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ABSTRACT

Bubbles often appear in non-Newtonian liquids from nature, engineering to biomedical applications, but their study has been under research
compared to their Newtonian counterpart. Here, we extend the axisymmetric modeling of Lind and Phillips to three-dimensional modeling.
The approach is based on the boundary integral method coupled with the Maxwell constitutive equation. The flow is assumed to have moder-
ate to high Reynolds numbers and, thus, is irrotational in the bulk domain. The viscoelastic effects are incorporated approximately in the nor-
mal stress balance at the bubble surface. The numerical model has excellent agreement with the corresponding Rayleigh–Plesset equation for
spherical bubbles in a non-Newtonian liquid. Computations are carried out for a bubble near a corner at various angles. The numerical results
agree very well with the experiments for bubbles in a Newtonian fluid in a corner. As the Deborah number increases, the amplitude and
period of the bubble oscillation increase, the bubble migration to the corner enhances, and the bubble jet is broader, flatter, and inclined
more to the further boundary. This implies an improvement to surface cleaning of all surrounding boundaries for ultrasonic cavitation clean-
ing and results in greater administration of noninvasive therapy and drug delivery.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0170820

I. INTRODUCTION

Bubbles in non-Newtonian fluids are widely encountered in vari-
ous domains such as decompression sickness,1 volcanic eruption,2

glass manufacture, materials, petrochemicals, metallurgy, and different
dispersed systems.3 Certain additions of polymers have been reported
to affect cavitation damage4–6 and noise.7

Biomedical applications include nondestructive medical imag-
ing,8 extracorporeal shock wave lithotripsy,9 treatment of kidney
stones,10 and noninvasive therapy and drug delivery.11–14 The non-
Newtonian properties of the fluid are important due to the rheological
properties of the blood and other bodily fluids.15,16

The behavior of viscoelastic fluids is characterized by performing
experiments in the laboratory using a rheometer. Examples of simple
flows that are studied include simple shear flow, extensional flow, and
oscillatory shear flow. The latter is used to determine the relaxation
times of the fluid, a key measure of the viscoelastic nature of the fluid.
There are two classes of fluids that often display Maxwell-like behavior
in the normal measuring range (10�2 � 102 Hz) with the expected

shapes of the curves for the storage and loss moduli and a single relax-
ation time. (Note that this frequency range refers to the experiments
conducted by the rheometer and not the oscillatory frequency of the
bubble.) These are associative thickener-type polymers [e.g., hydro-
phobic ethoxylated urethane (HEUR)]17 and worm-like surfactant
micellar systems (e.g., aqueous surfactant solutions containing thread-
like micelles).18–20 Fluids in the latter class are sometimes called “living
polymers” because if they break under large stresses, they can reconsti-
tute under conditions of rest or low stress.

Extensive research has been developed for bubbles in a
Newtonian fluid.21,22 One of the computational models that has been
used widely in bubble simulations is the boundary integral method
(BIM) based on a potential flow theory for inertially dominant
flows.23,24 The BIM is accurate and efficient in modeling three-
dimensional complex bubble dynamics and its interaction with rigid,
free, and elastic boundaries.25–29 Weak viscous effects are approxi-
mated in this model using the viscous pressure correction, which is
determined by the conservation of energy at the interface.30,31
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Bubble dynamics were also simulated based on the Navier–Stokes
equations using the finite volume method (FVM)32–36 or finite element
method.37,38 These are mainly for axisymmetric profiles.

Contrary to Newtonian bubble dynamics, investigations on bub-
bles in non-Newtonian fluids have been sparse. A rising bubble in a
non-Newtonian fluid was observed experimentally by Wagner et al.39

This was numerically simulated by Lind and Phillips,40 using the BIM
along with Maxwell’s constitutive equation. Lind and Phillips41 also
simulated bubbles near a free surface. Liu et al.42 computed equally
spaced bubbles rising in a viscoelastic fluid.

Recent developments have focused on a three-dimensional bub-
ble rising in a viscoelastic fluid,43,44 with particular emphasis on pre-
dictions of the velocity discontinuity at critical volume.45,46 However,
the domain still remains radially symmetric, and three-dimensional
effects are scarcely analyzed.

