim
λ→0

λ · (E , ϕ)

exist and belong to the nilpotent cone h−1
P,α(0), as so do the limits

lim
t→∞ t · (E , ϕ)

when ϕ is nilpotent. Both these kinds of limits are fixed under the C×-action. Fixed points under the
C×-action were characterised [34, Theorem 8]. Before discussing this, we start with a definition.

Definition 2.2. [34, Proof of Theorem 8] A system of Hodge bundles is a parabolic Higgs bundle
(E , ϕ) such that E = ⊕s

p=1 Ep and ϕ : Ep −→ Ep−1 ⊗ K(D).

It is proven in [34, Proof of Theorem 8] that fixed points are precisely systems of Hodge bundles.

Remark 2.3. We note that if (E , ϕ) is fixed for the C×-action, there exists a refinement of the
flags such that (E , ϕ) becomes strongly parabolic with respect to the latter. This is a general
fact for nilpotent quasi-parabolic bundles (see the proof of Proposition 3.13), but C×-fixed
points have a preferred refinement preserving the structure of a system of Hodge bundles.
To see this in the special case of fixed points, note that, as explained in [34, Theorem 8], fixed
points for the C×-action have underlying parabolic bundle of the form E = (

⊕s
p=1 Ep, σ), with

Ep the eigenspace of the automorphism of E swapping ϕ and tϕ [35, Lemma 4.1] (where we
have used that if E = (E, ϕ) is a fixed point, then so is E). In turn, σ preserves the structure of a
system of Hodge bundles (i.e., letting mp = rk(Ep), m = (m1, . . . , ms) be the corresponding
partition and Pm be the associated parabolic, then Pmp < Px, so that σ induces a
GL(mp,C)-equivariant morphism σ : Ep

x → GL(mp,C)/Pp,x). The fact that ϕ : Ep −→ Ep−1 ⊗ K(D)

follows from the definition of the eigenspaces.

We note that since nilpotency along D is preserved by the C×-action, M(P , α)nilp is C×-invariant. On
the other hand, h−1

P,α(0) ⊂ M(P , α)nilp, so that studying the nilpotent cone for M(P , α) amounts to studying
it for M(P , α)nilp. Remark 2.3 implies that the strongly parabolic leaf contains all the information needed
to recover the fixed points.

2.5 Parabolic (Higgs) bundles as (Higgs) bundles on orbicurves
For rational weights α, the stack of parabolic bundles (respectively strongly parabolic Higgs bundles)
is isomorphic to a stack of bundles (respectively Higgs bundles) on orbicurves [4, 7] whose orbifold
structure is determined by the weights. In particular, the results of [25] on the nilpotent cone of the
stack of Higgs bundles on a smooth curve extend to this setup [15, §5.4]. Given the fragmentation of the
literature on this topic, we will hereby include a detailed proof of some of these results (see Lemma 3.5).
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8 | A. Peón-Nieto

Let X̂D,α be the root stack (or orbifold) obtained from (X, D, α) (recall that we assume weights to be
rational) [10]. It is a smooth Deligne–Mumford stack. Consider the categories Par(X, D, α) (resp. Vec(X̂D,α)

of vector bundles on X̂D,α . These are tensorial categories [7, 29], which are equivalent under a twist by
a line bundle composed with pushforward via the map X̂D,α −→ X [7, Theorem 3.13].

2.6 Universal bundles and locally universal bundles
Yokogawa proved that M(P , α) is an open subset of a good quotient of a projective scheme by PGL(N)

[40, Theorem 4.6], with stable locus M(P , α)s contained in the corresponding geometric quotient, giving
the smooth points [41, Theorem 5.2]. As an open subset, M(P , α)s contains the moduli space M(P , α)0

of parabolic Higgs bundles with underlying stable parabolic bundle. The inclusion is strict by [6, Claim
3.2 (i)] (see also Remark 4.1): even for non-generic weights there are more stable pairs than those in
M(P , α)0. By [41, Remark 5.1], étale locally over M(P , α)0 there is a universal bundle. The action of the
center of GL(N) is non-trivial [6, page 464], and therefore the bundle does in general not descend. It only
descends to M(P , α)0 when the parabolic weights are generic [6, Proposition 3.2]. However, regardless
of the weights, points of M(P , α)0 always have an étale neighbourhood admitting a universal bundle [3,
page 16], [6, page 464]. The same holds for N(P , α)s.

3 Parabolic Bundles and Very Stability
3.1 Criteria for very stability
In this section, we prove a criterion for very stability of parabolic bundles via the Hitchin map.

Let us start by recalling [42, Lemma 1.3]. We likewise provide an alternative simple proof via toric
geometry that was hinted to us by an anonymous referee.

Lemma 3.1. [42, Lemma 1.3] Let f = (f1, . . . , fn) : Am −→ An be a morphism given by
homogeneous polynomials. Then, if f−1(0) = 0, f is finite.

Proof. Note that since f−1(0) = 0, the morphism f extends to a morphism

f : Pm −→ P(d1, . . . , dn, 1) [x1 : · · · : xm : y] 	→ [y · f1(x) : · · · : y · fn(x) : y]

of weighted projective spaces, where di = deg(fi), which is moreover toric. Indeed, by construction,
f restricts to a torus homomorphism (C×)m −→ (C×)n for a suitable group structure on the target
torus taking weights into consideration. By [12, Theorem 3.4.7.], the map f is proper, and by upper
semicontinuity of the dimension, it is also finite. In particular, dim Im(f ) = m ≤ n (again, by upper
semicontinuity of the dimension). Therefore, f : Am −→ An is a quasi-finite morphism. We claim that it
is also proper. To see this, consider valued ring R with quotient field k, and a commutative diagram

Now, the only way l1 may not exist is if the image of the non-generic point p is 0. Now, by the valuative
criterion for properness, the arrow l2 exists and it must be l2(p) = ∞. Therefore, Im(l2) ⊂ Am and l1 also
exists. �

Given a quasi-parabolic bundle E , we denote VE := H0(X, ParEnd(E)⊗K(D)). For each adjoint orbit O =∏
x∈D Ox of

∏
x∈D lx (where lx < px is the Levi subalgebra), denote by VE,O the subset of VE corresponding

to Higgs fields with gr(ϕx) ∈ Ox. When O = 0, we will denote VE,O by VE,st = H0(X, SParEnd(E) ⊗ K(D)),
and if O = Orn is the regular nilpotent orbit, then the closure of VE,O in VE is denoted by VE,nilp. This is
the set of nilpotent Higgs fields.
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Equality of the Wobbly and Shaky Loci | 9

Remark 3.2. If E is α-stable, then VE ⊂ M(P , α), VE,O = VE ∩ M(P , α)O , and
VE,nilp = VE ∩ M(P , α)nilp, but the definition of these objects is independent of the stability
parameter.

