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A B S T R A C T

A popular self-normalization (SN) approach in time series analysis uses the variance of a partial
sum as a self-normalizer. This is known to be sensitive to irregularities such as persistent auto-
correlation, heteroskedasticity, unit roots and outliers. We propose a novel SN approach based
on the adjusted-range of a partial sum, which is robust to these aforementioned irregularities.
We develop an adjusted-range based Kolmogorov–Smirnov type test for structural breaks for
both univariate and multivariate time series, and consider testing parameter constancy in a
time series regression setting. Our approach can rectify the well-known power decrease issue
associated with existing self-normalized KS tests without having to use backward and forward
summations as in Shao and Zhang (2010), and can alleviate the ‘‘better size but less power’’
phenomenon when the existing SN approaches (Shao, 2010; Zhang et al., 2011; Wang and Shao,
2022) are used. Moreover, our proposed tests can cater for more general alternatives. Monte
Carlo simulations and empirical studies demonstrate the merits of our approach.

1. Introduction

We propose a new approach to conducting valid statistical inference in time series settings in the presence of serial dependence
and heteroskedasticity. The usual approach in the literature is based on consistent estimation of the long-run variance (LRV).
Substantial efforts have been devoted to providing and improving estimators of the LRV that are valid under weak conditions
on the dependence structure. Perhaps one of the most well-known methods is the so-called heteroskedasticity and autocorrelation
consistent (HAC) LRV estimator, espoused by White (1980), Newey and West (1987, 1994), Andrews (1991) and Andrews and
Monahan (1992), among many others. However, Andrews (1991) and Den Haan and Levin (1997), among others, find that the
finite sample performance of these HAC LRV estimators is rather poor. Müller (2007) suggests that these asymptotically consistent
HAC LRV estimators, despite being theoretically appealing and empirically simple to apply, often lead to tests with poor sizes in
finite samples when realistic amounts of dependence are present.
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An alternative approach is to use the so called fixed-𝑏 asymptotics approach, proposed by Kiefer and Vogelsang (2005). The
HAC LRV is often estimated using the nonparametric kernel smoothing method, which involves the choice of a kernel function and
a smoothing parameter called bandwidth. Instead of assuming that the bandwidth parameter 𝑏 tends to zero as the sample size 𝑛
approaches infinity, under the fixed-𝑏 asymptotics, 𝑏 ∈ (0, 1] is set to be a fixed number, in which case the HAC LRV estimator is
asymptotically unbiased but inconsistent — it possesses a limiting distribution rather than concentrating at its target.1 This approach,
sometimes also called self-normalization (SN), leads to a pivotal (but non-Gaussian) limiting distribution that can be tabulated and
used in inference. Kiefer and Vogelsang (2005) outline two advantages of the fixed-𝑏 approach; specifically, it enables a more
accurate first order approximation to the asymptotic distribution and informative local power analysis for HAC robust tests. The
fixed-𝑏 asymptotics can enhance the size performance of various tests in finite samples (Kiefer et al., 2000; Kiefer and Vogelsang,
2002, 2005). However, there is a trade-off between size distortion and power loss; for a larger 𝑏 the size distortion rectifies itself
but the power loss increases (Kiefer and Vogelsang, 2005; Shao, 2015). Furthermore, the distribution of the fixed-𝑏 based HAC test
statistics depends on the nuisance parameter 𝑏; there is, however, no general guidance on choosing 𝑏, and it must be prespecified
in some ad hoc fashion. Moreover, Shao (2015) summarizes the Monte Carlo simulation results from Kiefer and Vogelsang (2005),
Shao (2010) and Shao and Zhang (2010) and finds that when the time series is a unit-root or near unit-root process, the size of the
fixed-𝑏 based HAC test statistics deteriorates.

The contribution of our paper is threefold. First, we introduce a novel generally applicable adjusted-range based SN method for
time series analysis. For concreteness, we demonstrate its use in testing for structural breaks in the mean of a class of approximately
linear statistics and in the correlation coefficients and matrices of a multivariate time series, as well as in testing the constancy of
parameters in a time series regression setting. Second, we develop adjusted-range based tests for structural changes, which can cater
for more general alternatives and hence are potentially powerful against a wide range of alternatives, including smooth structural
changes. For abrupt structural changes, the number of break points does not need to be specified a priori in an ad hoc manner. This
contrasts with the G test proposed by Shao and Zhang (2010), which must be formulated with a pre-specified number of change
points. Third, we illustrate, through extensive simulation studies, that the adjusted-range based SN can ameliorate the poor finite
sample performance of HAC based tests (Müller, 2007), and can help rectify the non-monotonic power issue, without having to
use forward and backward summations as employed by Shao and Zhang (2010), and enable us to circumvent the specification of
a contrast process as in Zhang and Lavitas (2018). Moreover, we find, through simulation studies, that for statistical quantities
that vary slowly over time, such as the medians and correlation coefficients, instead of displaying the “better size but less power’’
phenomenon, identified by Shao (2010) and Zhang et al. (2011), Shao and Zhang’s (2010) G test suffers from an over-size problem.
This is because the G test statistic relies on the SN approach of Lobato (2001) and Shao (2010), and for statistical quantities (e.g.,
median, correlation) that do not change much over time, and sometimes even almost remain constant as the estimation horizon
increases under the null hypothesis, the variance of the partial sum process can be quite small, which would lead to over-rejection
of the null hypothesis.

Literature Review. The concept of SN originates from Student (1908), whose widely applied and celebrated t statistic and
distribution first utilized this idea. Despite the fact that the sample variance based on a small number of observations is an inadequate
estimator of a population variance, it is stochastically proportional to the population variance and can be used as a normalizer in
order to construct a test statistic. The concept of SN has become an important principle in conducting statistical inference (Shao,
2015).

The existing self-normalized approach to inference for time series is first introduced in Shao (2010) as a generalization of an
idea devised and developed by Kiefer et al. (2000) and Lobato (2001). Since its introduction by Lobato (2001) and Shao (2010),
SN has been deployed in various aspects of statistical inference, such as confidence interval construction (Shao, 2010), testing for
autocorrelation (Lobato, 2001; Shao, 2010; Boubacar-Maïnassara and Saussereau, 2018), testing for structural breaks (Shao and
Zhang, 2010; Zhang et al., 2011; Zhang and Lavitas, 2018), and has been applied to various types of data, such as functional time
series (Zhang et al., 2011; Dette et al., 2020), spatial data (Zhang et al., 2014), censored dependent data (Huang et al., 2015) and
alternating regime index datasets (Kim and Shin, 2020). SN has also been applied across many academic fields of study, including:
economics (Lobato, 2001; Shao, 2010), finance (Choi and Shin, 2021, 2020), ecology (Zhang et al., 2014), climate studies (Dette
et al., 2020) and epidemiology (Jiang et al., 2023).

The SN approach proposed by Lobato (2001) and Shao (2010) is based on the variance of the partial sum of a time series process,
which is sensitive to irregularities such as persistent autocorrelation, heteroskedasticity, near-unit roots and outliers. To alleviate the
adverse effects of these irregularities, in this paper we propose the use of the adjusted range of a partial sum instead of the sample
variance. Similar to the work of Lobato (2001) and Shao (2010), the sample range of a partial sum is asymptotically proportional
to the square root of the LRV up to a stochastic factor, and since its distribution is nuisance parameter free, it can be used as
an alternative self-normalizer. As is well-known, the range has some appealing robustness properties, such as the ability to deal
with persistent autocorrelation and to accommodate irregularities such as outliers, high levels of skewness/kurtosis and unit-root
behavior in volatilities. For example, Mandelbrot and Wallis (1969) show by Monte Carlo simulation studies that a range statistic
can effectively detect long-range dependence in highly non-Gaussian time series with large skewness and/or kurtosis. Mandelbrot
(1972, 1975) shows the appealing almost-sure convergence property of the range statistic for stochastic processes with infinite
variances, a distinct advantage over the methods based on autocorrelations and variance ratios which may not be well-defined for

1 In the fixed-𝑏 asymptotics, 𝑏 is often chosen to be a fixed number in (0, 1]. In contrast, for standard asymptotics, the bandwidth 𝑏 vanishes to 0 as the
2

sample size 𝑛 increases, and for this reason, Kiefer and Vogelsang (2005) refer to the standard asymptotics as small-𝑏 asymptotics.
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infinite variance processes. Moreover, the range as a statistical quantity has also been widely applied in financial volatility estimation
(Parkinson, 1980; Alizadeh et al., 2002; Chou et al., 2010).

A cornerstone of time series analysis is the structural stability of the data or model under consideration and failure to incorporate
tructural breaks will inevitably lead to unreliable inferences and forecasts. The importance of testing for structural breaks is also
eflected in the vast related literature in various contexts; see (e.g.) Hansen (2001) and Aue and Horváth (2013) for literature
eviews on testing for structural breaks. Depending on the quantities of interest, structural break tests can be conducted for the
ean, variance or covariance structure and for general model stability; see (e.g.) Stock and Watson (1996), Bai (1997), Altissimo

nd Corradi (2003) and Harchaoui and Lévy-Leduc (2010) for references on testing for structural breaks in the mean. Substantial
fforts have been devoted to testing breaks in time series regression models. Noticeably, the constancy of parameter tests are shown
o be equivalent to tests of the mean of certain residuals, such as the estimated one-step ahead prediction errors. In particular,
ince Brown et al. (1975) introduce the cumulative sum (CUSUM) test based on recursive residuals, a large number of tests for
arameter constancy based on CUSUM processes have been developed. For instance, Krämer et al. (1988) consider the CUSUM test
or structural breaks when lagged dependent variables are incorporated in the linear regression model, and show that the CUSUM
ests retain their asymptotic significance levels in dynamic regression models. Ploberger and Krämer (1992) consider the use of a
USUM test when testing for parameter constancy in a linear regression model. See Andrews (1993), Bai and Perron (1998) and Qu
nd Perron (2007) for more studies on testing for breaks in time series regression models.

Testing for a structural break in variance is particularly important in economics and finance, where the stability or otherwise
f volatility is a crucial issue; see, for instance, Inclan and Tiao (1994), Chen and Gupta (1997) and Smith (2008). There are also
fforts that combine tests for structural breaks in mean and variance, such as Wang and Zivot (2000), Pitarakis (2004) and Jin et al.
2018). Aue et al. (2009) test for structural breaks in the covariance structure. Moreover, given that many multivariate volatility
odels impose restrictions on the correlation structure to deal with the “curse of dimensionality’’, such as the constant correlation
odel (Bollerslev, 1990), the diagonal model (Bollerslev et al., 1988), the dynamic conditional correlation model (Engle, 2002),

nd the orthogonal or principal component generalized autoregressive conditional heteroskedasticity (GARCH) model (Alexander,
998), testing for the constancy of correlation coefficients/matrices is also an important aspect in the literature; see (e.g.) Wied
t al. (2012), Choi and Shin (2021, 2020) and Wied (2017).

The remainder of this paper is organized as follows. Section 2 considers testing for changes in the mean of a time series and
ntroduces a novel adjusted-range based SN in both the univariate and multivariate cases. Section 3 generalizes Section 2 and
overs testing for changes in a class of approximately linear statistics, which includes the marginal mean, the marginal variance, the
utocorrelation function, quantiles and the spectrum as special cases. Section 4 proposes adjusted-range based Kolmogorov–Smirnov-
ype tests for constancy of parameters. Sections 5 and 6 cover the simulation studies and empirical applications, respectively. Finally,
ection 7 concludes.

