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Robust key parameter identification of dedicated hybrid engine 
performance indicators via K-fold filter collaborated feature selection 
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A B S T R A C T   

Dedicated hybrid engine technology using auxiliary electronic components has been proven as an energy-saving 
solution to public concerns about energy consumption and carbon emissions. This paper proposes a generic 
approach of K-fold filter-collaborated feature selection (KFFC-FS) to robustly identify the key parameters of three 
engine performance indicators, i.e., volumetric efficiency, thermal efficiency, and fuel consumption. By using 
this approach, five filters are collaborated to provide a robust rank of feature importance and avoid the feature 
overestimation caused by the single filter. Meanwhile, the K-fold cross validation method is introduced to avoid 
random precision issues and overfitting, further enhancing the robustness of key parameter identification for the 
independent engine performance indicators. In this research, the modelling data is collected from an experi-
mental test bench with a BYD 1.5L gasoline engine. Under the basics of the studied three engine performance 
indicators by using a multiple-layer perceptron network, the proposed approach further reduces by at least 
10.3% root-mean-square error (RMSE) and at least 30% reduction of the model inputs.   

1. Introduction 

Dedicated hybrid engines have been developed, which keep over 
40% thermal efficiency while meeting the emission regulations (Lu 
et al., 2021) to improve fuel economy and reduce vehicle emissions 
(Ehsani et al., 2021). The success of dedicated hybrid engines depends 
on the usage of advanced electronic modules such as automobile exhaust 
gas recirculation (EGR) systems (Koch et al., 2023), variable valve 
timing with intelligence (Demir et al., 2022), and other electronic sys-
tems (Li et al., 2018). These auxiliary systems provide additional degrees 
of freedom in engine development, but those variables would increase 
system complexity and further development cost (Li et al., 2021). 
Therefore, the fast and low-cost development of dedicated hybrid en-
gines is an urgent need to help accelerate their commercialisation. 
Various modelling methods on the multiple engine performance in-
dicators are applied to save many experimental costs and have proven to 
be an efficient approach for the rapid development of dedicated hybrid 
engines (Cervantes-Bobadilla et al., 2023; Liu, 2022; Zhao et al., 2023). 

By summarising the previous research on engine modelling, the 
modelling methods could be divided into the three main groups, i.e., the 
physics-based white box modelling, the data-driven black box 

modelling, and fusion grey box modelling. Considering the physics 
phenomenon in the engines, the white box modelling applies the specific 
physical principles of the engines as the modelling limitations and 
further constructs the engine models. Jose et al. applied the computa-
tional fluid dynamics (CFD) simulation to build the twin-entry radial 
turbines of the engines. The physics-based one-dimensional model 
minimises the fitting parameters and keeps the prediction accuracy 
simultaneously (Galindo et al., 2021). In the work of Hao et al., CFD was 
used as the modelling method of engine combustion simulation. By 
using CFD, a new device named fuel split device (FSD) was validated 
(Hao et al., 2021). As another main method of white box modelling, the 
thermodynamic model displays another physic-based way to measure 
the performance of engines. By applying the thermodynamic model, 
various combustion processes could be described, e.g., multi-zone 
(Azarmanesh and Targhi, 2021), two-zone (Rakopoulos et al., 2020), 
and one-zone (Gautam et al., 2022). The high accuracy of these white 
box modelling methods extremely depends on the time-consuming 
parameter calibration and relevant expert experience. To keep the 
high accuracy of the model, more measurement data needs to be 
introduced (as the grey box model). Severin proposed a modular 
approach for the diesel engine air path control system based on the grey 
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box model. By the accurate prediction of the grey box model, the sig-
nificant engine pumping losses (Hanggi et al., 2022). In the research of 
Zhang et al., a grey box model is presented to analyse the swirl char-
acteristics of a combustion system and help to achieve the efficient 
identification of faulty combustors (Zhang et al., 2020). Compared to the 
white box model, the grey box model simplifies the working process of 
engines. However, more data should be introduced to keep the high 
prediction accuracy of grey box modelling. To further accelerate the 
product development and save more experimental costs, the data-driven 
black box modelling methods are widely researched and used. The black 
box modelling methods establish representational relationships between 
inputs and outputs by fitting data. By using various advanced artificial 
intelligence technologies, black box modelling is rapidly and widely 
applied in different engineering applications. Meysam et al. presented 
an efficient hybrid deep learning model to improve the accuracy of daily 
solar radiation prediction (Alizamir et al., 2023). In the research of Jose 
M et al., a neural network modelling method is proposed to enhance the 
prediction ability of the anaerobic membrane bioreactor model, adding 
the accurate prediction cycles from 25 to 75 (Cámara et al., 2023). 
Similarly, the neural network model was applied in the failure predic-
tion of mechanical components by Basheer (Shaheen et al., 2023). More 
research and applications of black box modelling have appeared in the 
industry, e.g., marine engineering (Coraddu et al., 2021), software en-
gineering (Pachouly et al., 2022), and civil engineering (Arab et al., 
2022). Meanwhile, the black box modelling methods have been widely 
applied in the entire auto industry, e.g., the design of supervisory con-
trollers (J. Li et al., 2020b; Zhou et al., 2022a), driving pattern identi-
fication (J. Li et al., 2020a), fuel consumption prediction (Barbado and 
Corcho, 2022), emission prediction (Shin et al., 2020), and battery 
degradation prediction (Q. H.F. Zhou et al., 2021). In engine develop-
ment, Li et al. propose a geometric neuro-fuzzy transfer learning for 
in-cylinder pressure modelling of a diesel engine fueled with raw 
microalgae oil. It helps reduce the operation time by 41.5% whilst 
keeping the prediction accuracy at a high level (Li et al., 2022a). To 
reduce experimental efforts, the Gaussian distributed resampling tech-
nique is developed to quantify the air mass flow through the engine (Li 
et al., 2022c). Saeid et al. combined a black box model and a physical 
model to predict the soot from a 4.5-liter compression ignition engine, 
achieving better prediction performance than the physical model 
(Shahpouri et al., 2021a). In addition to the applications mentioned 
above, black box modelling has been applied in the prediction models of 
various engine performance indicators, such as volumetric efficiency (Li 
et al., 2022d), emission, and knock density (Aliramezani et al., 2022). 