Definition 3.3. A quasi-parabolic bundle E = (E, {Ex,• : x ∈ D}) is called very stable if it has no
non-zero nilpotent parabolic Higgs field ϕ ∈ VE . It is called strongly very stable if and only if it
has no non-zero strongly parabolic nilpotent Higgs field.
An α-stable bundle that is not (strongly) very stable is called (strongly) wobbly. Let W ⊂ N(P , α)

(respectively Wst ⊂ N(P , α)) denote the wobbly locus (resp. the strong wobbly locus).

Remark 3.4.

(1) Although the definition of (strong) very stability only depends on the quasi-parabolic structure,
for every assignment of a parabolic structure (P , α), very stable bundles are α-stable (see Lemma
3.5 and Remark 3.7).

(2) Note that E is very stable if and only if there is no nilpotent Higgs field in VE,nilp \ {0}.
(3) By definition, very stable parabolic bundles are strongly very stable.

When the weights are rational, as observed in Section 2.5, the tools developed in [25] are available to
analyse the moduli space of strongly nilpotent Higgs bundles. This gives the following lemma.

Lemma 3.5. Let E be parabolic of type (P , α). If it is strongly very stable, then it is α-stable. In
particular, if it is very stable, then it is α-stable.

Proof. By assigning rational weights α, strongly very stable parabolic bundles can be seen as very stable
bundles on an orbifold curve whose stability can be proven by elementary means just as in [25], using the
Grothendieck–Riemann–Roch theorem for root stacks (see [13, Theorem 3.10] for an explicit formulation
for curves based on [18, 39]).

Indeed, if E were not stable, then there would exist a semistable parabolic sub-bundle F ⊂ E with
par-μ(F) ≥ par-μ(E) such that the quotient Q := E/F is also semistable. Let β = (βx,0, . . . , βx,rx )x∈D

(resp. γ = (γx,0, . . . , γx,rx ) denote the weights for F (resp. Q). Note that by allowing the lengths to be
the same as those for E , we are allowing for βx,j = βx,j+1, but this implies that Fx,j = Fx,j+1. A similar
statement holds for Q. Then, H0(PHom(F ,Q)) ≥ 0 , so by Serre duality [41, Prop 3.7] for parabolic sheaves
H1(SPHom(Q,F)K(D)) ≥ 0. Note that equality holds if par-μ(F) > par-μ(Q), as otherwise semistability
of both F and Q cannot hold. Here PHom(F ,Q) (respectively SPHom(Q,F)) is the sheaf of morphisms
inducing Qx,j −→ Fx,k−1 when γx,j < βx,k (resp. γj ≤ βk). On the other hand, by [13, Theorem 3.10],

− χ(PHom(F ,Q)) = (3.1)

− par- deg(PHom(F ,Q)) + (g − 1)rk(PHom(Q,F)) −
∑
x∈D

r̃x∑
j=1

α̃x,jm̃x,j.

In the above, the numbers r̃x, α̃x, and m̃x are the corresponding data associated to the induced filtration
for PHom(F ,Q), which are the homomorphisms in the category of parabolic sheaves [7, 41]. We note
that our expression of the Euler characteristic (3.1) varies slightly from the one in [13, Theorem 3.10],
the reason being that in loc.cit. weights are taken to be positive, while we consider negative weights.
With these considerations, formula (3.1) follows directly from [13, Theorem 3.10] by the equivalence of
categories from [7, Theorem 3.13].

The result is straightforward from (3.1) by two remarks. Firstly, the following inequalities hold:

h0(SPHom(Q,F) ⊗ K(D)) ≥ −χ(PHom(F ,Q)) ≥ (g − 1)rk(Q)rk(F) > 0.

where the first inequality follows from Serre duality and h0(PHom(F ,Q)) ≥ 0. Secondly, the morphism

E � Q ψ−→ F ⊗ K(D) ↪→ E ⊗ K(D)

is strongly parabolic for any ψ ∈ H0(SPHom(Q,F) ⊗ K(D)). �
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10 | A. Peón-Nieto

Remark 3.6. In [37, Theorem 6.14], a proof of the existence of a Zariski open set of the moduli
space of parabolic bundles, which is contained in the set of strongly very stable parabolic
bundles is given using a dimensional argument. Lemma 3.5 improves this result (provided
non-emptiness of the very stable locus) by showing that all strongly very stable parabolic
bundles are stable. Non-emptiness follows from [25, Theorem 3.1] (see §2.5), or, alternatively,
from Lemma 3.16.

Remark 3.7. Note that the proof of Lemma 3.5 uses the identification of parabolic bundles with
bundles on orbicurves, and this requires the assignment of weights. However, since the
definition of (strong) very stability is independent of α (cf. Remark 3.4), from Lemma 3.5 we
deduce the existence of a common subset to all N(P , α), namely, the set of very stable
bundles E . The corresponding wobbly locus, however, depends on the stability parameter α. It
follows that the moduli spaces of parabolic bundles for different weights provide different
compactifications of the very stable locus.

Theorem 3.8. Let E ∈ N(P , α) be stable. Let VE,st be the space of strongly parabolic Higgs fields
on E , and let hE,st := hP,α |VE ,st

. Then:

E is strongly very stable ⇐⇒ hE,st is finite
⇐⇒ hE,st is quasi-finite
⇐⇒ hE,stis proper
⇐⇒ VE,st ↪→ M(P , α)is proper.

Proof. The fact that very stability implies finiteness follows from affineness of VE,st and Lemma 3.1.
To see the other implications, we need to work some more. Let Hst ⊂ HD be the image of M(P , α)st

under hP,α . By [1, Theorem 36], Hst ⊂ HD is an affine subspace of dimension dim Hst = dim N(P , α).
Also by [30, Theorem 5.3], dim N(P , α) = dim H0(X, SParEnd(E) ⊗ K(D)) whenever E is stable.
Now, finiteness implies properness and quasi-finiteness. Also, by the above discussion hE,st is a map

of finite type of affine spaces of the same dimension, hence properness implies quasi-finiteness and
hence also finiteness.