. Testing structural breaks in mean

.1. The univariate case

Considering a univariate time series
{

𝑋𝑡
}

, we wish to test the null hypothesis

H(1)
0 ∶ 𝐸

(

𝑋1
)

= ⋯ = 𝐸
(

𝑋𝑛
)

= 𝜇, (1)

ersus the alternative hypothesis

H(1)
1 ∶ H(1)

0 is false. (2)

Define the CUSUM process as

T𝑛 (𝑘) = 𝑛−1∕2
𝑘
∑

𝑡=1

(

𝑋𝑡 −𝑋𝑛

)

, 𝑘 = ⌊𝑠𝑛⌋ , 𝑠 ∈ [0, 1] ,

where 𝑋𝑛 = 𝑛−1
∑𝑛
𝑡=1𝑋𝑡 and ⌊𝑥⌋ = max {𝑧 ≤ 𝑥 ∶ 𝑧 ∈ Z}. Under appropriate moment and weak dependence conditions (e.g.,

Assumption 2.1 in Phillips (1987)), T𝑛 (𝑘) ⇒ 𝜎𝐵 (𝑠), where 𝐵 (𝑠) is the one-dimensional Brownian motion (Wiener process),
𝜎2 = lim𝑛→∞ 𝑛var

(

𝑋𝑛

)

=
∑

𝑗∈Z 𝛾 (𝑗) is the LRV, 𝛾 (𝑗) = cov(𝑋0, 𝑋𝑗 ), and “⇒’’ denotes weak convergence. Let B (𝑠) = 𝐵 (𝑠) − 𝑠𝐵 (1) be
Brownian Bridge. Under the null hypothesis H(1)

0 , we have T𝑛 (𝑘) = T𝑛 (⌊𝑠𝑛⌋) ⇒ 𝜎B (𝑠). The CUSUM statistic, also known as the KS
tatistic, is defined as

KS = sup
𝑠∈[0,1]

|

|

T𝑛 (⌊𝑠𝑛⌋) ∕𝜎||
𝑑
→ sup

𝑠∈[0,1]
|B (𝑠)| ,

here “
𝑑
→’’ denotes convergence in distribution. In practice, a consistent estimator for 𝜎 is needed, for example the HAC LRV

stimator 𝜎2𝑛 =
∑𝑛−1
𝑘=−𝑛+1 �̂� (𝑘)𝐾 (𝑘∕𝑏), where 𝐾 (⋅) and 𝑏 denote a kernel function and a bandwidth that depends on the sample size

, respectively. We use KS0 to denote the HAC standardized KS test statistic. It is known that HAC robust tests tend to have poor
3

izes in small and finite samples with a moderate degree of autocorrelation (Müller, 2007).



Journal of Econometrics 238 (2024) 105603Y. Hong et al.

S
t

t
c

o
o
r
L
(
t

Table 1
Simulated critical values for KS type test statistics.

Level 10.0% 5.0% 2.5% 1.0% 0.5% 0.1%

KS 1.2220 1.3640 1.4762 1.6175 1.7119 1.9111
KS𝑉 2.8857 3.0585 3.2029 3.3896 3.4765 3.6735
KS𝑅 0.8684 0.9117 0.9391 0.9634 0.9732 0.9869

Note: The number of Monte Carlo simulations is 10,000 and the Brownian motion is approximated by the normalized sum of
200,000 i.i.d. 𝑁(0, 1) realizations.

Let 𝑋𝑡 = 𝑡−1
∑𝑡
𝑖=1𝑋𝑖. The self-normalizer of Shao (2010) then takes the form

𝑉 2
𝑛 = 𝑛−2

𝑛
∑

𝑡=1
𝑡2
(

𝑋𝑡 −𝑋𝑛

)2
.

hao and Zhang (2010) point out that a naive application of the SN idea of Shao (2010) fails. A well-known undesirable feature of
he self-normalized KS test statistic

KS𝑉 = max
1≤𝑘≤𝑛

|

|

|

𝑉 −1
𝑛 T𝑛 (𝑘)

|

|

|

is that it has decreasing power, as the level shift increases; see Figure 1 in Shao and Zhang (2010). Shao and Zhang (2010) attribute
this result to the increase in 𝑉𝑛 with respect to the break size, and address such issues by introducing a so-called G test statistic,
whose self-normalizer accommodates both the forward partial sum before the break point 𝑘∗, and the backward partial sum after
𝑘∗, and so is invariant with respect to the structural shift 𝛥𝑛 ∶= 𝐸

(

𝑋𝑘∗+1
)

− 𝐸
(

𝑋𝑘∗
)

. As a result, Shao and Zhang’s (2010) G test
can detect the change by formulating two piecewise stationary partitions. However, the G test, in its simplest form, can cater for
one change-point alternative only.2

Here, we propose an alternative approach to improve the performance of KS𝑉 by using a new type of SN, which is based on the
adjusted-range of the partial sum,

R𝑛 = max
1≤𝑘≤𝑛

T𝑛 (𝑘) − min
1≤𝑘≤𝑛

T𝑛 (𝑘) . (3)

To derive the asymptotic distribution of R𝑛, we first assume that 𝑋𝑡 = 𝜇 + 𝜀𝑡, where 𝜇 is a fixed, yet unknown finite parameter,
and 𝜀𝑡 is a zero-mean time series process. Following Phillips (1987), we impose the following regularity conditions.

Assumption 1. (i) 𝐸
(

𝜀𝑡
)

= 0 for all 𝑡; (ii) sup𝑡 𝐸
(

|

|

𝜀𝑡||
2𝛽
)

< ∞ for some 𝛽 > 2; (iii) 0 < 𝜎2 = lim𝑛→∞ 𝐸
[

𝑛−1
(
∑𝑛
𝑡=1 𝜀𝑡

)2
]

<∞; (iv)
{

𝜀𝑡
}

is an 𝛼-mixing process with mixing coefficients 𝛼𝑘 that satisfy ∑∞
𝑘=1 𝛼

1−2∕𝛽
𝑘 < ∞.

Assumption 1 provides regularity conditions on moments and serial dependence of
(

𝜀𝑡
)

; see Phillips (1987) for discussions on
the rationale behind these assumptions.

Under Assumption 1, we have

R𝑛
𝑑
→ 𝜎

(

sup
𝑠∈[0,1]

B (𝑠) − inf
𝑠∈[0,1]

B (𝑠)
)

.

Therefore, under the null hypothesis H(1)
0 ,

KS𝑅 = max
1≤𝑘≤𝑛

|

|

|

R−1
𝑛 T𝑛 (𝑘)

|

|

|

𝑑
→ 𝑈, (4)

where the positive scalar random variable 𝑈 is defined as

𝑈 =
sup𝑠∈[0,1] |B (𝑠)|

sup𝑠∈[0,1] B (𝑠) − inf 𝑠∈[0,1] B (𝑠)
. (5)

The asymptotic distributions of KS𝑉 and KS𝑅 can be obtained through simulations. The simulated critical values for KS, KS𝑅

and KS𝑉 are summarized in Table 1.
The KS𝑅 test statistic is valid under a broad range of alternatives, including multiple breaks, smooth changes, or a mixture of

hem. However, to discuss its consistency, we focus on the one break point alternative (6), which is the main alternative hypothesis
onsidered by Shao and Zhang (2010):

H(1)∗
1 ∶ 𝐸

(

𝑋1
)

= ⋯ = 𝐸
(

𝑋𝑘∗
)

≠ 𝐸
(

𝑋𝑘∗+1
)

= ⋯ = 𝐸
(

𝑋𝑛
)

, (6)

2 Shao and Zhang (2010) suggest that the number of change points can be estimated through treating change point estimation and testing as model selection
r adopting a sequential testing procedure; Zhang and Lavitas (2018) propose to circumvent the estimation for the number of break points and the application
f a sequential testing procedure through the construction of the contrast processes and formulate a so-called T test statistic, which detects change points by
ecursive scanning. However, both the forward and backward summations in Shao and Zhang (2010) and the construction of contrast processes in Zhang and
avitas (2018) are computationally expensive. Despite covering the multivariate cases in their theoretical exposition, the simulation studies of Shao and Zhang
2010) and Zhang and Lavitas (2018) are restricted to univariate cases only. Zhang and Lavitas (2018) even introduce a grid approximation scheme to alleviate
4

he computational burden in the univariate case.
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where 𝑘∗ = ⌊𝑠0𝑛⌋ is the actual break location and 𝑠0 ∈ (0, 1). Define 𝛿 ∶= 𝐸
(

𝑋𝑘∗+1
)

− 𝐸
(

𝑋𝑘∗
)

as the level of structural shift, and
denote 𝑐𝛼 as the critical value of KS𝑅 at significance level 𝛼%.

Theorem 1. Suppose that Assumption 1 holds. Then,

(i) if 𝛿 ≠ 0 is fixed, then Pr
(

KS𝑅 > 𝑐𝛼
)

= 1 as 𝑛→ ∞;
(ii) if 𝛿 = 𝑛−1∕2𝜂 ≠ 0, then lim𝑛→∞ Pr

(

KS𝑅 > 𝑐𝛼
)

> 0, and lim
|𝜂|→∞ lim𝑛→∞ Pr

(

KS𝑅 > 𝑐𝛼
)

= 1.

Theorem 1 shows that the proposed test KS𝑅 has nontrivial power against the class of one change-point alternatives that approach
ero at the parametric root-𝑛 rate. The proof for Theorem 1 is summarized in Appendix A.1. From the proof of Theorem 1, we can see
hat any structural break(s) that renders either T𝑛 (𝑘∗) = ∞ provided that min1≤𝑘≤𝑛 T𝑛 (𝑘) ∕T𝑛 (𝑘∗) = 𝑜𝑝 (1), or T𝑛 (𝑘∗) = −∞ provided
hat max1≤𝑘≤𝑛 T𝑛 (𝑘) ∕T𝑛 (𝑘∗) = 𝑜𝑝 (1), when 𝑛 → ∞, should suffice for the consistency of KS𝑅. This rules out some oscillating breaks
hat push both max1≤𝑘≤𝑛 ||T𝑛 (𝑘)|| and min1≤𝑘≤𝑛 T𝑛 (𝑘) to ±∞ as 𝑛→ ∞. See the supplementary material for more detailed discussions.

.2. The multivariate case

The generalization of the KS𝑅 test statistic to the multivariate case is not straightforward, because the adjusted-range (3) is
lways non-negative, while the off-diagonal components for a valid covariance estimator can be negative, albeit the whole matrix
eing at least positive semi-definite (PSD). In this section, we focus on testing structural breaks in the mean of a multivariate series.3
et 𝑋𝑡 = (𝑋1,𝑡,… , 𝑋𝑚,𝑡) ∈ R𝑚 for 𝑡 = 1,… , 𝑛, where 𝑚 ≥ 2 is a fixed finite integer. We assume that under the null hypothesis 𝑋𝑡 is
eakly stationary with 𝐸(𝑋𝑡) = 𝜇 and 𝐸

((

𝑋𝑡 − 𝜇
) (

𝑋𝑡 − 𝜇
)⊺) = 𝛴𝑋 .

.2.1. Triangular structure
We first suppose that there is a unit lower triangular matrix 𝐿 (with 1’s along the principal diagonal) such that the process

𝑡 = 𝐿𝑋𝑡 has components that are pairwise uncorrelated at all leads and lags. Specifically, we suppose that cov(𝑣𝑖𝑡, 𝑣𝑗𝑠) = 0 for all
≠ 𝑗 and all 𝑡, 𝑠 = 1, 2,…, whereas cov(𝑣𝑖𝑡, 𝑣𝑖,𝑡+𝑘) = 𝛾𝑖(𝑘) may not be zero for all 𝑘, although each such autocovariance satisfies a

ummability condition. Let 𝛴𝑋 = 𝐶𝐷𝐶⊺ be the LDL representation of the covariance matrix of 𝑋𝑡, where 𝐷 is a diagonal matrix and
is the unique unit lower triangular matrix. Similar to independent component analysis (ICA), we refer to 𝐶 as the “mixing matrix’’

nd 𝐶−1 as the “demixing matrix’’ (Gouriéroux et al., 2017). Under our assumed structure, 𝐿 = 𝐶−1 and the autocovariance function
f the time series 𝑋𝑡 satisfies 𝛤𝑋 (𝑘) = 𝐸

[(

𝑋𝑡 − 𝜇
) (

𝑋𝑡+𝑘 − 𝜇
)⊺] = 𝐶𝐷(𝑘)𝐶⊺ for 𝑘 = 0,±1,±2, where 𝐷(𝑘) = diag{𝛾1(𝑘),… , 𝛾𝑚(𝑘)}. The

2 functions in 𝛤𝑋 (𝑘) are driven by 𝑚 freely chosen functions 𝛾1(𝑘),… , 𝛾𝑚(𝑘) and the 𝑚(𝑚 − 1)∕2 free parameters in 𝐶. This is a
easonable assumption in the case where level of serial dependence is small or have a simple structure, and is one of the main
tructures exploited in the structural vector autoregression (SVAR) literature. In practice, we form the LDL decomposition on the
ample covariance matrix of 𝑋𝑡, denoted as 𝛴𝑋 , such that 𝛴𝑋 = 𝐶�̂�𝐶⊺, where 𝐶 is a unique lower triangular matrix with 1’s along
he principal diagonal and �̂� is a unique diagonal matrix with positive entries along the principal diagonal. The original series 𝑋𝑡 is
hen mapped into �̂�𝑡 = (�̂�1,𝑡,… , �̂�𝑚,𝑡)

⊺ , using the linear transformation �̂�𝑡 = 𝐶−1𝑋𝑡. Since the series 𝑢𝑡 = 𝐶−1𝑋𝑡 has a negligible level
f cross correlation, the same should approximately be true of �̂�𝑡 — the estimation errors for 𝐶 have negligible effect, because 𝐶 can
e consistently estimated.4 We assume that all

{

𝑢𝑙,𝑡
}

, for 𝑙 = 1,… , 𝑚, satisfy Assumption 1. This is a kind of partial prewhitening
ransformation because its goal is to eliminate cross dependence but not own serial dependence. For 𝑋𝑡 that suffers from persistent
erial correlation, we recommend applying the Vector Autoregression (VAR) and conducting an LDL decomposition on the sample
ariance of the estimated errors of the VAR model; see Section 2.2.2 for more discussion, which allows for a richer dynamic structure.