In Secs. II and III, we extend the axisymmetric viscoelastic BIM
of Lind and Phillips40,41,47 to three-dimensional modeling. The visco-
elastic liquid is modeled using the Maxwell constitutive equation. The
flow is assumed to have moderate to high Reynolds numbers and,
thus, is irrotational in the bulk domain. The viscoelastic effects are
approximately included in the normal stress balance at the bubble sur-
face. In Sec. IV, the numerical model is validated by comparing with
the corresponding Rayleigh–Plesset equation for spherical bubbles in a
non-Newtonian liquid and experiments for bubbles in Newtonian fluid
in a corner. In Sec. V, computations are performed for a bubble near a
corner at various corner angles using Green’s function for Laplace’s
equation in the corner domain. Viscoelastic effects are studied in terms
of the Deborah number De. In Sec. VI, some conclusions are made
with reference to the bubble radius amplitude, oscillation period,
migration to the corner, Kelvin impulse, and bubble jet profile.

II. PHYSICAL ANDMATHEMATICAL MODEL

We consider a bubble in a viscoelastic fluid located near a corner
formed by two rigid flat boundaries. We assume that the associated liq-
uid flow has moderate to high Reynolds numbers, and thus, viscoelas-
tic effects are negligible in the bulk. The viscoelastic effects are not
negligible in a thin viscous layer at the bubble surface, which is approx-
imated only through the normal stress balance. Viscous fluid dynamics
can be described approximately by potential flows when the vorticity is
small or is confined to a narrow layer near the boundary.48 It is partic-
ularly useful for a gas–liquid two-phase flow with an interface.

Assuming that the flow is irrotational and incompressible in the
bulk, the velocity, u� ¼ r�/� satisfies Laplace’s equation in the fluid
given by

r�2/� ¼ 0: (1)

The kinematic boundary conditions on the two rigid boundaries, SW,
the bubble surface SB, and the far field are given, respectively, by

@/�

@n
¼ 0 on SW ; (2)

Dr�p
Dt�

¼ r�/� on SB; (3)

r/� ¼ 0 as r� ! 1; (4)

where r�p is a material point at the bubble surface and r� is a field
point.

At any instant in time, the fluid pressure at the bubble surface is
related to the bubble pressure and viscoelastic effects, through the nor-
mal stress balance40,47

P�
L þ P�

vc ¼ P�
B � 2rj� þ T�

nn; (5)

where P�
L is the liquid pressure on the bubble surface, r is the surface

tension coefficient, j� is the curvature of the bubble surface, P�
B is the

internal pressure of bubble gases, and T�
nn represents the component of

deviatoric stress on the bubble surface. Here, P�
vc is proportional to the

normal stress T�
nn induced by the irrotational velocity P�

vc ¼ �CT�
nn

where the constant C, given by Manmi and Q.Wang,30 is

C ¼

ð
S
r�/� � @r

�/�

@n
dS

ð
S

@/�

@n
@2/�

@n2
dS

� 1: (6)

Maxwell’s constitutive equation is used to model the non-
Newtonian properties of the fluid. The equation yields a general irrota-
tional equation of motion and provides no contribution to stress in the
bulk49 and so the viscoelastic effects only appear in the normal stress
balance condition. However, the model comes with the limitation of
only being applicable for small deformations.50 Thus, a “material”
Maxwell model is used. The material Maxwell model means that the
material time derivative collapses to a time derivative in the particle
reference frame and can, therefore, be easily calculated.40

The Maxwell model can be applicable based on the following rea-
sons: the bubble is approximately spherical during most of its lifetime
due to surface tension. It may become non-spherical during a very
short period at the end of collapse when the inertial effects are domi-
nant and the viscoelastic effects are negligible. In addition, as for the
moderate Reynolds number Newtonian case, jet formation is
completely suppressed in the case of a bubble in a viscoelastic fluid
near a rigid boundary.51 Jet suppression has also been seen experimen-
tally in viscoelastic fluids.52,53

