

University of Birmingham

Self-adaptation Can Improve the Noise-tolerance of
Evolutionary Algorithms
Lehre, Per Kristian; Qin, Xiaoyu

DOI:
10.1145/3594805.3607128

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Lehre, PK & Qin, X 2023, Self-adaptation Can Improve the Noise-tolerance of Evolutionary Algorithms. in FOGA
'23: Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. Association for
Computing Machinery (ACM), pp. 105-116, Foundations of Genetic Algorithms XVII, Potsdam, Germany,
30/08/23. https://doi.org/10.1145/3594805.3607128

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 06. May. 2024

https://doi.org/10.1145/3594805.3607128
https://doi.org/10.1145/3594805.3607128
https://birmingham.elsevierpure.com/en/publications/a2d7a6c9-70b5-44d2-9de1-26ab0d44b409

Self-adaptation Can Improve the Noise-tolerance of Evolutionary
Algorithms

Per Kristian Lehre∗
University of Birmingham

Birmingham, United Kingdom
p.k.lehre@cs.bham.ac.uk

Xiaoyu Qin∗
University of Birmingham

Birmingham, United Kingdom
xxq896@cs.bham.ac.uk

ABSTRACT
Real-world optimisation often involves uncertainty. Previous stud-
ies proved that evolutionary algorithms (EAs) can be robust to noise
when using proper parameter settings, including the mutation rate.
However, �nding the appropriate mutation rate is challenging if
the occurrence of noise (or noise level) is unknown. Self-adaptation
is a parameter control mechanism which adjusts mutation rates
by encoding mutation rates in the genomes of individuals and
evolving them. It has been proven to be e�ective in optimising
unknown-structure and multi-modal problems. Despite this, a rig-
orous study of self-adaptation in noisy optimisation is missing. This
paper mathematically analyses the runtimes of 2-tournament EAs
with self-adapting two mutation rates, �xed mutation rates and
uniformly chosen mutation rate from two given rates on L������
�O��� with and without symmetric noise. Results show that using
self-adaptation achieves the lowest runtime regardless of the pres-
ence of symmetric noise. In supplemental experiments, we extend
analyses to other types of noise, i.e., one-bit and bit-wise noise. We
also consider another self-adaptation mechanism, which adapts
the mutation rate from a given interval. Self-adaptive EAs adapt
their mutation rate to the noise level and outperform static EAs in
these experiments. Overall, self-adaptation can improve the noise-
tolerance of EAs in the noise-models studied here.

CCS CONCEPTS
• Theory of computation! Evolutionary algorithms; • Com-
puting methodologies! Discrete space search.

KEYWORDS
Evolutionary algorithms, self-adaptation, noisy optimisation

ACM Reference Format:
Per Kristian Lehre and Xiaoyu Qin. 2023. Self-adaptation Can Improve
the Noise-tolerance of Evolutionary Algorithms. In Proceedings of the 17th
ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA ’23),
August 30-September 1, 2023, Potsdam, Germany. ACM, New York, NY, USA,
26 pages. https://doi.org/10.1145/3594805.3607128

∗Authors are listed in alphabetical order.

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0202-0/23/08.
https://doi.org/10.1145/3594805.3607128

1 INTRODUCTION
Real-world optimisation often involves uncertainty, such as noise.
The exact �tness value of a search point may not be determined due
to noise. Evolutionary algorithms (EAs), as a type of general opti-
misers, are widely used to optimise noisy functions [18]. The com-
munity of evolutionary computation has considered several noise
models for discrete search spaces. For example, one-bit noise [13]
�ips one bit uniformly with probability@ before evaluation; bit-wise
noise [25] �ips each bit bit-wisely with probability ? before eval-
uation; and symmetric noise [22, 26] returns the changed �tness
value ⇠ � 5 (G) instead of 5 (G) with probability @.

Runtime analysis is a popular theoretical method to mathemati-
cally evaluate the performance of EAs, which estimates the expected
number of evaluations until the optimum is achieved [11]. In the
previous runtime analyses, even a single individual EA is shown
robust to low-level noise on pseudo-Boolean functions, but can fail
under high-level noise [6, 15, 31]. Gießen and Kötzing [15], Sudholt
[31] proved that the runtime of the (1+1) EA on L������O��� is
exponential if the noise levels satis�es @ = ⌦(1) and ? 2 ⌦(1/=2)
in the one-bit and bit-wise noise models, respectively. A naive
method to reduce the e�ect of noise is averaging multiple noisy
evaluations of a solution (resampling strategy). The (1+1) EA with
a proper resampling size< with respect to noise level is proved
to �nd the optimum of L������O��� in a polynomial runtime
under one-bit noise with any level @ 2 [0, 1] or bit-wise noise with
level ? 2 $ (log(=)/=) [25]. Nevertheless, this strategy is proved
to fail in the symmetric noise model regardless of the resampling
size used [26]. Using a population is an alternative way to improve
robustness in many noise models but requires to set the parame-
ter currently, such as population size and mutation rate [22, 26].
For example, the 2-tournament EA can guarantee $ (=2) expected
runtime on L������O��� under symmetric noise with noise level
@ 2 [0, 1/2) when the mutation rate is less than ln(2 � 2@)/=; oth-
erwise, its runtime is exponential [22]. Thus, we need to know the
exact noise level to set the “right” mutation rate.

It is challenging to �nd the appropriate parameter setting if
the occurrence of noise is unpredictable (or the noise level is un-
known). Self-adaptation as a parameter control mechanism can
help to con�gure the mutation rate in the noise-unknown environ-
ments, which encodes parameters in the genomes of individuals
and evolves them together with the solutions. Self-adaptive EAs
have been proved e�cient on escaping local optima [5, 23], and
solving unknown-structure problems [1]. A recent empirical analy-
sis also demonstrated that theMOSA�EA [28], which self-adapts
its mutation rate via multi-objectivisation, can beat a large num-
ber of randomised search heuristics on complicated combinatorial
optimisation problems and the the noisy L������O��� function.

105

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-9521-1251
https://orcid.org/0000-0002-9720-3220
https://doi.org/10.1145/3594805.3607128
https://doi.org/10.1145/3594805.3607128
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3594805.3607128&domain=pdf&date_stamp=2023-08-30

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Lehre and Qin

Table 1: Theoretical results of EAs on L������O��� under
symmetric noise (⇠,@) (⇠ 2 R, constant 0 < jhigh < ln(2),
jlow = 0/=, _ = 2 log(=) where 0, 2 > 0 are constants, ?c 2
> (1) \ ⌦(1/=) in 2-tour’ EA with SA-2mr)

Algorithm Noise-free Under Noise

(1+1) EA $ (=2) [13] 4⌦ (=) † (Thm. 2.3)
2-tour’ EA with jhigh

= $ (=2) [2] 4⌦ (=) ‡ (Thm. 2.1)
2-tour’ EA with jlow

= ⌦(=2 log(=)) (Cor. 3.1) $ (=3) § (Thm. 2.2)
2-tour’ EA with UM-2mr $ (=2) (Thm. 4.1) 4⌦ (=) ‡ (Thm. 4.2)
2-tour’ EA with SA-2mr $ (=2) (Thm. 5.1) $ (=3) § (Thm. 5.2)

However, a rigorous analysis of self-adaptation to noise is miss-
ing. Runtime analysis of non-elitist population-based EAs can be
challenging. Clearly, including self-adaptation and noise makes the
analysis even harder.

The main contribution of this paper is the �rst theoretical anal-
ysis of self-adaptive EAs in noisy environments. The rigorous
runtime analysis on the L������O��� problem shows that the
2-tournament EA with self-adaptation from high/low mutation
rates (SA-2mr) can guarantee the lowest expected runtime among
the �xed high/low mutation rates and the uniformly chosen mu-
tation rate from high/low rates (uniformly mixing mutation rate,
UM-2mr), regardless of the presence of symmetric noise. The re-
sults are summarised in Table 1. In addition, we extend to more
types of noise, one-bit and bit-wise noise, and a more natural self-
adaptation mechanism that adapts the mutation rate from a given
interval (0, 1/2] (SA) in the empirical study. The experimental re-
sults show that self-adaptive EAs can adapt mutation rates to noise
levels and outperform static EAs. The paper is organised as follows:
Section 2 introduces algorithms, noise models, related theorems
and runtime analysis tools. Sections 3-4 show limitations of using
high/low and uniformly mixing mutation rates under symmetric
noise. Section 5 analyses the runtime of the 2-tournament EA with
self-adapting mutation rates with/without noise. Section 6 shows
empirical results. The paper concludes in Section 7.

2 PRELIMINARIES
We �rst introduce algorithms, noise models, related theorems and
runtime analysis tools. We now de�ne notation used later. For any
natural numbers =2 > =1, we de�ne [=1,=2] := {=1, . . . ,=2}. For
any natural number = � 1, we de�ne [=] := [1,=]. The natural
logarithm is denoted by ln(·). Let 5 : X ! R be any pseudo-
Boolean function, whereX = {0, 1}= is the set of bitstrings of length
=. We consider twowell-known pseudo-Boolean functionsO��M��
and L������O���, which are de�ned as OM(G) :=

Õ=
8=1 G8 and

LO(G) := Õ=
8=1

Œ8
9=1 G 9 , respectively.

2.1 Algorithms
We �rst describe the 2-tournament EA, a non-elitist EA that is ro-
bust to noise when using a proper parameter setting [22]. In this
paper, we consider three di�erent mutation rate strategies: static,
uniformly mixing (UM-2mr) and self-adaptive (SA-2mr and SA).
†For any constant noise levels @ 2 (0.127107, 1/2) .
‡For some constant noise levels @ 2 (0, 1/2) .
§For all constant noise levels @ 2 (0, 1/2) .

Algorithm 1 Static 2-tournament EA

Require: Fitness function 5 : X ! R.
Require: Population size _ 2 N where _ � 2.
Require: Mutation param. j 2 (0,=/2]. Initial pop. %0 2 X_ .
1: for C = 0, 1, 2, ... until termination condition met do
2: for 8 = 1 to _ do
3: G1 %C (81) where 81 v Uniform([_]).
4: G2 %C (82) where 82 v Uniform([_]).
5: if 5 (G1) � 5 (G2) then I G1 else I G2
6: %C+1 (8) ~, where ~ is created by mutating I with

mutation rate j/=.

Algorithm 2 2-tournament EA with self-adaptation

Require: Fitness function 5 : X ! R.
Require: Population size _ 2 N where _ � 2.
Require: Self-adapting mutation rate strategy ⇡mut : R! R.
Require: Initial population %0 2 Y_ .
1: for C = 0, 1, 2, ... until termination condition met do
2: for 8 = 1 to _ do
3: (G1, j1/=) %C (81) where 81 v Uniform([_]).
4: (G2, j2/=) %C (82) where 82 v Uniform([_]).
5: if (G1, j1/=) ⌫ (G2, j2/=) then
6: (I, j/=) (G1, j1/=),
7: else
8: (I, j/=) (G2, j2/=).
9: Sample j 0/= ⇠ ⇡mut (j/=).
10: %C+1 (8) (~, j 0/=) where ~ created by mutating I

with mutation rate j 0/=.