The construction of the adjusted range-based extended KS (EKS) test statistic takes the following steps. First, generate a new
ultivariate CUSUM process,

T∗
𝑛 (𝑘) = 𝑛−1∕2

𝑘
∑

𝑡=1

(

�̂�𝑡 − 𝑢𝑛
)

⇒ 𝛥𝑢𝐁 (𝑠) , (7)

here 𝑢𝑛 =
(

𝑢1,𝑛,… , 𝑢𝑚,𝑛
)

= 𝑛−1
∑𝑛
𝑡=1 �̂�𝑡

𝑝
→ 0, and 𝛥𝑢 is a matrix constant, such that the LRV of �̂�𝑡 obeys 𝛴𝑢 = 𝛥𝑢𝛥

⊺
𝑢. Note that (7)

holds under Assumption 1.
Second, denote the 𝑙th component of T∗

𝑛 (𝑘) as T(𝑙)∗
𝑛 (𝑘) = 𝑛−1∕2

∑𝑘
𝑡=1

(

�̂�𝑙,𝑡 − 𝑢𝑙,𝑛
)

, for 𝑙 = 1,… , 𝑚. Generate the 𝑚 × 1 vector

R̃𝑛 =

⎛

⎜

⎜

⎜

⎝

max1≤𝑘≤𝑛
(

T(1)∗
𝑛 (𝑘)

)

− min1≤𝑘≤𝑛
(

T(1)∗
𝑛 (𝑘)

)

⋮

max1≤𝑘≤𝑛
(

T(𝑚)∗
𝑛 (𝑘)

)

− min1≤𝑘≤𝑛
(

T(𝑚)∗
𝑛 (𝑘)

)

⎞

⎟

⎟

⎟

⎠

. (8)

The adjusted-range based covariance estimator for �̂�𝑡 is, therefore, diag
{

R̃2
𝑛

}

, which is a matrix with diagonal elements equal to

R2
𝑛(𝑙), for 𝑙 = 1,… , 𝑚. The adjusted-range based covariance estimator for

{

𝑋𝑡
}

is 𝐶⊺diag
{

R̃2
𝑛

}

𝐶.

3 Shao and Zhang (2010) also consider testing the structural breaks for the multivariate case, under a general framework of so-called approximately linear
tatistics, which include the mean as a special case. We discuss testing structural breaks for approximately linear statistics in Section 3.

4 This follows from the fact the sample covariance is a consistent estimator for the population covariance, and the LDL decomposition is unique for any given
5

ample covariance.
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Table 2
Simulated critical values for EKS𝑅(𝑚) for 𝑚 = 2, 3,… , 10.
𝑚∖Level 10.0% 5.0% 2.5% 1.0% 0.5% 0.1%

𝑚 = 2 1.0339 1.1425 1.2518 1.3706 1.4530 1.5732
𝑚 = 3 1.2954 1.4216 1.5281 1.6720 1.7793 1.9893
𝑚 = 4 1.5456 1.6818 1.8003 1.9645 2.0482 2.2967
𝑚 = 5 1.7692 1.9149 2.0505 2.1939 2.3109 2.7045
𝑚 = 6 1.9829 2.1544 2.2870 2.4742 2.5882 2.9517
𝑚 = 7 2.1970 2.3614 2.5163 2.6841 2.8356 3.1257
𝑚 = 8 2.3971 2.5733 2.7497 2.9263 3.0924 3.3959
𝑚 = 9 2.6046 2.7860 2.9433 3.1438 3.2838 3.6567
𝑚 = 10 2.8039 2.9928 3.1787 3.3765 3.5211 3.7879

Note: The number of Monte Carlo replications is 10,000 and the Brownian motion is approximated using 5000 i.i.d. 𝑁(0, 1)
realizations.

Third, the EKS test statistic is defined as

EKS𝑅(𝑚) = max
1≤𝑘≤𝑛−1

T∗
𝑛 (𝑘)

⊺
[

diag
{

R̃2
𝑛

}]−1
T∗
𝑛 (𝑘) (9)

= max
1≤𝑘≤𝑛−1

T𝑛 (𝑘)
⊺
{

𝐶
⊺
diag

{

R̃2
𝑛

}

𝐶
}−1

T𝑛 (𝑘) ,

where 𝑚 ≥ 2. Further, define the non-negative scalar random variable

𝑊𝑚 = sup
𝑠∈[0,1]

{

B𝑚 (𝑠)
⊺
[

diag
{

sup
𝑠∈[0,1]

B𝑚 (𝑠) − inf
𝑠∈[0,1]

B𝑚 (𝑠)
}]−2

B𝑚 (𝑠)

}

, (10)

where B𝑚 (𝑠) is the 𝑚-dimensional Brownian bridge. If all
{

�̂�𝑙,𝑡
}

, for 𝑙 = 1,… , 𝑚, satisfy Assumption 1, we have

EKS𝑅(𝑚)
𝑑
→ 𝑊𝑚 as 𝑛→ ∞. (11)

This three-step procedure effectively resolves the problem of extending the univariate adjusted-range based self-normalized KS test
to the multivariate case. The proof for (11) is omitted, as it is a direct result of the invariance principle and the continuous mapping
theorem (CMT).

The simulated asymptotic critical values for the EKS𝑅(𝑚) test statistics are tabulated in Table 2.
To prove the consistency of the EKS𝑅(𝑚) test, we again focus on the one change-point alternative (6). Define 𝛥𝑛 ∶= 𝐸

(

𝑋𝑘∗+1
)

−
𝐸
(

𝑋𝑘∗
)

as the level of structural shift, and denote 𝐶𝛼 as the critical value of EKS𝑅(𝑚) at significance level 𝛼%.

Theorem 2. Suppose that (7) holds. Then under the alternative hypothesis,

(i) if 𝑠0 ∈ (0, 1) and 𝛥𝑛 ≠ 𝟎 is fixed, then Pr
(

EKS𝑅(𝑚) > 𝐶𝛼
)

= 1 as 𝑛 → ∞;
(ii) if 𝛥𝑛 = 𝑛−1∕2𝜂 ≠ 𝟎, 𝜂 =

(

𝜂(1),… , 𝜂(𝑚)
)⊺ ≠ 𝟎, then lim𝑛→∞ Pr

(

EKS𝑅(𝑚) > 𝐶𝛼
)

> 0 and lim
‖𝜂‖→∞ lim𝑛→∞ Pr

(

EKS𝑅(𝑚) > 𝐶𝛼
)

= 1.

2.2.2. Residual triangular structure
If the 𝑋𝑡 suffer from a high level of heteroskedasticity and/or autocorrelation, we could apply the VAR approach and assume a

triangular structure for the error process. The VAR(p) model is

𝑋𝑡 = 𝛹1𝑋𝑡−1 +⋯ + 𝛹𝑝𝑋𝑡−𝑝 + 𝑒𝑡,

where 𝑝 can be selected using model selection criteria, such as the AIC (Akaike Information Criterion). We conduct the LDL
decomposition on the sample variance for the error 𝑒𝑡 in the VAR model, denoted by 𝛴𝑒. Intuitively, this procedure is similar
to the VAR prewhitening approach of Andrews and Monahan (1992), where the LRV of 𝑋𝑡, denoted by 𝛴𝑋 , is estimated by first
estimating the LRV of 𝑒𝑡 using the HAC approach, and then using the estimated parameters �̂�𝑖, 𝑖 = 1,… , 𝑝, to conduct the reverse
transformation, such that 𝛴𝑋 =

(

𝐼𝑚 −
∑𝑝
𝑖=1 �̂�𝑖

)−1
𝛴𝑒

(

𝐼𝑚 −
∑𝑝
𝑖=1 �̂�𝑖

)−1
, where 𝐼𝑚 denotes an 𝑚 × 𝑚 identity matrix.

Similarly, we first obtain �̂�𝑡 through the LDL decomposition on the sample variance of the VAR errors 𝛴𝑒 = 𝐴𝑒�̂�𝑒𝐴
⊺
𝑒 . Then,

ollowing (7) and (8), the adjusted-range based covariance estimator for 𝑒𝑡 is 𝐴𝑒diag
{

R̃2
𝑛

}

𝐴⊺
𝑒 , and that for 𝑋𝑡 is

𝛴𝑋 =

(

𝐼𝑚 −
𝑃
∑

𝑖=1
�̂�𝑖

)−1

𝐴𝑒diag
{

R̃2
𝑛

}

𝐴⊺
𝑒

(

𝐼𝑚 −
𝑃
∑

𝑖=1
�̂�𝑖

)−1

.

hus, the adjusted-range based EKS test statistic becomes

EKS𝑅(𝑚) = max T (𝑘)
⊺
𝛴−1T (𝑘) ,
6

1≤𝑘≤𝑛−1 𝑛 𝑋 𝑛
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which converges in distribution to 𝑊𝑚 defined in (10). This is equivalent to setting �̂�𝑡 = 𝐴𝑒
(

𝐼𝑚 −
∑𝑝
𝑖=1 �̂�𝑖

)−1
𝑋𝑡; or equivalently

̂ =
(

𝐼𝑚 −
∑𝑝
𝑖=1 �̂�𝑖

)

𝐴−1
𝑒 . The validity of this VAR approach relies on consistent estimation for �̂�𝑖 for 𝑖 = 1,… , 𝑝; see Hamilton (1994

p. 298–299) for the asymptotic properties of the maximum likelihood (ML) estimator of a VAR model.
For other statistical quantities, we recommend using the LDL decomposition on the sample variance of 𝑋𝑡. For instance, for

esting constancy of correlation coefficients/matrices, the VAR approach would remove the correlation among 𝑋1,𝑡,… , 𝑋𝑚,𝑡, which
might render the EKS test statistic evaluated on �̂�1,𝑡,… , �̂�𝑚,𝑡 unable to detect any structural breaks in the correlations among 𝑋𝑡 in
inite samples. See the supplementary materials for tests for constancy of correlation coefficients/matrices.

A similar rationale applies to the ICA. We can apply the fast ICA algorithm developed by Hyvarinen (1999) and ICA via distance
ovariance by Matteson and Tsay (2017) to the sample variances of both 𝑋𝑡 and 𝑒𝑡, respectively. However, we find that they lead
o lower powers; in the extreme case, when testing constancy of correlation coefficients/matrices, both the sizes and powers are
iminished in finite samples.5 For many statistical quantities other than the mean, all we need is a linear/affine transformation that
an capture and summarize (off-diagonal) correlatedness into the diagonal components. In contrast, ICA algorithms that deliver
ndependent

(

�̂�1, 𝑡,… , �̂�𝑚,𝑡
)⊺ reduce the powers of the EKS test statistics.

In situations involving high-dimensional series, one may utilize techniques such as the singular value decomposition (SVD)
rewhitening of the ICA, or the Karhunen–Loève expansion followed by a truncation to reduce the number of parameters to be
stimated. However, these approaches are beyond the scope of this paper and will be pursued in subsequent research.

