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Robertson and Seymour constructed for every graph G a tree-
decomposition that efficiently distinguishes all the tangles 
in G. While all previous constructions of these decompositions 
are either iterative in nature or not canonical, we give an 
explicit one-step construction that is canonical.
The key ingredient is an axiomatisation of ‘local properties’ of 
tangles. Generalisations to locally finite graphs and matroids 
are also discussed.

Crown Copyright © 2023 Published by Elsevier Inc. This is 
an open access article under the CC BY license (http://
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1. Introduction

In this paper we propose an axiomatisation of ‘local properties’ of tangles and apply 
it to give explicit one-step constructions of tree-decompositions, as follows.

Roughly speaking, tree-decompositions are a recipe how to cut up a graph along sepa-
rations in a tree-like way. Tangles are a way to axiomatise highly cohesive substructures 
in graphs such as complete subgraphs or grid minors. We say that a separation {A, B}
of a graph G distinguishes a pair of tangles if the two tangles live on opposite sides of 
{A, B}; it does so efficiently if the separator of {A, B} has smallest size amongst all dis-
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tinguishing separations of G. We say that a tree-decomposition of a graph G (efficiently) 
distinguishes a pair of tangles if there is a separation {A, B} which (efficiently) distin-
guishes the two tangles and {A, B} is in the recipe for the tree-decomposition. A key 
tool [18] in the proof of the graph-minor theorem states:

Every finite graph G has a tree-decomposition that efficiently distinguishes

all the tangles in G. (1)

A fair amount of the recent work on graph-minors has focused on constructing such tree-
decompositions [1,4–7,9,12,15,17]. In all proofs in the literature these tree-decompositions 
are constructed through an iterative process in which separations are chosen in turn based 
on previous choices. Here we will give a new construction of the tree-decomposition of (1)
that finishes in one step, is canonical, and that is explicit in the sense that it computes 
a single simple parameter for separations and then takes all separations for the tree-
decomposition which minimise this parameter.

In the proof of (1), one has to construct separations that distinguish all pairs of 
tangles efficiently, and one has to construct them in a nested way; that is, so that they 
define the recipe of a tree-decomposition. Rather than working with tangles in the first 
place, our perspective is to directly axiomatise separations which distinguish tangles 
efficiently through a new notion of entanglements; see Section 2. Perhaps surprisingly, 
these entanglements have very similar properties to tangles themselves but only applied 
to a subset of their separations. See Section 2 for an explanation of why we think of 
entanglements as an axiomatisation of ‘local properties’ of tangles.

Our main result reads as follows.

Definition (Friendly). A separation {A, B} in an entanglement ε in G is friendly if no 
other separation in ε crosses less separations in entanglements in G than {A, B}.

Theorem 1. For every finite graph G, the set of friendly separations of G is a nested 
set of separations; and hence gives rise to a tree-decomposition distinguishing all tangles 
efficiently.

The nested sets N(G) and tree-decompositions T (G) provided by Theorem 1 are 
canonical in that they commute with graph-isomorphisms: ϕ(N(G)) = N(ϕ(G)) and 
ϕ(T (G)) = T (ϕ(G)) for every graph-isomorphism ϕ : G → G′.

The decomposition in Theorem 1 refines the one of (1). Indeed, not every entanglement 
is induced by a pair of tangles, and in fact entanglements and friendly separations can 
be found in graphs that host no tangles at all (Example 2.2).

Theorem 1 extends to locally-finite infinite graphs under additional assumptions; see 
Theorem 4.2. We also provide an abstract version of Theorem 1, inspired by [10–12,14], 
which can be applied to a wide variety of setups including matroids; see Section 5.
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Fig. 1. {A ∩ C,B ∪ D} is one of the four corners of {A,B} and {C,D}.

This note is organised as follows. Entanglements in graphs are introduced in Section 2. 
Theorem 1 is proved in Section 3. An infinite version of Theorem 1 is proved in Section 4. 
Abstract versions of entanglements and of Theorem 1 are offered in Section 5.