Algorithm 3 Self-adapting mutation rate strategy (SA) [23]

Require: � > 1, Y > 0, ?inc 2 (0, 1).
Require: Mutation rate j/=.

1: j 0 =

(
min(�j, Y=�blog� (1

2Y)c) with prob. ?inc,
max (j/�, Y=) otherwise.

2: return new mutation rate j 0/=.

Algorithm 2 shows the static 2-tournament EA. In generation C , we
obtain a new individual by selection and mutation. We uniformly
select two potential parents, G1 and G2, from the population %C at
random (with replacement). Subsequently, we select the individ-
ual with the better �tness value to serve as the parent I. Lastly,
we employ bit-wise mutation to generate the o�spring ~. For the
2-tournament with UM-2mr [5], a mutation rate j/= uniformly
sampled from two rates is used in each mutation (see Algorithm 6).

2.2 Self-adaptation
In self-adaptive EAs, each individual not only has its solution but
also encodes its own mutation rate, so we de�ne a self-adaptive
population %C 2 Y_ , where Y = {0, 1}= ⇥ (0, 1/2]. Lehre and
Qin [23] summarised a framework of self-adaptive EAs. Similar to
static EAs, each individual in the next population %C+1 is produced
via selection and mutation. The selection based on a ranking rule is
with respect to �tness function 5 and individuals’ mutation rates.

106

Self-adaptation Can Improve the Noise-tolerance of Evolutionary Algorithms FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

Algorithm 4 Self-adapting two mutation rates (SA-2mr) [5]

Require: jhigh > jlow > 0, ?c 2 (0, 1).
Require: Mutation rate j/=.

1: Set j 0:=

(
jhigh if j = jlow, jlow if j = jhigh with prob. ?c
j otherwise.

2: Return new mutation rate j 0/=.

Then, the selected individual changes its mutation rate based on
a self-adapting mutation rate strategy, and its solution is mutated
by this new mutation rate. This paper applies the lexicographic
order from [1, 23], sorting �rst by increasing �tness value, then by
increasing mutation rates:

(G, j) ⌫
�
G 0, j 0

�
, 5 (G) > 5

�
G 0

�
_

�
5 (G) = 5

�
G 0

�
^ j � j 0

�
.
(1)

To self-adapt a mutation rate, we can use the same strategy ⇡mut
from [23] (Algorithm 3), where the mutation rate is multiplied by
� > 1 with probability ?inc or divided by � otherwise. We describe
the 2-tournament EA with SA as Algorithm 2 using this strategy
(Algorithm 3). Although some studies exist on self-adapting muta-
tion rates from the given interval (0, 1/2] [1, 10, 23], noise can make
the analysis harder. Therefore, we consider a simpli�ed version in
the runtime analysis, the 2-tournament EA with SA-2mr, which
only self-adapts two mutation rates { jhigh= , jlow= }. In contrast, we
illustrate that the �xed high/low mutation rates and the uniformly
mixing mutation rate cannot be fast or e�cient in the noisy setting.
For the sake of analysis, we re-de�ne the self-adaptive population
in this algorithm: %C 2 Y_ , where Y = {0, 1}= ⇥ { jhigh= , jlow= }. We
apply a simple self-adapting mutation rate strategy ⇡mut, in which
the mutation rate switches to the other value with a probability
?c 2 (0, 1) (self-adaptation parameter) (Algorithm 4). Thus, the
2-tournament EA with SA-2mr can be described as Algorithm 2
using Algorithm 4. Note that a similar two-rate self-adaptive EA
was studied in [5]. However, the authors employed a ranking rule
based solely on �tness values, which can constrain the optimisation
speed, as low mutation rate individuals may dominate the popula-
tion preventing the necessary exploration for faster convergence.

2.3 Noise Models
In the theoretical study, we focus on the symmetric noise model,
a well-established noise model extensively investigated in previ-
ous research [21, 26]. This choice is motivated by existing runtime
analyses of EAs that demonstrate the ine�ectiveness of resampling
strategies for successful optimisation in the symmetric noise model.
In contrast, employing a population has been shown to enhance ro-
bustness in this context. Nevertheless, for non-elitist EAs, attaining
successful noisy optimisation requires precise tuning of the muta-
tion rate in relation to the noise level. Expanding upon previous
research, our theoretical study investigates the potential for further
enhancing robustness through the self-adapting mutation rates in
the scenario where the presence of symmetric noise is unknown.

To explain this model, we start by de�ning 5 = (G) as the noisy
�tness function and 5 (G) as the noise-free �tness function. The
symmetric noise model, as presented by [22], can be formulated
as follows: given a probability @ 2 [0, 1] (representing the noise

level), an arbitrary constant ⇠ 2 R, the noisy �tness function 5 = is
de�ned for any solution G 2 {0, 1}= by

5 = (G) =
(
5 (G) with probability 1 � @,
⇠ � 5 (G) with probability @.

We now present some earlier results related to the symmetric
noise model. For static 2-tournament EAs, two theorems related
to the L������O��� problem in the symmetric noise model have
been established [21]. Theorem 2.1 identi�es the mutation rate
which leads to ine�cient optimisation for a given noise level, while
Theorem 2.2 reveals the appropriate mutation rate for e�cient
optimisation. Additionally, for the sake of completeness in our
research, we introduce Theorem 2.3, which demonstrates that the
(1+1) EA is ine�cient under high-level symmetric noise (with proof
in Appendix B.1, adapted from Theorem 20 in [15]).

Theorem 2.1 (Theroem 9 in [22]). For any constant @ 2 [0, 1/2)
and some constant X 2 (0, 1), the probability that the 2-tournament
EA with any population size _ 2 poly(=) and mutation rate j/= >
(ln(2(1 � @)) + X)/=, optimises L������O��� in the symmetric noise
model (⇠,@) within 42= generations is 4�⌦ (=) , for some constant 2 > 0.

Theorem 2.2 (Theorem 11 in [22]). For any constant @ 2 [0, 1/2),
and ⇠ 2 R and any j 2 (0, ln(2(1 � @))), the 2-tournament EA with
mutation rate j/= and population size _ > 2 log(=) for a su�ciently
large constant 2 achieves the optimum on L������O��� in the sym-
metric noise model (⇠,@) in expected time $

�
=_ log (=/j) + =2/j

�
.

Theorem 2.3. For any ⇠ 2 R and any constant @ 2 (0.127107, 1/2),
the probability of the (1+1) EA optimising L������O��� in the sym-
metric noise model (⇠,@) in 4⌦ (=) runtime is 4�⌦ (=) .

In the empirical study, we extend the analysis to one-bit noise [15,
25, 31] and bit-wise noise [12, 14, 15, 20, 25, 31], which are de�ned,

respectively, as 5 = (G) =

(
5 (G) with probability 1 � @,
5 (G 0) with probability @,

where

G 0 is a uniformly sampled Hamming neighbour of G , and 5 = (G) =
5 = (G 0) where G 0 is obtained by bit-wisely �ipping G with probability
? . We refer the reader to [22] for a comprehensive summary of
runtime analyses on EAs under noise.

Note that in this study, we apply the reevaluation strategy [4, 14,
15, 21, 22, 25–27] which means the noisy �tness value of an individ-
ual is reevaluated every time the individual enters a tournament.

2.4 Runtime Analysis Tools
This subsection introduces the runtime analysis tools for obtaining
the lower and upper bounds of the runtime used in this paper.
Theorem 2.4 [30] indicates the lower bound of the runtime for any
mutation only EAswith respect to themutation rate. The level-based
theorems [2, 3, 9] give upper bounds of the runtime for non-elitist
population-based algorithms.

Theorem 2.4 (Theorem 11 in [30]). The expected runtime of every
mutation-based EA using mutation rate j/= on every function with a
unique optimum is at least

⇣
ln(=)�ln(ln(=))�3

j (1�j/=)=
⌘
=, if 2�=/3= j 1.

We use two level-based theorems in this paper: the level-based
theorem [2] (Theorem 2.5) and the new level-based theorem [3]
(Theorem 2.6). The theorems are applied to algorithms that follow

107

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Lehre and Qin

Algorithm 5 Population-based algorithm

Require: Finite state space X and population size _ 2 N; Map ⇡
from X_ to the space of probability distributions over X.

Require: Initial population %0 2 X_ .
1: for C = 0, 1, 2, ... until termination condition met do
2: for 8 = 1 to _ do
3: Sample %C+1 (8) ⇠ ⇡ (%C).

the scheme of Algorithm 5. Assume that the search space X is
partitioned into ordered disjoint subsets (called levels) �1, · · · ,�< .
Let �� 9 := [<:=9�: be the search points in level 9 and higher, and

let ⇡ be some mapping from the set of all possible populations X_

into the space of probability distributions of X. Given any subset
� ✓ X, we de�ne |%C \ �| := |{8 | %C (8) 2 �}|, i.e., the number
of individuals in %C that belong to �. To estimate an upper bound
on the runtime using the level-based theorem (Theorem 2.5), three
conditions must typically be satis�ed: (G1) requires the probability
of level “upgrading”, i.e., creating an individual in higher levels;
(G2) requires the probability of the number of individuals in higher
levels “growing”; (G3) requires a su�cient population size. Besides
these three conditions, the new level-based theorem (Theorem 2.6)
has been proposed to address the issue of “deceptive” regions ⌫
that contains individuals with a higher selection probability but
at a lower level. The theorem includes an additional condition
(G0) that requires a decreasing probability of producing “deceptive”
individuals, if there are too many such individuals in the population.

Theorem 2.5 (Level-based theorem [2]). Given a partition (�1,
..., �<) of a �nite state space X, let) := min{C_ | |%C \ �< | > 0}
be the �rst point in time that the elements of �< appear in %C of
Algorithm 5. If there exist I1, ..., I<�1, X 2 (0, 1], and W0 2 (0, 1) such
that for any population % 2 X_ ,
(G1) for all 9 2 [<�1], if |%\�� 9 | � W0_ then Pr

~⇠⇡ (%)
�
~ 2 �� 9+1

�
�

I 9 ,
(G2) for all 9 2 [< � 2], and all W 2 (0,W0], if |% \�� 9 | � W0_ and

|% \�� 9+1 | � W_ then Pr
~⇠⇡ (%)

�
~ 2 �� 9+1

�
� (1 + X)W ,

(G3) and the population size _ 2 N satis�es

_ � 4/(W0X2) ln
⇣
128</(I⇤X2)

⌘
, where I⇤ := min

�
I 9

,

then ⇢ [)] 8
X2

Õ<�1
9=1

⇣
_ ln

⇣
6X_

4+I 9X_
⌘
+ 1

I 9

⌘
.