. Testing for structural breaks in approximately linear statistics

In this section, we adopt the framework of Shao and Zhang (2010) and consider a general quantity of interest, known as
pproximately linear statistics (Kunsch, 1989).6

Let 𝑌𝑡 =
(

𝑋𝑡,… , 𝑋𝑡+𝑚−1
)⊺, 𝑡 = 1,… , 𝑛, and denote 𝐅𝑚𝑡 as the distribution of 𝑌𝑡. Define

𝜃𝑡 = 𝐓
(

𝐅𝑚𝑡
)

∈ R𝑞 , 𝑡 = 1,… , 𝑛, (12)

s the quantity of interest, where 𝐓 is a functional that takes values in R𝑞 . Examples of 𝜃 include, but are not limited to, the marginal
mean of 𝑋𝑡, the marginal variance of 𝑋𝑡, the autocovariance function of 𝑋𝑡 and the quantiles of the distribution of 𝐅1 (Shao and
hang, 2010).

Here, we are interested in testing the null hypothesis

H(2)
0 ∶ 𝜃1 = ⋯ = 𝜃𝑛,

ersus the alternative hypothesis

H(2)
1 ∶ H(2)

0 is false.

e replace the partial sum process, in the case of mean, by a sequence of recursive estimators of the quantity of interest, which
re functionals of the distribution function 𝐅𝑚𝑡 . Because 𝐅𝑚𝑡 is unknown, these recursive estimators are obtained using the empirical
istribution function. Let 𝜌1,𝑘 be the empirical distribution based on

{

𝑌𝑡
}𝑘
𝑡=1, namely

𝜌1,𝑘 = 𝑘−1
𝑘
∑

𝑡=1
𝛿𝑌𝑡 , (13)

or 1 ≤ 𝑘 ≤ 𝑛, where 𝛿𝑌 is the probability measure which puts mass 1 at point 𝑌 ; see Definition 1 in Hampel et al. (1986, p.84).
The approximately linear statistic 𝜃1,𝑘 satisfies the following expansion (Shao and Zhang, 2010),

𝜃1,𝑘 = 𝐓
(

𝜌1,𝑘
)

= 𝐓 (𝐅𝑚) + 𝑘−1
𝑘
∑

𝑡=1
𝐈𝐅

(

𝑌𝑡;𝐅𝑚
)

+ 𝐑1,𝑘, (14)

or 1 ≤ 𝑘 ≤ 𝑛, where 𝐈𝐅
(

𝑌𝑡;𝐅𝑚
)

is the influence function of 𝐓 at 𝐅𝑚, such that

𝐈𝐅 (𝑌 ;𝐅𝑚) = lim
𝜖↓0

𝐓
[

(1 − 𝜖)𝐅𝑚 + 𝜖𝛿𝑌
]

− 𝐓 (𝐅𝑚)
𝜖

,

and 𝐑1,𝑘 is the remainder term of the expansion.
We define a process based on 𝜃1,𝑘, i.e.,

T𝑛 (𝑘) = 𝑘𝑛−1∕2
(

𝜃1,𝑘 − 𝜃1,𝑛
)

, (15)

where 𝜃1,𝑘 is estimated using the subsample
{

𝑌𝑗
}𝑘
𝑗=1.

5 The simulation studies are available from the authors upon request.
6 We also consider testing structural breaks in correlation coefficients and matrices, reflecting their importance in volatility modeling. Since correlations are

ot approximately linear statistics, adjusted-range based self-normalized tests for correlations are introduced in a slightly different asymptotic setting; see the
7

upplementary material for detailed theoretical exposition.
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Following Shao and Zhang (2010), let  [0, 1] be the space of functions on [0, 1], which are càdlàg functions endowed with the
korokhod topology (Billingsley, 1968); furthermore, we denote “⇒’’ as weak convergence in  [0, 1], hereafter. We impose the
ollowing condition.

ssumption 2. 𝐸
{

𝐈𝐅
(

𝑌𝑡;𝐅𝑚
)}

= 𝟎 and 𝑛−1∕2 ∑⌊𝑠𝑛⌋
𝑡=1 𝐈𝐅

(

𝑌𝑡;𝐅𝑚
)

⇒ 𝛥𝐁𝑞 (𝑠), where 𝛥 is a 𝑞×𝑞 lower triangular matrix with nonnegative
iagonal entries and 𝐁𝑞 (⋅) is a 𝑞-dimensional vector of independent Brownian motions. The long-run variance covariance matrix
(𝐅𝑚) = 𝛥𝛥⊺ =

∑∞
𝑘=−∞ cov

{

𝐈𝐅
(

𝑌0;𝐅𝑚
)

, 𝐈𝐅
(

𝑌𝑘;𝐅𝑚
)}

is positive definite.

Assumption 2 is referred to as Assumption 1 in Shao (2010), or Assumption 3.1 in Shao and Zhang (2010). Shao (2010) notes
hat it is not primitive, and cite Assumption 2.1 in Phillips (1987) as a primitive condition, which is identical to Assumption 1
mposed earlier.

To ensure that the remainder term for the expansion in (14) vanishes to zero asymptotically, we impose the following condition.

ssumption 3. sup1≤𝑘≤𝑛 ||𝑘𝐑1,𝑘
|

|

= 𝑜𝑝
(

𝑛1∕2
)

.

Assumption 3 is similar to Assumption 3.2 in Shao and Zhang (2010). The only difference is that since we do not need the
ackward and forward summations as in the G test of Shao and Zhang (2010), there is no need to assume that sup1≤𝑘≤𝑛 ||𝑘𝐑𝑛−𝑘+1,𝑛|| =

𝑝
(

𝑛1∕2
)

. Under the expansion in (14), if Assumptions 2 and 3 are satisfied, we have
√

𝑛
(

𝜃1,𝑛 − 𝜃
) 𝑑
→ 𝑁

(

𝟎, 𝛴
(

𝐅𝑚
))

as 𝑛 → ∞, where

= 𝐸
(

𝜃1,𝑛
)

.
The subtleness for applying the EKS test to the present context is the existence of cross dependence in 𝜃1,𝑘, which follows from

he cross dependence in 𝑌𝑡.7 Following a procedure similar to that in Section 2.2, we work with �̂�𝑡 = 𝐶−1𝑌𝑡, where 𝐶 is obtained
hrough an LDL decomposition on the sample variance of 𝑌𝑡, such that 𝛴𝑌 = 𝐶�̂�𝐶⊺. Because 𝑢𝑡 is a linear/affine transformation
f 𝑌𝑡, from the multivariate change of variables theorem, the Jacobian of such an inverse transformation is det(𝐶), which, together
ith the approximately linear form of the quantity of interest as in (14), implies that detecting structural changes in the same
pproximately linear statistics of �̂�𝑡, denoted as 𝜃∗, would be identical to testing structural changes in 𝜃.8

The adjusted-range based EKS test statistic is obtained as follows. First, construct a multivariate CUSUM process

T∗
𝑛 (𝑘) = 𝑘𝑛−1∕2

(

𝜃∗1,𝑘 − 𝜃
∗
1,𝑛

)

. (16)

econd, put T∗
𝑛 (𝑘) = (T(1)∗

𝑛 (𝑘) ,… ,T(𝑞)∗
𝑛 (𝑘))⊺ . Third, generate a 𝑞 × 1 vector

R𝑛 =

⎛

⎜

⎜

⎜

⎝

max1≤𝑘≤𝑛
(

T(1)∗
𝑛 (𝑘)

)

− min1≤𝑘≤𝑛
(

T(1)∗
𝑛 (𝑘)

)

⋮

max1≤𝑘≤𝑛
(

T(𝑞)∗
𝑛 (𝑘)

)

− min1≤𝑘≤𝑛
(

T(𝑞)∗
𝑛 (𝑘)

)

⎞

⎟

⎟

⎟

⎠

. (17)

The adjusted-range based covariance estimator for 𝜃∗ is diag
{

R2
𝑛
}

. The EKS test statistic is

EKS𝑅(𝑞) = max
1≤𝑘≤𝑛−1

T∗
𝑛 (𝑘)

⊺ [
diag

{

R2
𝑛
}]−1 T∗

𝑛 (𝑘) . (18)

Theorem 3. Suppose Assumptions 2 and 3 hold. Then under the null hypothesis H(2)
0 , as 𝑛→ ∞,

EKS𝑅(𝑞)
𝑑
→ 𝑊𝑞 , (19)

where 𝑊𝑞 is defined in (10).

The proof for Theorem 3 is relegated to Appendix A.2. Table 2 provides the simulated critical values.

4. Testing parameter constancy

We now demonstrate that the adjusted range-based KS/EKS statistics can be used to test for parameter constancy. The notations
and assumptions largely follow those of Chan et al. (2021), who use the SN approach of Shao (2010) and Lobato (2001) for sequential
change point monitoring. See Chan et al. (2021) for a list of references adopting similar asymptotic settings.

Suppose that
{

𝐗𝑡
}𝑛
𝑡=1 is a stationary ergodic time series sample, with the joint density 𝑓𝜃 , where 𝜃 ∈ R𝑑 lies in a compact space

𝛩, where 𝑑 ≥ 1 is a positive integer.
{

𝑓𝜃 ∶ 𝜃 ∈ 𝛩
}

can be regarded as a class of parametric models indexed by parameter 𝜃. The
parameter of interest 𝜃 satisfies 𝐸

[

𝐿
(

𝐗𝑡, 𝜃
)]

= 𝟎. As a result, 𝜃 can be consistently estimated by solving the system of equations

7 As it can be seen from Section 2.2, our transformation methods are “partial prewhitening’’ in the sense that we only remove cross dependence, but not own
emporal dependence of a time series. However, for series that suffer from a high level of heteroskedasticity and/or autocorrelation, and when we are testing
or structural breaks in the mean, prewhitening will help to reduce serial dependence.

8 If we have explicit information or would like to impose the condition that different components of 𝜃 are uncorrelated, as in the case when 𝜃 comprises
8

the mean and variance of normally distributed random variables, then 𝐶 should be an identity matrix.
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∑𝑛
𝑡=1 𝐿

(

𝐗𝑡, 𝜃
)

= 𝟎. This framework includes classical estimators such as ML estimators, M-estimators, least-squares estimators, and
eneralized method of moments estimators (Chan et al., 2021). We are interested in testing the null hypothesis

H𝑝
0 ∶ 𝜃 = 𝜃0,

against the alternative hypothesis

H𝑝
1 ∶ H𝑝

0 is false.

Let 𝐿′ (𝐗𝑡, 𝜃
)

be the gradient matrix of 𝐿
(

𝐗𝑡, 𝜃
)

with respect to the parameter 𝜃. Denote ‖𝑐‖ as the supremum norm of a vector
𝑐. Define the matrix norm of a matrix 𝐴 as ‖𝐴‖ = sup𝑥∶‖𝑥‖=1 ‖𝐴𝑥‖. We impose the following regularity conditions as in Chan et al.
(2021).

Assumption 4. The true parameter value 𝜃0 is in the interior region of 𝛩, where 𝛩 is a compact set of R𝑑 .

Assumption 5. The time series process
{

𝐗𝑡
}

is stationary and ergodic.

Assumption 6. 𝐸
[

sup𝜃∈𝛩
‖

‖

‖

𝐿
(

𝐗𝑡, 𝜃
)

‖

‖

‖

]

<∞ and 𝜃0 is the unique zero solution of 𝐸
[

𝐿
(

𝐗𝑡, 𝜃
)]

. That is, for any given constant 𝜖 > 0,
there exists a constant 𝜅 > 0, such that 𝐸

[

𝐿
(

𝐗𝑡, 𝜃
)]

> 𝜅 for all 𝜃, with ‖

‖

𝜃 − 𝜃0‖‖ > 𝜖.

ssumption 7. 𝐸
[

sup𝜃∈𝛩
‖

‖

‖

𝐿
(

𝐗𝑡, 𝜃0
)

‖

‖

‖

2+𝛿
]

< ∞, for some 𝛿 > 0, and
{

𝐗𝑡
}

is a strong mixing sequence with mixing coefficients 𝛼𝑘

atisfying ∑∞
𝑘=1 𝛼

𝛿∕(2+𝛿)
𝑘 <∞.

ssumption 8. 𝐿
(

𝐗𝑡, 𝜃
)

is continuously differentiable with respect to 𝜃 in a neighborhood 𝑉𝜃0 of 𝜃0. In addition, 𝐸
[

𝐿′ (𝐗𝑡, 𝜃0
)]

is
positive definite, and 𝐸

(

sup𝜃∈𝑉𝜃0
‖

‖

‖

𝐿′ (𝐗𝑡, 𝜃
)

‖

‖

‖

)

< ∞.