The quality of the dataset notably influences the prediction perfor-
mance of the data-driven black box modelling. The high quality of the 
dataset has been proven to support the data-driven model and further 
improve the prediction performance (Li et al., 2023). As the advanced 
technologies of data pre-processing, the various feature selection 
methods are applied to enhance the quality of the initial dataset, which 
is divided into three kinds in terms of 1) filter, 2) wrapper, and 3) 
embedded methods (Rong et al., 2019). Compared with the other two 
methods, filters assess the importance of model inputs rapidly based on 
the external criteria and save huge calculating time, displaying superior 
potential in the practical application (Chen et al., 2019; Xie et al., 2023). 
In the current research, various filters are applied to simplify the black 
box model structure and improve the modelling efficiency to remove the 
irrelevant and redundant inputs that cause the model’s overfitting (Ma 
et al., 2023). Wu et al. proposed an optimised ReliefF to enhance target 
identification accuracy on the application of radar infrared combined 
sensors. By analysing the results, this proposed filter could achieve 
higher class separability and lower feature redundancy (Wu et al., 
2022). Zhou et al. also proposed an optimised ReliefF algorithm 
combining the Decision Tree to develop the feature selection (H. F. Q. 
Zhou et al., 2021). Michel et al. used a filter based on γ-metric to detect 
the atrial fibrillation automatically. The feature selection by using this 
filter could help doctors to diagnose heart disease in real time (Michel 

et al., 2021). Because of different working principles, the assessments of 
the model inputs could not be kept the same by using different filters. 
The single filter was proven not to keep the robust performance in 
different cases. To address this, multi-filter applications and further 
filter fusion are widely used for engineering items. In the research of 
Chaudhary et al., an attack detection system to identify anomalous ac-
tivities in the fog enabled IoT network was proposed. This system 
applied four different filters to achieve cooperative identification. In 
these filters, the minimum-redundancy-maximum-relevancy (mRMR) 
brought the best classification accuracy (Chaudhary et al., 2022). 
Omuya et al. developed a hybrid filter model for feature selection based 
on principal component analysis and information gain. This hybrid filter 
improves the classification accuracy significantly on the breast cancer 
data set, which is a public dataset (Odhiambo Omuya et al., 2021). 
Similarly, in the research of Balogun, a rank aggregation-based multi--
filter feature selection method is proposed for software defect predic-
tion. This method was proven to improve performance compared to the 
single filter (Balogun et al., 2021). 

Summarising the background mentioned above, the filters own the 
superior potential to identify the important parameters for the model-
ling targets and help to reduce the model scale while the high prediction 
accuracy is kept (L. Li et al., 2020). Meanwhile, the requirement of 
calculating time in filters is significantly lower than those in other 
feature selection methods. The rapid solving process promotes the 
practical application of filters in the industry (Hassani et al., 2021; 
Zheng et al., 2023). These advantages of filters superbly match the ur-
gent demand for the rapid and efficient development of dedicated en-
gines. Though some researchers made attempts to apply the filters to the 
data-driven modelling of engines to optimise the balance of model 
complexity and performance (Kuzhagaliyeva et al., 2021; Mohammad, 
A., Rezaei, R., Hayduk, C., Delebinski, T., Shahpouri, S., & Shahbakhti, 
2022; Shahpouri et al., 2021b), the cooperative fusion of different filters 
is still rarely introduced into the modelling process. Meanwhile, the 
combustion process of the internal combustion engine (ICE) is described 
as the extremely nonlinear and complex physical phenomenon, 
including various relevant parameters and performance indicators 
(Aliramezani et al., 2022). The generic feature selection methods for 
different performance indicators of ICEs are scarce. For each specific 
performance indicator, the feature selection method is designed pur-
posely, bringing the huge time cost, and further hampering the rapid 
development of novel ICEs. Based on the pain points presented above, a 
generic feature selection method for the modelling of different engine 
performance indicators needs to be proposed and be valuable both in 
research and industry application. 

It is clear from the literature review that the further development of 
engine prediction systems needs to overcome the following research 
gaps: 

1). There are performance biases of different filters in different ap-
plications, bringing potential risks in the practical application. 

2). For a dataset with insufficient characterisation, the random pre-
cision issues caused by data absence will be serious and hamper 
the effectiveness of the modelling method.  

3). The development of assistive technologies has not been able to 
match the rapid growth of the industry, limiting the application 
of effective generic modelling methods for engine performance 
indicators. 