Theorem 2.6 (New level-based theorem [3]). Given a partition
(�1, ..., �<) of a �nite state space X and a subset ⌫ ⇢ X, let) :=
min{C_ | |%C \�< | > 0} be the �rst point in time that the elements of
�< appear in %C of Algorithm 5. If there exist I1, ..., I<�1, X 2 (0, 1],
and W0,k0 2 (0, 1) such that for any population % 2 X_ ,
(G0) for all k 2 [k0, 1], if |% \ ⌫ | k_ then Pr

~⇠⇡ (%)
(~ 2 ⌫)

(1 � X)k ,
(G1) for all 9 2 [< � 1], if |% \ ⌫ | k0_ and |% \�� 9 | � W0_ then

Pr
~⇠⇡ (%)

�
~ 2 �� 9+1

�
� I 9 ,

(G2) for all 9 2 [< � 2], and all W 2 (0,W0], if |% \�� 9 | � W0_ and
|% \�� 9+1 | � W_ then Pr

~⇠⇡ (%)
�
~ 2 �� 9+1

�
� (1 + X)W ,

(G3) and the population size _ 2 N satis�es

_ � 12/(W0X2) ln
⇣
300</(I⇤X2)

⌘
, where I⇤ := min

�
I 9

,

then ⇢ [)] 12_
X + 96

X2
Õ<�1

9=1

⇣
_ ln

⇣
6X_

4+I 9X_
⌘
+ 1

I 9

⌘
.

3 HIGH/LOWMUTATION RATES LEAD TO
FAILED OPTIMISATION UNDER NOISE OR
OR SLOW OPTIMISATION WITHOUT NOISE

The non-elitist EAs should reduce the mutation rate to handle
noise [22]. However, too low mutation rates lead to a slow opti-
misation in the noise-free environment. In this section, we show
that the static 2-tournament EAs using the high or low mutation
rate cannot be e�cient if the presence of noise is unknown. We
say the high mutation rate is jhigh

= where the mutation parameter
jhigh > 0 is a constant, and the lower mutation rate is jlow

= where
jlow = 0/= for some constant 0 > 0.

It is well-known that the 2-tournament EA with mutation rate
j/= with j < ln(2) is a constant, and population size _ = 2 log(=)
for a su�ciently large constant 2 , achieves the optimum of L������
�O��� without noise in expected runtime $ (=2) [2]. However, the
algorithm can fail in noisy environments if using a constant mu-
tation parameter, i.e., jhigh. From Theorem 2.1, we know that for
any constant mutation parameter j > 0, we can �nd some constant
noise level @ 2 [0, 1/2) such that the 2-tournament EA using any
population size _ = poly(=) optimises L������O��� under sym-
metric noise within 42= generations with probability 4�⌦ (=) where
2 > 0 is a constant.

We can use a su�ciently low mutation rate against noise, e.g.,
jlow
= . From Theorem 2.2, we know that the expected runtime of

the 2-tournament EA with mutation rate jlow/= and population
size _ = 2 log(=) for a su�ciently large constant 2 on optimising
L������O��� under symmetric noise for any constant noise level
@ 2 [0, 1/2) is $

�
=3

�
. However, such a low mutation rate slows

down the noise-free optimisation by a small but super-constant
factor, i.e., ⌦(=2 log(=)) runtime instead of $ (=2) guaranteed by
using jhigh

= , which is indicated by Corollary 3.1 via Theorem 2.4.

Corollary 3.1. The expected runtime of the 2-tournament EA using
mutation parameter satisfying j � 2�=/3= and j 2 $ (1/=) on
L������O��� is ⌦(=2 log(=)).

4 UNIFORMLY MIXING MUTATION RATES DO
NOT HELP UNDER NOISE

In this section, we show runtime analysis results on the 2-tournament
EAwith uniformlymixing high/lowmutation rates (UM-2mr) under
noise. Theorems 4.1-4.2 present that using UM-2mr can optimise
the noise-free L������O��� function in expected runtime $ (=2),
but can fail under symmetric noise with a high probability. The
proofs are in Appendices B.2-B.3.

Theorem 4.1. For any constants jhigh,0 > 0 and jlow = 0/=, the ex-
pected runtime of the 2-tournament EA with UM-2mr from {jhigh/=,
jlow/=} and population size _ > 2 log(=) for a su�ciently large
constant 2 on optimising L������O��� is $

�
=_ log (=) + =2

�
.

Theorem 4.2. For any constant @ 2 (0, 1/2) and any constant X 2
(0,@), the probability that the 2-tournament EA with UM-2mr from

108

Self-adaptation Can Improve the Noise-tolerance of Evolutionary Algorithms FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

{jhigh/=, jlow/=} where constants jhigh � ln
⇣
1�@
@�X

⌘
> jlow > 0

with any population size _ 2 poly(=) optimises L������O��� in
the symmetric noise model (⇠,@), where ⇠ 2 R, within time 42= is
4�⌦ (=) , for some constant 2 > 0.

5 SELF-ADAPTING MUTATION RATES
GUARANTEE EFFICIENCY UNDER NOISE

We now analyse the self-adaptive EA using level-based theorems
to show their e�ciency in noisy and noise-free environments. The-
orem 5.1 shows that the 2-tournament EA using SA-2mr achieves a
comparable performance to using a high mutation rate jhigh

= , i.e.,
$ (=2) runtime, on the noise-free L������O��� function. The proof
of Theorem 5.1 is conducted by the level-based theorem (Theo-
rem 2.5). (shown in Appendix B.4). Theorem 5.2 shows that the
self-adaptive EA also e�ciently optimises under symmetric noise.

Theorem 5.1. For any constant jhigh 2 (0, ln (2(1 � X))] where
X 2 (0, 1/2) is any constant, jlow = 0/= where 0 > 0 is any constant,
and any ?c 2 > (1)\⌦(1/=), the expected runtime of the 2-tournament
EA using SA-2mr from { jhigh= , jlow= } with self-adaptation parameter
?c and population size _ > 2 log(=) for a su�ciently large constant 2
on optimising L������O��� without noise is $

�
=_ log (=) + =2

�
.

Theorem 5.2. For any constant jhigh > 0, jlow = 0/= where 0 > 0
is any constant, an arbitrary constant @ 2 [0, 1/2) and ?c 2 > (1) \
⌦(1/=), the expected runtime of the 2-tournament EA using SA-2mr
from { jhigh= , jlow= } with self-adaptation parameter ?c and population
size _ > 2 log(=) for a su�ciently large constant 2 on optimising
L������O��� in the symmetric noise model (⇠,@), where ⇠ 2 R, is
$

�
=_ log (=) + =3

�
.

Theorem 5.2 is the most important result of this paper. To prove
it, we consider the two cases based on the noise level @. If the
noise level is small enough compared to the high mutation rate
jhigh
= , we use a similar approach of Theorem 5.1 to complete the

proof. Otherwise, we use a di�erent level partition and the new
level-based theorem (Theorem 2.6) to prove it. Precisely, we de�ne
a value ✓ 2 N such that for any constant X 2

�
0, (1/2 � @)3

⇤
,✓

1 �
jhigh
=

◆✓�1
>

1 + X

2(1 � @) �
✓
1 �

jhigh
=

◆✓
, (2)

and distinguish between two cases: (A) ✓ = � 2 and (B) ✓ � = � 1.
For case (A) ✓ = � 2, we use the level partition de�ned in

De�nition 5.1. Figure 1 illustrates this level de�nition. The state
spaceY is divided into = + 1 levels� 92 [0..=] , with respect to LO(G).
Each of the �rst ✓ levels (the red/I region) is divided into two sub-
levels, �(9,1) and �(9,2) , representing the low and high mutation
rates, respectively. Levels � 92 [✓+1..=�1] (the green/III region) are
de�ned as having only one sub-level �(9,1) , which represents the
low mutation rate. The �nal level (the optimal level, the white
region), �= :=: �(=,1) , contains both high and low mutation rates.
The sub-level �(✓,2) (the cyan/II region) is extended to the rest of
the state space , where 5 (G) � ✓ and with high mutation rate.

De�nition 5.1. For any ✓ 2 [0,= � 2], we de�ne

�(9,1) :=

(
{(G, jlow=) | LO(G) = 9} if 0 9 = � 1,
{(G, jhigh=), (G, jlow=) | LO(G) = =} if 9 = =; and

�(9,2) :=

(
{(G, jhigh=) | LO(G) = 9} if 0 9 ✓ � 1
{(G, jhigh=) | LO(G) � ✓} if 9 = ✓ .

To compare the levels�(9,8) and�(9 0,80) , we de�ne (9, 8) > (9 0, 80)
if either (9 = 9 0 and 8 > 80) or (9 > 9 0). To simplify the notation,
we also de�ne (9, 1) + 1 = (9, 2) and (9, 2) + 1 = (9 + 1, 1) for 9 ✓ ,
and (9, 1) + 1 = (9 + 1, 1) for 9 � ✓ + 1.

To apply Theorem 2.6, we must estimate the “upgrading” proba-
bility that is sampling an o�spring in the higher level (condition
(G1)), and the “growing” probability that sampling an o�spring
in at least the same level (condition (G2)). The individuals in the
green/III region might not have a su�ciently large probability of
being selected if there are too many individuals with high �tness
and high mutation rate (the cyan/II region). The high mutation
rate can fail the optimisation under noise. Therefore, it is crucial to
verify condition (G0), which ensures that there are not too many
individuals in the cyan/II region. Finally, we gain an upper runtime
bound by calculating the required population size (condition (G3)).