We refer to
{

𝐿
(

𝐗𝑡, 𝜃
)}

as “generalized residuals’’. Under Assumptions 4–8, testing for parameter constancy is equivalent to

esting structural breaks in
{

𝐿
(

𝐗𝑡, 𝜃
)}

, which implies that structural break tests in mean, such as the G test proposed by Shao and
hang (2010) and the KS type tests, are all asymptotically valid tests for parameter constancy under this framework. Here, we focus
n developing the adjusted-range based KS and EKS tests.

First, we show the consistency of the parameter estimator 𝜃 and the invariance principle of the partial sum process 𝑆
(

𝑘, 𝜃
)

=

𝑛−1∕2
∑𝑘
𝑡=1 𝐿

(

𝐗𝑡, 𝜃
)

, for 𝑘 = 1,… , 𝑛, as stated in Lemma 1 below.

Lemma 1.

(i) Under Assumptions 4–8, 𝜃 = 𝜃0 + 𝑂𝑝
(

𝑛−1∕2
)

.
(ii) Under Assumptions 5 and 7, 𝑆

(

𝑘, 𝜃
)

= 𝑛−1∕2
∑

⌊𝑠𝑛⌋
𝑡=1 𝐿

(

𝐗𝑡, 𝜃
)

⇒ 𝛥𝑀𝐁𝑑 (𝑠), where 𝛥𝑀𝛥
⊺
𝑀 =

∑∞
𝑘=−∞ 𝐸

[

𝐿
(

𝐗1, 𝜃0
)

𝐿
(

𝐗𝑘+1, 𝜃0
)⊺].

Lemma 1 is similar to Lemma 1 of Chan et al. (2021), thus we refer its proof to those of Theorem 3 of Kirch and Kamgaing
2012) and Theorem 3.2.1 of Lin and Lu (1996) as cited in Chan et al. (2021).

With Lemma 1, we then apply the functional central limit theorem (FCLT) and obtain

R𝑀 = max
1≤𝑘≤𝑛

𝑆
(

𝑘, 𝜃
)

− min
1≤𝑘≤𝑛

𝑆
(

𝑘, 𝜃
) 𝑑
→ 𝛥𝑀

[

sup
𝑠∈[0,1]

B𝑑 (𝑠) − inf
𝑠∈[0,1]

B𝑑 (𝑠)
]

.

he adjusted-range based tests for constancy of parameter follow from CMT. When the parameter dimension 𝑑 = 1, the
djusted-range based test statistic for constancy of parameters boils down to

M𝑅 = max
1≤𝑘≤𝑛

|

|

|

|

(

R𝑀
)−1 𝑆

(

𝑘, 𝜃
)

|

|

|

|

. (20)

hen 𝑑 ≥ 2, the construction of the test statistic depends on whether the “generalized residuals’’ are correlated or not, which in
urn depends on the estimation method. Let 𝐿∗

(

𝑋𝑡, 𝜃
)

= 𝐶−1𝐿
(

𝐗𝑡, 𝜃
)

, where 𝐶 is an identity matrix when
{

𝐿
(

𝐗𝑡, 𝜃
)}𝑛

𝑡=1
exhibits

no cross dependence, e.g. when 𝜃 is obtained through estimating a correctly specified model by the ordinary least squares (OLS)
ethod,

{

𝐿
(

𝐗𝑡, 𝜃
)}𝑛

𝑡=1
is the time series of residuals, which are uncorrelated. In general,

{

𝐿∗
(

𝑋𝑡, 𝜃
)}𝑛

𝑡=1
can be correlated; for

xample, when we use the ML estimation,
{

𝐿
(

𝐗𝑡, 𝜃
)}𝑛

𝑡=1
correspond to the scores. It is well known that under a correctly specified

arametric model, the variance covariance matrix of the scores is equal to the negative expected value of the Hessian matrix of
he log-likelihood, according to the Fisher information equality.9 In that case, following Section 2.2, 𝐶 is obtained through the LDL
ecomposition on the sample variance of

{

𝐿
(

𝐗𝑡, 𝜃
)}𝑛

𝑡=1
, which converges in probability to the Fisher information matrix.

9 Noticeably, Chan et al. (2021) consider the scores when sequentially monitoring the changes in parameter in stochastic volatility (SV) models; Pape et al.
9

2021) detect structural shifts in the dynamic conditional correlation (DCC) model of Engle (2002) by testing breaks in the score of the quasi-likelihood.
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When 𝑑 ≥ 2, define 𝑆∗
(

𝑘, 𝜃
)

=
(

𝑆(1)∗
(

𝑘, 𝜃
)

,… , 𝑆(𝑑)∗
(

𝑘, 𝜃
))⊺

= 𝑛−1∕2
∑𝑘
𝑡=1 𝐶

−1𝐿
(

𝐗𝑡, 𝜃
)

, and then we generate a 𝑑 × 1
adjusted-range based self-normalizer

R̃𝑀𝑛 =

⎛

⎜

⎜

⎜

⎝

max1≤𝑘≤𝑛
(

𝑆(1)∗
(

𝑘, 𝜃
))

− min1≤𝑘≤𝑛
(

𝑆(1)∗
(

𝑘, 𝜃
))

⋮

max1≤𝑘≤𝑛
(

𝑆(𝑑)∗
(

𝑘, 𝜃
))

− min1≤𝑘≤𝑛
(

𝑆(𝑑)∗
(

𝑘, 𝜃
))

⎞

⎟

⎟

⎟

⎠

.

Then, the adjusted-range based test statistic for parameter constancy is

M𝑅 = max
1≤𝑘≤𝑛−1

𝑆∗
(

𝑘, 𝜃
)⊺ [

diag
{

R̃𝑀𝑛
}]−2

𝑆∗
(

𝑘, 𝜃
)

.

The asymptotic properties of the adjusted-range based test statistics for constancy of parameter are summarized in the following
theorem.

Theorem 4. Suppose Assumptions 4–8 hold. Then under the null hypothesis H𝑝
0, as 𝑛→ ∞,

M𝑅 𝑑
→ 𝑈 for 𝑑 = 1, and M𝑅 𝑑

→ 𝑊𝑑 , for 𝑑 ≥ 2,

here 𝑈 is defined in (5), and 𝑊𝑑 is defined in (10).

The proof for Theorem 4 is omitted for brevity as it follows from CMT. The consistency of M𝑅 and M𝑅 follow from Theorems 1
and 2, respectively.

5. Simulation studies

In this section, we consider structural shifts in the mean of a multivariate series
{

𝑋𝑡
}

. Simulation studies for the univariate test
KS𝑅, the tests for structural breaks in the median, and the tests for constancy of correlations are all relegated to the supplementary
material. Throughout this section, we set the number of Monte Carlo simulations to 1000, and the significance level to 5%.

5.1. Data generating processes (DGPs)

DGP1 [Simple homoskedastic errors]. We consider a level shift in a bivariate VAR(1) model. Put 𝑋𝑡 = 𝛹𝑋𝑡−1 + 𝜀𝑡, where

𝛹 =
(

0.5 0.0
0.0 0.5

)

and
{

𝜀𝑡
}

follows an i.i.d. 𝑀𝑁
(

𝟎,𝐼2
)

, where “𝑀𝑁 ’’ stands for a “multivariate normal distribution’’ and 𝐼2 is a

2 × 2 identity matrix. This case is identical to two independent series generated from a shift in level in a univariate linear AR
process considered by Shao and Zhang (2010), being aligned together to form a bivariate series.

DGP2 [VAR with homoskedastic errors]. Everything else remains the same as in DGP1, except that we now allow for some cross

dependence in
{

𝑋𝑡
}

and
{

𝜀𝑡
}

, i.e. 𝛹 =
(

0.5 0.1
0.1 0.5

)

and
{

𝜀𝑡
}

∼𝑀𝑁
(

𝟎,𝛴𝜀
)

and 𝛴𝜀 =
(

1.0 0.1
0.1 1.0

)

.

DGP3 [VAR with conditional heteroskedastic errors]. This case is similar to DGP2, except that now the error terms are
conditionally heteroscedastic, such that

{

𝜀𝑡
}

follows a GARCH(1,1) process

𝜀𝑡 = 𝛴1∕2
𝑡 𝑒𝑡,𝜎

2
𝑖,𝑡 =

(

1 − 𝛼1 − 𝛽1
)

+ 𝛼21 𝜀
2
𝑖,𝑡−1 + 𝛽1𝜎

2
𝑖,𝑡−1, 𝑖 = 1, 2,

where 𝛴𝑡 =
(

𝜎21,𝑡 0
0 𝜎22,𝑡

)

,
(

𝛼1, 𝛽1
)

= (0.1, 0.79), and
{

𝑒𝑡
}

is a vector of innovations following an i.i.d. 𝑀𝑁
(

𝟎,𝛴𝜀
)

.

DGP4 [VAR with unconditional heteroskedastic errors]. This case resembles DGP2 and DGP3, except that now there exists a
structural break in volatilities:

𝜎2𝑖,𝑡 = 𝜎0
[

1 + 𝛿𝐼 (𝑡 > 𝑛∕2)
]

, 𝜎0 = 𝛿 = 1, 𝑖 = 1, 2.

We consider the following structural breaks, and set 𝜂 ∈ {0.5, 1.0, …, 2.0}.

(i) Level shift:

𝑌𝑡 =
{

𝑋𝑡,1 ≤ 𝑡 ≤ ⌊𝑛∕2⌋ ,
𝜂 +𝑋𝑡, ⌊𝑛∕2⌋ + 1 ≤ 𝑡 ≤ 𝑛.

(ii) Smooth changes/multiple breaks:
10

𝑌𝑡 = 𝑋𝑡 + 𝜂 (𝑡∕𝑛) .
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Table 3
Sizes, power, and size-adjusted power of the EKS𝑅(2) and G(2) tests for detecting structural change(s) in the mean.

𝜂 n = 250 n = 500

DGP1 DGP2 DGP3 DGP4 DGP1 DGP2 DGP3 DGP4

EKS Size 0 0.062 0.068 0.085 0.079 0.057 0.056 0.068 0.065
G 0 0.099 0.095 0.119 0.124 0.112 0.106 0.095 0.092

Break type (i)

0.5 0.437 0.246 0.283 0.217 0.745 0.457 0.496 0.349
Power 1.0 0.898 0.711 0.687 0.569 0.984 0.961 0.951 0.847

1.5 0.868 0.861 0.836 0.770 0.935 0.977 0.950 0.953
EKS 2.0 0.739 0.835 0.803 0.816 0.841 0.935 0.882 0.944

0.5 0.405 0.202 0.209 0.172 0.729 0.446 0.441 0.310
Size-adjusted 1.0 0.882 0.625 0.573 0.478 0.981 0.960 0.923 0.818
power 1.5 0.845 0.810 0.744 0.699 0.929 0.972 0.928 0.939

2.0 0.708 0.776 0.709 0.750 0.831 0.930 0.852 0.928

0.5 0.541 0.394 0.416 0.305 0.808 0.593 0.639 0.458
Power 1.0 0.957 0.857 0.872 0.728 0.996 0.982 0.973 0.932

1.5 1.000 0.988 0.988 0.948 1.000 1.000 0.999 0.997
G 2.0 1.000 0.999 1.000 0.995 1.000 1.000 1.000 1.000

0.5 0.417 0.260 0.242 0.177 0.695 0.435 0.504 0.337
Size-adjusted 1.0 0.916 0.750 0.720 0.591 0.992 0.959 0.960 0.865
power 1.5 0.996 0.969 0.954 0.861 1.000 0.999 0.998 0.993

2.0 1.000 0.995 0.995 0.980 1.000 1.000 1.000 1.000

Break type (ii)

0.5 0.187 0.148 0.145 0.114 0.384 0.236 0.241 0.186
Power 1.0 0.589 0.373 0.364 0.290 0.898 0.699 0.659 0.498

1.5 0.848 0.650 0.676 0.514 0.969 0.936 0.896 0.803
EKS 2.0 0.856 0.785 0.781 0.675 0.927 0.963 0.943 0.932

0.5 0.164 0.111 0.087 0.082 0.365 0.227 0.197 0.157
Size-adjusted 1.0 0.551 0.304 0.282 0.231 0.882 0.682 0.604 0.457
power 1.5 0.812 0.558 0.547 0.439 0.965 0.930 0.867 0.765

2.0 0.829 0.708 0.677 0.589 0.920 0.956 0.918 0.901

0.5 0.295 0.216 0.207 0.195 0.427 0.326 0.323 0.245
Power 1.0 0.562 0.474 0.520 0.380 0.708 0.628 0.610 0.536

1.5 0.733 0.624 0.669 0.599 0.761 0.761 0.754 0.695
G 2.0 0.749 0.749 0.721 0.688 0.789 0.755 0.767 0.745

0.5 0.176 0.123 0.096 0.097 0.282 0.202 0.210 0.163
Size-adjusted 1.0 0.414 0.340 0.321 0.238 0.550 0.464 0.470 0.385
power 1.5 0.591 0.436 0.462 0.428 0.634 0.619 0.611 0.566

2.0 0.624 0.577 0.504 0.498 0.640 0.598 0.639 0.598

5.2. Structural breaks in mean

Given the presence of conditional/unconditional heteroskedastic errors in DGP3 and DGP4, we consider the LDL decomposition
f the sample variance VAR prewhitened errors

{

𝑒𝑡
}

. This is because, under DGP3 and DGP4, the LDL decomposition based on the
sample variance of

{

𝑋𝑡
}

leads to a slightly over-inflated size, when the sample size 𝑛 is small.10

The results for size, power, and size-adjusted power for the proposed EKS test and Shao and Zhang’s (2010) G test are summarized
in Table 3. The EKS test demonstrates reasonable size and power. The size performance of the EKS test is better than that of the G
test. On the other hand, the G test has higher power under the single structural break in (i), a result that aligns with our expectation,
since the G test is formulated under one structural break point. However, its power performance is worse than EKS under smooth
changes/multiple structural breaks in (ii).