Maxwell’s constitutive equation is given by54

k1
DT�

nn

Dt�
þ T�

nn ¼ 2lL
@2/�

@n2
; (7)

where k1 is the relaxation time of the fluid.
For general constitutive equations, we cannot find a function w

that satisfies r � T ¼ rw for general irrotational flows.49 In these sit-
uations, we have r�r � T 6¼ 0 even though r� u ¼ 0, for velocity
u. We cannot always find a function w satisfying the above equation so
that not all fluids will satisfy a Bernoulli equation. However, under the
assumptions described above, the admissibility condition can be satis-
fied in an approximate sense for moderate to large Reynolds numbers
since r � T becomes small compared to inertial terms in the momen-
tum equation in the bulk of the flow.47 Hence, a Bernoulli equation is
admissible for inviscid Newtonian, viscous Newtonian, and linear
Maxwell fluids with appropriate Reynolds numbers, where w¼ 0.
Therefore, under such a condition, the potential flow theory can accu-
rately provide a three-dimensional description for a bubble in a
Maxwell fluid.

Assuming that the gas-bubble is adiabatic, the pressure inside the
bubble is given by
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P�
B ¼ Pv þ Pg ¼ Pv þ Pg0

V0

V

� �f

; (8)

where Pg0 is the initial partial pressure of the gas, V0 is the initial vol-
ume of the bubble, and f is the heat capacity ratio.

Using Bernoulli’s equation for the velocity potential and equation
(5), we obtain

q
D/�

Dt�
¼ q

2
jr�/�j2 � qgz� � Pv þ Pg0

�
V0

V

�f

� 2rj� þ T�
nn þ P0;

(9)

where q is the density of the surrounding fluid, g is the gravitational
constant, and P0 is the ambient pressure of the fluid surrounding the
bubble.

From now on the non-spherical bubble model is converted into a
nondimensional problem with the length scale being the initial bubble
radius R0 and the pressure scale being P0 � Pv . The stand-off distan-
ces, cN and cF, are the normalized distances between the bubble center
and the near and far wall, respectively. Hence, we obtain the dimen-
sionless model for the non-spherical bubble

ujSB ¼
Drp
Dt

¼ r/jSB ; (10)

D/
Dt

¼ 1þ 1
2
jr/j2 � d2z � e

�
V0

V

�f

þ 2j
We

� 2C
Re

@2/
@n2

� Tnn; (11)

De
DTnn

Dt
þ Tnn ¼ 2

Re
@2/
@n2

; (12)

where d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gRmq=ðP1 � PvÞ

p
is the buoyancy parameter, e ¼ Pg0=

ðP0 � PvÞ is a measure of the initial bubble gas pressure, We ¼ R0ðP0
� PvÞ=r is the Weber number measuring the effect of surface ten-
sion,56 and Re ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðP0 � PvÞq
p

=lL is the Reynolds number.30 The
Deborah number,De, of the fluid is given by57

De ¼ k1
R0

�
Po � Pv

q

�1
2

: (13)

We note that as k1 approaches zero, that is, the relaxation time of the
fluid becomes instantaneous, De also approaches zero, and the
Maxwell model reverts back to the Newtonian model.

III. NUMERICAL MODEL

The initial mesh is first approximated using an icosahedron with
20 equal-sized triangles and 12 nodes situated on a spherical bubble
surface. The mesh is then improved by dividing each triangle into four
smaller triangles with new nodes added at the midpoint of each line
segment and projected onto the surface of a sphere. On each triangular
element, the field point, r, velocity potential, /, and normal velocity,
@/=@n, are linearly interpolated.25

A high-quality surface mesh of the bubble surface is maintained
by implementing a hybrid of the Lagrangian method and elastic mesh
technique.58 The bubble surface and potential distribution were inter-
polated using a polynomial scheme coupled with the moving least
squares method for calculating the surface curvature and tangential
velocity on the surface.59,60

The boundary integral method (BIM) can be implemented with
Green’s second identity given by

cðr; tÞ/ðr; tÞ ¼
ð
@X

@/ðq; tÞ
@n

Gðr; qÞ � /ðq; tÞ @Gðr; qÞ
@n

� �
dS; (14)

where cðr; tÞ is the solid angle, n is the unit outward facing normal at
the surface, and @X represents every boundary in the domain, X. For a
corner angle of p=k, for some natural number, k, Green’s function is
given by