Regarding the equivalence of quasi-finiteness and finiteness, quasi-finiteness implies very stability
(and thus finiteness) as the existence of a non-zero nilpotent Higgs field ϕ on E would automatically
produce a one dimensional subspace in h−1

E,st(0) (this requires the stability hypothesis on E to make sure
none of the Higgs fields in the line C× · ϕ are identified).

Finally, the equivalence between properness of VE,st ↪→ M(P , α) and properness of hE,st is a
consequence of the valuative criterion for properness (this is exactly the proof of [32, Proposition 2.2]).

�

The following result was observed in [19, Corollary 7.3] and extends verbatim to the current context.

Corollary 3.9. Let M(P , α)st denote the strongly parabolic symplectic leaf, and let
hP,α,st := hP,α |M(P,α)st . If E is strongly very stable, then VE,st is a Lagrangian multisection of
hP,α,st.

Proof. Since the only deformations along VE,st concern the Higgs field (see Section 2.2), VE,st is clearly
isotropic.

By Lemma 3.5, E is stable, and so from (2.6) and Serre duality TEN(P , α) = H0(X, SParEnd(E) ⊗ K(D))∗.
Thus, dim VE,st = dim N(P , α)s ⊂ M(P , α)st. But T∗N(P , α) ⊂ M(P , α)st is dense, so it follows that
dim VE,st = dim N(P , α) = 1

2 dim M(P , α)st, and so VE,st is maximal dimensional.
Finally, Im(hP,α,st) is affine by [1, Theorem 36] of dimension equal to the dimension of VE,st. This,

together with properness, yields that hE,st is onto, hence the result. �

Remark 3.10. Note that the stability assumptions in Theorem 3.8 and Theorem 3.14 may be
dropped in one direction by Lemma 3.5.
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Equality of the Wobbly and Shaky Loci | 11

Let

hE,nilp : VE,nilp −→ HD (3.2)

be the restriction of the Hitchin map to the vector space VE,nilp := H0(X, ParEnd(E) ⊗ K(D))nilp of Higgs
fields on E with nilpotent residue. In order to prove the analogue to Theorem 3.8 in this setup, let us
start by two preliminary results about VE,nilp.

Lemma 3.11. Let E be a stable parabolic bundle, and let (F , ψ) ∈ VE,nilp \ VE,nilp or
(F , ψ) ∈ VE \ VE . Then

(1) F is unstable.
(2) VE,nilp \ VE,nilp �= ∅ ⇐⇒ VE \ VE �= ∅.

Proof. By [36, Tag 0A24], given (F , ψ) ∈ VE,nilp \ VE,nilp, there exists a discrete valuation ring R and a
morphism

ιF : C := Spec(R) −→ M(P , α)

such that the generic point Spec(k) (where k is the fraction field of R) maps to VE,nilp, while the closed
point o goes to (F , ψ) ∈ VE,nilp \ VE,nilp. Since M(P , α)nilp ⊂ M(P , α) is closed, then VE,nilp \ VE,nilp ⊂ M(P , α) \
VE , namely, it must be F �= E . So it is enough to prove the statement for (F , ψ) ∈ VE .

If F were semistable, composing with r would yield

r ◦ ιF : C := Spec(R) −→ N(P , α)

non-constant, extending the constant map E : Spec(k) −→ N(P , α), thus violating separatedness of
N(P , α) [30, Theorem 4.1]. This proves (1).

For (2), note that VE,nilp \VE,nilp ⊂ VE \VE (by (1), or simply by closedness of M(P , α)nilp). So it is enough
to prove the converse.

Let (F , ψ) ∈ VE \ VE . Then, by equivariance of the Hitchin map (F0, ψ0) := limt→0 t · (F , ψ) ∈ h−1
P,α(0) ∩

VE ⊂ M(P , α)nilp ∩ VE = VE,nilp. �

Remark 3.12. The above proof translates essentially verbatim to the simplest non-parabolic
vector bundle setup and corrects a mistake in the proof of [32, Proposition 2.3]. Indeed, the
étale local family considered therein may not exist away from T∗Ns(n, d). Thanks to T. Hausel
for pointing this error out to us.

The following adapts [1, Theorem 36] to general nilpotent Higgs fields.

Proposition 3.13. Let E be a stable parabolic bundle. Then, the image under the Hitchin map
hP,α of VE,nilp is contained in an affine space Ad with d = dim VE,nilp.

Proof. First note, that VE,nilp = M(P , α)O ∩ VE for some nilpotent orbit O such that VE,O := M(P , α)O ∩
VE �= ∅. Indeed, take a maximal dimensional orbit satisfying VE,O �= ∅. If VE,nilp �= M(P , α)O ∩ VE , then
there exists another nilpotent orbit O′ with VE,O′ �= ∅ and VE,O′ �⊂ VE,O . By affineness of VE , then
VE,O + VE,O′ ⊂ VE,nilp. Now, using the Jordan canonical form, we see that either O′ ⊂ O or there is an
element in VE,O + VE,O′ belonging to a higher dimensional orbit, which contradicts our choice of O. By
irreducibility of VE,nilp, one concludes that VE,nilp = M(P , α)O ∩ VE .

Since VE,nilp
∼= Ad is irreducible, the closure of VE,O inside VE must be all of VE,nilp. Now, for some

refinement P ′ < P , the orbit O intersects l := ∏
x∈D l

′
x (where l

′
x is the Levi subalgebra of p′

x = Lie(P ′
x))

at 0. For example, taking P ′ determined by the iterated kernels of ϕx ∈ O, then P ′ satisfies the property
and moreover, it is maximal for it (namely, whenever P is another refinement with ϕ lifting to a strongly
nilpotent field preserving a flag of type P , then P < P ′).
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12 | A. Peón-Nieto

Let p′
x = l

′
x ⊕ n′

x, and let O := ∏
x∈D n′

x ∩ lx. Define ParEnd(E)O ⊂ ParEnd(E) via the following exact
sequence:

0 −→ ParEnd(E)O −→ ParEnd(E) −→ l/O −→ 0,

where the rightmost arrow is the composition of ParEnd(E) � p � l � l/O.
Now, let E ′ denote the quasi-parabolic bundle of type P ′ induced by the existence of some Higgs field

in VE,nilp with residue in O. Note that the existence of the exact commutative diagram

implies that

ParEnd(E)O ∼= SParEnd(E ′). (3.3)

Note that VE,O ⊂ H0(ParEnd(E)O ⊗ K(D)) ⊂ VE,nilp, thus, by affiness of the last two subspaces and
equality of the dimensions of VE,O and VE,nilp, the second inclusion must be an equality and so
dim H0(ParEnd(E)O ⊗ K(D)) = dim VE,nilp.