To systematically address the technical challenges mentioned above, 
this paper proposed a K-fold filter-collaborated feature selection (KFFC- 
FS) approach to identify the key parameters of different engine perfor-
mance indicators, i.e., volumetric efficiency, thermal efficiency, and fuel 
consumption. The existing feature selection approaches always neglect 
the robustness of identification in different cases and present unsatis-
factory generality, which increasing the potential risk of usage in the 
practical applications. These negative consequences significantly 
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hamper the development of the feature selection methods in industry. To 
avoid these consequences, the proposed approach utilises the filter- 
collaborated feature selection method and the K-fold cross validation 
method to avoid the performance biases of different filters in different 
independent engine performance indicators, which reduce the potential 
risk of usage in industry. Based on the robust key parameter identifi-
cation provided by the proposed approach, the development of the 
dedicated hybrid engine is accelerated. In this approach, the feature 
importance calculated by five filters, i.e., Random Forest (RF), ReliefF, 
Neighbourhood Component Analysis (NCA), F-test, and minimum 
redundancy maximum relevance (mRMR), are utilised to reassess the 
importance rank by considering the rank-based and weight-based ways, 
which avoids the feature overestimation caused by the single filter. 
Based on this rank, different feature combinations are used as the 
modelling dataset to train the MLP networks. For the independent en-
gine performance indicators, the K-fold cross validation method ensures 
that all data is trained to avoid the random precision issue for the key 
parameter identification. Meanwhile, the K-fold cross validation method 
is introduced into the network training process to prevent overfitting. 
These two methods strengthen the robustness of key parameter identi-
fication in the proposed generic approach. The experimental validation 
is based on an experimental test bench with a BYD 1.5L gasoline engine. 
A comparative study is carried out in terms of 1) the feature importance 
ranks based on multiple filter collaboration, 2) the validation for the 
process robustness of feature importance ranking, and 3) the K-fold key 
parameter identification and related robustness validation. Three main 
contributions of this paper are drawn from the comprehensive 
investigation:  

1). Compared to the specific filter feature selection method for the 
specific targets, a more generic filter collaborated feature selec-
tion method is originally designed to allow the feature impor-
tance calculated by five filters to reassess the importance rank by 
considering rank-based and weight-based ways, which avoids the 
feature overestimation caused by the single filter.  

2). To avoid the identification bias caused by the random precision 
issue, a K-fold cross validation method is introduced in the entire 
feature selection process, strengthening the reliability of key 
parameter identification. Compared to the experimental method 
to increase sample size, this K-fold cross validation method save 
more experimental cost and calibration.  

3). By using the experimental test bench with a BYD 1.5 L gasoline 
engine, the generality of this approach in the three studied engine 
performance indicators is verified. 

Following by Introduction, the paper outline is organised into four 
main sections. Section 2 describes the main procedures of the proposed 
KFFC-FS approach. In Section 3, the data collection is described, 
including the Introduction of the working processes and the description 
of experimental data. Section 4 carries out a comparative analysis of the 
proposed approach in terms of 1) the feature importance ranks, 2) the 
performance of MLP networks, and 3) the key parameter identification. 
The conclusion is summarised in Section 5. 

2. Methodology 

Generally, adding the irrelevant and redundant model inputs ex-
pands the training dataset size and increases the training time signifi-
cantly. Meanwhile, the irrelevant and redundant inputs create more 
noise and further mislead the model decisions. To address these issues, 
various feature selection methods are applied to remove these 
misleading features and assist the models in keeping the most appro-
priate balance between training time and training performance. In this 
research, the KFFC-FS approach is proposed to robustly identify the key 
parameters of dedicated hybrid engine performance indicators. Two 
main procedures of the proposed approach are followed as 1) the filter- 

collaborated feature importance ranking; 2) the K-fold robust key 
parameter identification. The workflow of the whole research is shown 
in Fig. 1. 

2.1. Filter-collaborated feature importance 

The filter is used as a feature selection method to provide external 
criteria to rapidly assess different features. These criteria reflect the 
importance of different features for the modelling targets. By comparing 
the importance, the importance-based feature ranks are obtained and 
applied as guidance for further key parameter identification. Due to 
different work principles, different filters calculate different importance 
for each feature and display different feature importance ranks in the 
same modelling cases. To avoid misleading guidance from the single 
filter, multiple filters are collaborated and provide a robust feature 
importance rank for different cases. 

2.1.1. Single filters 
In this research, five common filters, i.e., RF, ReliefF, NCA, F-test, 

and mRMR, are introduced to assess the importance of each feature and 
provide the importance-based feature ranks. 

Random Forest (RF) Algorithm: The RF algorithm is an ensemble 
learning method for regression and classification, which combines a 
multitude of decision trees to ignore outliers and correct for decision 
trees’ habit of overfitting (BREIMAN, 2001). Because of the better pre-
diction accuracy and generalisation compared with the decision tree, the 
RF algorithm is introduced in this case. The procedures of Random 
Forest are as follows: 1) Some samples are randomly introduced into a 
bag consisting of many decision trees for training. 2) The rest of the 
samples are used as the out-of-bag (OOB) samples to assess the signifi-
cance of the independent variables. 3) The OOB samples are randomly 
selected to replace the samples in the bag. The following change in error 
quantifies the feature importance. 4) The more pronounced the change 
in error, the higher the feature importance. 

ReliefF Algorithm: ReliefF algorithm is an optimised Relief algorithm 
that is not sensitive to noise and quickly assigns weights to features 
based on the relevance of individual features and categories (Kononenko 
et al., 1997). The procedures of the ReliefF algorithm are as follows: 1) 
the ReliefF algorithm randomly selects one sample R at a time from the 
training set. 2) the ReliefF introduces k nearest-neighbour samples (H) of 
the same kind as R and the same number of samples m in the different 
kinds. 3) the distances between the nearest neighbour samples and R 
under the same feature are compared. If this distance is less than the 
distance between R and other different samples, then the feature dis-
tinguishes the different kinds of nearest neighbours. 4) the weight cor-
responding to the chosen feature should be increased. The formula for 
updating the weights is: 

W(A)=W(A) −
∑k

j=1
d
(
A,R,Hj

)
/

(mk)

+
∑

c∈C(R)

[
p(C)

1 − p(C(R))

∑k

j=1
d
(
A,R,Mj(C)

)
]/

mk (1)  

where R means the chosen sample; H means the samples in the same 
kind of chosen sample R; m means the number of the samples in the 
different kinds; k means the number of the nearest-neighbour samples; 
d(A,R,Hj) denotes the difference between sample R and sample Hj in 
feature A, expressed as the Euclidean distance between them; Mj(C)
denotes the jth nearest neighbour sample in class C. 