Gðr; qÞ ¼
X2k�1

j¼0

1
jr � qjj

; (15)

where q0 is the source point and qj are the image points of q0 for
j ¼ 1; 2;…; 2k� 1. The images were provided by Kucera and Blake61

and Tagawa and Peters.62 A proof is provided by Wang et al.63

To calculate the normal stress, Tnn, we need to calculate
@2/=@n2. This is calculated using the following equation:

@2/
@n2

¼ n � @

@n
r/ ¼ nx

@/x

@n
þ ny

@/y

@n
þ nz

@/z

@n
: (16)

Since / satisfies Laplace’s equation (1) and Green’s second identity
(14), so do /x; /y and /z can be calculated using the BIM.

Once @2/=@n2 is found, the normal stress, Tnn, can be obtained
using a backward Euler approximation57 for Maxwell’s constitutive
equation (12), given by

De
TnnðxðtÞ; tÞ � Tnnðxðt � DtÞ; t � DtÞ

Dt

� �

þ TnnðxðtÞ; tÞ ¼ 2ð1þ CÞ
Re

@2/
@n2

; (17)

where the variable time step is chosen as

Dt ¼ D/

max

����1þ 1
2
jr/j2 � e

�
V0

V

�f

þ 2j
We

� 2C
Re

@2/
@n2

� Tnn

����
(18)

for some constant D/ found experimentally.
The BIM is grid-free in the flow domain making it computation-

ally efficient; thus, the approach has been used extensively in many
bubble dynamics simulations. At each time step, the bubble surface
and potential distribution on the surface are known. The tangential
velocity on the bubble surface is computed from the gradient of the
potential using a polynomial interpolation combined with a least
squares method. An advanced Linear Algebra Package (LAPACK) is
used to solve the linear system (14) with a seven-point Gaussian quad-
rature being used to integrate the off diagonal elements of the matrix
of coefficients. The weak singularities that occur in Eq. (15) are dealt
with via a change to polar coordinates.64,65 The remaining singularities
are eliminated by adopting a 4p rule.60 Solving the boundary integral
equation (14) yields the normal velocity on the surface. The bubble
surface and potential distribution are updated on the bubble surface
using Eqs. (10) and (18), with a second-order Runge–Kutta scheme.
The stress tensor component, Tnn, is then calculated using a backward
Euler method. A variable time step (18) is chosen for accuracy and effi-
ciency, with the maximum change of potential at each time step being
dependent on constant D/.23,66 A hybrid approach for the Lagrangian
method and elastic mesh technique is implemented to maintain a high
quality surface mesh throughout the simulations.58
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IV. VALIDATION
A. Comparison with the Rayleigh–Plesset equation

We first compare the predictions of our numerical model with
the solution of the Rayleigh–Plesset equation (RPE) for a spherical
bubble with radius R(t) in a non-Newtonian fluid given by

R
d2R
dt2

¼ e
R0

R

� �3c

� 1� 3
2

dR
dt

� �2

� 2
We

1
R
� Tnn: (19)

The microbubble has an initial radius of R�
0 ¼ 4:5 lm, and a total

number of 5494 nodes of the surface mesh are used.
As shown in Fig. 1, the BIM predictions agree excellently with the

RPE for the bubble radius history over two oscillation cycles for a
Deborah number of De¼ 2.0. A similar agreement has been found for
De¼ 0.0, 0.2, and 20.0.

Figure 2 displays that an increase in the Deborah number results
in a significant increase in the maximum radius of the bubble over the
first oscillation from 0.8203 to 0.8616 and an even greater increase
over the second oscillation from 0.7395 to 0.8615. This is due to more
elastic energy being stored and released in the viscoelastic fluid for a
larger Deborah number and less energy being lost due to viscosity.
This is apparent from Eq. (17), because the model approaches the
inviscid case as De increases. Similarly, an increase in De also signifi-
cantly increases the oscillation period of the bubble.