2. Entanglements in graphs

Let G be any graph. A separation of G is a set {A, B} such that A ∪ B = V (G)
and G contains no edge between A \ B and B \ A. We refer to A and B as the sides
of {A, B}, and call A ∩B the separator of {A, B}. The size |A ∩B| of the separator is the 
order of {A, B}. A separation {A, B} is proper if A \B and B \ A are non-empty. Two 
separations {A, B} and {C, D} of G are nested if, after possibly renaming their sides, 
they satisfy A ⊆ C and B ⊇ D. Two separations that are not nested are said to cross. 
A set of separations of G is nested if its elements are pairwise nested.

For a depiction of the setting for the next definitions, see Fig. 1. If {A, B} and {C, D}
cross, then their four corners are the separations {A ∩ C, B ∪ D}, {A ∩ D, B ∪ C}, 
{B ∩D, A ∪ C} and {B ∩ C, A ∪D}. The corners {A ∩ C, B ∪D} and {B ∩D, A ∪ C}
are opposite, and so are the corners {A ∩ D, B ∪ C} and {B ∩ C, A ∪ D}. Any two 
corners that are not opposite are adjacent. The two adjacent corners {A ∩C, B∪D} and 
{A ∩D, B ∪ C} are said to lie on the same side of {A, B}. Similarly, the two adjacent 
corners {B ∩D, A ∪ C} and {B ∩ C, A ∪D} are said to lie on the same side of {A, B}.

An entanglement in G is a non-empty set ε of proper separations of G such that ε

satisfies (E):

(E) If a separation {A, B} ∈ ε is crossed by a separation of G so that two corners lying 
on the same side of {A, B} have order at most |A ∩ B|, then at least one of these 
corners has order equal to |A ∩B| and is contained in ε.

A separation {A, B} in an entanglement ε in G is friendly if no other separation in ε

crosses less separations in entanglements in G than {A, B}.
We conclude this section with three examples. The first example uses the terminology 

of [9, §12.5]. We state it as a lemma because it is a key ingredient of the proof of 
Theorem 1.
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Fig. 2. The Farey graph of order 4. (For interpretation of the colours in the figure(s), the reader is referred 
to the web version of this article.)

Lemma 2.1. Every pair of distinguishable tangles in a graph induces an entanglement, 
which consists of the separations efficiently distinguishing the two tangles.

Proof. Let τ and τ ′ be two distinguishable tangles in a graph G, and let ε be the set 
of all separations of G which efficiently distinguish τ and τ ′. The set ε is non-empty 
since τ and τ ′ are distinguishable, and the separations in ε are proper because tangles 
do not contain separations of the form (V (G), B). We claim that ε satisfies (E). For this, 
suppose that {A, B} ∈ ε is crossed by a separation {C, D} of G so that the two corners 
c1 := {A ∩ C, B ∪ D} and c2 := {A ∩D, B ∪ C} have order at most |A ∩ B|. Without 
loss of generality, τ orients {A, B} towards A and τ ′ orients {A, B} towards B. Since 
the corners c1 and c2 have order at most |A ∩ B|, they are oriented by τ and τ ′. The 
tangle τ ′ orients both c1 and c2 towards B by consistency. The tangle τ cannot orient 
both c1 and c2 towards B since tangles do not contain three separations whose small 
sides together cover G. Therefore, τ orients one of c1 and c2 away from B. Then that 
corner distinguishes τ and τ ′, and must do so efficiently, hence it lies in ε. �

If τ is a tangle in G, and σi for i ∈ I are the tangles in G that are distinguishable 
from τ , then for every σi we obtain an entanglement εi ⊆ τ by Lemma 2.1, and these εi
contain all the information from τ that is sufficient to efficiently distinguish τ from all 
σi. This is why intuitively, we may think of entanglements as an axiomatisation of ‘local 
properties’ of tangles.