Neighbourhood Component Analysis (NCA): NCA algorithm is based on 
the KNN algorithm with the Mahalanobis distance and learns the 
transformation matrix by continuously optimising the accuracy of the K- 
nearest neighbour (KNN) classification. Compared to the common KNN 
with other distance matrices, by introducing the Mahalanobis distance 
to keep the scale of features consistent, the NCA algorithm avoids the 
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weights’ calculation error (Jacob Goldberger et al., 2005). The full 
procedures of the NCA algorithm are similar to the ones of the ReliefF 
algorithm as follows:  

1) The NCA algorithm introduces A as the Mahalanobis distance metric 
with the specific expression.  

2) The NCA algorithm calculates the nearest-neighbour distribution for 
sample i. 

Pi,j =

exp

(

−
⃒
⃒
⃒
⃒Axi − Axj

⃒
⃒
⃒
⃒
2

2

)

∑

k∕=i

exp

(

− ||Axi − Axk||
2

2

),Pi,i = 0 (2)  

where k means the number of samples; P means the probability of 
nearest neighbour distribution; i and j mean the samples; k means the 
number of the nearest-neighbour samples.  

3) The NCA algorithm Optimises the objective and obtains the weights 
of the specific features by averaging the regression values of the final 
samples. The formula for the optimisation objective is: 

f (A) =
∑n

i=1
Pi =

∑n

i=1

∑

j∈Ci

Pi,j (3)  

where f(A) denotes the function of the Mahalanobis distance metric; P 
means the probability of nearest neighbour distribution; n means the 
total samples; i means the chosen sample; C means the class of i; j means 
the sample in C. 

F-test: F-test is a statistical test method used to compare models 
(Fisher, 1923). For feature selection, F-test is applied to compare the 
model with features and constants and the one only with constants. By 
comparing the least square errors in both models, the key features are 
selected. The feature that brings smaller least square errors presents 
higher relevance and importance for the target variables. Due to the 
F-test feature selection highly depends on the relevance, which doesn’t 

capture strong nonlinear relationships, F-test could not obtain the 
feature importance accurately and further identify key parameters 
efficiently. 

Minimum Redundancy Maximum Relevance (mRMR): The minimum 
redundancy maximum relevance (mRMR) is a feature selection method 
based on mutual information (MI) (Hanchuan Peng, Member, IEEE, 
Fuhui Long, 2005). The core measures of mRMR are the related Vr 
calculated by F-statistic method and the redundancy Wr calculated by 
the Pearson correlation coefficient. By combining the relevance and the 
redundancy, the mutual information quotient (MIQ) could be expressed 
as follows: 

(MIQ)x =
Vx

Wx
(4)  

where x denotes the xth feature; Vx denotes the relevance of the xth 
feature; Wx denotes the redundancy of the xth feature. By applying a 
greedy search, the MIQ of different features show the feature importance 
to help identify the key parameters of the target variable. 

2.1.2. Multi-filter collaboration 
Due to the different nonlinear relationships between model inputs 

and engine performance indicators studied, the single filter owns the 
risk of providing misleading guidance by displaying a wrong importance 
rank in different modelling cases. To avoid the negative influence caused 
by the possible misleading guidance, five studied filters collaborate to 
provide a robust importance-based feature rank for different perfor-
mance indicators. These collaborations are shown as follows: 

Rank-based feature importance: the rank-based feature importance 
rank depends on the feature ranks obtained using different single filters. 
The procedures are as follows:  

1) A feature with higher importance achieves a higher score in each 
feature rank provided by different single filters. For example, the 
feature, which is No.1 in a feature rank, achieves 10 points. The one 
which is No.2, achieves 9 points. The rest of the features achieve the 
corresponding points in descending order. Based on this, the 

Fig. 1. The workflow of KFFC-FS including (a) the filter-collaborated feature importance ranking; (b) the k fold robust key parameter identification.  
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importance of each feature is distinguished as a linear form. The unit 
gap of feature importance is kept the same, equal to 1. By using this 
type of collaboration, the extremely wrong assessment of features is 
further modified. 

2) All weight-based scores of each feature among the feature impor-
tance ranks provided by all the single filters are combined. The 
combined formula is as follows: 

Ik
r =

∑F

i=0
(S)k

i (5)  

where Ik
r means the feature importance calculated in the rank-based 

filter collaboration; k means the kth feature; F, (F = 1 to 5), means the 
different filters for feature selection, S means the feature score calcu-
lated by the single filter. 

Weight-based feature importance: the weight-based feature impor-
tance rank depends on the normalised feature importance calculated by 
different single filters. The range of normalisation is [0, 1]. The opposite 
of the rank-based assessment, the normalisation of feature importance 
could scale the importance of each feature from different ranks into the 
same size. Meanwhile, the gap between the initial importance is retained 
in equal proportions. Based on this, the extremely correct assessments of 
feature importance in different ranks are kept. After the normalisation, 
the normalised importance of each feature in different ranks is com-
bined. The combined formula is as follows: 

Ik
w =

∑M

i=0

[
n(I)k

i

]
(6)  

where Ik
w means the feature importance calculated in the weight-based 

filter collaboration; I means the feature importance calculated by the 
single filter method as the form of the weight; n means the normalisation 
of the feature importance in the range of [0, 1]. 