B. Comparison with experiments

To evaluate the BIM model, we compare the computational
results with experimental data,55 for a laser beam generated bubble with
maximum radius Rm ¼ 0:88mm at a right angled corner of a ¼ p=2.
The stand-off distances from the near and far walls are cN ¼ 0:88 and
cF ¼ 1:08, respectively. The dimensionless parameters of the fluid
are given by e¼ 100 and j ¼ 1:4, where Re ¼ 8:4� 103;

We ¼ 8:7� 10�3, and d ¼ 0:009. As shown in Fig. 3, the bubble
expands relatively spherical except for the flattening of the surface near-
est the closer wall. Examining frames four and five, as the bubble collap-
ses with the near wall surfaces remaining in contact with the walls, the
distal surface collapses inwards and a jet begins to form. Finally, at col-
lapse, a wide jet forms and penetrates the bubble surface pointing
toward the corner. The BIM computations are in very good agreement
with the experimental images.

C. Convergence test

To analyze the convergence of the BIM model, convergence tests
were conducted for a bubble near a corner of angles a ¼ p=2 and p=4.
As shown in Fig. 4, the jet profiles for numbers of elements M¼ 5412
and M¼ 5724 are excellent in both cases. As such, all the remaining
calculations in this study are performed usingM¼ 5412.

V. NUMERICAL RESULTS

First, we look at the evolution of a microbubble near corners of
angle a ¼ p=2 and a ¼ p=4 in a Maxwell fluid with Deborah number

FIG. 1. The comparison of the radius history of a spherical bubble in a Maxwell fluid
with De¼ 2.0, between the non-Newtonian Rayleigh–Plesset equation (RPE) (19)
and the BIM code. The parameters of the surrounding liquid are f ¼ 1:667;
r ¼ 0:073 Nm�1; P0 ¼ 101:3 kPa; Pv ¼ 0:023P0, and q ¼ 999 kgm�3.

FIG. 2. The influence of De on the radius history of a spherical bubble in an infinite
Maxwell fluid over the first two cycles of oscillation. The remaining parameters of
the fluid are the same as in Fig. 1.

FIG. 3. Comparison for the evolution of a bubble in a corner between the BIM code
and experimental data in a Newtonian fluid, with parameters R�

m ¼ 0:85mm;
a ¼ p=2; cF ¼ 2:17; cN ¼ 1:08, e¼ 100, and f ¼ 1:4, where Re ¼ 8:4� 103;
We ¼ 8:7� 10�3, and d ¼ 0:009.55
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De¼ 2.0. The stand-off distances are given by cN ¼ 1:0 for the nearer
horizontal wall below the bubble and cF ¼ 1:5 for the further vertical
wall to the left of the bubble. As shown in Fig. 5, the bubble expands
approximately spherically until it reaches its maximum volume at
t¼ 0.87. Due to the Bjerknes forces from the two rigid walls, the
majority of the non-spherical collapse occurs on the side of the bubble
furthest away from the corner. So, as the jet starts to form at t¼ 1.61,
the sides of the bubble nearest to the walls remain relatively spherical
while the side furthest from the corner becomes flatter. Note that there
is more flattening on the side of the bubble closest to the far wall as
opposed to the side of the bubble closest to the near wall. The collapse
continues in this fashion until the bubble becomes toroidal at t¼ 1.76
with the jet rotated toward the far wall. As can be seen, the bubble has
migrated toward the near wall with the bottom of the bubble remain-
ing nearly spherical.

Figure 6 shows the evolution of a bubble in a Maxwell fluid near
a corner of angle a ¼ p=4. The evolution is similar to the bubble near
a corner of angle p=2 with the collapse occurring mostly on the bubble
surface furthest away from the corner, and the jet rotated toward the
far wall. Note the increase in the oscillation period is from 1.76 to 1.96.

We consider the shape of the bubble profile in a right-angled cor-
ner at collapse. The jet shapes are given in Fig. 7 for De¼ 0.0, 0.2, 2.0,
and 20.0, with the black lines below and to the left side of the bubbles
representing the location of the rigid boundaries of the corner. The jet
shape is broader, and the bubble is much larger as the jet penetrates
through the surface as the Deborah number increases. This is a result
of the higher maximum radius as De increases, as there is a greater
Bjerknes attraction between the bubble and the nearest wall below the
bubble. This is apparent from the fact that the bottom of the bubble is
much closer to the near wall as the Deborah number increases.
Furthermore, because of this Bjerknes forces of attraction, the jetting

angle is more toward the far wall to the left as the Deborah increases,
with a more asymmetric profile overall, as the jet becomes more
angled.