Example 2.2. The Farey graph F1 of order 1 is obtained from a 4-cycle whose edges are 
coloured blue by adding a chord. Recursively, the Farey graph Fk+1 of order k + 1 is 
obtained from Fk by adding a new vertex ve for each blue edge e of Fk, joining it to the 
two endvertices of e with blue edges, and uncolouring the previously blue edge e; see 
Fig. 2. Now let k ∈ N be any number and let us consider Fk.

Each non-blue edge of Fk leaves two components after deleting its endvertices, and 
therefore defines a separation of Fk in the obvious way. Let N be the set of all separations 
of Fk defined in this way. We claim that each separation in N forms an entanglement of 
its own. To see that these singletons satisfy (E), consider any separation {A, B} ∈ N , 
and let {C, D} be any separation of G which crosses {A, B}. It suffices to show that 
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Fig. 3. The situation in Example 2.3.

of every two corners lying on the same side of {A, B}, at least one has order larger 
than |A ∩B| = 2. Since A ∩B induces a K2, we may assume without loss of generality 
that A ∩ B ⊆ C. By symmetry, it suffices to show that the corner c := {A ∩ C, B ∪D}
has order at least three. If the separator of c has size at most two, then it is equal to 
A ∩ B, and c = {A, B} follows because A \ B and B \ A are connected. In particular, 
A ∩ C = A implies A ⊆ C, and B ∪D = B implies B ⊇ D, so {A, B} and {C, D} are 
nested. Since this would contradict our assumptions, c must have order at least three, as 
desired. Hence, each separation in N forms an entanglement in Fk, so each separation 
in N is a friendly separation of Fk.

The set of all separations of Fk whose separators span a K2 is nested and witnesses 
that there is no tangle in Fk by [9, Theorem 12.5.1].

Example 2.3. We claim that wheels have no entanglements. Indeed, let G be a wheel 
and let us suppose for a contradiction that there is an entanglement in G. Let {A, B}
be a separation of G that lies in an entanglement and whose side A is inclusionwise 
minimal among all separations of G that lie in entanglements. Since A \ B and B \ A

are non-empty and the centre c of the wheel is joined to all other vertices, c can only be 
contained in A ∩ B; see Fig. 3. Furthermore, |A ∩ B| � 3 since G is 3-connected. Pick 
any two vertices a ∈ A \ B and b ∈ B \ A, and let {C, D} be the separation of G with 
C ∩D = {a, b, c}. Let P and Q be the two internally disjoint a–b paths through the rim 
of the wheel. Since A ∩B meets both P and Q in internal vertices, it follows that {A, B}
and {C, D} cross and that all four corners have order at most |A ∩B|. Hence (E) implies 
that at least one of the corners on the A-side of {A, B} lies in an entanglement. This 
contradicts the minimal choice of A.

3. Friendly separations are nested

For a finite graph G and a separation s of G, let us denote by x(s) the number of 
separations in entanglements in G which are crossed by s, and call x(s) the crossing 
number of s in G.

Lemma 3.1. Let G be any finite graph. Suppose that for all entanglements ε1, ε2 in G

(possibly with ε1 = ε2) and any two crossing separations s1 ∈ ε1 and s2 ∈ ε2, there exist 
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an index i ∈ {1, 2} and a separation c ∈ εi such that x(c) < x(si). Then the friendly 
separations of G are nested. �
Lemma 3.2. Let G be any graph, let r, s be two crossing separations of G, and let c, d be 
two opposite corners of r, s. For every separation t of G the following assertions hold:

(i) If t crosses at least one of c and d, then t crosses at least one of r and s.
(ii) If t crosses both c and d, then t crosses both r and s.
(iii) Neither r nor s crosses c or d.

Proof. (i) holds by [9, Lemma 12.5.5], whose proof works for both finite and infinite 
graphs. (ii) is straightforward if one shows the contrapositive. (iii) is trivial. �
Corollary 3.3. Let G be any finite graph, let r, s be two crossing separations in entangle-
ments in G, and let c, d be two opposite corners of r, s. For every separation t of G we 
have x(c) + x(d) < x(r) + x(s).