Rank-and-Weight mixed feature importance: The rank-based feature 
importance rank modifies the extremely wrong assessments of feature 
importance to some extent. Meanwhile, the weight-based feature 
importance rank keeps the extremely correct assessments of feature 
importance. Based on this, the further Rank-and-weight-mixed collab-
oration combining these two manners could strengthen the robustness of 
importance assessment in different cases and provide a robust feature 
importance rank to guide further key parameter identification. The 
multiple-combined formula is shown as follows: 

Ik
h =

∑[
n
(
Ik

r

)
+ n
(
Ik

w

)]
(7)  

where Ik
h means the feature importance is calculated by further collab-

oration based on the above-mentioned collaborations. 

2.2. Model structure and training 

Based on the guidance of the filter-collaborated feature importance 
rank, the K-fold robust key parameter identification is introduced in this 
research. The K-fold cross validation approach provides a more robust 
training process for the MLP networks. Different combinations of fea-
tures from the initial dataset are used as the model inputs of the MLP 
networks. By comparing the model performance, the key parameters of 
different targets are identified. 

2.2.1. K-fold cross validation 
For validating the performance of the prediction model, different 

cross validation approaches are widely applied (Geisser, 1974). In this 
research, the K-fold cross validation approach is applied to validate the 
model performance. This validation approach randomly divides the 
initial data into k groups, then train the prediction model on the k− 1 
groups and then test it on the kth group. Ultimately with k partitions, the 
k prediction accuracies are recorded. By comparing these prediction 

accuracies, the model with highest accuracy is chosen as the best model. 
Based on this approach, the robustness of the model is further 
strengthened. In this way, a limited data set is effectively extended 
(Vanwinckelen and Blockeel, 2012). Fig. 2 displays the working process 
of the K-fold cross validation in this research. By using this validation 
approach, the selected prediction model is re-trained by the training 
data to achieve an efficient and robust modelling performance. In this 
paper, the K-fold cross validation method ensures that all data is trained 
in the MLP network during the feature selection process, preventing the 
identification bias caused by the random precision issue. This is different 
from the existing feature selection methods and provides stronger 
reliability. 

2.2.2. Network specification 
To search for the most appropriate balance between the prediction 

performance and training time, the features are combined as different 
combinations of model inputs based on the feature importance rank 
mentioned above. In this research, the MLP network is used as the 
prediction model to predict the studied engine performance indicators. 
Due to the superior ability to efficiently handle non-linearities with 
multidimensional discrete inputs, the MLP network is an efficient tool 
for modelling the dedicated hybrid engine performance indicators. 
Meanwhile, the layer connection of the MLP network is simplifier than 
other complex artificial neural networks, saving more computational 
time in the practical application. In our previous research (Li et al., 
2022b), MLP networks with specific structures have been proven to own 
superior computing efficiency and prediction accuracy. Based on this, 
the same fully connected MLP network construction with two hidden 
layers is applied in this research. The related structure hyperparameters 
of the applied MLP network are shown in Table 1. Considering the 
prediction errors caused by the network training bias, all training tasks 
are repeated ten times separately. After the repetitive training, the mean 
performance measurement metrics are applied as the results to be ana-
lysed comparatively. 

To search for the most appropriate balance between the prediction 
performance and training time, the features are combined as different 
combinations of model inputs based on the feature importance rank 
mentioned above. In this research, the MLP network is used as the 
prediction model to predict the studied engine performance indicators. 
Due to the superior ability to efficiently handle non-linearities with 
multidimensional discrete inputs, the MLP network is an efficient tool 
for modelling the dedicated hybrid engine performance indicators. 
Meanwhile, the layer connection of the MLP network is simplifier than 
other complex artificial neural networks, saving more computational 
time in the practical application. In our previous research (Li et al., 
2022b), MLP networks with specific structures have been proven to own 
superior computing efficiency and prediction accuracy. Based on this, 
the same fully connected MLP network construction with two hidden 
layers is applied in this research. The related structure hyperparameters 
of the applied MLP network are shown in Table 1. Considering the 
prediction errors caused by the network training bias, all training tasks 
are repeated ten times separately. After the repetitive training, the mean 
performance measurement metrics are applied as the results to be ana-
lysed comparatively. 

3. Experimental data collection 

The experimental data in this research were collected from a test 
bench with a 4-cylinder, 1.5L gasoline engine. The engine was run under 
steady-state conditions at different operating points that covered engine 
torque and speed range. Considering the experimental setup and 
computational time, the entire research is under steady-state conditions. 
In the experimental dataset, 2732 samples, which include three studied 
engine performance indicators and other relative parameters, were 
recorded at different engine running conditions. The range of specifi-
cations at different operating points was as follows: 1000–6000 rpm for 
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engine speed, 1.5–135 Nm for engine torque, and 0–100% for EGR po-
sitions. Engine speed variables at each steady-state point were obtained 
from the average of 600 points sampled at 10 Hz. The exact procedure of 
the experiment is referred to in the study by Li et al. (2022c). The 
principal diagram of the dedicated hybrid engine applied in this 
research is shown in Fig. 3. 

The performance indicators of the engine are complex and nonlinear, 
which are influenced by relevant parameters, engine speed (S), variable 
valve timing with intelligence (iVVT), intake manifold pressure (Pint), 
exhaust manifold pressure (PEXH), intake manifold temperature (Tint), 
EGR position (PEGR), EGR temperature (TEGR), Spark angle (Aspr), Rela-
tive air volume (Vr), Inject angle (Ainj) and other parameters. Consid-
ering the practical application in the industry, these original physical 
features are more worthy of being studied than the interacted features. 
Meanwhile, these parameters were studied in our previous research. 

Based on these, the paper aims to find the key parameters from these 
original ten features to develop the modelling of dedicated hybrid en-
gine performance indicators using the proposed approach. Table 2 
shows the involved features and their feature numbers. 