Now, by stablity of E and Lemma 2.1, we have that H0(ParEnd(E)O) = 0 = H0(SParEnd(E ′)). A simple
computation using (2.3) shows that this implies that dim H0(SParEnd(E ′) ⊗ K(D)) = dim N(P ′, α′) (for a
generic α′). Note that this equality holds unconditionally and does not require the existence of parabolic
weights that would turn E ′ into a stable parabolic bundle. It then follows from the above and (3.3) that

dim VE,nilp = dim H0(SParEnd(E ′) ⊗ K(D)) = dim N(P ′, α′) (3.4)

for a suitable α′.
Let M(P) be the moduli stack of parabolic Higgs bundles on X of flag type P . The Hitchin map

hP : M(P) −→ HD

is defined in the same way. Moreover, there is a morphism M(P ′) −→ M(P) making the following
diagram commute:

(3.5)

In particular, hP,α(VE,O) ⊂ Im(hP ′ ,st) ⊂ Im(hP,st), which is affine of dimension equal to dim VE,O by [1,
Theorem 36] and (3.4). �
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Equality of the Wobbly and Shaky Loci | 13

Theorem 3.14. Let E be stable, and let VE,nilp and hE,nilp be as in (3.2). Then,

E is very stable ⇐⇒ hE,nilp is finite
⇐⇒ hE,nilpis quasi-finite
⇐⇒ hE,nilp is proper
⇐⇒ VE,nilp ↪→ M(P , α)is proper
⇐⇒ hE is proper
⇐⇒ VE ↪→ M(P , α) is proper.

Proof. The equivalence between properness of VE,nilp and VE follows from Lemma 3.11. The equivalence
between properness of hE,nilp (resp. hE ) and properness of VE,nilp (resp. VE ) is a consequence of the
valuative criterion for properness. Thus, it is enough to prove all the other equivalences.

The implication that very stability of E implies finiteness of hE,nilp follows from Lemma 3.1.
To prove the remaining equivalences, we note that it is enough to check the equivalence of finiteness

and properness of hE,nilp. Indeed, quasi-finiteness of hE,nilp automatically implies very stability of E , as
the existence of a nilpotent Higgs field implies the existence of a line of nilpotent Higgs fields. Thus,
quasi-finiteness is equivalent to finiteness by the first equivalence.

Now, since finiteness of hE,nilp implies properness of hE,nilp, it is enough to check that properness of
hE,nilp implies finiteness of hE,nilp, for which given that the Hitchin map is of finite type, it is enough to
check that fibers are finite. This follows from Proposition 3.13. �

The analogue of Corollary 3.9 follows from Propositions 3.13 and 3.14:

Corollary 3.15. Let E be very stable, and let O be a nilpotent orbit such that VE,O �= ∅ is maximal
dimensional inside VE,nilp. Then, VE,nilp is the closure of a Lagrangian multisection of the
restriction of hP,α to M(P , α)O .

Proof. By Propositions 3.13 and 3.14, together with isotropicity of VE,O (see Section 2.2), all we need to
check is that:

dim VE,O = 1
2

dim M(P , α)O .

By (2.7), the rank of η at (E , ϕ) when ϕ|D ∈ O is

rk(η) = dim M(P , α) − dim z(gr(ϕ)) + 1.

Thus, taking l
′ as in the proof of Proposition 3.13, we have that Ker[gr(ϕ), ·] ∼= l

′, hence

rk(η) = 2(g − 1)n2 + 2 +
∑
x∈D

n2 − dim l
′
x = 2(dim VE,O),

where the last equality follows from (2.1) and (3.4). �

3.2 Strongly wobbly bundles and the nilpotent cone
In this section, we describe strong wobbliness in terms of the geometry of the nilpotent cone.

Let Ci ⊂ h−1
P,α,st(0), i ∈ I denote the irreducible components of the strongly parabolic nilpotent cone.

By [25, Proposition 3.8], one of them coincides with N(P , α), say C0 = N(P , α), under the map E 	→
(E , 0) for E ∈ N(P , α). Let Cs

0 denote the intersection of C0 and the image of the stable locus N(P , α)s ⊂
N(P , α) under the aforementioned map. For vector bundles, I is given by all possible partitions of the
rank and degree of the same length satisfying a numerical condition [9, Theorem 3.1]. These partitions
correspond to ranks and degrees of the graded pieces of fixed point components (cf. §2.4). In particular,
Cs

0 corresponds to the trivial partition (n, d).

Lemma 3.16. The strong wobbly locus of N(P , α) is the intersection Wst := ⋃
i �=0 Ci ∩ Cs

0.
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14 | A. Peón-Nieto

Proof. The inclusion ⊂ is clear, as if E ∈ W, let ϕ be a strongly parabolic Higgs field on E , then (E , ϕ) ∈ Ci

for some i �= 0. Hence, (E , 0) = limt→0(E, tϕ) ∈ Ci ∩ Cs
0 for some i �= 0.

For the converse, assume (E , 0) ∈ Ci ∩ Cs
0. Then (E , 0) is a boundary point of Cs

i ∩ M(P , α)0 inside
M(P , α)0. So by [32, Lemma 2.4], and stability of E , we may find a smooth curve ψ : Z −→ Cs

i such that
ψ (Z \ {z0}) ⊂ Cs

i \ ∂Ci and ψ(z0) = (E , 0). Now, by stability, one may consider the étale local family (E, �)

(whose existence follows from Luna’s slice theorem together with Lemma 2.1 and the arguments in
Section 2.6). If E were strongly very stable, the generic point of this family would have to be very stable
(by openness of very stability [25, Proposition 3.5]), contradicting the fact that (E, �)z ∈ Ci \ C0 for z �= z0.�

4 Shaky Bundles Are Wobbly. The Smooth Case
In this section, we will assume that the parabolic weights are generic. In particular, M(P , α) is smooth,
so that all semistable parabolic (Higgs) bundles are stable; moreover, over the open subset M(P , α)0 ⊂
M(P , α) of pairs with underlying stable parabolic bundle there exists a universal bundle (see Section 2.6).