The bubble profile at collapse for a corner of angle a ¼ p=4 is
provided in Fig. 8. As shown, the collapse follows a similar trend for
a ¼ p=2. As the Deborah number increases, the jet is broader and the
bubble collapses closer to the nearer boundary. Once again, the jet is
rotated upwards toward the far wall, an effect that is more apparent
here given the restricted domain size.

The Kelvin impulse for a bubble is defined by

IðtÞ ¼
þ
SB

/ndS: (20)

The Kelvin impulse corresponds to apparent inertia of the bubble, and
its direction indicates the direction of bubble migration and
jetting.67,68

The Kelvin impulse toward the near and far boundaries over the
first oscillation and subsequent bubble collapse is given, respectively, in
Figs. 9 and 10 for De¼ 0.0, 0.2, 2.0, and 20.0. As shown, an increase in
the Deborah number results in a large increase in the absolute value of
the Kelvin impulse and, therefore, corresponds to a higher apparent
inertia toward both boundaries.

FIG. 5. The evolution of a three-dimensional bubble near a corner of angle
a ¼ p=2 in a Maxwell fluid for De¼ 2.0 with the remaining parameters being the
same as in Fig. 1.

FIG. 6. The evolution of a three-dimensional bubble near a corner of angle
a ¼ p=4 in a Maxwell fluid for De¼ 2.0 with the remaining parameters being the
same as in Fig. 1.

FIG. 7. The influence of De on the jet profiles and location of a bubble initiated in a
corner of angle a ¼ p=2, with the remaining parameters being the same as in
Fig. 1.

FIG. 8. The influence of De on the jet profiles and location of a bubble initiated in a
corner of angle a ¼ p=4, with the remaining parameters being the same as in
Fig. 1.

FIG. 4. The jet profiles and location of a bubble initiated with 5412 nodes and 5724
nodes for angles p=2 and p=4 with the remaining parameters being the same as in
Fig. 1.
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We now consider bubble migration toward both boundaries in
the corner. The bubble centroid migration toward the near boundary
is shown in Fig. 11. As shown, an increase in the Deborah number
results in a greater migration of the bubble toward the near boundary.
This point is apparent from Fig. 7 where it is clear that the bubble is
closer to the near boundary at collapse as De increases. There is also
the bubble migration toward the far wall. This is shown in Fig. 12. As
can be seen, there appears to be not much of a difference between the
bubble migration in this direction and what was seen in the direction

toward the near wall. This is because the bubble centroid motion
toward the far wall is comparable in all cases due to the bubble being
larger as the Deborah number increases. Note from Fig. 7 that indeed
the left hand side of the bubble is closer to the vertical wall, but so also
the right hand side of the bubble is further away as the Deborah num-
ber increases. So the bubble centroid in this direction is roughly similar
for all Deborah numbers.

Figure 13 compares the equivalent bubble radius histories for
a ¼ p=2 and a ¼ p=4 for De¼ 0.0 and 20.0. The maximum bubble

FIG. 9. The influence of De on the Kelvin impulse toward the near wall, for a bubble
near a corner of angle a ¼ p=2 with cN ¼ 1:0 and cF ¼ 1:5. The remaining
parameters are the same as in Fig. 1.

FIG. 10. The influence of De on the Kelvin impulse toward the far wall, for a bubble
near a corner of angle a ¼ p=2 with cN ¼ 1:0 and cF ¼ 1:5. The remaining
parameters are the same as in Fig. 1.

FIG. 11. The influence of De on the bubble centroid toward the near wall, for a bub-
ble near a corner of angle a ¼ p=2 with cN ¼ 1:0 and cF ¼ 1:5. The remaining
parameters are the same as in Fig. 1.

FIG. 12. The influence of De on the bubble centroid toward the far wall, for a bubble
near a corner of angle a ¼ p=2 with cN ¼ 1:0 and cF ¼ 1:5. The remaining
parameters are the same as in Fig. 1.
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radius and oscillation period increase with De. As a increases, the
amplitude does not change significantly but the period decreases.