In this paper, volumetric efficiency (VE), thermal efficiency (TE), and 
fuel consumption (FC) are set as the target indicators of the data-driven 
modelling of the dedicated engine. The ten features mentioned above 
are considered as the contending candidates to be selected by the pro-
posed feature selection approach. The selected features, as the key pa-
rameters of these target indicators, are used as the inputs of the 
prediction model based on the MLP network. By applying the prediction 
model, the prediction values of volumetric efficiency, thermal effi-
ciency, and fuel consumption are obtained and further compared with 
the real values of these three indicators to assess the performance of the 
model. The configuration of the entire modelling process is shown in 
Fig. 4. 

Fig. 2. The working process of the K-fold cross validation approach.  

Table 1 
Structure hyperparameters of the applied MLP network.  

Hyperparameters Determination 

Learning algorithm backpropagation 
Activation function tanh 
Optimisation algorithm gradient descent 
Number of the hidden layers 2 
Number of neurons in each hidden layer 100 
Number of iterations 1000 
Bias 1 
Threshold on gradient norm 1e-3 
Learning rate 0.01 
Tykhonov hyperparameter 0.01 
Momentum hyperparameter 0.5 

Data split ratio Training 75% 
Testing 15% 
Validating 10%  

Fig. 3. Dedicated hybrid engine: a) testing bench and b) principal diagram (Li et al., 2022c).  

Table 2 
Studied features of the dedicated hybrid engine.  

Index Parameter Unit 

1 S rpm 
2 iVVT CAD 
3 Pint kpa 
4 PEGR % 
5 PEXH kpa 
6 Tint 

◦C 
7 TEGR 

◦C 
8 Aspr Degree 
9 Vr % 
10 Ainj Degree 

11 VE % 
12 TE % 
13 FC g/h  
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4. Result analysis and discussion 

A comprehensive analysis is organised into three aspects: 1) the 
feature importance rank, 2) the adaptability of ranking approaches, and 
3) the K-fold key parameter identification. 

4.1. Evaluation of filter-collaborated feature importance 

The filter-collaborated feature importance provides a guide for 
further key parameter identification. The collaborated importance rank 
depends on the importance assessment of studied features by using the 
five filters, i.e., RF, ReliefF, NCA, F-test, and mRMR. By using VE 
modelling as the example, this section investigates the feature impor-
tance ranks from different single filters and the procedure of further 
filter-collaborated feature importance ranks. Table 3 enumerates the 
importance rank of each feature obtained by single filters. The ranks are 
based on the order of strongest to weakest feature importance. The filter 
measures calculate different importance for each feature to cause a 
significant difference between the ranks of feature importance. How-
ever, by observing ranks, some commonalities can be found. The low 
importance of PEGR and TEGR shows that these two parameters are 
irrelevant parameters of VE modelling. The reason for their low 
importance is speculated that they influence exhaust air directly, not 
intake air, while VE is an index that reflects the intake air. On the 
contrary, Vr shows the highest importance because they influence the 
intake air volume directly. Based on these commonalities, the authors 
speculated that the parameters influencing intake air directly show high 
importance to be considered the relevant parameters of volumetric ef-
ficiency modelling. 

As mentioned above, the single filter cannot keep the correct 
assessment of feature importance for different engine performance in-
dicators. Multiple filter-collaborated feature importance rank is applied 
to avoid misleading guidance for further K-fold key parameter identifi-
cation. Fig. 6 shows the combined importance calculated by a) the rank- 
based, b) the weight-based, and c) the rank-and-weight mixed 
collaboration. 

By observing the combined feature importance shown in Fig. 5, the 

feature importance ranks based on the rank-based and the weight-based 
importance are similar. However, there are still minor differences be-
tween the two feature importance ranks. For fixing the possible incorrect 
importance assessments, the rank-and-weight mixed collaboration is 
used to further combine the feature importance and strength of the 
robustness. For VE modelling, Vr is proven as the most important 
parameter in each rank obtained by cooperative filtrations, while PEGR 
and TEGR shows the lowest importance. 

For other performance indicators, the rank-and-weight mixed feature 
importance is summarised as a comprehensive and robust feature rank 
for assisting the further K-fold key parameter identification. Table 4 
displays the filter-collaborated feature importance ranks for three per-
formance indicators. For all engine performance indicators, the filter- 
collaborated feature importance ranks are significantly different. It 
proves that the relationships between performance indicators and the 
studied features are complex and nonlinear. The same feature displays 
the highest importance for an indicator whilst it is the end of the feature 
importance rank for another indicator. To address these issues, the rank- 
and-weight mixed feature importance is introduced to create robust 
feature ranks for all indicators. 

4.2. Comparison of feature selection approaches 

As the regression models, the data-driven models of the engine 
performance indicators could be assessed by different measurement 
metrics. In this paper, the comprehensive analysis of the feature selec-
tion approaches consists of the regression indicators and the industrial 
indicators. The mean absolute percentage error (MAPE), the root mean 
squared error (RMSE), and the mean coefficient of determination (R2) 
are applied to assess the regression performance of the data-driven 
modelling process with different feature selection approaches. Consid-
ering the practical application of the proposed approach, the predicting 
pass rate is applied to measure the qualification of the prediction results. 
Under the established determination criteria, the forecasts with less than 
5% relative error are satisfactory. The rate of satisfactory results to the 
total sample is considered to be the predicting pass rate. Combining the 
comparison among these different indicators, a comprehensive analysis 
is displayed. 

By using VE modelling as an example, the feature combinations are 
chosen as the network inputs in order of the feature importance rank. 
After the repetitive training, MAPE, RMSE, and R2 are used to measure 
the model performance, as shown in Fig. 6. 