We �rst introduce some lemmas for the proof. The presence of
noise essentially a�ects the selection [21], so we compute the prob-
ability of selecting a high-level individual in noisy environments in
Lemma 5.3. Lemmas 5.4-5.5 are used to verify conditions (G0) and
(G2) of Theorem 2.6, respectively.

n�� � 10 � + 1 n � 1

…

…

…

…

1 … …

�high

�low

A(�,2)

A(�+1,1) A(n�1,1)

A(n,1)A(0,2) A(1,2) A(��1,2)

� (1
n) � (1

n) � (1
n) � (1

n)

� (1
n2) � (1

n2) � (1
n2)

<latexit sha1_base64="EID6P3BF/tMSSArj+VDsxk81EX4=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBHqpSRS1GPRiwfBCvYD2lg22227dLMJuxNtCf0fXjwo4tX/4s1/47bNQVsfDDzem2Fmnh8JrtFxvq2l5ZXVtfXMRnZza3tnN7e3X9NhrCir0lCEquETzQSXrIocBWtEipHAF6zuD64mfv2RKc1DeY+jiHkB6Une5ZSgkR5ayIaoaXJzOy4MT9q5vFN0prAXiZuSPKSotHNfrU5I44BJpIJo3XSdCL2EKORUsHG2FWsWETogPdY0VJKAaS+ZXj22j43SsbuhMiXRnqq/JxISaD0KfNMZEOzreW8i/uc1Y+xeeAmXUYxM0tmibixsDO1JBHaHK0ZRjAwhVHFzq037RBGKJqisCcGdf3mR1E6L7lmxdFfKly/TODJwCEdQABfOoQzXUIEqUFDwDK/wZj1ZL9a79TFrXbLSmQP4A+vzB0s2kmI=</latexit>

LO(x)

A(0,1) A(1,1) A(��1,1) A(�,1)

A(�,2) A(�,2)

A(n,1)

� (1
n) � (1

n3)� (1
n) � (1

n) � (1
n)� (1

n)

<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I

<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="rW9g2ZCXd9fTG/a5NhsTXit/6+E=">AAAB8XicdVDLSgNBEJz1GeMr6tHLYBA8LbNBTbwFvegtgnlgsoTZyWwyZHZ2mekVw5K/8OJBEa/+jTf/xslDUNGChqKqm+6uIJHCACEfzsLi0vLKam4tv76xubVd2NltmDjVjNdZLGPdCqjhUiheBwGStxLNaRRI3gyGFxO/ece1EbG6gVHC/Yj2lQgFo2Cl2w7wezAsuxp3C0Xils8sypi4FUJIyZsTUsaeS6Yoojlq3cJ7pxezNOIKmKTGtD2SgJ9RDYJJPs53UsMTyoa0z9uWKhpx42fTi8f40Co9HMbalgI8Vb9PZDQyZhQFtjOiMDC/vYn4l9dOIaz4mVBJClyx2aIwlRhiPHkf94TmDOTIEsq0sLdiNqCaMrAh5W0IX5/i/0mj5Hqn7sn1cbF6Po8jh/bRATpCHiqjKrpENVRHDCn0gJ7Qs2OcR+fFeZ21LjjzmT30A87bJ2dukWw=</latexit>

I
<latexit sha1_base64="4XwP8qCnlx4wdm6x6iunRBUs9yg=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9IQ5lMJ+3QSSbM3Igl9DPcuFDErV/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lpapoqxJpZCqExDNBI9ZEzgI1kkUI1EgWDsYXed++54pzWV8B+OE+REZxDzklICRvC6wB9A0q9cnvVLZsd3LHNixK45BdUEq2LWdKcpojkav9NHtS5pGLAYqiNae6yTgZ0QBp4JNit1Us4TQERkwz9CYREz72fTkCT42Sh+HUpmKAU/V7xMZibQeR4HpjAgM9W8vF//yvBTCCz/jcZICi+lsUZgKDBLn/+M+V4yCGBtCqOLmVkyHRBEKJqWiCWHxKf6ftCq2e2ZXb0/Ltat5HAV0iI7QCXLROaqhG9RATUSRRI/oGb1YYD1Zr9bbrHXJms8coB+w3r8A45+RrA==</latexit>

II
<latexit sha1_base64="4XwP8qCnlx4wdm6x6iunRBUs9yg=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9IQ5lMJ+3QSSbM3Igl9DPcuFDErV/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lpapoqxJpZCqExDNBI9ZEzgI1kkUI1EgWDsYXed++54pzWV8B+OE+REZxDzklICRvC6wB9A0q9cnvVLZsd3LHNixK45BdUEq2LWdKcpojkav9NHtS5pGLAYqiNae6yTgZ0QBp4JNit1Us4TQERkwz9CYREz72fTkCT42Sh+HUpmKAU/V7xMZibQeR4HpjAgM9W8vF//yvBTCCz/jcZICi+lsUZgKDBLn/+M+V4yCGBtCqOLmVkyHRBEKJqWiCWHxKf6ftCq2e2ZXb0/Ltat5HAV0iI7QCXLROaqhG9RATUSRRI/oGb1YYD1Zr9bbrHXJms8coB+w3r8A45+RrA==</latexit>

II
<latexit sha1_base64="4XwP8qCnlx4wdm6x6iunRBUs9yg=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9IQ5lMJ+3QSSbM3Igl9DPcuFDErV/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lpapoqxJpZCqExDNBI9ZEzgI1kkUI1EgWDsYXed++54pzWV8B+OE+REZxDzklICRvC6wB9A0q9cnvVLZsd3LHNixK45BdUEq2LWdKcpojkav9NHtS5pGLAYqiNae6yTgZ0QBp4JNit1Us4TQERkwz9CYREz72fTkCT42Sh+HUpmKAU/V7xMZibQeR4HpjAgM9W8vF//yvBTCCz/jcZICi+lsUZgKDBLn/+M+V4yCGBtCqOLmVkyHRBEKJqWiCWHxKf6ftCq2e2ZXb0/Ltat5HAV0iI7QCXLROaqhG9RATUSRRI/oGb1YYD1Zr9bbrHXJms8coB+w3r8A45+RrA==</latexit>

II
<latexit sha1_base64="4XwP8qCnlx4wdm6x6iunRBUs9yg=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9IQ5lMJ+3QSSbM3Igl9DPcuFDErV/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lpapoqxJpZCqExDNBI9ZEzgI1kkUI1EgWDsYXed++54pzWV8B+OE+REZxDzklICRvC6wB9A0q9cnvVLZsd3LHNixK45BdUEq2LWdKcpojkav9NHtS5pGLAYqiNae6yTgZ0QBp4JNit1Us4TQERkwz9CYREz72fTkCT42Sh+HUpmKAU/V7xMZibQeR4HpjAgM9W8vF//yvBTCCz/jcZICi+lsUZgKDBLn/+M+V4yCGBtCqOLmVkyHRBEKJqWiCWHxKf6ftCq2e2ZXb0/Ltat5HAV0iI7QCXLROaqhG9RATUSRRI/oGb1YYD1Zr9bbrHXJms8coB+w3r8A45+RrA==</latexit>

II

<latexit sha1_base64="8okWW1WDgRHXcIJfrq0f3lbnB7c=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9oQplMJ+3QySTM3Igl9DfcuFDErT/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lo5TRVmTxiJWnYBoJrhkTeAgWCdRjESBYO1gdJ377XumNI/lHYwT5kdkIHnIKQEjeR6wB9A0q9frk16p7NjuZQ7s2BXHoLogFezazhRlNEejV/rw+jFNIyaBCqJ113US8DOigFPBJkUv1SwhdEQGrGuoJBHTfja9eYKPjdLHYaxMScBT9ftERiKtx1FgOiMCQ/3by8W/vG4K4YWfcZmkwCSdLQpTgSHGeQC4zxWjIMaGEKq4uRXTIVGEgompaEJYfIr/J62K7Z7Z1dvTcu1qHkcBHaIjdIJcdI5q6AY1UBNRlKBH9IxerNR6sl6tt1nrkjWfOUA/YL1/AXuXkf8=</latexit>

III

<latexit sha1_base64="8okWW1WDgRHXcIJfrq0f3lbnB7c=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9oQplMJ+3QySTM3Igl9DfcuFDErT/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lo5TRVmTxiJWnYBoJrhkTeAgWCdRjESBYO1gdJ377XumNI/lHYwT5kdkIHnIKQEjeR6wB9A0q9frk16p7NjuZQ7s2BXHoLogFezazhRlNEejV/rw+jFNIyaBCqJ113US8DOigFPBJkUv1SwhdEQGrGuoJBHTfja9eYKPjdLHYaxMScBT9ftERiKtx1FgOiMCQ/3by8W/vG4K4YWfcZmkwCSdLQpTgSHGeQC4zxWjIMaGEKq4uRXTIVGEgompaEJYfIr/J62K7Z7Z1dvTcu1qHkcBHaIjdIJcdI5q6AY1UBNRlKBH9IxerNR6sl6tt1nrkjWfOUA/YL1/AXuXkf8=</latexit>

III
<latexit sha1_base64="8okWW1WDgRHXcIJfrq0f3lbnB7c=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQlKsj13Rjd1VsA9oQplMJ+3QySTM3Igl9DfcuFDErT/jzr9x0geo6IELh3Pu5d57gkRwDY7zaS0tr6yurRc2iptb2zu7pb39lo5TRVmTxiJWnYBoJrhkTeAgWCdRjESBYO1gdJ377XumNI/lHYwT5kdkIHnIKQEjeR6wB9A0q9frk16p7NjuZQ7s2BXHoLogFezazhRlNEejV/rw+jFNIyaBCqJ113US8DOigFPBJkUv1SwhdEQGrGuoJBHTfja9eYKPjdLHYaxMScBT9ftERiKtx1FgOiMCQ/3by8W/vG4K4YWfcZmkwCSdLQpTgSHGeQC4zxWjIMaGEKq4uRXTIVGEgompaEJYfIr/J62K7Z7Z1dvTcu1qHkcBHaIjdIJcdI5q6AY1UBNRlKBH9IxerNR6sl6tt1nrkjWfOUA/YL1/AXuXkf8=</latexit>

III

Figure 1: Illustration of the level partition de�ned in De�-
nition 5.1. The notions on arrows indicate the “upgrading”
probabilities for levels in the proof of Theorem 5.2.

Lemma 5.3. Assume that we have a population %C 2 Y_ where
Y := {0, 1}= ⇥ { jhigh= , jlow= } and jhigh > jlow > 0, that is sorted such
that %C (1) ⌫ · · · ⌫ %C (_) on the noise-free version of L������O���
function. For any W 2 (0, 1), any ⇠ 2 R and any @ 2 [0, 1/2), if
(G1, j1/=) and (G2, j2/=) are two individuals which are uniformly
at random selected from %C , and (I, j 0/=) is created by steps 5-8 in
Algorithm 2 on the L������O��� function in the symmetric noise
model (⇠,@), then the probability of (I, j 0/=) ⌫ %C (bW_c) where
_ = |%C | is W (2(1 � @) � (1 � 2@)W) � 2W (1 � @) (1 � W).

P����. There are two events in which we select an “advanced
individual”, i.e., (I, j 0/=) ⌫ %C (bW_c):
(a) the algorithm selects two individuals (G1, j1/=) and (G2, j2/=)

both from the top bW_c individuals of sorted %C . This happens
with probability W2.

109

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Lehre and Qin

(b) either (G1, j1/=) or (G2, j2/=) from the top bW_c individuals
and selects such individual even if the noise occurs.