By openness of semistability and irreducibility of M(P , α), there exists a rational map

(4.1)

given by forgetting the Higgs field. Note that (4.1) restricts to rational maps

(4.2)

(4.3)

All the rational maps above are surjective, as by stability there is an embedding N(P , α) ↪→ M(P , α)st

given by E 	→ (E , 0), which is in fact the composition N(P , α) ↪→ T∗N(P , α) ↪→ M(P , α)st of the zero section
and the natural embedding.

Let Un ⊂ M(P , α) be the subset given by semistable parabolic Higgs bundles with unstable underlying
parabolic bundle. We denote by Unnilp := Un ∩ M(P , α)nilp and Unst := Un ∩ M(P , α)st.

Remark 4.1. Non-emptyness of Unst (and thus of Unnilp and Un) follows, for example, from the
fact that the strongly parabolic nilpotent cone is reducible by [25] (cf. Section 2.5). Indeed, by
[34, §8], given (E , ϕ) ∈ hst−1

(0), then limt→∞ t · (E , ϕ) exists and is a fixed point for the
C×-action, hence inside h−1(0). Since taking limits at 0 and ∞ defines Zariski locally trivial
affine fibrations with strata of half the dimension, limits at ∞ must have unstable underlying
bundle (this argument is found in [23, §1.1]).

Remark 4.2. In the non-parabolic case, letting M denote the moduli space of Higgs bundles and
N that of vector bundles, there is an equality Un := M \ T∗N. This is not the case here, as T∗N
consists exclusively of strongly parabolic bundles [41, Remark 5.1]. When P consists only of
Borel subgroups, then Unnilp := M(P , α)nilp \ T∗N(P , α).

Given the smoothness assumption, Hironaka’s results on the elimination of indeterminacies [24]
ensure that a finite number of blowups resolve the morphism (4.1) (see the discussion following [24,
Question E]), which yields

(4.4)

Let Ex = π−1(Un) be the exceptional divisor of M̂(P , α). Then, since M(P , α)st and M(P , α)nilp are closed,

it follows from [22, Corollary II.7.15] that M̂(P , α)nilp := M̂(P , α) ×M(P,α) M(P , α)nilp and M̂(P , α)st :=
M̂(P , α) ×M(P,α) M(P , α)st are closed subschemes of M̂(P , α) consisting of a finite number of blowups
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Equality of the Wobbly and Shaky Loci | 15

along Unnilp and Unst, respectively. Hence, we have resolutions

(4.5)

(4.6)

In particular, the exceptional divisors Exnilp := π−1
n (Unnilp) and Exst := π−1

s (Unst) satisfy Exnilp = Ex ∩
M̂(P , α)nilp and Exst = Ex ∩ M̂(P , α)st.

Definition 4.3. A stable bundle E is called shaky (resp. nilpotently shaky and strongly
nilpotently shaky) if it is in the image S (resp. Snilp and Sst) under r̂ (resp. r̂n and r̂s) of the

exceptional divisor Ex ⊂ M̂(P , α) (resp. Exnilp and Exst).

Theorem 4.4. There is an equality W = Snilp = S, where W ⊂ N(P , α) denotes the wobbly locus,
namely, those stable bundles with a non-zero parabolic nilpotent Higgs field.
Similarly, the strong wobbly locus Wst satisfies Wst = Sst.

Proof. We will prove that W ⊂ Snilp and that S ⊂ W. This proves the first statement, as Snilp ⊂ S.
Let us first check that W ⊂ Snilp. By Theorem 3.14, if E ∈ W, then VE,nilp ⊂ M(P , α) is not proper. So

there exists a discrete valuation ring R and a morphism

ιF : C := Spec(R) −→ M(P , α)

such that the generic point Spec(k) (where k is the fraction field of R) maps to VE while the closed point
o goes to (F , ψ) ∈ VE,nilp \ VE,nilp (cf. [36, Tag 0A24]). By Lemma 3.11, F is unstable.

Now, ιF(C \ {o}) = ιF(Spec(k)) can be seen as a subset of M̂(P , α)nilp. More precisely, there is a
commutative diagram

Properness of πn implies that ι̂ exists. Clearly, ι̂(o) belongs to Exnilp, and so r̂n(ι̂(o)) ∈ Snilp. Consider the
curve

r̂n ◦ ι̂ : C −→ N(P , α).

Since ι(C \ {o}) ⊂ VE , then r̂n ◦ ι̂(C \ {o}) = {E}. Separability of N(P , α) implies that r̂n ◦ ι̂(o) = E , and hence
E ∈ Snilp.
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16 | A. Peón-Nieto

For the converse: let s ∈ S. Then, for some S ∈ Ex ⊂ M̂(P , α), s = r̂(S). By [32, Lemma 2.4], one may
find a smooth curve Y and a morphism

such that j(Y \ {y0}) ⊂ M(P , α) \ Un, and j(y0) = S. Therefore,

r̂ ◦ j(Y \ {y0}) ⊂ N(P , α) \ S, r̂ ◦ j(y0) = s. (4.7)

Consider now the rational map

defined away from (0, y0). Note that

(1) m(t, Y \ {y0}) ⊂ M(P , α) \ Un, as t · (π ◦ j(y)) = (Ey, tϕy), for all y �= y0, where (Ey, ϕy) := π ◦ j(y)).
(2) This implies r(m(t, y)) = r(m(0, y)) = r̂ ◦ j(y) for all t ∈ C and all y �= y0.

Now, by properness of N(P , α), it follows that r ◦ m(y0) exists. By (1) above, separatedness of N(P , α),
and commutativity of (4.4), r ◦ m(y0) = s.

Moreover, by (2), m(t, y0) ∈ Un for all t �= 0. Let (F0, ψ0) = limt→0 m(t, y0). Assume that F0 were
semistable. Then, so would be the bundle underlying m(t, y0) for generic t ∈ A1 for generic t [40,
Proposition 1.11]. But m(t, y0) = (F , t · ψ) has underlying unstable bundle, which yields a contradiction.
Thus, it must be (F0, ψ0) ∈ Un.

Now, a finite number of blowups allows to resolve the morphism m [24], yielding

m̂ : Ĉ × Y −→ M(P , α).

The exceptional divisor over (0, y0) is a union of projective lines containing a curve joining (F0, ψ0)

and (E , 0) and contained inside M(P , α)nilp (as it is contained in h−1
P,α(0) ⊂ M(P , α)nilp). An irreducible

component I of the exceptional divisor of Ĉ × Y must therefore intersect N(P , α) at (E , 0), but also
h−1(0) \ N(P , α). We claim that I ∩ N(P , α) ⊂ W. Indeed, otherwise, it would intersect the very stable
locus (as there are no strictly semistable bundles). These are strongly very stable, which are a dense
open set in N(P , α) by [25, Proposition 3.5]. Moreover, since I ∩ M(P , α)0 is non-empty, then it is dense,
so one may conclude that bundles in I with underlying strongly very stable bundle are dense. Thus, by
irreducibility of I, it would be I ⊂ N(P , α), contradicting the fact that I intersects the complement of
N(P , α). In particular, s ∈ I ∩ N(P , α) ⊂ W.