Proof. Combining (i)–(iii) of Lemma 3.2 gives x(c) + x(d) � x(r) + x(s). Since s and r
lie in entanglements and cross, they are counted in x(r) and in x(s), but they contribute 
to neither x(c) nor x(d) by (iii); hence the inequality is strict. �
Lemma 3.4. Let G be any finite graph. Suppose that for all entanglements ε1, ε2 in G

(possibly with ε1 = ε2) and any two crossing separations s1 ∈ ε1 and s2 ∈ ε2, at least 
one of the following conditions is satisfied:

(C1) there are opposite corners c1, c2 of s1, s2 with c1 ∈ ε1 and c2 ∈ ε2;
(C2) two opposite corners of s1, s2 are in ε1, and the other two opposite corners of s1, s2

are in ε2.

Then the friendly separations of G are nested.

Proof. It suffices to show that the premise of Lemma 3.1 is satisfied. For this, let ε1, ε2 be 
any entanglements in G (possibly with ε1 = ε2) and let s1, s2 be two crossing separations 
with s1 ∈ ε1 and s2 ∈ ε2.

First, suppose that by (C1) there are opposite corners c1, c2 of s1, s2 with c1 ∈ ε1 and 
c2 ∈ ε2. By Corollary 3.3, we have x(c1) + x(c2) < x(s1) + x(s2). An indirect proof finds 
an i ∈ {1, 2} with x(ci) < x(si).

Second, suppose that by (C2) there are two opposite corners c1, c′1 of s1, s2 are in ε1, 
and the other two opposite corners c2, c′2 of s1, s2 are in ε2. By Corollary 3.3, we have 
x(ci) + x(c′i) < x(s1) + x(s2) for both i = 1, 2. Without loss of generality, we have 
x(s1) � x(s2). Hence either x(c2) < x(s2) or x(c′2) < x(s2). �
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Fig. 4. The situation in Case 1.

Let us write |s| := |A ∩ B| for a separation s = {A, B}. If two separations s1 and 
s2 of a graph G cross and c1, c2 are two opposite corners of s1, s2, then the orders of 
these corners sum to |c1| + |c2| = |s1| + |s2|. The important part of this equality is the 
inequality |c1| + |c2| � |s1| + |s2|, which is known as submodularity, and which is the only 
part of the equality that we will need in the proofs.

Theorem 3.5. The friendly separations of any finite graph are nested.

Proof. It suffices to show that the premise of Lemma 3.4 is satisfied. For this, let ε1 and 
ε2 be any entanglements in G, possibly with ε1 = ε2, and let s1 ∈ ε1 and s2 ∈ ε2 be 
two crossing separations. Without loss of generality, we have |s1| � |s2|. Let us colour a 
corner of s1, s2 green if it has order at most |s2|.

Sublemma 3.6. At least three corners of s1, s2 are green.

Proof. Suppose for a contradiction that at most two corners of s1, s2 are green. By 
submodularity and since |s1| � |s2|, at least one of any two opposite corners must be 
green. So there are exactly two green corners, and since they cannot be opposite they 
must be adjacent. As the remaining two corners are not green by assumption, they have 
order greater than |s2|. By submodularity, this means that the green corners in fact have 
order less than |s1|. Then either ε1 or ε2 contains a green corner by (E). But then this 
green corner has order equal to |s1| or |s2| by (E), contradicting our observation that it 
has order less than |s1| and |s2|. �

By Sublemma 3.6, at least three corners of s1, s2 are green. Hence it suffices to consider 
the following two cases. See Fig. 4 for a depiction of Case 1.