For event (2), we assumewithout loss of generality that (G1, j1/=) ⌫
(G2, j2/=). Then the probability of a successful comparison (, i.e,
(G1, j1/=) is exactly selected, is Pr(() = Pr (5 = (G1) > 5 = (G2)) +
1
2 Pr (5 = (G1) = 5 = (G2)) = (1 � @), where the last equation is from
Lemma 1 (f) in [22]. For completeness, we now repeat the arguments
from that lemma here. We assume that 5 (G1) = 0 and 5 (G2) = 1
where 0 > 1. Then we say that G1 “wins” if event (happens, and
we distinguish between three cases:
(1) If 0 + 1 > ⇠ , then G1 wins if and only if there is noise in G2, i.e,

Pr(⇢) = (1 � @)2 + (1 � @)@.
(2) If0+1 = ⇠ , then G1 wins if and only if there is no noise in both G1

and G2, or there is noise in either G1 and G2 (same �tness values,
so with half chance), i.e., Pr(⇢) = (1�@)2+(1�@)@/2+@(1�@)/2.

(3) If 0 + 1 < ⇠ , then G1 wins if and only if there is no noise in G2,
i.e., Pr(⇢) = (1 � @)2 + @(1 � @).

Therefore, we obtain Pr(() = (1 � @)2 + (1 � @)@ = 1
2 + 1

2 � @. Thus,
the probability of selecting an individual in the top bW_c individuals
of sorted %C is

W2 + 2W (1 � W) Pr(() = W (2 (1 � @) � (1 � 2@) W)
� 2W (1 � @) (1 � W). ⇤

The following lemma ensures that there are not too many indi-
viduals in the cyan/II region.

Lemma 5.4 (Condition (G0)). Given any subset ⌫ ⇢ Y where
Y := {0, 1}= ⇥ { jhigh= , jlow= } and jhigh > jlow > 0, let .C := |%C \ ⌫ |
be the number of individuals in population %C of the 2-tournament
EA with SA-2mr from { jhigh= , jlow= } and ?c 2 > (1) \ ⌦(1/=) that
belong to subset ⌫. Consider the symmetric noise model (⇠,@), where
⇠ 2 R and constant @ 2 [0, 1/2). If there exist three parameters
d, Y,f 2 (0, 1) such that Pr ((~, j 0/=) 2 ⌫ | (I, j/=) 2 ⌫) d , and
Pr ((~, j 0/=) 2 ⌫ | (I, j/=) 8 ⌫) fk � Y for k 2 [k0, 1], where
k0 =

2(1�@)� (1�f)/d
1�2@ andk0 2 (0, 1), then

Pr
�
(~, j 0/=) 2 ⌫ | |%C \ ⌫ | k_

�
 k (1 � Y).

This lemma is very similar to Lemma 2 in [5].

P����. Letk := .C/_. For the upper bound, we assume that all
search points in ⌫ have higher �tness and higher mutation rate
than search points in X\⌫. Then,

Pr
�
(I, j/=) 2 ⌫ ^ (~, j 0/=) 2 ⌫

�
= Pr ((I, j/=) 2 ⌫) Pr

�
(~, j 0/=) 2 ⌫ | (I, j/=) 2 ⌫

�
by Lemma 5.3,

 k (2 (1 � @) � (1 � 2@)k) d .

Let6(k) = k (2 (1 � @) � (1 � 2@)k) which is monotone increasing
whenk 2 (0, 1) by Lemma A.3 (1), such that

 6 (max(k0,k)) d

then byk � k0 and the value ofk0,

 k (2 (1 � @) � (1 � 2@)k0) d = k (1 � f).

Thus, the probability of producing an individuals in ⌫ is

Pr
�
(~, j 0/=) 2 ⌫ | |%C \ ⌫ | k_

�
= Pr

�
(I, j/=) 2 ⌫ ^ (~, j 0/=) 2 ⌫ | |%C \ ⌫ | k_

�
+ Pr

�
(I, j/=) 8 ⌫ ^ (~, j 0/=) 2 ⌫ | |%C \ ⌫ | k_

�
 k (1 � f) + (fk � Y)
 k � Y < k (1 � Y) k (1 � Y) . ⇤

The following lemma gives the “expanding” probability that
sampling an o�spring in at least the same level.

Lemma 5.5 (Condition (G2)). Assume that 0 < X (12 � @)3 and
@ 2 [0, 1/2) are any constants,k0 := 1�@

1
2 �@

⇣
1 � 1� (1/2) (1/2�@)2

1+X
⌘
and

the state spaceY := {0, 1}=⇥{ jhigh= , jlow= } is divided according to De�-
nition 5.1. Consider L������O��� in the symmetric noise model (⇠,@)
where⇠ 2 R. There exist constants � 2 (0, (�@/5+1/10)/2] andW0 2
(0,�@/90+1/180], for any population %C of the 2-tournament EA with
SA-2mr from { jhigh= , jlow= } and ?c 2 > (1) \ ⌦(1/=), any W 2 (0,W0]
and (9, 8) � (✓, 2), if |%C \ �(✓,2) | k0_, |%C \ �� (9,8) | � W0_ and

|%C \�� (9,8)+1 | � W_, then Pr
⇣
(~, j 0/=) 2 �� (9,8)+1

⌘
� W (1 + �).

P����. We assume that |%C \�(✓,2) | k0_. By the de�nition of
k0, and 0 < X (1/2 � @)3, we get upper and lower bounds ofk0
for later use. By replacing for the upper on X in the de�nition ofk0,

k0
2(1 � @) �

2
⇣
1� 1

2 (12 �@)2
⌘
(1�@)

1+(1/2�@)3

1 � 2@

=
4 � 16@ + 20@2 � 8@3
9 � 6@ + 12@2 � 8@3 . (3)

By replacing for the lower on X in the de�nition ofk0,

k0 >

2(1 � @) � 2
✓
1 � 1

2

⇣
1
2 � @

⌘2◆
(1 � @)

1 � 2@

=
✓
1
2
� @

◆ ✓
1
2
� @

2

◆
. (4)

We now derive a lower bound ?0 on the probability that given
an individual (I, j/=) in level �� (9,8)+1, the mutation operator
produces an individual (~, j 0/=) in�� (9,8)+1, for (9, 8) � (✓, 2). The
levels higher than �(✓,2) are all with mutation rate jlow

= except the
optimal level �(=,1) , thus

Pr
⇣
(~, j 0/=) 2 �� (9,8)+1 | (I, j/=) 2 �� (9,8)+1

⌘

�
⇣
1 � jlow

=

⌘=
(1 � ?c)

by Lemma A.2,

� 4�jlow
✓
1 � jlow

2

=

◆
(1 � ?c) =: ?0 = (1 � > (1)),

since ?c 2 > (1) and jlow 2 > (1).
Based on the level partition, the individuals in levels �� (9,8)+1

are �tter than any other individual not in �(✓,2) , but could be less
�t than individuals in �(✓,2) . Therefore, an individual in �� (9,8)+1
can be produced by the all events happened: Event (a) no individual

110

Self-adaptation Can Improve the Noise-tolerance of Evolutionary Algorithms FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

is selected from �(✓,2) , Event (b) at least one individual is selected
from �� (9,8)+1 and it wins the tournament (step 5 in Algorithm 1),
and Event (c) with probability at least ?0, the mutated individual
I is in �� 9+1. The probability of Event (a) occurring is given by
Pr(() = 1 � @, as demonstrated in Lemma 5.3. Thus, the joint
probability of these events is at least

2W (1 �k0 � W) (1 � @)?0 = 2W (1 � @) (1 �k0 � W) (1 � > (1))

by Eq. (3),

� 2W (1 � @)
✓
1 � 4 � 16@ + 20@2 � 8@3

9 � 6@ + 12@2 � 8@3 � W
◆
(1 � > (1))

= 2W (1 � @)
✓

5 + 10@ � 8@2
9 � 6@ + 12@2 � 8@3 � W

◆
(1 � > (1))

by W0 2 (�@/90 + 1/180], then for all W 2 (0,W0),

� 2W (1 � @)
✓

5 + 10@ � 8@2
9 � 6@ + 12@2 � 8@3 � W0

◆
(1 � > (1))

= 2W (1 � @)
✓

5 + 10@ � 8@2
9 � 6@ + 12@2 � 8@3 �

1
180

+ @

90

◆
(1 � > (1))

= W

✓
1 + 81 + 1473@ � 4368@2 + 2216@3 � 48@4 + 16@5

90(9 � 6@ + 12@2 � 8@3)

◆
(1 � > (1))

by Lemma A.3 (2), we know 90(9 � 6@ + 12@2 � 8@3) < 810, then

> W

✓
1 + 81 + 1473@ � 4368@2 + 2216@3 � 48@4 + 16@5

810

◆
(1 � > (1))

= W

✓
1 +

✓
1
10

+ 491@
270
� 728@2

135
+ 1108@3

405
� 8@4

135
+ 8@5

405

◆◆
(1 � > (1))

by � 2 (0, (�@/5+ 1/10)/2] which is a constant and Lemma A.3 (3),
we know 1

10 + 491@
270 �

728@2
135 + 1108@3

405 �
8@4
135 + 8@5

405 � 2�, then

� W (1 + 2�) (1 � > (1)) � W (1 + �). ⇤

We now prove Theorem 5.2 using Lemmas 5.3 to 5.5.

P���� �� T������ 5.2. Recall Eq. (2), we �rst consider case (A)
✓ =�2which refers to the level partition de�ned by De�nition 5.1.
We apply the new level-based theorem (Theorem 2.6) with respect
to this level partitioning. Prior to proving the theorem, we introduce
several constants that will be used in the subsequent calculations:
X is any constant that satis�es 0 < X (1/2 � @)3, d := 1+X

2(1�@) ,

f := (1/2 � @)2/2, k0 := 2(1�@)� (1�f)/d
1�2@ , Z := 1

40

⇣
1
2 � @

⌘3
, Y :=

(1/2 � @)3/10 > 0, W0 := min
n

X
4(1+X) ,�@/90 + 1/180

o
and � :=

min {(�@/5 + 1/10)/2, X/2}.
We now show that the condition (G0) of Theorem 2.6 is satis�ed.

We consider �(✓,2) as the ⌫ subset in Theorem 2.6 for all (9, 8) �
(✓, 2) (the cyan/II region illustrated in Figure 1). Assume (I, j/=) 2
�(✓,2) , then, to produce (~, j 0/=) 2 �(✓,2) , it is necessary not to
change the mutation rate and not �ip the �rst ✓ bits. Using Eq. (2)
and ?2 2 (0, 1), the probability of this event is

Pr
⇣
(~, j 0/=) 2 �(✓,2) | (I, j/=) 2 �(✓,2)

⌘
= (1 � ?c)

✓
1 �

jhigh
=

◆✓

<
1 + X

2(1 � @) = d .

When applying Lemma 5.4, we use the parameter k0 which has
been de�ned in terms of d and f , as

k0 =
2(1 � @) � (1 � f)/d

1 � 2@

=
1 � @
1/2 � @

✓
1 � 1 � (1/2) (1/2 � @)2

1 + X

◆

by Eq. (4),

>

✓
1
2
� @

◆ ✓
1
2
� @

2

◆
.