As shown in Fig. 6, the Random Forest algorithm shows an inefficient 
performance on feature selection for volumetric efficiency modelling, 
whilst mRMR selects key parameters precisely. It proves that there are 
significant differences among these mentioned filters. In contrast, the 
approach, based on the rank-and-weight mixed feature importance, 

Fig. 4. The input-output configuration of the entire modelling process.  

Table 3 
Feature importance ranks for volumetric efficiency 
modelling based on single filters.  

Filter Importance rank 

RF [2 10 9 1 5 3 4 8 7 6] 
ReliefF [2 1 9 3 8 7 6 5 4 10] 
NCA [8 2 9 1 5 7 6 10 4 3] 
F-test [5 9 10 3 6 1 8 7 4 2] 
mRMR [9 1 6 3 5 2 8 10 7 4]  
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could provide a correct importance rank to some extent. Based on this 
importance rank, the most important key parameters could be identified 
since the beginning of feature selection. Thus, while choosing fewer 
parameters, this approach selects the most relative parameters for VE, 
which are trained in the prediction models to achieve lower MAPE, 
lower RMSE, and higher R2. 

In real industrial applications, robustness is an important indicator to 
measure the performance of a novel approach. Considering this, the 
entire robustness during feature selection based on the feature impor-
tance ranks is also assessed. Based on each feature importance rank, the 

Fig. 5. Combined importance calculated by a) the rank-based, b) the weight-based, and c) the rank-and-weight mixed collaboration.  

Fig. 6. The performance of the MLP network for volumetric efficiency modelling, including a) MAPE, b) RMSE, and c) R.2.  

Table 4 
Rank-and-weight mixed feature importance ranks for three performance 
indicators.  

Engine performance indicator Importance rank 

VE [9 1 2 5 8 3 10 6 7 4] 
TE [8 10 1 7 3 5 6 9 4 2] 
FC [5 1 9 10 3 8 4 2 6 7]  
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average RMSE of the model with different input combinations is applied 
to reflect the robustness. These average RMSE values for different in-
dicators are shown in Table 5. By using the underlines, the lowest 
average RMSE obtained by the guidance from the single filter and the 
filter-collaborated feature importance ranks are marked. 

By observing Table 5, the performances of single filters in different 
cases display significant differences. For VE modelling, mRMR shows the 
best mean performance. However, for thermal efficiency and fuel con-
sumption modelling, Random Forest shows the best performance. In 
contrast, based on the rank-and-weight mixed importance, the feature 
rank helps the MLP network to keep strong robustness in all these three 
modelling cases, almost achieving the lowest RMSE. The RMSE in each 
case is normalised and summed to be the overall RMSE among these 
three different cases. By comparing the overall RMSE of different filters, 
the rank-and-weight mixed feature importance is proven to robustly 
provide the correct feature rank for further K-fold key parameter 
identification. 

As shown in Table 5, the proposed feature selection approach dis-
plays strong robustness for different engine performance indicators by 
quantizing the regression performance of the models as average RMSE. 
To compare the specific performance of different feature selection ap-
proaches more comprehensively, the average values of the regression 
indicators and the industrial indicator mentioned above are presented in 
Fig. 7. To directly display the superior performance of the proposed 
feature selection approach on different indicators, The reciprocals of 
MAPE and RMSE are used to replace MAPE and RMSE. Based on it, the 
areas of the quadrilaterals represent the overall performance of different 
feature selection approaches. 

Fig. 7 evaluates the overall performance for each feature selection 
approach in the models of different engine performance indicators. 
Combining the results in Table 5, the single filter is further proven to 
keep the weak robustness in the models of different engine performance 
indicators. For example, mRMR displays superior overall performance 
on the regression indicators and the industrial indicator for volumetric 
efficiency modelling, while losing its advantage for thermal efficiency 
and fuel consumption modelling. Even the cooperation considered by 
the rank-based and weight-based ways could not maintain the overall 
performance in the models of different performance indicators. Though, 
the proposed mixed approach could not display the best performance in 
all models, it provides an importance rank with the strongest robustness 
to the modelling process and keeps the overall performance of models 
for different indicators at a satisfactory level. 

4.3. Non-K-fold vs K-fold robust key parameter identification 

In this paper, the K-fold cross validation approach mentioned above 
is used to fit the MLP network and find the best MLP network model. 
Based on the previous research, the value of k is set to 9 (Zhou et al., 
2022b). Compared to the normal modelling approach, the K-fold cross 
validation approach provides a general improvement of the data-driven 

models for different engine performance indicators. The comparison 
between the non-K-fold modelling and K-fold modelling is listed in this 
section. As shown in Fig. 8, the improvement caused by the K-fold cross 
validation approach in the MLP model of VE trained by the initial 
dataset (10 inputs) is displayed. 

Fig. 8 displays the volumetric efficiency prediction performance 
comparison between Non-K-fold and K-fold cross validation approaches. 
Fig. 8 (a) and (b) show the real-time prediction performance by using 
different approaches. Based on the results, the K-fold cross validation 
approach improves the prediction accuracy of the MLP model and 
significantly reduces the fluctuation of the error. A similar conclusion 
could be found in Fig. 8 (c), the K-fold cross validation could narrow the 
margin of errors to further improve the prediction performance. In 
conjunction with Fig. 8 (d), the prediction samples obtained by the K- 
fold cross validation approach are closer to the baseline, showing su-
perior regression performance. Based on the comprehensive comparison 
in Fig. 8, the K-fold cross validation approach is proven to own the su-
perior potential for the optimisation of data-driven modelling. 

The improvement of the K-fold cross validation approach is not only 
significant in the MLP model trained by the initial dataset but also for 
the entire feature selection process. By presenting RMSE and predicting 
pass rate of the models for all three engine performance indicators, the 
performance comparison between the non-K-fold modelling and K-fold 
modelling during the entire feature selection process is presented in 
Fig. 9. 