Case 1: In the first case, precisely three corners of s1, s2 are green. Then two green 
corners c2, d2 lie on the same side of s2, so at least one of them is contained in ε2 by (E), 
say c2 ∈ ε2. Hence c2 has order exactly |s2|. So the corner c1 opposite of c2 has order 
at most |s1| by submodularity; in particular, c1 is green. Note that c1 and d2 lie on the 
same side of s1. The corner opposite of d2 is not green, so has order more than |s2|. 
Hence d2 has order less than |s1| by submodularity. So by (E), at least one of d2 and c1
is contained in ε1 and has order equal to |s1|. This can only be c1. So c1, c2 are opposite 
corners of s1, s2 with c1 ∈ ε1 and c2 ∈ ε2, giving (C1).
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Case 2: In the second case, all four corners are green. Applying (E) on both sides 
of s2 ∈ ε2, we find corners c2, c′2 of s1, s2 with c2, c′2 ∈ ε2 such that c2, c′2 do not lie on 
the same side of s2. Moreover, c2 and c′2 have order exactly |s2| by (E). We consider two 
subcases.

Subcase 2A: In the first subcase, the two corners c2, c′2 are adjacent, so they lie on the 
same side of s1. Let c1 be the corner opposite of c2, and let c′1 be the corner opposite 
of c′2. The corners c1, c′1 have order at most |s1| by submodularity. Moreover, c1 and c′1
lie on the same side of s1. Hence at least one of c1 and c′1 is contained in ε1 by (E), and 
we already know that its opposite corner is contained in ε2, giving (C1).

Subcase 2B: In the second subcase, the two corners c2, c′2 are opposite. Since c2 and c′2
have order |s2|, submodularity with |s1| � |s2| implies |s1| = |s2|. Therefore, by symme-
try we can repeat the entire argumentation up to this point with the roles of s1 and s2
interchanged to find two opposite corners c1, c′1 of s1, s2 with c1, c′1 ∈ ε1. If the sets 
{c1, c′1} and {c2, c′2} intersect, then they are equal, so c2 and c′2 are opposite corners of 
s1, s2 with c2 ∈ ε1 and c′2 ∈ ε2, giving (C1). Otherwise, {c1, c′1} and {c2, c′2} are disjoint, 
and then c1, c′1 are two opposite corners of s1, s2 in ε1 while c2, c′2 are the other two 
opposite corners of s1, s2 and are in ε2, giving (C2). �
Proof of Theorem 1. Let G be a finite graph, and let N denote its set of friendly separa-
tions. The set N is nested by Theorem 3.5, and it efficiently distinguishes all the tangles 
in G by Lemma 2.1. As is well-known [18, (9.1)], N defines a tree-decomposition T of G, 
which efficiently distinguishes all the tangles in G since N does. �
Remark 3.7. To construct the tree-decomposition T that efficiently distinguishes all the 
tangles in the proof of Theorem 1, we have used all entanglements in G (to first define 
N and then T ), not just the ones induced by the pairs of distinguishable tangles. It is 
possible to adjust the entire framework of this section to only work with the set E of 
tangle-induced entanglements instead, to obtain a nested set N ′ = N ′(E), which may 
be incomparable with N (as set), and then obtain a tree-decomposition from N ′; we 
do this in more detail in Theorem 4.2 (because there we must restrict to a subset of 
all the entanglements). This would make sure that every separation in N ′ (and hence 
of the tree-decomposition) efficiently distinguishes two tangles in G. However, there is 
an alternative way to achieve this: we can consider the subset N ′′ ⊆ N formed by the 
separations that efficiently distinguish some two tangles, and then consider the tree-
decomposition defined by N ′′.

4. Entanglements in locally-finite infinite graphs

Recall that a graph is locally finite if each of its vertices has only finitely many neigh-
bours. In this section, we extend Theorem 3.5 to locally-finite infinite graphs. The proof 
of Theorem 3.5 almost works for locally-finite infinite graphs. The only places where we 
use finiteness are where we use the crossing numbers x(s); indeed, we only need that 
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all relevant crossing numbers are finite. To ensure this, we combine local finiteness with 
two other customary conditions, tightness and finite boundedness; see Lemma 4.1. Then 
we extend Theorem 3.5 to infinite graphs under the combination of the three conditions. 
The combination of the three conditions is mild in the sense that the extension result, 
Theorem 4.2, is strong enough for its application in [13].