If (I, j/=) is not in �(✓,2) , it is necessary to �ip at least one
speci�c bit-position, or change the mutation rate, an event which
occurs with probability

Pr
⇣
(~, j 0/=) 2 �(✓,2) | (I, j/=) 8 �(✓,2)

⌘
< max

⇢
?c,

jhigh
=

�

which is by constants ?c,
jhigh
= 2 > (1), k0,f > 0 and Y = (1/2 �

@)3/10 > 0,

< k0f � Y kf � Y .

k0f � Y >
✓
1
2
� @

◆ ✓
1
2
� @

2

◆ (1/2 � @)2
2

� (1/2 � @)3
10

=
1
20

✓
1
2
� @

◆3
(3 � 5@)

since @ < 1/2, we have 3 � 5@ > 1/2, then

>
1
40

✓
1
2
� @

◆3
=: Z > 0,

where Z is a constant which is larger than max
n
?c,

jhigh
=

o
= > (1).

Lemma 5.4 now implies that condition (G0) satis�ed with k0 =
1�@
1/2�@

⇣
1 � 1� (1/2) (1/2�@)2

1+X
⌘
.

We then verify condition (G2) of Theorem 2.6. We �rst consider
the case of (9, 8) (✓, 1) (the red/I region illustrated in Figure 1).
Recall the de�nition of W0 and de�ne �+ := �� (9,8)+1. Assume that
|%C \�+| = W_ for W 2 (0,W0]. To produce an individual (~, j 0/=) 2
�+, it su�ces to select an individual (I, j/=) 2 �+, do not change
the mutation rate and do not �ip �rst 9 + 1 bits, then the lower
bound of this probability is,

Pr
✓
(~, j

0

=
) 2 �+

◆

= Pr
⇣
(I, j

=
) 2 �+

⌘
Pr

✓
(~, j

0

=
) 2 �+|(I,

j

=
) 2 �+

◆

= 2W (1 � @) (1 � W) (1 � ?c)
✓
1 � j 0

=

◆ 9

since 9 ✓ in this case,

� 2W (1 � @) (1 � W) (1 � ?c)
�
1 � j 0/=

�✓
� 2W (1 � @) (1 � W) (1 � ?c)

⇣
1 � jhigh/=

⌘✓

111

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Lehre and Qin

by the de�nition of ✓ in Eq. (2),

� 2W (1 � @) (1 � W) (1 � ?c)
1 + X

2(1 � @)

✓
1 �

jhigh
=

◆

= W (1 � W) (1 � ?c) (1 + X) (1 � > (1))
� W (1 � W0) (1 � ?c) (1 + X) (1 � > (1))
� W (1 + 3X/4) (1 � ?c) (1 � > (1))

then since � = X/2 and ?c 2 > (1),

� W (1 + �).

We also know condition (G2) is satis�ed if (9, 8) � (✓, 2) from
Lemma 5.5 for constants W0 and �.

We now verify condition (G1) of Theorem 2.6. Assume that
the size of %C \ �� (9,8) is at least W0_, i.e., W0_ |%C \ �� (9,8) |.
The lower bound of selecting an individual (I, j/=) 2 �� (9,8) is

Pr
⇣
(I, j/=) 2 �� (9,8)

⌘
� W20 = ⌦(1). We distinguish levels into

four groups:
• For levels �(9,1) (✓,1) (the red/I region with jlow in Figure 1), to
produce an individual (~, j 0/=) 2 �� (9,1)+1 it su�ces to select
an individual (I, j/=) 2 �� (9,1) and change its mutation rate
from jlow

= to jhigh
= , then this probability is at least

Pr
⇣
(~, j 0/=) 2 �� (9,1)+1

⌘
� Pr

⇣
(I, j/=) 2 �� (9,1)

⌘
?c (1 � @)

=: I (9,1) 2 ⌦
✓
1
=

◆
.

• For levels �(9,2) (✓�1,2) (the red/I region with jhigh
= in Figure 1),

to produce an individual (~, j 0/=) 2 �� (9,2)+1 it su�ces to select
an individual (I, j/=) 2 �� (9,2) , do not change the mutation
rate and only �ip the (9 + 1)-th bit, then the lower bound of this
probability is

Pr
⇣
(~, j 0/=) 2 �� (9,2)+1

⌘

� Pr
⇣
(I, j/=) 2 �� (9,2)

⌘
(1 � ?c) (1 � @)

✓
1 �

jhigh
=

◆=�1 jhigh
=

=: I (9,2) 2 ⌦
✓
1
=

◆
.

• For level �(✓,2) (the cyan/II region in Figure 1), to produce an
individual (~, j 0/=) 2 �� (✓+1,1) it su�ces to select an individual
(I, j/=) 2 �� (✓,2) , change itsmutation rate from jhigh

= to jlow
= and

only �ip the ✓ + 1-th bit, then the lower bound of this probability
is

Pr
⇣
(~, j 0/=) 2 �� (✓+1,1)

⌘

� Pr
⇣
(I, j/=) 2 �� (✓,2)

⌘
(1 � @)?c

⇣
1 � jlow

=

⌘=�1 jlow
=

=: I (✓,2) 2 ⌦
✓
1
=3

◆
.

• For levels �(9,1)� (✓+1,1) (the green/III region in Figure 1), to pro-
duce an individual (~, j 0/=) 2 �� (9+1,1) it su�ces to select an
individual (I, j/=) 2 �� (9,1) , do not change the mutation rate
and only �ip the (9 + 1)-th bit, then the lower bound of this

probability is

Pr
⇣
(~, j 0/=) 2 �� (9+1,1)

⌘

� Pr
⇣
(I, j/=) 2 �� (9,1)

⌘
(1 � @) (1 � ?c)

⇣
1 � jlow

=

⌘=�1 jlow
=

=: I (9,1) 2 ⌦
✓
1
=2

◆
.

Then we compute the population size required by condition (G3).
Since W0,� > 0 are some constants and < = 2✓ + (= � ✓) 2=,

then _ > 12
W0�2 ln

✓
300<

min{I (9,8)}�2

◆
= $ (log(=)). Condition (G3) is

satis�ed by _ � 2 log(=) for a su�ciently large constant 2 .
Finally, all conditions of Theorem 2.6 hold, and the expected

runtime is no more than

⇢ [)] 12_
�

+ 96
�2

✓’
9=0

✓
_ ln

✓
6�_

4 + I (9,1)�_

◆
+ 1
I (9,1)

◆

+ 96
�2

✓�1’
9=0

✓
_ ln

✓
6�_

4 + I (9,2)�_

◆
+ 1
I (9,2)

◆

+ 96
�2

✓
_ ln

✓
6�_

4 + I (✓,2)�_

◆
+ 1
I (✓,2)

◆

+ 96
�2

=�1’
9=✓+1

✓
_ ln

✓
6�_

4 + I (9,1)�_

◆
+ 1
I (9,1)

◆

= $

✓
_ + (✓ + 1) (_ log(=) + =) + ✓ (_ log(=) + =)

+
⇣
_ log(=) + =3

⌘
+ (= � ✓ � 2)

⇣
_ log(=) + =2

⌘ ◆

= $ (=_ log(=) + =3) .

For case (B) ✓ � = � 1, we know that 1+X
2(1�@)

⇣
1 � jhigh

=

⌘=�1
=⇣

1 � jhigh
=

⌘=
/(1 � > (1)). We use the level-based theorem (Theo-

rem 2.5) on the level partition applied in the proof of Theorem 5.1.
Condition (G2) can be veri�ed by de�nitions of � and W0:

Pr
⇣
(~, j 0/=) 2 �� (9,8)+1

⌘

= Pr
⇣
(I, j/=) 2 �� (9,8)+1

⌘

· Pr
⇣
(~, j 0/=) 2 �� (9,8)+1 | (I, j/=) 2 �� (9,8)+1

⌘

� (W2 + 2W (1 � W)) (1 � @) (1 � ?c)
✓
1 � j 0

=

◆=

� 2W (1 � W) (1 � @) (1 � ?c)
✓
1 �

jhigh
=

◆=
� W (1 + �).

Condition (G1) is similar with the proof of Theorem 5.1. Then, we
know that the runtime is$ (=_ log(=) +=2) if using population size
_ > 2 log(=) for a su�ciently large constant 2 .

Therefore, the overall runtime is $ (=_ log(=) + =3). ⇤

6 EXPERIMENTS
As a complement to our theoretical analysis, we expand our in-
vestigation to include both the symmetric, one-bit and bit-wise

112

Self-adaptation Can Improve the Noise-tolerance of Evolutionary Algorithms FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

50

100

150

R
u
n
ti
m

e
=n

2

(a) Noise-free

@high @low

SA-2mr SA

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

50

100

150
(b) Noise level q = 0:1

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Problem size n

102

103

R
u
n
ti
m

e
=n

2

(c) Noise level q = 0:2

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Problem size n

102

(d) Noise level q = 0:3

Figure 2: Runtimes of 2-tournament EAs on L������O���
under symmetric noise with di�erent noise levels (⇠ = 0).

noise models, as well as self-adaptation of mutation rates within a
given interval. In this section, we empirically analyse the perfor-
mance of 2-tournament EAs using �xed and self-adaptive mutation
rates on L������O��� and O��M�� under di�erent levels of noise.
Additionally, we investigate the behaviour of mutation rates in
self-adaptation under noise.

We use the parameter settings satisfying the runtimes analyses
in Sections 3-5. For �xed mutation rates, we use jhigh

= = 1/(2=)
and jlow

= = 5/=2 which are less than the error threshold ln(2)/=
for the 2-tournament EA [19]. For the SA-2mr, we self-adapt mu-
tation rates from { jhigh= , jlow= } with a self-adaptation parameter
?c = 1/(10=). For the SA, we set self-adaptive parameters � = 1.2
and ?inc = 0.4 as previously utilised in [28]. All algorithms use the
same population size of _ = 200 ln(=), and a uniformly sampled
initial population. For symmetric noise, we study algorithms on
L������O��� and O��M�� with noise levels @ 2 {0.2, 0.3, 0.4}
and @ 2 {0.2, 0.3, 0.4}, respectively. For one-bit noise, we study
algorithms on L������O��� and O��M�� with noise levels @ 2
{0.4, 0.6, 0.8} and @ 2 {0.85, 0.90, 0.95}, respectively. For bit-wise
noise, we examine algorithms applied to L������O��� and O���
M�� with noise levels ? 2 {0.8/=, 1.0/=, 1.2/=} and ? 2 {5 ln(=)/=,
6 ln(=)/=, 7 ln(=)/=}, respectively, which are set with respect to
the problem size =. For each setting, we independently run each
algorithm 100 times for L������O��� and O��M�� with problem
size = = 100 to 200 with step size 10 and = = 100 to 500 with step
size 40, respectively, and record runtimes. To monitor the behaviour
of self-adaptive algorithms, we record mutation parameters j of in-
dividuals during each run. Additionally, we independently perform
each self-adaptive algorithm 30 times on each setting. As a compari-
son, we also run the same experiments without noise. Outcomes for
both the one-bit noise and bit-wise noise models are presented in
Sections 6.2 and 6.3, respectively. Comprehensive statistical results
of the experiments can be found in Appendix C, including medians
and hypothesis test results.