Figure 14 shows the jet shape for bubbles at collapse in viscoelas-
tic fluids of Deborah number De¼ 20.0 and 200.0. As shown, an
increase from De¼ 2.0 to 20.0 results in a slightly larger bubble and a
jet angle pointed more toward the far wall. However, increasing
the Deborah number beyond De¼ 20.0 results in minimal change to
the bubble profile at collapse. This can be seen by observing that the

bubble profile for De¼ 200.0 has no significant difference from the
bubble profile for De¼ 20.0. From Maxwell’s constitutive equation
(12), we can see that DTnn=Dt is inversely proportional to De. As De is
large, DTnn=Dt and Tnn are small and negligible. To see this, let us
observe Eq. (12). As De increases, the Maxwell model converges to the
non-viscous model where Tnn � 0 for all time.

Furthermore, Fig. 15 shows the corresponding radius history for
the cases considered in Fig. 14. As shown, there is only a slight increase
in the radius and oscillation period betweenDe¼ 20.0 and De¼ 200.0.

VI. CONCLUSION

Bubble dynamics in non-Newtonian liquids has implications for
a wide range of applications in engineering and biomedical ultrasonics.
A numerical model is described based on the boundary integral
method coupled with the Maxwell constitutive equation. Here, the
flow is assumed to have high Reynolds number and thus is irrotational
in the bulk domain. The viscoelastic effects are not negligible in a thin
viscous layer at the bubble surface and are approximated only through
the normal stress balance at the bubble surface. An Euler method is
used to iteratively solve the Maxwell constitutive equation for the nor-
mal component of stress. Computations are carried out for a bubble
near a corner for various corner angles using Green’s function for the
Laplace equation in the corner domain.

The numerical model has been validated and excellent agree-
ment with predictions obtained using the corresponding
Rayleigh–Plesset equation for spherical bubbles in a non-
Newtonian liquid is demonstrated. The numerical results also
agree very well with experiments for bubbles in a Newtonian fluid
near a corner. Viscoelastic effects are studied in terms of Deborah
number De, which is as the ratio of the time it takes for a material
to adjust to applied stresses to the characteristic bubble oscillation
time. Simulations were performed for De¼ 0.0 (Newtonian fluid),
De¼ 0.02, 2.0, and 20.0 (viscoelastic fluid).

FIG. 13. The evolution of the bubble radius in an corner of angle a ¼ p=2 (black)
and a ¼ p=4 (red) with De¼ 0.0 and 20.0 with the remaining parameters being
the same as in Fig. 1.

FIG. 14. The influence of large De on the jet profile, for a bubble near a corner of
angle a ¼ p=2 with cN ¼ 1:0 and cF ¼ 1:5. The remaining parameters are the
same as in Fig. 1.

FIG. 15. The influence of large De on the radius history, for a bubble near a corner
of angle a ¼ p=2 with cN ¼ 1:0 and cF ¼ 1:5. The remaining parameters are the
same as in Fig. 1.
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The following new phenomena/features were observed:

1. The maximum radius and oscillation period increase with the
Deborah number. This is due to more elastic energy being stored
and released in the viscoelastic fluid for a larger Deborah number
and less energy being lost due to viscosity.

2. The wall effects due to the corner are enhanced with a larger De as
a result of an increase in the maximum radius. Bubble migration
and oscillation amplitude increase with the Deborah number.

3. The bubble jet shape is broader and flatter for a bubble near a rigid
boundary or in a corner as De increases. The bubble jet is inclined to
the further boundary when it is in a corner as De increases.

4. Results converge as the Deborah number increases as the elastic
effects become dominant compared with the viscous damping
effects of the fluid.

In conclusion, an increased Deborah number greatly enhances
the effects of the surrounding boundaries on bubble collapse and pro-
vides a broader, flatter jet. This implies that a higher Deborah number
in the fluid will enhance the interactions between a bubble and bound-
aries or other bubbles. This also suggest that, with certain parameter
ranges, elasticity and non-Newtonian fluids may benefit ultrasonic
cleaning, therapy, and drug delivery.
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