To see that Wst = Sst, we note that the arguments adapt verbatim if we work in the strong
nilpotent leaf. �

Remark 4.5. When the moduli space M(P , α) is not smooth, Hironaka does not apply to the full
moduli space. It however does to the reduced schemes underlying all Hitchin fibers. So
working the analogue to Theorem 4.4 out requires a finer study of the Hitchin fibration, and
the dependence of shakiness on the characteristic. Moreover, in order to compare all loci
involved, strictly semistable points need to be tracked and discarded.
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Equality of the Wobbly and Shaky Loci | 17

5 Non-Parabolic Higgs Pairs
This section shows that the results in the parabolic setup imply analogue ones in the usual (non-
parabolic) setup.

Definition 5.1. Let D ⊂ X be a reduced divisor, possibly zero. A D-twisted Higgs pair is (E, ϕ)

where E is a vector bundle and ϕ ∈ H0(X, End(E) ⊗ K(D)).

The moduli space MD(n, d) of D-twisted Higgs pairs of rank n and degree d is a quasi-projective variety
[31]. It is Poisson, with symplectic leaves given by the orbits of the residue of the Higgs field along the
divisor [28, Corollary 8.10], [8, Theorem 4.7.5 ]. Let N(n, d) denote the moduli space of vector bundles of
rank n and degree d.

Now, the notion of very stability is empty in the meromorphic setup, as the following result shows.

Lemma 5.2. Every vector bundle has a nilpotent D-twisted Higgs field if D �= 0.

Proof. Indeed, by [33, Theorem 0.1], every semistable vector bundle is an extension

F0 ↪→ E � F1

with 0 ≤ d1n0 − n1d0 ≤ n0n1(g − 1) where ni = rk(Fi), di = deg(Fi). But then, by Riemann–Roch, it follows
that

h0(F∗
1F0K(D)) ≥ n0n1 deg(D) > 0.

�

Remark 5.3. Thanks to C. Pauly for explaining the rank two case to me.

Now, by Lemma 5.2, it is possible to stratify the moduli space in terms of the existence of nilpotent
Higgs bundles, with deep connections to stratification in terms of the Segre invariant. Motivated by this,
we introduce the following notion.

Definition 5.4. Let P ≤ GL(n,C) be a parabolic subgroup, D a divisor. A vector bundle E is called
(P, D)-strongly very stable if it has no D-twisted nilpotent Higgs field inducing a reduction of
the structure group to P with Higgs field taking values in the nilpotent endomorphisms with
respect to the parabolic subgroup.

Lemma 5.5. Let D be a reduced divisor, and let P = {P : x ∈ D}, for some parabolic group P, so
that all flags σ have the same underlying parabolic group. The quasi-parabolic bundle
E = (E, σ) is strongly very stable if and only if E is (P, D)-strongly very stable. In particular, if
P = GL(n,C), E is strongly very stable if and only if E is very stable.

Proof. The first statement is a tautological remark.
The last statement follows easily from the fact that H0(X, ParEnd(E) ⊗ K(D))nilp = H0(X, End(E) ⊗

K(D))nilp ⊃ H0(X, End(E) ⊗ K) = H0(X, SParEnd(E) ⊗ K(D)) and preservation of nilpotency under inclusion
given the existence of a commutative diagram

�

As corollaries to Lemma 5.5 we have the following.
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18 | A. Peón-Nieto

Corollary 5.6. With the notation of Lemma 5.5, a (P, D)-strongly very stable E bundle is stable.

Proof. Let P = {P : x ∈ D}. Taking α = 0, we note that the moduli space N(P , 0) surjects onto the moduli
space of vector bundles N(n, d) (where d equals the parabolic degree).

Thus, the statement follows from Lemmas 5.5 and 3.5. �

Corollary 5.7. Let E be a stable vector bundle. Let D ⊂ X be a reduced divisor, possibly zero, and
let P = {P : x ∈ D} if D �= 0, and P = {GL(n,C)} if D = 0. Let
VE,D,n := H0(X, End(E) ⊗ K(D))n ⊂ H0(X, End(E) ⊗ K(D)) be the subset with residue in n. Consider
the restrictions of the Hitchin map hE,D,n := h|VE,D,n . Then:

E is (P, D)-strongly very stable ⇐⇒ hE,D,n is finite
⇐⇒ hE,D,n is quasi-finite
⇐⇒ hE,D,n is proper
⇐⇒ VE,D,n ↪→ MD(n, d) is proper.

Remark 5.8. If P = GL(n,C) VE,D,n = VE,D,0 = H0(X, End(E) ⊗ K), regardless of the emptiness of the
divisor.

Proof. E is stable if and only if E is stable. Then, by Lemma 5.5, E is (P, D)-strongly very stable if and
only if E ∈ N (P , 0) is strongly very stable. By Theorem 3.8, this is equivalent to VE,st ⊂ M(P , 0)st

being proper. Now, since α = 0, there exist a map π : M(P , 0)st −→ MD(n, d), which is proper. Thus,
its restriction to VE,st ∼= VE,D,n is also proper. Conversely, assume VE,D,n ↪→ MD(n, d) were proper. Let R be
a discrete valuation ring with fraction field k. We want to prove the existence od the dashed arrow in
the commutative diagram

Since there exists a commutative diagram

further composing VE,st ⊂ M(P , 0) with π : M(P , 0) −→ MD(n, d), by properness of VE,D,n ∼= VE,st ⊂ MD(n, d)

we obtain the existence of

By commutativity, this factorisation proves the valuative criterion for properness for VE,st −→ M(P , 0).
Then, by Theorem 3.8, E is strongly very stable, which in turn is equivalent to E being (P, D)-strongly
very stable. This proves the equivalence between (P, D)-strong very stability and properness of VE,D,n −→

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad254/7378013 by U

niversity of Birm
ingham

 user on 16 N
ovem

ber 2023



Equality of the Wobbly and Shaky Loci | 19

MD(n, d). The proof of the equivalence of the latter and quasi-finiteness, properness, and finiteness of
hE,D,n follows as in the proof of Theorem 3.8. �

Remark 5.9. When D = 0, Corollary 5.7 is [32, Theorem 1.1].