6.1 Symmetric Noise
Figures 2-3 illustrate the runtimes on L������O��� and O��M��
under symmetric noise, respectively. The corresponding statistical

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

200

400

600

800

1000
1200

R
u
n
ti
m

e
=(

n
ln

(n
))

(a) Noise-free

@high @low

SA-2mr SA

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

200

400

600

800

1000
1200

(b) Noise level q = 0:2

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

Problem size n

500

1000

1500

R
u
n
ti
m

e
=(

n
ln

(n
))

(c) Noise level q = 0:3

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

Problem size n

103

104

105
(d) Noise level q = 0:4

Figure 3: Runtimes of 2-tournament EAs on O��M�� under
symmetric noise with di�erent noise levels (⇠ = 0).

(a) L������O��� (= = 100)

8 20 40 60 80 99

Fitness Value

0%

20%

40%

60%

80%

100%

P
er

ce
n
ta

ge
of
@

h
ig

h

Noise-free
q = 0:1

q = 0:2
q = 0:3

(b) O��M�� (= = 100)

62 70 80 90 99

Fitness Value

0%

20%

40%

60%

80%

100%

P
er

ce
n
ta

ge
of
@

h
ig

h

Noise-free
q = 0:2

q = 0:3
q = 0:4

Figure 4: The percentage of jhigh
= individuals and the highest

real �tness value per generation for 2-tour’ EA with SA-2mr
under symmetric noise with di�erent noise levels (⇠ = 0, 30
runs) .

results are displayed in Tables 2-5 and Tables 6-9, respectively. Note
that the y-axes in Figures 2 (c)-(d) and Figures 7 (a)-(d) are log-scaled,
and all runtimes are divided by =2 for L������O��� and = ln(=)
for O��M��, respectively. These divisions correspond to the well-
known runtime results for the L������O��� andO��M�� function
in noise-free scenarios. Note that the runtime of the 2-tournament
EA using the high mutation rate exceeds the evaluation budget of
5 ⇥ 107 for optimising L������O��� for = � 150 under symmetric
noise with noise level @ = 0.2, and for = � 100 with noise level
@ = 0.3. Similarly, on O��M��, the runtime of the 2-tournament
EA using the high mutation rate exceeds the evaluation budget of
2 ⇥ 108 for = � 110 under symmetric noise with noise level @ = 0.4.

From Theorems 2.1 and 2.2, we can conclude that the runtime
of the 2-tournament EA using the mutation rate j/= = 0.5/= on

113

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Lehre and Qin

(a) L������O��� (= = 100)

8 20 40 60 80 99

Fitness Value

5=n
0:1

0:25

ln(2)

2:5
5:0

10:0

@

Noise-free
q = 0:1

q = 0:2
q = 0:3

(b) O��M�� (= = 100)

62 70 80 90 99

Fitness Value

5=n
0:1

0:25

ln(2)

2:5
5:0

10:0

@

Noise-free
q = 0:2

q = 0:3
q = 0:4

Figure 5: Real �tness and mutation parameter of the highest
real �tness individual per generation of 2-tour’ EA with SA
under symmtric noise with di�erent noise levels (⇠ = 0, 30
runs).

L������O��� under symmetric noise is polynomial when the noise
level @ < 0.1756, and exponential when @ > 0.1757. Figure 2 sup-
ports these theoretical results, indicating that using a high mutation
rate of j/= = 0.5/= may fail to optimise L������O��� under high-
level noise @ � 0.2. On the other hand, employing a low mutation
rate is slower than using a high mutation rate under low-level sym-
metric noise (@ 0.1) when optimising L������O���. However,
the 2-tournament EA using SA-2mr achieves comparable perfor-
mance to the high mutation rate when the noise level is @ 0.1.
Furthermore, it outperforms the low mutation rate under high-level
symmetric noise, speci�cally when @ � 0.2. Most notably, the 2-
tournament EA using SA outperforms all other algorithms across
all tested noise levels.

From Figures 3 (a), (b), (c), it is evident that the 2-tournament
EA employing a low mutation rate is slower than using a high
mutation rate under low-level symmetric noise (i.e., @ 0.3) when
optimising O��M��. However, as shown in Figure 3 (d), the high
mutation rate may fail to optimise L������O��� under high-level
noise, whereas employing a low mutation rate can be more e�cient.
Similarly, the 2-tournament EA using SA-2mr achieves performance
comparable to the highmutation rate when the noise level is@ 0.3.
Furthermore, it outperforms the low mutation rate under high-level
symmetric noise, speci�cally when @ = 0.4. Most notably, the 2-
tournament EA using SA outperforms all other algorithms across
all tested noise levels.

Figures 4-5 present the relationships between mutation rates
and real �tness values under di�erent levels of one-bit noise in
SA-2mr and SA, respectively. The lines indicate the median of val-
ues of 30 runs. The corresponding shadows indicate the IQRs. We
observe a decrease in the mutation rate when the noise level in-
creases on L������O��� and O��M�� in both self-adaptations.

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

50

100

150

R
u
n
ti
m

e
=n

2

(a) Noise-free

@high @low

SA-2mr SA

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

50

100

150
(b) Noise level q = 0:4

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Problem size n

50

100

150

200

250

R
u
n
ti
m

e
=n

2

(c) Noise level q = 0:6

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Problem size n

102

103

(d) Noise level q = 0:8

Figure 6: Runtimes of 2-tournament EAs on L������O���
under one-bit noise with di�erent noise levels.

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

200

400

600

800

1000

1200

R
u
n
ti
m

e
=(

n
ln

(n
))

(a) Noise-free

@high @low

SA-2mr SA

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

200

400

600

800

1000

1200
(b) Noise level q = 0:85

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

Problem size n

200

400

600

800

1000

1200

R
u
n
ti
m

e
=(

n
ln

(n
))

(c) Noise level q = 0:9

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

Problem size n

200

400

600

800

1000

1200
(d) Noise level q = 0:95

Figure 7: Runtimes of 2-tournament EAs on O��M�� under
one-bit noise with di�erent noise levels.

Particularly, using SA not only reduces the mutation rate below the
error threshold (j/= < ln(2)/=) [19], but also furthermore reduces
it with respect to the noise level on L������O��� and O��M��.

6.2 One-bit Noise
Figures 6-7 illustrate runtimes on L������O��� andO��M�� under
one-bit noise, respectively. The corresponding statistical results are
displayed in Tables 10-12 and Tables 13-15, respectively. Note that
the y-axes in Figures 6 (c)-(d) and Figures 7 (a)-(d) are log-scaled,
and all runtimes are divided by =2 for L������O��� and = ln(=)
for O��M��, respectively.

From Figures 6 (a), (b), (c), it is evident that the 2-tournament
EA employing a low mutation rate is slower than using a high
mutation rate under low-level one-bit noise (i.e., @ 0.6) when
optimising L������O���. Conversely, utilising a high mutation
rate results in faster optimisation. However, as shown in Figure 6 (d),
the high mutation rate may fail to optimise L������O��� under
high-level noise. Note that the runtime of the 2-tournament EA
utilizing a high mutation rate exceeds the evaluation budget of
2 ⇥ 108 when optimising L������O��� for = � 170 under one-bit
noise with noise level @ = 0.8. Speci�cally, the runtimes of using

114

Self-adaptation Can Improve the Noise-tolerance of Evolutionary Algorithms FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

(a) L������O��� (= = 100)

8 20 40 60 80 99

Fitness Value

0%

20%

40%

60%

80%

100%

P
er

ce
n
ta

ge
of
@

h
ig

h

Noise-free
q = 0:4

q = 0:6
q = 0:8

(b) O��M�� (= = 100)

62 70 80 90 99

Fitness Value

0%

20%

40%

60%

80%

100%

P
er

ce
n
ta

ge
of
@

h
ig

h

Noise-free
q = 0:85

q = 0:9
q = 0:95

Figure 8: The percentage of jhigh
= individuals and the highest

real �tness value per generation for 2-tour’ EA with SA-2mr
under one-bit noise with di�erent noise levels (30 runs).

(a) L������O��� (= = 100)

8 20 40 60 80 99

Fitness Value

5=n
0:1

0:25

ln(2)

2:5
5:0

10:0

@

Noise-free
q = 0:4

q = 0:6
q = 0:8

(b) O��M�� (= = 100)

62 70 80 90 99

Fitness Value

5=n
0:1

0:25

ln(2)

2:5
5:0

10:0

@

Noise-free
q = 0:85

q = 0:9
q = 0:95

Figure 9: Real �tness and mutation parameter of the highest
real �tness individual per generation of 2-tour’ EA with SA
under one-bit noise with di�erent noise levels (30 runs).

a high mutation rate increase sharply as the problem size grows
under high-level one-bit noise (@ = 0.8), whereas employing a low
mutation rate can be more e�cient. This observation is consistent
with the theoretical study presented in Section 3. On the other
hand, the 2-tournament EA using SA-2mr achieves performance
comparable to the high mutation rate when the noise level is @
0.4 and is only slightly slower than the high mutation rate when
the noise level is @ = 0.6. Furthermore, it outperforms the low
mutation rate under high-level one-bit noise, speci�cally when

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

50

100

150

R
u
n
ti
m

e
=n

2

(a) Noise-free

@high @low

SA-2mr SA

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

50

100

150

200

250
(b) Noise level p = 0:8=n

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Problem size n

50

100

150

200

250

R
u
n
ti
m

e
=n

2

(c) Noise level p = 1:0=n

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Problem size n

200

400

600

800

1000
(d) Noise level p = 1:2=n

Figure 10: Runtimes of 2-tournament EAs on L������O���
under bit-wise noise with di�erent noise levels.

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

200

400

600

800

1000

1200

R
u
n
ti
m

e
=(

n
ln

(n
))

(a) Noise-free

@high @low

SA-2mr SA

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

1000

2000

3000

4000

5000

6000
(b) Noise level q = 5 ln(n)=n

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

Problem size n

2000

4000

6000

8000

10000

12000

R
u
n
ti
m

e
=(

n
ln

(n
))

(c) Noise level q = 6 ln(n)=n

10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

Problem size n

1000

2000

3000

4000

5000

6000
(d) Noise level q = 7 ln(n)=n

Figure 11: Runtimes of 2-tournament EAs on O��M�� under
bit-wise noise with di�erent noise levels.

@ = 0.8. Most notably, the 2-tournament EA using SA outperforms
all other algorithms across all tested noise levels.