5.3. Further discussion

In the supplementary material, we compare the performances of the proposed univariate KS𝑅 test with Shao and Zhang’s (2010)
G test, the KS tests using the SN approach of Shao (2010) and Lobato (2001) (KS𝑉 ), and the KS0 test based on standard asymptotics.
We also compare the performance of our proposed KS𝑅 test with Zhang and Lavitas’s (2018) T test. Furthermore, we consider the
structural breaks in the median for the same DGPs in Section 5.1. Finally, we apply the proposed ESK test to test the constancy of
the correlation matrix. We report powers using both asymptotic and empirical critical values respectively, we place our focus to the
size-adjusted power of various tests for a fair comparison. The main findings are summarized as follows.

10 The results are available from the authors upon request.
11
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First, unlike the KS𝑉 test, our proposed KS𝑅 test does not suffer from the notorious decreasing power problem when the break
ize increases, which is illustrated by Fig. 1 in Shao and Zhang (2010). Moreover, because there is no need to use forward and
ackward summations as in the G test of Shao and Zhang (2010), KS𝑅 is much more computationally efficient.

Second, KS𝑅 offers superior power and size-adjusted power compared to Shao and Zhang’s (2010) G test when addressing gradual
hifts in mean. On the other hand, the G test typically surpasses KS𝑅 under the one change-point alternative, viz., the specific
cenario for which it is designed. Notably, simulation studies indicate that the adjusted-range based KS𝑅 test might outperform Shao
nd Zhang’s (2010) G test even when there is only one change point. This is particularly the case when the signal-to-noise ratio is
ow, and when the error terms follow a highly skewed Gamma distribution. The first set of results further confirms the findings
f Mandelbrot (1972, 1975) regarding the appealing property of almost-sure convergence of the range statistic for stochastic
rocesses with infinite variance; the second set of results further highlights the robustness of the range.

Third, under the same DGPs as in Zhang and Lavitas (2018), we find that KS𝑅 delivers more accurate sizes when the level of
utocorrelation in {𝑋𝑡} is small; while Shao and Zhang’s (2010) G test is more powerful than KS𝑅 under the one change-point
lternative, KS𝑅 has good power under exact self-canceling breaks; while the G test has low power (DPG2), and both KS𝑅 and the
test have inadequate size-adjusted-powers under oscillating breaks (DGP3).
Fourth, for testing structural breaks in median, Shao and Zhang’s (2010) G test may suffer from the “over-size’’ problem;

hereas the EKS𝑅(𝑞) test delivers better power and size-adjusted powers under DGP2, DGP3 and DGP4 — multivariate series with
utocorrelation and/or conditional/unconditional heteroskedasticity.

Fifth, the adjusted-range based EKS test for constancy of the correlation matrix, denoted as H𝑅 (𝑞), demonstrates adequate sizes,
owers and size-adjusted powers, which show its merit in volatility modeling. In contrast, Shao and Zhang’s (2015) G test suffers
rom an “over-size” problem; its size-adjusted powers are also lower than those of the H𝑅 (𝑞) test.

Sixth, the adjusted-range based KS and EKS tests pose a substantially smaller computational burden. While the theoretical
rameworks of Shao and Zhang (2010) and Zhang and Lavitas (2018) consider the approximately linear statistics in a multivariate
ontext, both of their simulation studies focus on univariate cases, apparently due to computational cost. The computational burden
or Zhang and Lavitas’s (2018) T test statistic is huge for multivariate cases. In fact, the computational burden for Zhang and Lavitas’s
2018) T test statistic is so severe that Zhang and Lavitas (2018) introduce a grid approximation scheme.

Finally, we find, through simulation studies, that for statistical quantities which vary slowly over time, such as the median, or
ecome “almost constants’’ as the estimation horizon increases, such as the correlations, Shao and Zhang’s (2010) G test suffers
rom an “over-size” problem. This is exactly the opposite of the “better size and less power’’ phenomenon documented in the SN
iterature (Shao, 2010; Zhang et al., 2011; Wang and Shao, 2022). Arguably, in spite of formulating multiple piecewise stationary
artitions according to the prespecified change points, in order to reduce the increases of the denominator/self-normalizer, Shao and
hang’s (2010) G test still relies on the SN approach of Lobato (2001) and Shao (2010), whose self-normalizers are the variances of
artial sum processes. For a robust statistical quantity that does not change much (e.g. the median), and is sometimes even “almost
onstants’’ (e.g. the correlation), as the estimation horizon increases, the variance of such a partial sum can become quite small,
hich can lead to over-rejection of the null hypothesis.

. Empirical application

Motivated by the fact that range has been widely applied in volatility estimation (Parkinson, 1980; Alizadeh et al., 2002; Chou
t al., 2010), we consider structural changes in conditional heteroskedasticity in five of the world’s major stock indices from the
st January 2012 to the 31st December 2020. The stock indices considered are the Dow Jones Industrial Average (DJIA), the S&P
omposite Index, the FTSE 100, the CAC 40 and the DAX, which cover the stock markets in the United States, Canada, the United
ingdom, France and Germany.11

Not all markets open on the same days, but too many observations would get lost if we were to remove all the days when there
ere no observations. Thus, we only remove weekend days, we use the R command “na.interp’’ in the “forecast’’ package to

nterpolate the indices, and compute the continuously compounded returns, such that 𝑟𝑗,𝑡 = 100
(

ln𝑃𝑗,𝑡 − ln𝑃𝑗,𝑡−1
)

, where 𝑃𝑗,𝑡 is the
closing price of the stock index 𝑗 at day 𝑡. There are 𝑛 = 2385 observations in each return series

{

𝑟𝑗,𝑡
}

, 1 ≤ 𝑡 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 5. The
rates of return for the DJIA are visualized in Fig. 1, which indicates significant volatility clustering and dependence; particularly,
the volatility burst due to COVID-19.12

The descriptive statistics for daily returns for each stock index are summarized in Table 4. Because the return series are serially
dependent, the normality test of Bai and Ng (2005) is applied here, instead of Bera and Jarque’s (1981) JB test.

Following the standard practice in modeling return series by first considering temporal dependence in conditional mean and
then conditional heteroskedasticity, we first consider the parameter constancy of the conditional mean equation for the ARMA(1,1)-
GARCH(1,1) models, and then extend our approach to multivariate conditionally heteroskedastic scenarios, viz. checking the
rationality of both the constant correlation (CC) model (Bollerslev, 1990) and the DCC model (Engle, 2002), both of which are
widely used in modeling multivariate volatility in empirical finance.

11 The reason why we only consider five stocks here is due to the “curse of dimensionality’’. For a 𝑝×𝑝 correlation matrix, there are 𝑞 = 𝑝 (𝑝 − 1) ∕2 correlation
coefficients to be tested. An increase of one dimension for a 𝑝×𝑝 correlation matrix, will result in an increase of 𝑝 degrees of freedom, i.e. (𝑝 + 1) 𝑝∕2−𝑝 (𝑝 − 1) ∕2 = 𝑝.
This will greatly increase the computational burden, especially for Shao and Zhang’s (2010) G test statistic.

12
12

The patterns of rates of return for the other stock indices are similar, and are relegated to the supplementary material due to page limits.
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Fig. 1. Daily continuously compounded rates of return for the DJIA.

Table 4
Summary statistics of daily continuously compounded rates of return for five major stock indices.

Min Max Mean Std Dev Skewness Kurtosis ADF test Normality test

Dow Jones −13.8418 10.7643 0.0398 1.0571 −1.1809 28.8425 −12.3617*** 12.4313***
SP Composite −13.1761 11.2945 0.0171 0.9273 −1.8542 48.2642 −12.4516*** 28.9615***
FTSE 100 −11.5125 8.6667 0.0089 0.9820 −0.8562 14.2314 −13.7099*** 6.6640**
CAC 40 −13.0983 8.0561 0.0188 1.2074 −0.8108 10.7613 −13.7702*** 7.4173**
DAX −13.0549 10.4143 0.0303 1.2123 −0.6684 10.5644 −13.5273*** 6.3851**

Note: ***, ** and * stand for significance at the 1%, 5% and 10% significance levels, respectively.

Table 5
Average statistics and rejection rates for testing the constancy of parameters for the mean equation of the
ARMA(1,1)-GARCH(1,1) model.

Average statistics Rejection rates

M𝑅 KS0 G M𝑅 KS0 G

Dow Jones 0.7061 0.7926 10.2119 0.1002 0.0000 0.0212
SP Composite 0.7489 0.9672 13.2733 0.1119 0.0159 0.0366
FTSE 100 0.6651 0.6719 7.9438 0.0440 0.0053 0.0069
CAC 40 0.6825 0.7133 9.6142 0.0429 0.0021 0.0090
DAX 0.6838 0.7403 9.6745 0.0551 0.0011 0.0027

.1. Parameter constancy of the conditional mean equation for the ARMA(1,1)-GARCH(1,1) models

Similar to Chan et al. (2021), we specify an ARMA(1,1)-GARCH(1,1) model for each stock index return series, viz.

𝑟𝑡 = 𝜙0 + 𝜙1𝑟𝑡−1 + 𝜉𝑡 + 𝜓𝜉𝑡−1 = 𝜇𝑡 + 𝜉𝑡, (21)

𝜉𝑡 = 𝜎𝑡𝑣𝑡,𝜎
2
𝑡 = 𝜔 + 𝛼𝑟2𝑡−1 + 𝛽𝜎

2
𝑡−1, (22)

here (21) and (22) are mean and variance equations respectively, 𝜃 =
(

𝜙0, 𝜙1, 𝜓, 𝜔, 𝛼, 𝛽
)

are parameters, and 𝑣𝑡 represents an
nobservable shock to 𝜉𝑡, which is usually assumed to be i.i.d. with zero mean and unit variance. The conditional mean of 𝑟𝑡 based
n 𝐹𝑡−1, the information set at 𝑡 − 1, is 𝜇𝑡 = 𝐸

(

𝑟𝑡||𝐹𝑡−1
)

= 𝜙0 + 𝜙1𝑟𝑡−1 + �̂�𝜉𝑡−1.
Thus, the parameter constancy test M𝑅 for conditional mean equations is obtained by plugging 𝑆

(

𝑘, 𝜃
)

= 𝑛−1∕2
∑𝑘
𝑡=1

(

𝑟𝑡 − 𝜇𝑡
)

nto (20). Additionally, we compute the KS test statistic, KS0, based on standard asymptotics and Shao and Zhang’s (2010) G test
tatistic.13 To analyze the data, we employ the rolling window estimation, using a window length of 500, which roughly equals the
umber of trading days in two years. We set the step size to 1 to ensure that all data points are included in the analysis. There
re 1886 steps/windows in total. The results are summarized in Table 5. As indicated in Table 4, all the ADF tests strongly reject
he null hypothesis of a unit root, thus favoring stationarity; we would expect the filtered series

{

𝑟𝑡 − 𝜇𝑡
}

to be stationary, with a
onstant unconditional mean, which is supported by the low rejection rates for all statistics in Table 5. The results of M𝑅 appear to
e more reasonable, as the rejection percentages are close to the 5% significance level.