Denote by N(n, d)vs the very stable locus, and let W := N(n, d)s \ N(n, d)vs be the wobbly locus. From
Lemma 3.16, making α = 0, one gets the following:

Corollary 5.10. Let Ci i ∈ I be the irreducible components of the nilpotent cone of M(n, d), with
C0 = N(n, d). Then, W = ⋃

i∈I\0 Ci ∩ Cs
0.

Likewise, r̂s in (4.6) provides a resolution (when (n, d) = 1) of the rational map

(5.1)

Then, Sst from Definition 4.3 is identified with a certain locus in N(n, d) that we will denote by S, image
of the exceptional divisor over the locus Un ⊂ M(n, d) of Higgs bundles with underlying unstable bundle.

With this, assuming that (n, d) = 1 (or, equivalently, that α = 0 is generic), we obtain as a corollary to
Theorem 4.4 the following result.

Theorem 5.11. There is an equality W = S.

Remark 5.12. Strictly speaking, from Theorem 4.4, one can deduce that for any resolution of the
rational map (4.3) obtained by restricting a resolution of (4.1), the corresponding strongly
shaky locus equals the strongly wobbly locus. We note that since we are only concerned with
the images of the exceptional divisors, the same result will hold if instead of a restriction one
considers arbitrary resolutions of (4.3) by successive blowups along Un.

Funding
This work was supported by the European Union-AGAUR under the scheme Beatriu de Pinós-H2020-
MSCA-COFUND-2017 (agreement n. 801370), the European Union, scheme H2020-MSCA-IF-2019 (agree-
ment n. 897722), and the Agencia Estatal de Investigación, scheme Consolidación Investigadora (grant
no. CNS2022-136042).

Acknowledgments
The author would like to thank D. Alfaya, R. Donagi, P.B. Gothen, T. Hausel, J. Martens, T. Pantev, C. Pauly, C.
Simpson, O. Villamayor, A. Zamora, and H. Zelaci for useful discussions on these and related questions.
Many thanks to J.C. Díaz-Ramos, M. Domínguez-Vázquez, and E. García-Río for their hospitality during
the author’s stay at Universidade de Santiago de Compostela in 2020, where a part of this article was
written. Finally, thanks to the anonymous referees for their detailed comments.

References

1. Baraglia, D., and M. Kamgarpour “On the image of the parabolic Hitchin map.” Q. J. Math. 69, no. 2:
681–708. doi:10.1093/qmath/hax055. https://doi.org/10.1093/qmath/hax055.

2. Beauville, A., M. S. Narasimhan, and S. Ramanan “Spectral curves and the generalised theta divisor.”
J. Reine Angew. Math. 398 (1989): 169–79.

3. Bhosle, U. N. “Parabolic vector bundles on curves.” Ark. Mat. 27, no. 1 (1989): 15–22. https://doi.
org/10.1007/BF02386356.

4. Biswas, I. “Parabolic bundles as orbifold bundles.” Duke Math. J. 88, no. 2 (1997): 305–25.
5. Boalch, P. “Quasi-Hamiltonian geometry of meromorphic connections.” Duke Math. J. 139, no. 2 (2007):

369–405.
6. Boden, H. U., and K. Yokogawa “Rationality of moduli spaces of parabolic bundles.” J. Lond. Math. Soc. 59

(1999): 461–78. https://doi.org/10.1112/S0024610799007061.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad254/7378013 by U

niversity of Birm
ingham

 user on 16 N
ovem

ber 2023

https://doi.org/10.1093/qmath/hax055
https://doi.org/10.1007/BF02386356
https://doi.org/10.1007/BF02386356
https://doi.org/10.1112/S0024610799007061


20 | A. Peón-Nieto

7. Borne, N. “Fibrés paraboliques et champ des racines.” Internat. Math. Res. Notices 2007 (2007). https://doi.
org/10.1093/imrn/rnm049.

8. Bottacin, F. “Symplectic geometry on moduli spaces of stable pairs.” Ann Sci École Norm Sup. 28 (1995):
391–433. https://doi.org/10.24033/asens.1719.

9. Bozec, T. “Irreducible components of the global nilpotent cone.” Internat. Math. Res. Notices 2022, no. 23
(2022): 19054–77. https://doi.org/10.1093/imrn/rnab035.

10. Cadman, C. “Using stacks to impose tangency conditions on curves.” Amer. J. Math. 129, no. 2 (2007):
405–27. https://doi.org/10.1353/ajm.2007.0007.

11. Chuang, W., D. Diaconescu, R. Donagi, and T. Pantev “Parabolic refined invariants and Macdonald
polynomials.” Preprint, arXiv:1311.3624, 335, 1323, 1379. https://doi.org/10.1007/s00220-014-2184-9.

12. Cox, D.A., J. B. Little, and H.K. Schenck Toric Varieties. Graduate Studies in Mathematics, vol. 124. 2015.
https://doi.org/10.1090/gsm/1242015.

13. Dhillon, A., and D. Valuri “On the essential (p)-dimension of parabolic bundles on a curve.” Preprint,
arxiv:2001.04924.

14. Donagi, R., and T. Pantev “Geometric Langlands and non-abelian Hodge theory.” In Surveys in Differential
Geometry, vol. XIII. Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential
Geometry, 85–116, Somerville, MA: International Press, 2008, 13. https://doi.org/10.4310/SDG.2008.v13.
n1.a3.

15. Donagi, R. and T. Pantev “Parabolic Hecke eigensheaves.” Preprint, arXiv:1910.02357. https://doi.
org/10.24033/ast.11782022.

16. Donagi, R., and T. Pantev “Langlands duality for Hitchin systems.” Invent. Math. 189 (2012): 653–735.
https://doi.org/10.1007/s00222-012-0373-8.

17. Donagi, R., T. Pantev, and C. Simpson “Direct images in non Abelian Hodge theory.” Preprint,
arXiv:1612.06388.

18. Edidin, D. Riemann–Roch for Deligne–Mumford Stacks. A celebration of algebraic geometry. Clay Math. Proc.,
vol. 18. 2013.

19. Franco, E, P. B. Gothen, A. G. Oliveira, and A. Peón-Nieto Advances in Mathematics. Preprint,
arXiv:1802.05237, 377, 107493. https://doi.org/10.1016/j.aim.2020.107493.