A separation {A, B} of a graph G is tight if there are components CA and CB of 
G −(A ∩B) with CA ⊆ G[A \B] and CB ⊆ G[B\A] such that NG(CA) = A ∩B = NG(CB). 
An entanglement in a graph is tight if it consists of tight separations. For instance, 
entanglements induced by pairs of tangles are tight [15, Lemma 6.1].

Lemma 4.1. Let G be any locally finite connected graph and k ∈ N. Then every tight 
finite-order separation of G is crossed by only finitely many tight separations of G of 
order at most k.

Proof. This fact is well-known; see e.g. the proof of [15, Proposition 6.2]. �
A set E of entanglements is finitely bounded if there is k ∈ N with |s| � k for 

all s ∈
⋃
E . Let G be any graph, and let E be a set of entanglements in G. Suppose that 

E is finitely bounded. If G is locally finite but infinite, we additionally assume that all 
entanglements in E are tight, so that each separation in

⋃
E crosses only finitely many 

separations in
⋃
E by Lemma 4.1. A separation {A, B} in an entanglement ε ∈ E is 

E-friendly if no other separation in ε crosses less separations in
⋃
E .

Theorem 4.2. Let G be any locally-finite connected graph and let E be any finitely bounded 
set of tight entanglements in G. Then the set of E-friendly separations of G is nested.

Proof. The plan is to walk through Section 3 once more and see that everything adjusts 
to and works in the setting of the theorem. First, we adjust the crossing numbers: x(s)
counts only the separations in entanglements in E that cross s. Then x(s) is finite for all 
s ∈

⋃
E , by Lemma 4.1.

In Lemma 3.1, we only consider entanglements in E , and use that the crossing-numbers 
x(si) are finite. Lemma 3.2 is stated and proved for arbitrary graphs. In Corollary 3.3, 
we only consider entanglements in E , so x(r) and x(s) are finite; then the proof extends. 
Lemma 3.4 extends similarly, and so does the proof of Theorem 3.5. �

Recall that every end of a graph induces a tangle of infinite order; in particular, every 
pair of ends induces an entanglement. Two ends of a graph are (<k)-distinguishable (for 
k ∈ N) if their induced tangles are distinguished by a separation of order less than k.

Corollary 4.3. Let G be any locally-finite connected graph and k ∈ N. Let E be the set 
of all entanglements in G that are induced by pairs of (<k)-distinguishable ends of G. 
Then the set of E-friendly separations of G is nested and efficiently distinguishes every 
pair of (<k)-distinguishable ends of G. �
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Rühmann showed a result that is somewhat similar to the above corollary, see [19, 
Theorem 6.1.6]. For more on infinite trees of tangles, we refer to [8,2,15–17].

5. Abstract entanglements

In this section, we introduce an abstract setting which is more general than separations 
of graphs, and generalise Theorem 1 to this abstract setting.

A separation is a set of the form {A, B} with A �= B. We refer to A and B as the 
(opposite) sides of {A, B}. An uncrossing-setting on a set S of separations is a pair (S, ∼)
where ∼ is an anti-reflexive symmetric binary-relation on S. Instead of writing r ∼ s we 
say that r and s cross, and any two elements of S that do not cross are nested. A set of 
separations in S is nested if its elements are pairwise nested.

A corner-map for an uncrossing-setting (S, ∼) is a map � which assigns to every 
unordered pair of crossing separations r = {A, B} and s = {C, D} four pairwise distinct 
separations L{r,s}({X, Y }), one for each choice of sides X ∈ {A, B} and Y ∈ {C, D}, 
subject to condition (F) below. We allow any number of these corners to be elements 
of S, but we do not require them to be elements of S. A corner of r, s that is contained 
in S shall be called an S-corner for emphasis. As r and s will always be clear from 
context, we reduce the notation L{r,s}({X, Y }) to L(X, Y ) for convenience.