From Fig. 9, the K-fold cross validation approach is proven to bring a 
significant improvement in prediction performance during the entire 
modelling process for different engine performance indicators, reducing 
the average RMSE effectively (VE: 2.52, TE: 2.42, FC: 0.39). Meanwhile, 
the improvement in predicting pass rate displays the valuable potential 
of the proposed approach in the practical application, meeting the 
higher industrial requirement. Even though for some feature combina-
tions, the optimisation by using the K-fold cross validation approach is 
not significant, the overall gap between the K-fold approach and non-K- 
fold approach, which bring the lowest RMSE and higher predicting rate, 
is obvious. This is useful for key parameter identification both in the lab 
and the industry. 

To keep the most appropriate balance between training time and 
performance, the parameter-number-related RMSE (Ep) is proposed. To 
keep the same scalar, the RMSE is normalised in the range [1,10]. When 
Ep is lower, the selected feature could help the models keep a more 
appropriate balance between training time and performance. This 
assessment variable is calculated as follows: 
(
Ep
)

i = i ∗ [n(RMSE)i

]
, 1 ≤ i ≤ 10 (8)  

where i means the number of selected features, n means the normal-
isation process. The normalisation range is [1,10]. 

Based on this assessment variable, the performance of K-fold MLP 
models trained by different feature combinations could be further 
quantified to assist the key parameter identification. Table 6 shows the 
parameter-number-related RMSE for different performance indicator 
modelling. 

Compared to the lowest parameter-number related RMSE obtained 
by the non-K-fold approach for all indicators, the lowest parameter- 
number related RMSE obtained by the K-fold approach is further 
reduced (VE: 0.84, TE: 0.40, FC: 0.30). According to the lowest 
parameter-number related RMSE, the key parameters of different in-
dicators are identified. Combined with the superior performance of the 
K-fold filter-collaborated feature selection approach for all indicators, 
the proposed approach is proven to own strong robustness. The aim of 
robust key parameter identification has been achieved. 

5. Conclusions 

This paper proposed the novel feature selection approach of KFFC-FS 

Table 5 
The average RMSE for different performance indicator modelling.   

Average RMSE* 

VE TE FC Overall 

Random Forest 3.178 2.549 0.486 0.221 
ReliefF 3.487 2.698 0.621 0.717 
NCA 3.523 2.766 0.775 1 
F-test 2.920 2.580 0.531 0.213 
mRMR 2.693 2.576 0.605 0.194 

Rank-based 2.953 2.561 0.600 0.270 
Weight- based 2.929 2.552 0.465 0.103 
Rank-and-Weight mixed 2.920 2.552 0.461 0.095 

Note*: The average RMSE is calculated from the MLP networks with different 
input combinations. 
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for dedicated hybrid engine performance indicators that robustly iden-
tify the key parameters of different performance indicators. This 
approach includes a generic feature selection method and the K-fold 
cross validation method. The feature importance calculated by five fil-
ters is utilised to reassess the importance rank by considering the rank- 
based and weight-based ways. This effectively prevents the feature 
overestimation caused by single filters. To minimise the random preci-
sion and overfitting issues for studied engine performance indicators, 
the K-fold cross validation method is introduced in the entire feature 
selection process. Based on this kind of cross validation, the robustness 
of the key parameter identification is further strengthened. By validating 
the experimental data provided by BYD, the proposed approach is 

comprehensively assessed in three aspects: 1) the feature importance 
rank, 2) the adaptability of ranking approaches, and 3) the key param-
eter identification. The contributions from the assessment are as follows:  

1) Compared to the single filters, the proposed filter-collaborated 
feature importance ranking approach could keep the robust influ-
ence to provide the correct feature importance ranks in different 
indicator modelling.  

2) The filter-collaborated feature importance ranking method has good 
adaptability to the studied engine performance indicators and ob-
tained the lowest overall average RMSE (0.095) for these indicators. 

Fig. 7. Analysis of overall performance for each feature selection approach of different engine performance indicators (a) volumetric efficiency, (b) thermal effi-
ciency, and (c) fuel consumption. 

Fig. 8. Volumetric efficiency prediction performance comparison between Non-K-fold and K-fold cross validation approach. (a) Real-time prediction performance by 
using K-fold cross validation approach. (b) Real-time prediction performance by using Non-K-fold cross validation approach. (c) Error distribution. (d) Regression 
performance. 
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3) Compared to the average RMSE (VE: 3.00, TE: 2.70, FC: 0.48) ob-
tained by the MLP networks without the K-fold cross validation 
approach during the feature selection, the average RMSE (VE: 2.52, 
TE: 2.42, FC: 0.39) obtained by the MLP network trained by K-fold 
cross validation approach is reduced by 16%, 10.3% and 18.75% for 
VE, TE and FC modelling, separately. 

4) By using the proposed approach, the key parameters for all perfor-
mance indicators have been found, with reducing the model inputs 
by 30%, 60%, and 70% for VE, TE, and FC modelling, respectively. 

The research presents a holistic solution to robustly identify the key 
parameters for the dedicated hybrid engine prediction system. Though 
the effectiveness of this solution has been proven in the validation by 
using different engine performance indicators, some aspects of a 
comprehensive consideration are neglected. These are considered as the 
research directions in the future. In terms of the practical application, 
maintaining the strong robustness in the modelling with multiple out-
puts is worthy of being studied to further save the experimental cost in 
the development of the dedicated hybrid engine. The impact of the fold 
quantity should be included in further investigation to discover the 
optimal fold quantity to further improve the effectiveness of the key 
parameter identification. Besides, the generalization of the proposed 
approach should be verified in the more complex input-output config-
uration, including more contending features and more independent 
engine performance indicators. These all are worthy to be studied in 
future work. 
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