The test statistic values are visualized in Fig. 2, KS0 is omitted from the visualization, because it rarely rejects. Throughout the
mpirical analysis, the blue dashed lines represent the 5% critical values, and the time index corresponds to the end of each window.

13 When generating KS0, we apply the default setting for the “getLongRunVar’’ function in R, where the bandwidth selection follows Andrews’s (1991)
ethod. Because the SN approach of Shao (2010) can be viewed as a special case of the fixed-𝑏 asymptotics in Kiefer and Vogelsang (2005), when 𝑏 = 1 and

he kernel is the Bartlett kernel, we would like to keep the use of the kernel the same for comparison purposes.
13
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Fig. 2. Statistic values for the proposed M𝑅 test and the G test.

Fig. 3. Values of the proposed H𝑅(10) test and the G(10) test for suitability of the CC model.

From Fig. 2, we can see that the rejections based on KS𝑅 are more evenly distributed across the sample, which is consistent with
the overall stationarity of the rates of return of the DJIA, as seen from Table 4.14

6.2. Suitability of the CC model

Next, we consider the suitability of the CC model. Following Andreou and Ghysels’s (2003) procedure, we test for breaks in
conditional correlations for normalized return series. For each rolling window, we first obtain the 𝜎2𝑡 for each stock index return
series, using ARMA(1,1)-GARCH(1,1) models, in order to generate the normalized return 𝑟∗𝑗,𝑡 = 𝑟𝑗,𝑡∕𝜎𝑗,𝑡, for 𝑗 = 1,… , 5. We then
stack the normalized rates of return to form a 5-variate normalized return vector 𝑟∗𝑡 =

(

𝑟∗1,𝑡, 𝑟
∗
2,𝑡,… , 𝑟∗5,𝑡

)⊺
, and compute the proposed

EKS test statistic H𝑅(10) and Shao and Zhang’s (2010) G test statistic for constancy of correlation coefficients among the 5-variate
normalized return series,

𝜌𝑖𝑗1,𝑘 =

∑𝑘
𝑡=1

(

𝑟∗𝑖,𝑡 − 𝑟∗𝑖,𝑘
)(

𝑟∗𝑗,𝑡 − 𝑟∗𝑗,𝑘
)

√

∑𝑘
𝑡=1

(

𝑟∗𝑖,𝑡 − 𝑟∗𝑖,𝑘
)2

∑𝑘
𝑡=1

(

𝑟∗𝑖,𝑡 − 𝑟∗𝑖,𝑘
)2
,

for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑝, 𝑝 = 5, where 𝑟∗𝑖,𝑘 =
∑𝑘
𝑡=1 𝑟

∗
𝑖,𝑡∕𝑘 and 𝑟∗𝑗,𝑘 =

∑𝑘
𝑡=1 𝑟

∗
𝑗,𝑡∕𝑘. Note 𝜌𝑖𝑗1,𝑘 is the (𝑖, 𝑗)’th component from the sample

correlation matrix calculated from the sub-sample 𝑡 = 1, 2,… , 𝑘. In the supplementary material, we demonstrate, both through
theoretical derivation and simulation studies, the use of the adjusted-range based EKS test and Shao and Zhang’s (2010) G test on
testing constancy of correlation matrices. We perform the proposed EKS test and Shao and Zhang’s (2010) G test for the 1886 rolling
windows, their averaged statistic values are 2.879 and 207.099, and the rejection rates are 0.411 and 0.371, respectively. Both
results clearly suggest that the CC model is inadequate; in other words, the correlation structures among the 5 stock indices change
over time. The statistic values are visualized in Fig. 3, the rejection patterns of both the H𝑅(10) test and the G test are similar.15

14 The plots based on results from other stock indices reveal the same finding, see the supplementary material for detail.
15 The maximum value of the G test statistics is 19, 606.0600, which happens during the window ending on the 12th of March 2020, the value was removed

from visualization as it pushes the plot almost flat. The value of the proposed H𝑅(10) test on that date is 5.0564, which shows up as a peak as well.
14
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Table 6
Average M𝑅(8) and G(8) test statistics and rejection rates for constancy of parameter tests for the bivariate
DCC-GARCH(1,1) model.

Stock indices Average statistics Rejection rates

M𝑅(8) G(8) M𝑅(8) G(8)

Dow Jones SP Composite 2.0931 205.8848 0.1625 0.1292
Dow Jones FTSE 100 2.2257 180.3565 0.2168 0.0641
Dow Jones CAC 40 2.1329 195.0296 0.1919 0.0913
Dow Jones DAX 2.1666 197.6643 0.1948 0.1086
SP Composite FTSE 100 2.1357 185.5688 0.1629 0.0782
SP Composite CAC 40 2.0673 183.8792 0.1316 0.0885
SP Composite DAX 2.0864 184.7184 0.1414 0.0815
FTSE 100 CAC 40 2.1365 201.9721 0.1489 0.1287
FTSE 100 DAX 2.1712 186.8859 0.1489 0.0698
CAC 40 DAX 2.2103 193.8053 0.1774 0.0698

6.3. Parameter constancy of the DCC model

Like Pape et al. (2021), we consider the suitability of the DCC model. To avoid the “curse of dimensionality’’ problem, we
onsider the following bivariate DCC-GARCH(1,1) model:

�̃�𝑡 = 𝐻1∕2
𝑡 𝜖𝑡, 𝐻𝑡 = 𝐷𝑡𝑆𝑡𝐷𝑡, (23)

ℎ11,𝑡 = 𝑐11 + 𝑎11,1 �̃�21,𝑡−1 + 𝑔11,1ℎ11,𝑡−1,ℎ22,𝑡 = 𝑐11 + 𝑎22,1 �̃�21,𝑡−1 + 𝑔22,1ℎ22,𝑡−1, (24)

𝑆𝑡 =
(

1 𝑠12,𝑡
𝑠12,𝑡 1

)

,𝑠12,𝑡 =
𝑞12,𝑡

√

𝑞11,𝑡, 𝑞22,𝑡
, (25)

𝑞12,𝑡 = (1 − 𝛼 − 𝛽) + 𝛼
�̃�1,𝑡−1
√

ℎ11,𝑡

�̃�2,𝑡−1
√

ℎ22,𝑡
+ 𝛽𝑞12,𝑡−1, (26)

𝑞11,𝑡 = (1 − 𝛼 − 𝛽) + 𝛼
�̃�21,𝑡−1
ℎ11,𝑡

+ 𝛽𝑞11,𝑡−1, 𝑞22,𝑡 = (1 − 𝛼 − 𝛽) + 𝛼
�̃�22,𝑡−1
ℎ22,𝑡

+ 𝛽𝑞22,𝑡−1, (27)

where
{

�̃�𝑡
}

is the filtered rates of returns by removing temporal dependence using ARMA(1,1) models, 𝐻𝑡 is the conditional variance
matrix of

{

�̃�𝑡
}

, 𝜖𝑡 is the innovation at time 𝑡, 𝐷𝑡 is the diagonal matrix with conditional standard deviations, and 𝑆𝑡 is the time-varying
conditional correlational matrix at time 𝑡. There are eight parameters

(

𝛼, 𝛽, 𝑐11, 𝑐22, 𝑎11,1, 𝑎22,1, 𝑔11,1, 𝑔22,1
)

in total. The estimation is
conducted by assuming that

{

𝜖𝑡
}

follows an i.i.d. 𝑀𝑁(0, 𝐼2). When the multivariate normality of
{

𝜖𝑡
}

is violated, the ML estimation
method becomes the quasi-ML method. As demonstrated by Pape et al. (2021) and Section 4, testing parameter constancy is
equivalent to testing structural breaks in scores. Similar to the first and second cases, we consider rolling window estimation, we
set the length of the window to be 250 and the step to be 1, and thus, there are 2136 rolling windows in total. The reduction of
window length is due to the computational burden of generating Shao and Zhang’s (2010) G test statistic.

The average statistics and rejection rates are presented in Table 6. The rejection rates based on G(8) are close to the 5%
significance level, while those from M𝑅(8) are considerably higher. Given that self-normalized tests, based on Shao and Zhang’s
(2010) SN approach, tend to suffer from a “better size but less power’’ phenomenon, these results suggest that there might be
periods in these stock markets when the DCC-GARCH(1,1) model does not fully capture the underlying dynamics. This is potentially
because we specified the model to be the DCC-GARCH(1,1), which is a presumption rather than a model specification informed by
the actual volatility dynamics. Nevertheless, for both the M𝑅(8) and G(8) test statistics, the rejection rates are substantially lower
for the CC model. This suggests the importance of considering dynamic changes in correlation structures.16

7. Conclusion

In this paper, we propose using the adjusted range of the partial sum of a time series as a novel self-normalizer instead of its
sample variance, thus developing an alternative SN approach to that of Lobato (2001) and Shao and Zhang (2010). Since the range
has the well-known robustness properties, the proposed adjusted-range based SN approach has the appealing properties of being
robust to different types of structural breaks under different DGPs. Three scenarios are considered: testing for structural change in
the mean of a time series, testing for structural changes for approximately linear statistics, and testing parameter constancy in time
series regression. Testing for constancy of correlation coefficients/matrices is relegated to the supplementary materials, due to page
limits.

Like Shao and Zhang’s (2010) G test, our proposed adjusted-range based KS and EKS test statistics do not involve any user
specified inputs or tuning parameters. And there is also no need to use forward and backward summations or pre-specification

16 Visualizations related to these findings are provided in the supplementary material.
15
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of structural break points, as in Shao and Zhang’s (2010) G test statistic, or the construction of a contrast process and a grid
approximation to speed computation even for univariate series as in Zhang and Lavitas (2018). As a result, the adjusted-range
based KS and EKS test statistics can greatly simplify and speed up the computation involved.

Monte Carlo simulations show that the use of the adjusted-range as a self-normalizer can rectify the nonmonotonic power problem
hen the break size increases, which are present under the SN approach of Shao (2010) and Lobato (2001). In general, adjusted-

ange based test statistics offer reasonable sizes and adequate power even under autocorrelation and conditional/unconditional
eteroskedastic errors, whereas Shao and Zhang’s (2010) G test is optimal if the break points are correctly specified. Notably,
imulation studies indicate that the adjusted-range based KS𝑅 test might outperform Shao and Zhang’s (2010) G test even when

there is only one change point. This is particularly the case when the signal-to-noise ratio is low. Such results further confirm the
findings of Mandelbrot (1972, 1975) regarding the appealing property of almost-sure convergence of the range statistic for stochastic
processes with infinite variance. Another notable instance is when the error terms follow a highly skewed Gamma distribution, the
adjusted-range based KS𝑅 can outperforms Shao and Zhang’s (2010) G, which further underscores the robustness of the range.

Our simulation results also confirm the merits of the adjusted-range based KS type statistics. In particular, for statistical quantities
hat do not vary much over time, such as medians and correlation coefficients, Shao and Zhang’s (2010) G test statistic suffers from
n “over-size problem’’, which supplements the existing finding that the self-normalized tests usually suffer from a “better size but
ess power’’ problem (Shao, 2010; Zhang et al., 2011; Wang and Shao, 2022). Finally, the empirical studies demonstrate the merit
f the adjusted-range based KS type statistics in examining the suitability of CC and DCC models.