20. Drinfeld, V. G. “Unramified covers and branes on the Hitchin system.” Letter to P. Deligne, vol. 22, 2021.
21. Groechenig, M. “Hilbert schemes as moduli of Higgs bundles and local systems.” Internat. Math. Res.

Notices 23 (2014): 6523–75.
22. Hartshorne, R., Algebraic Geometry, GTM 52 (1977), Springer-Verlag., https://doi.

org/10.1007/978-1-4757-3849-0
23. Heinloth, J. “The intersection form on moduli spaces of twisted PGL_nHiggs bundles vanishes.” Math. Ann.

365, no. 3–4 (2016): 1499–526. https://doi.org/10.1007/s00208-015-1301-1.
24. Hironaka, H. “Resolution of singularities of an algebraic variety over a field of characteristic zero: I.”

Ann. Math. (2) 79 (1964): 109–203. https://doi.org/10.2307/1970486.
25. Laumon, G. “Un analogue global du cône nilpotent.” Duke Math. J. 57 (1988): 647–71. https://doi.

org/10.1215/S0012-7094-88-05729-8.
26. Laumon, G. “Faisceaux automorphes pour GL(n): la premiere construction de drinfeld.” (1995): Preprint,

arXiv:alg-geom/9511004.
27. Logares, M., and J. Martens “Moduli of parabolic Higgs bundles and Atiyah algebroids.” J. Reine Angew.

Math. (Crelles J.) 2010 (2010): 89–116. https://doi.org/10.1515/crelle.2010.090.
28. Markman, E. “Spectral curves and integrable systems.” Compos. Math. 93, no. 3 (1994): 255–90.
29. Maruyama, M., and K. Yokogawa “Moduli of parabolic stable sheaves.” Math. Ann. 293 (1992): 77–99.

https://doi.org/10.1007/BF01444704.
30. Mehta, V. B., and C. S. Seshadri “Moduli of vector bundles on curves with parabolic structures.” Math.

Ann. 248, no. 3 (1980): 205–39. https://doi.org/10.1007/BF01420526.
31. Nitsure, N. “Moduli space of semistable pairs on a curve.” Proc. London Math. Soc. (3) 62, no. 2 (1991):

275–300.
32. Pauly, C., and A. Peón-Nieto “Very stable bundles and properness of the Hitchin map.” Geom. Dedicata

198 (2019): 143–8. https://doi.org/10.1007/s10711-018-0333-6.
33. Russo, B., and M. Teixidor-i-Bigas “On a conjecture of Lange.” J. Alg. Geom. 8, no. 3 (1997).
34. Simpson, C. “Harmonic bundles on non compact curves.” J. Amer. Math. Soc., 3 (1990): 713–70. https://doi.

org/10.1090/S0894-0347-1990-1040197-8.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad254/7378013 by U

niversity of Birm
ingham

 user on 16 N
ovem

ber 2023

https://doi.org/10.1093/imrn/rnm049
https://doi.org/10.1093/imrn/rnm049
https://doi.org/10.24033/asens.1719
https://doi.org/10.1093/imrn/rnab035
https://doi.org/10.1353/ajm.2007.0007
https://doi.org/10.1007/s00220-014-2184-9
https://doi.org/10.1090/gsm/124
https://doi.org/10.4310/SDG.2008.v13.n1.a3
https://doi.org/10.4310/SDG.2008.v13.n1.a3
https://doi.org/10.24033/ast.1178
https://doi.org/10.24033/ast.1178
https://doi.org/10.1007/s00222-012-0373-8
https://doi.org/10.1016/j.aim.2020.107493
https://doi.org/10.1007/978-1-4757-3849-0
https://doi.org/10.1007/978-1-4757-3849-0
https://doi.org/10.1007/s00208-015-1301-1
https://doi.org/10.2307/1970486
https://doi.org/10.1215/S0012-7094-88-05729-8
https://doi.org/10.1215/S0012-7094-88-05729-8
https://doi.org/10.1515/crelle.2010.090
https://doi.org/10.1007/BF01444704
https://doi.org/10.1007/BF01420526
https://doi.org/10.1007/s10711-018-0333-6
https://doi.org/10.1090/S0894-0347-1990-1040197-8
https://doi.org/10.1090/S0894-0347-1990-1040197-8


Equality of the Wobbly and Shaky Loci | 21

35. Simpson, C. “Higgs bundles and local systems.” Publ. Math. I.H.É.S. 75 (1992): 5–95. https://doi.
org/10.1007/BF02699491.

36. The Stacks Project https://stacks.math.columbia.edu/.
37. Su, X., B. Wang, and X. Wen “Parabolic Hitchin maps and their generic fibers.” Math. Z. 301, no. 1: 343–72.

https://doi.org/10.1007/s00209-021-02896-3.
38. Thaddeus, M. “Variation of moduli of parabolic Higgs bundles.” J. Reine Angew. Math. 2002 (2002): 1–14.

https://doi.org/10.1515/crll.2002.051.
39. Toën, B. “K-theory and cohomology of algebraic stacks: Riemann–Roch theorems, D-modules and GAGA

theorems.” Preprint, arXiv:math/9908097.
40. Yokogawa, K. “Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves.”

J. Math. Kyoto Univ. 33, no. 2 (1993): 451–504.
41. Yokogawa, K. “Infinitesimal deformation of parabolic Higgs sheaves.” Internat. J. Math. 06, no. 1 (1995):

125–48. https://doi.org/10.1142/S0129167X95000092.
42. Zelaci, H. “On very stablity of principal G-bundles.” Geom. Dedicata 204 (2020): 165–73. https://doi.

org/10.1007/s10711-019-00447-z.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad254/7378013 by U

niversity of Birm
ingham

 user on 16 N
ovem

ber 2023

https://doi.org/10.1007/BF02699491
https://doi.org/10.1007/BF02699491
https://stacks.math.columbia.edu/
https://doi.org/10.1007/s00209-021-02896-3
https://doi.org/10.1515/crll.2002.051
https://doi.org/10.1142/S0129167X95000092
https://doi.org/10.1007/s10711-019-00447-z
https://doi.org/10.1007/s10711-019-00447-z

	 Equality of the Wobbly and Shaky Loci
	1 Introduction
	2 Parabolic Higgs Bundles
	3 Parabolic Bundles and Very Stability
	4 Shaky Bundles Are Wobbly. The Smooth Case
	5 Non-Parabolic Higgs Pairs
	 Funding
	 Acknowledgments