In Figure 7, which presents results on the O��M�� problem,
both the high mutation rate EA and self-adaptive EAs outperform
the low mutation rate EA across all noise levels. The e�ciency of
the high mutation rate under high-level noise on O��M�� can be
explained by Theorem 4 in [21], which states that the 2-tournament
EA with a constant mutation parameter j can achieve the optimum
in expected time $ (= log(=)) on O��M�� under any level of one-
bit noise. Despite this, the 2-tournament EA using SA-2mr is only
marginally slower than the high mutation rate for all noise levels,
and using SA results in faster performance compared to all others.

Similar with Section 6.1, Figures 8-9 show a decrease in the
mutation rate when the noise level increases on L������O��� in
both self-adaptations, where the results are consistent with the
MOSA�EA in [28].

6.3 Bit-wise Noise
Figures 10-11 illustrate runtimes on L������O��� and O��M��
under bit-wise noise, respectively. The corresponding statistical
results are displayed in Tables 17-18 and Tables 19-21, respectively.

115

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Lehre and Qin

Note that the y-axes in Figures 11 (c)-(d) are log-scaled. In Figure 10,
we observe that the 2-tournament EA employing SA-2mr is faster
than the low mutation rate and slower than the high mutation rate
for noise levels ? = 0.8/= and 1.0/=, but the gap is not substantial.
Consistent with previous observations in the one-bit noise model,
under high-level noise ? = 1.2/=, using SA-2mr outperforms all
static algorithms. Note that the runtime of the 2-tournament EA
utilizing a high mutation rate exceeds the evaluation budget of
2 ⇥ 108 when optimising L������O��� and O��M�� for = � 160
and = � 100 under bit-wise noise with noise levels ? = 1.2/= and
7 ln(=)/=, respectively. Furthermore, the 2-tournament EA using
SA consistently achieves the best performance regardless of the
noise level. In Figure 11, the 2-tournament EA employing SA-2mr
demonstrates better performance than the low mutation rate. Addi-
tionally, it exhibits comparable performance to the high mutation
rate when the noise level is ? = 5 ln(=)/= and faster performance
for other noise levels, namely ? = 6 ln(=)/= and 7 ln(=)/=. As al-
ways, the 2-tournament EA using SA demonstrates consistently the
best performance in this setting. Similar to the results of symmetric
and one-bit noise, Figures 12-13 (shown in Appendix D) show that
self-adaptive EAs self-adapt the mutation rate to the noise level.

7 CONCLUSION
In this paper, we conduct runtime analysis and empirical analysis
on the 2-tournament EAs with self-adaptive mutation rates in a
noisy environment. Although the noise model examined in the
theoretical study is relatively simplistic and arti�cial, our �ndings
still provide a compelling indication that the self-adaptive EA re-
markably adapts to the presence of noise. The empirical results
further a�rm that self-adaptation can adjust mutation rates ac-
cording to noise, thereby leading to more e�cient optimisation
than other algorithms. Future work includes the investigation on
more parameter control mechanisms including self-adaptation and
self-adjusting, under noise, e.g., [7, 8, 16, 17, 23, 28, 29].
ACKS. Lehre was supported by a Turing AI Fellowship (EPSRC
grant ref EP/V025562/1).

REFERENCES
[1] Brendan Case and Per Kristian Lehre. 2020. Self-adaptation in non-Elitist Evo-

lutionary Algorithms on Discrete Problems with Unknown Structure. IEEE
Transactions on Evolutionary Computation 24, 4 (2020), 650–663.

[2] Dogan Corus, Duc-Cuong Dang, Anton Eremeev, and Per Kristian Lehre. 2018.
Level-Based Analysis of Genetic Algorithms and Other Search Processes. IEEE
Transactions on Evolutionary Computation 22, 5 (2018), 707–719.

[3] Duc-Cuong Dang, Anton Eremeev, and Per Kristian Lehre. 2021. Non-Elitist Evo-
lutionary Algorithms Excel in Fitness Landscapes with Sparse Deceptive Regions
and Dense Valleys. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’21). Association for Computing Machinery, 1133–1141.

[4] Duc-Cuong Dang and Per Kristian Lehre. 2015. E�cient Optimisation of Noisy
Fitness Functions with Population-based Evolutionary Algorithms. In Proceedings
of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII - FOGA ’15.
ACM Press, 62–68.

[5] Duc-Cuong Dang and Per Kristian Lehre. 2016. Self-adaptation of Mutation Rates
in Non-elitist Populations. In Parallel Problem Solving from Nature – PPSN XIV,
Vol. 9921. Springer International Publishing, 803–813.

[6] Raphaël Dang-Nhu, Thibault Dardinier, Benjamin Doerr, Gautier Izacard, and
Dorian Nogneng. 2018. A New Analysis Method for Evolutionary Optimization
of Dynamic and Noisy Objective Functions. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’18). Association for Computing
Machinery, 1467–1474.

[7] Benjamin Doerr and Carola Doerr. 2018. Optimal Static and Self-Adjusting
Parameter Choices for the (1 + (_, _)) Genetic Algorithm. Algorithmica 80, 5
(2018), 1658–1709.

[8] Benjamin Doerr, Carola Doerr, and Johannes Lengler. 2019. Self-Adjusting Muta-
tion Rates with Provably Optimal Success Rules. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’19). Association for Computing
Machinery, 1479–1487.

[9] Benjamin Doerr and Timo Kötzing. 2021. Multiplicative Up-Drift. Algorithmica
83, 10 (2021), 3017–3058.

[10] Benjamin Doerr, Carsten Witt, and Jing Yang. 2021. Runtime Analysis for Self-
adaptive Mutation Rates. Algorithmica 83, 4 (2021), 1012–1053.

[11] Carola Doerr. 2020. Complexity Theory for Discrete Black-Box Optimization
Heuristics. In Theory of Evolutionary Computation: Recent Developments in Discrete
Optimization, Benjamin Doerr and Frank Neumann (Eds.). Springer International
Publishing, 133–212.

[12] Stefan Droste. 2004. Analysis of the (1+1) EA for a Noisy OneMax. In Genetic and
Evolutionary Computation – GECCO 2004. Vol. 3102. Springer Berlin Heidelberg,
1088–1099.

[13] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the
(1+1) evolutionary algorithm. Theoretical Computer Science 276, 1 (2002), 51–81.

[14] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and Andrew M. Sutton. 2016.
Robustness of Ant Colony Optimization to Noise. Evolutionary Computation 24,
2 (2016), 237–254.

[15] Christian Gießen and TimoKötzing. 2016. Robustness of Populations in Stochastic
Environments. Algorithmica 75, 3 (2016), 462–489.

[16] Mario Alejandro Hevia Fajardo and Dirk Sudholt. 2021. Self-Adjusting O�spring
Population Sizes Outperform Fixed Parameters on the Cli� Function. In Proceed-
ings of the 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms
(FOGA ’21). Association for Computing Machinery.

[17] Mario Alejandro Hevia Fajardo and Dirk Sudholt. 2022. Hard Problems Are
Easier for Success-Based Parameter Control. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’22). Association for Computing
Machinery, 796–804.

[18] Yaochu Jin and Jürgen Branke. 2005. Evolutionary optimization in uncertain
environments-a survey. IEEE Transactions on Evolutionary Computation 9, 3
(2005), 303–317.

[19] Per Kristian Lehre. 2010. Negative Drift in Populations. In Parallel Problem Solving
from Nature, PPSN XI. Springer Berlin Heidelberg, 244–253.

[20] Per Kristian Lehre and Phan Trung Hai Nguyen. 2021. Runtime Analyses of the
Population-Based Univariate Estimation of Distribution Algorithms on Leadin-
gOnes. Algorithmica 83, 10 (2021), 3238–3280.

[21] Per Kristian Lehre and Xiaoyu Qin. 2021. More Precise Runtime Analyses of
Non-elitist EAs in Uncertain Environments. In Proceedings of the Genetic and
Evolutionary Computation Conference. ACM, 1160–1168.

[22] Per Kristian Lehre and Xiaoyu Qin. 2022. More Precise Runtime Analyses of
Non-elitist Evolutionary Algorithms in Uncertain Environments. Algorithmica
(2022).

[23] Per Kristian Lehre and Xiaoyu Qin. 2022. Self-Adaptation via Multi-
Objectivisation: A Theoretical Study. In Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO ’22). Association for Computing Machinery,
1417–1425.

[24] Constantin P. Niculescu and Andrei Vernescu. 2004. A two sided estimate of
4G � (1 + G/=)= . Journal of Inequalities in Pure and Applied Mathematics 5, 3
(2004).

[25] Chao Qian, Chao Bian, Wu Jiang, and Ke Tang. 2019. Running Time Analysis of
the (1+1)-EA for OneMax and LeadingOnes Under Bit-Wise Noise. Algorithmica
81, 2 (2019), 749–795.

[26] Chao Qian, Chao Bian, Yang Yu, Ke Tang, and Xin Yao. 2021. Analysis of Noisy
Evolutionary Optimization When Sampling Fails. Algorithmica 83, 4 (2021),
940–975.

[27] Chao Qian, Yang Yu, Ke Tang, Yaochu Jin, Xin Yao, and Zhi-Hua Zhou. 2018. On
the E�ectiveness of Sampling for Evolutionary Optimization in Noisy Environ-
ments. Evolutionary Computation 26, 2 (2018), 237–267.

[28] XiaoyuQin and Per Kristian Lehre. 2022. Self-adaptation viaMulti-objectivisation:
An Empirical Study. In Parallel Problem Solving from Nature – PPSN XVII. Springer
International Publishing, 308–323.

[29] Amirhossein Rajabi and Carsten Witt. 2020. Self-Adjusting Evolutionary Al-
gorithms for Multimodal Optimization. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference (GECCO ’20). Association for Computing
Machinery, 1314–1322.

[30] Dirk Sudholt. 2013. A New Method for Lower Bounds on the Running Time of
Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 17, 3
(2013), 418–435.

[31] Dirk Sudholt. 2021. Analysing the Robustness of Evolutionary Algorithms to
Noise: Re�ned Runtime Bounds and an Example Where Noise is Bene�cial.
Algorithmica 83, 4 (2021), 976–1011.

116

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Algorithms
	2.2 Self-adaptation
	2.3 Noise Models
	2.4 Runtime Analysis Tools

	3 High/Low Mutation Rates Lead to Failed Optimisation under Noise or or Slow Optimisation without Noise
	4 uniformly mixing Mutation Rates Do Not Help under Noise
	5 Self-adapting Mutation Rates Guarantee Efficiency Under Noise
	6 Experiments
	6.1 Symmetric Noise
	6.2 One-bit Noise
	6.3 Bit-wise Noise

	7 Conclusion
	References
	A Algorithms, theorems and inequalities
	B Proofs
	B.1 Proof of Theorem 2.3
	B.2 Proof of Theorem 4.1
	B.3 Proof of Theorem 4.2
	B.4 Proof of Theorem 5.1

	C Statistical Results of Experiments
	D More Experimental Results