Example 5.1. If two separations {A, B} and {C, D} of a graph G cross, then the four 
corners are the usual corners L(X, Y ) := {X ∩ Y, X ′ ∪ Y ′} for {X, X ′} = {A, B} and 
{Y, Y ′} = {C, D}.

Two distinct corners L(X, Y ) and L(X ′, Y ′) are opposite if X, X ′ are opposite sides 
of {A, B} and Y, Y ′ are opposite sides of {C, D}. They are adjacent if they are not 
opposite, which is equivalent to having X = X ′ or Y = Y ′ but not both. They lie on 
the same side of {A, B} if X = X ′, and similarly they lie on the same side of {C, D}
if Y = Y ′. Note that distinct corners that lie on the same side of r or of s are adjacent. 
Condition (F) generalises Corollary 3.3 and reads as follows:

(F) Every two opposite S-corners c, d of r, s satisfy the following three conditions.

(F1) If t ∈ S crosses at least one of c and d, then t crosses at least one of r and s.
(F2) If t ∈ S crosses both c and d, then t crosses both r and s.
(F3) Neither r nor s crosses c or d.

An order-function is a map

| · | : S ∪ {corners of crossing separations in S} → R�0.

Then |s| is the order of s. An order-function | · | is submodular if for every two crossing 
elements r, s ∈ S and opposite corners c, d of r, s it satisfies |c| + |d| � |r| + |s|. A sub-
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modular uncrossing-setting on a set S of separations is a triple (S, ∼, �, | · |) formed by 
an uncrossing-setting (S, ∼) with a corner-map � and a submodular order-function | · |.

An entanglement in a submodular uncrossing-setting on a set S of separations is a 
non-empty subset ε ⊆ S which exhibits the following property:

(E) If a separation r ∈ ε is crossed by an s ∈ S so that two adjacent corners on the 
same side of r have order at most |r|, then at least one of these two corners has 
order equal to |r| and lies in ε.

Suppose now that S is finite. For every s ∈ S we denote by x(s) the number of 
separations in entanglements which are crossed by s, and we call x(s) the crossing-
number of s.

Lemma 5.2. Let r, s be two crossing separations in entanglements in a submodular 
uncrossing-setting on a set S of separations. Then for every two opposite S-corners 
c, d of r, s we have x(c) + x(d) < x(r) + x(s).

Proof. This follows from (F1)–(F3) just like in the proof of Corollary 3.3. �
A separation s ∈ S is friendly if it occurs in an entanglement ε and no other separation 

in ε crosses less separations in entanglements.

Theorem 5.3. The friendly separations in a finite submodular uncrossing-setting are 
nested.

Proof. The proof is analogous to the proof of Theorem 3.5, including Lemma 3.1 and 
Lemma 3.4, with just one exception: instead of Corollary 3.3, we use Lemma 5.2. �

Theorem 5.3 clearly implies Theorem 1, and it yields the following version of 
Theorem 1 for matroids. We state the theorem using the terminology of [12, §4.2]. The 
usual order-function for matroid-separations is well known to be submodular, see e.g. [12]. 
Matroid-separations exhibit (F): indeed, the proof of Lemma 3.2 extends to matroid-
separations verbatim. Hence matroid-separations form a submodular uncrossing-setting.

Theorem 5.4. For every finite matroid M , the set of friendly separations of M is a nested 
set of separations; and hence gives rise to a tree-decomposition distinguishing all tangles 
efficiently. �
Concluding remarks In [3], r-local 2-separations of graphs have been introduced, which 
need not separate the graph globally but which separate it r-locally in that they separate 
a ball of radius r/2 around their separators. While it is not obvious how the notion of 
tangles could be generalised to r-local separations, this can be achieved for entanglements 
with a slightly different notion of r-local separations, as announced in [3]. We would also 
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like to mention that Theorem 4.2 and Theorem 5.3 will be used in upcoming work to 
find graph-decompositions, see for example [13].
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