As a generally applicable SN approach, we could extend the adjusted-range based SN approach to construct confidence intervals,
etecting parameter changes sequentially, estimating the locations of break points, or extending the structural break tests to
unctional data possibly of infinite dimension. These topics will be pursued in subsequent research.
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ppendix A. Proof of the main results

.1. Proof of Theorem 1

As discussed in the supplementary material, the lower and upper bounds of KS𝑅 are 0 and 1, respectively. Therefore, to establish
he consistency of KS𝑅, it suffices to demonstrate that KS𝑅 = 1 almost surely (a.s.). Under the one change-point alternative
ypothesis H(1)∗

1 , we have 𝑋𝑡 = 𝑥𝑡 for 1 < 𝑡 ≤ 𝑘∗ and 𝑋𝑡 = 𝑦𝑡 = 𝑥𝑡 + 𝛿 for 𝑘∗ < 𝑡 ≤ 𝑛; finally, set 𝑥 = 𝑛−1
∑𝑛
𝑡=1 𝑥𝑡

𝑝
→ 𝜇 < ∞

and 𝑠0 = 𝑘∗∕𝑛.
Consider the mean of 𝑋𝑡,

𝑋𝑛 =
1
𝑛

𝑛
∑

𝑡=1
𝑋𝑡 =

1
𝑛

[ 𝑘∗
∑

𝑡=1
𝑥𝑡 +

𝑛
∑

𝑡=𝑘∗+1

(

𝑥𝑡 + 𝛿
)

]

= 1
𝑛

[ 𝑛
∑

𝑡=1
𝑥𝑡 + (𝑛 − 𝑘) 𝛿

]

= 𝑥 +
(

1 − 𝑠0
)

𝛿
𝑝
→ 𝜇 +

(

1 − 𝑠0
)

𝛿 <∞ if 𝛿 is fixed.

At 𝑘 = 𝑘∗, T𝑛 (𝑘) → ∞ when 𝑛→ ∞. To see how, first consider 1 < 𝑘 ≤ 𝑘∗,

T𝑛 (𝑘) = 𝑛−1∕2
𝑘
∑

𝑡=1

(

𝑋𝑡 −𝑋𝑛

)

= 𝑛−1∕2
𝑘
∑

𝑡=1

[(

𝑥𝑡 − 𝑥
)

−
(

1 − 𝑠0
)

𝛿
]

,

where 𝑥 = 𝑛−1
∑𝑛
𝑡=1 𝑥𝑡; so for each increment

(

𝑋𝑡 −𝑋𝑛

)

, there is an “−𝑛−1∕2
(

1 − 𝑠0
)

𝛿’’ negative/positive shift, if 𝛿 is posi-
tive/negative; consequently, the resulting CUSUM process T𝑛 (𝑘) has a deterministic downward/upward trend. However, when
𝑘∗ < 𝑘 ≤ 𝑛,

T𝑛 (𝑘) =
1
𝑛1∕2

𝑘∗
∑

𝑡=1

(

𝑋𝑡 −𝑋𝑛

)

= 1
𝑛1∕2

𝑘∗
∑

𝑡=1

[(

𝑥𝑡 − 𝑥
)

−
(

1 − 𝑠0
)

𝛿
]

+
𝑛
∑

𝑡=𝑘∗+1

[(

𝑥𝑡 − 𝑥
)

+ 𝛿𝑠0
]

,

𝑛 (𝑘) begins to exhibit an upward/downward trend instead; in other words, the trend gets reversed.
Specifically, T𝑛 (𝑘) can be written as

T𝑛 (𝑘) =
1
1∕2

( 𝑘
∑

𝑋𝑡 −𝑋𝑛

)

= 1
1∕2

[

𝑛 − 𝑘
𝑘
∑

𝑋𝑡 −
𝑘

𝑛
∑

𝑋𝑡

]

16
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w

=
(𝑛 − 𝑘)
𝑛3∕2

𝑘
∑

𝑡=1
𝑋𝑡 −

𝑘
𝑛3∕2

𝑛
∑

𝑡=𝑘+1
𝑋𝑡 =

𝑘 (𝑛 − 𝑘)
𝑛3∕2

[

𝑘−1
𝑘
∑

𝑡=1
𝑋𝑡 − (𝑛 − 𝑘)−1

𝑛
∑

𝑡=𝑘+1
𝑋𝑡

]

.

As a result,

T𝑛
(

𝑘∗
)

=
𝑘∗ (𝑛 − 𝑘∗)

𝑛3∕2

[

(

𝑘∗
)−1

𝑘∗
∑

𝑡=1

(

𝑥𝑡
)

−
(

𝑛 − 𝑘∗
)−1

𝑛
∑

𝑡=𝑘∗+1

(

𝑥𝑡 + 𝛿
)

]

=
𝑘∗ (𝑛 − 𝑘∗)

𝑛3∕2

{

(

𝑘∗
)−1

𝑘∗
∑

𝑡=1

(

𝑥𝑡 − 𝜇
)

−
(

𝑛 − 𝑘∗
)−1

𝑛
∑

𝑡=𝑘∗+1

(

𝑥𝑡 − 𝜇
)

− 𝛿

}

= 𝑛 − 𝑘∗

𝑛3∕2

𝑘∗
∑

𝑡=1

(

𝑥𝑡 − 𝜇
)

− 𝑘∗

𝑛3∕2

𝑛
∑

𝑡=𝑘∗+1

(

𝑥𝑡 − 𝜇
)

−
𝑘∗ (𝑛 − 𝑘∗)

𝑛3∕2
𝛿;

if 𝑠0 ∈ (0, 1), we have

T𝑛
(

𝑘∗
) 𝑑
→ 𝑠1∕20

(

1 − 𝑠0
)

𝜎𝑥𝐵 (1) − 𝑠0
(

1 − 𝑠0
)1∕2 𝜎𝑥𝐵 (1) − 𝑠0

(

1 − 𝑠0
) (

𝑛1∕2𝛿
)

,

where 𝐵 (1) and 𝐵 (1) are two independent copies, and 𝜎2𝑥 is the LRV of 𝑥. Thus, if 𝛿 > 0, T𝑛 (𝑘∗) → −∞ and max1≤𝑘≤𝑛 T𝑛 (𝑘) ∕T𝑛 (𝑘∗) =
𝑜𝑝 (1); and if 𝛿 < 0, T𝑛 (𝑘∗) → ∞ and min1≤𝑘≤𝑛 T𝑛 (𝑘) ∕T𝑛 (𝑘∗) = 𝑜𝑝 (1).

Consequently, when 𝛿 > 0, and as 𝑛→ ∞,

KS𝑅 =
max1≤𝑘≤𝑛 ||T𝑛 (𝑘)||

max1≤𝑘≤𝑛 T𝑛 (𝑘) − min1≤𝑘≤𝑛 T𝑛 (𝑘)
=

|

|

T𝑛 (𝑘∗)||
max1≤𝑘≤𝑛 T𝑛 (𝑘) − T𝑛 (𝑘∗)

= 1 a.s.

When 𝛿 < 0, and as 𝑛→ ∞,

KS𝑅 =
max1≤𝑘≤𝑛 ||T𝑛 (𝑘)||

max1≤𝑘≤𝑛 ||T𝑛 (𝑘)|| − min1≤𝑘≤𝑛 T𝑛 (𝑘)
=

|

|

T𝑛 (𝑘∗)||
T𝑛 (𝑘∗) − min1≤𝑘≤𝑛 T𝑛 (𝑘)

= 1 a.s.

If 𝛿 = 𝑛−1∕2𝜂 and 𝜂 ≠ 0, we have

T𝑛
(

𝑘∗
) 𝑑
→ 𝑠1∕20

(

1 − 𝑠0
)

𝜎𝑥𝐵 (1) − 𝑠0
(

1 − 𝑠0
)1∕2 𝜎𝑥𝐵 (1) − 𝑠0

(

1 − 𝑠0
)

𝜂.

As 𝜂 → ∞, T𝑛 (𝑘∗) → −∞, and max1≤𝑘≤𝑛 T𝑛 (𝑘) ∕T𝑛 (𝑘∗) = 𝑜𝑝 (1); while as 𝜂 → −∞, T𝑛 (𝑘∗) → ∞, and min1≤𝑘≤𝑛 T𝑛 (𝑘) ∕T𝑛 (𝑘∗) = 𝑜𝑝 (1);
thus, as 𝑛→ ∞ and |𝜂| → ∞, we have KS𝑅 = 1 a.s. □

A.2. Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1. T𝑛 (𝑘) =
(

T(1)
𝑛 (𝑘) ,… ,T(𝑚)

𝑛 (𝑘)
)⊺

, where T(𝑖)
𝑛 (𝑘) = 𝑛−1∕2

∑𝑘
𝑡=1

(

𝑋𝑖,𝑡 −𝑋𝑖,𝑛

)

nd 𝑖 = 1,… , 𝑚. Consider the case when 𝐶 is an identity matrix, or equivalently,
{

𝑋𝑖,𝑡
}

are independent of each other, EKS𝑅(𝑚)
an be expanded such that

EKS𝑅(𝑚) = max
1≤𝑘≤𝑛

⎡

⎢

⎢

⎣

(

T(1)
𝑛 (𝑘)

max T(1)
𝑛 (𝑘) − min T(1)

𝑛 (𝑘)

)2

+⋯ +

(

T(𝑚)
𝑛 (𝑘)

max T(𝑚)
𝑛 (𝑘) − min T(𝑚)

𝑛 (𝑘)

)2
⎤

⎥

⎥

⎦

≤
(

KS𝑅
(

𝑘∗1
))2 +⋯ +

(

KS𝑅
(

𝑘∗𝑚
))2 , (A.1)

here

KS𝑅
(

𝑘∗𝑖
)

=
⎛

⎜

⎜

⎝

max1≤𝑘𝑖≤𝑛
|

|

|

T(𝑖)
𝑛
(

𝑘𝑖
)

|

|

|

max1≤𝑘𝑖≤𝑛 T
(𝑖)
𝑛
(

𝑘𝑖
)

− min1≤𝑘1≤𝑛 T
(𝑖)
𝑛
(

𝑘𝑖
)

⎞

⎟

⎟

⎠

2

.

KS𝑅
(

𝑘∗𝑖
)

, 𝑖 = 1,… , 𝑚, are independent copies of each other; and “=” in (A.1) holds when 𝑘 = 𝑘∗1 = ⋯ = 𝑘∗𝑚, which is precisely the
alternative hypothesis under consideration.

Following the proof of Theorem 1, KS𝑅
(

𝑘∗𝑖
)

attains its maximum at 𝑘∗𝑖 which converges to 1. Therefore,

EKS𝑅(𝑚) =𝑚 a.s.

as 𝑛 → ∞, when 𝑠0 ∈ (0, 1) and 𝛥𝑛 ≠ 0 is fixed, alternatively, if 𝛥𝑛 = 𝑛−1∕2𝜂, 𝜂 =
(

𝜂(1),… , 𝜂(𝑚)
)⊺ ≠ 𝟎, and |𝜂| → ∞. The conclusion

follows.
When we consider the case when there is cross dependence in 𝑋𝑡, all we need is the finite variance for 𝑋𝑡 to obtain an estimate

for 𝐶, which is guaranteed by Assumptions 1 or 2. We know that 𝐶
𝑝
→ 𝐶 as 𝑛→ ∞. The result of Theorem 2 follows from CMT. □
17
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A.3. Proof of Theorem 3

From (14), for 1 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑛, we have

𝑡∗1
(

𝜃∗1,𝑡1 − 𝜃
∗
1,𝑡2

)

=

( 𝑡1
∑

𝑡=1
𝐈𝐅

(

𝑢𝑡; �̃�𝑚
)

−
𝑡1
𝑡2
𝐈𝐅

(

𝑢𝑡; �̃�𝑚
)

)

+
(

𝑡1�̃�1,𝑡1 −
𝑡1
𝑡2
�̃�1,𝑡2

)

, (A.2)

here �̃�𝑚 is the 𝑚th marginal distribution of �̂�𝑡. From Assumption 2, we have

𝑛−1∕2
⌊𝑠𝑛⌋
∑

𝑡=1
𝐈𝐅

(

�̂�𝑡; �̃�𝑚
)

⇒ 𝛥𝐁𝑞 (𝑠) . (A.3)

Because �̂�𝑡 is a linear/affine transformation of 𝑌𝑡, from Assumption 3, we know that both �̃�1,𝑡1 and �̃�1,𝑡2 are negligible, which
combined with (A.3), indicates the joint convergences of

T∗
𝑛 (𝑘) ⇒ 𝛥𝐁 (𝑠)

and
[

diag
(

R̃𝑛
)]2

⇒ 𝛥diag
(

sup
𝑠∈[0,1]

B𝑞 (𝑠) − inf
𝑠∈[0,1]

B𝑞 (𝑠)
)2

𝛥⊺.

The result of Theorem 3 follows from CMT. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2023.105603.
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