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ABSTRACT

Co-evolutionary algorithms have found several applications in
game-theoretic applications and optimisation problems with an
adversary, particularly where the strategy space is discrete and ex-
ponentially large, and where classical game-theoretic methods fail.
However, the application of co-evolutionary algorithms is difficult
because they often display pathological behaviour, such as cyclic
behaviour and evolutionary forgetting. These challenges have pre-
vented the broad application of co-evolutionary algorithms.

We derive, via rigorous mathematical methods, bounds on the
expected time of a simple co-evolutionary algorithm until it discov-
ers a Maximin-solution on the pseudo-Boolean Bilinear problem.
Despite the intransitive nature of the problem leading to a cyclic
behaviour of the algorithm, we prove that the algorithm obtains
the Maximin-solution in expected 𝑂 (𝑛1.5) time.

However, we also show that the algorithm quickly forgets the
Maximin-solution and moves away from it. These results in a large
total regret of Θ̃(𝑇𝑛1.5) after 𝑇 iterations. Finally, we show that
using a simple archive solves this problem reducing the total regret
significantly.

Along the way, we present new mathematical tools to com-
pute the expected time for co-evolutionary algorithms to obtain
a Maximin-solution. We are confident that these tools can help
further advance runtime analysis in both co-evolutionary and evo-
lutionary algorithms.

CCS CONCEPTS

• Theory of computation→ Optimization with randomized

search heuristics.
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1 INTRODUCTION

There is an increasing interest in optimisation problems that involve
one or more adversaries, such as designing game-playing strategies,
robust optimisation and Generative Adversarial Networks (GANs).
Gradient-based methods have been used to solve these problems
when the “payoff” function is differentiable. However, in many real-
world scenarios, the payoff function is non-differentiable, that is,
the derivatives of the function cannot be computed or do not exist.
Non-differentiability can occur due to several reasons, such as when
the domain is discrete or when the function is discontinuous. In
such cases, gradient-based methods cannot be used, and alternative
methods such as gradient-free algorithms or heuristic methods may
be required to find an optimal solution. A promising approach in
these settings is the use of competitive co-evolutionary algorithms
(CoEAs1) [29] which are gradient-free algorithms. An early suc-
cessful application of CoEAs was the work by Hillis [15] in which
sorting networks were co-evolved with test cases. Other early ex-
amples are Axelrod et al. [3] and [24] independently using CoEAs
to evolve effective strategies for the iterated prisoner’s dilemma.
Jensen, Branke and Rosenbusch [4, 17] studied CoEAs (gradient-free
algorithms) on simple (continuous) adversarial problems empiri-
cally showing that with an appropriate fitness assignment method,
CoEAs can obtain promising results.

More recently, there have been successful applications of Co-
EAs in co-evolutionary learning [25] and GANs [2, 8, 32]. CoEAs
and GANs are adversarial models that share similarities. For exam-
ple, they both are known to have pathological dynamics such as
focusing, relativism, loss of gradient, mode collapse and cyclic be-
haviour [2, 9, 29, 31, 33]. To understand such dynamics, researchers
have used basic adversarial problems for which simple algorithms
present the aforementioned pathological behaviours. An example
is the Maximin Bilinear problems (zero-sum games). Maximin Bi-
linear problems are a class of optimisation problems that involve
maximising the minimum value of a bilinear function. Bilinear
problems are often regarded as an important simple example for
theoretically analyzing and understanding new algorithms and
techniques [35]. These problems are known to be difficult and it
is well-known that simultaneous gradient descent ascent does not
converge [28]. However, Liang and Stokes [23], Mokhtari et al.
[27], Zhang and Yu [35] showed that specialised gradient descent
algorithms are able to get around these pathological phenomena
and they can guarantee linear convergence to a Nash equilibrium

on Minimax Bilinear problems. But these algorithms rely on a
differentiable pay-off function, allowing the use of gradients.

1The name CoEAs is used for both competitive and cooperative co-evolutionary
algorithms, in this work we refer only to competitive co-evolutionary algorithms
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As mentioned before, in the case of discrete search spaces, there
is no gradient, limiting the information the algorithms can use
and making the task more difficult. Since CoEAs are gradient-free
algorithms they can readily deal with discrete search spaces. Despite
their promising results, CoEAs are not commonly used primarily
due to a lack of proper understanding regarding their behavior.

Understanding the behaviour of CoEAs is considered to be more
challenging than understanding classical evolutionary algorithms
(EAs). While classical EAs select individuals for reproduction based
on an external fitness function, CoEAs use a different approach. Co-
EAs typically involve two or more populations that compete with
each other, and individuals are selected based on howwell they “per-
form” against individuals from the other population(s) [29]. Hence,
identifying the causes of pathological behaviours and designing
CoEAs that can circumvent these issues is a challenging task. It
requires a deep understanding of the complex interactions between
the coevolving populations and the fitness landscape.

We argue that runtime analysis can be used to better understand
CoEAs. Runtime analysis is an essential analytic tool in the study
of time complexity for traditional EAs. It provides bounds for the
number of fitness function evaluations (called runtime) [6]. Run-
time analysis has helped identify and understand the relationships
between algorithmic parameters and problem characteristics that
determine the efficiency of evolutionary algorithms. In this work,
we aim to expand the runtime analysis tool-set to CoEAs.

There are only a small number of rigorous runtime analysis of
CoEAs. Jansen and Wiegand [16] analysed the runtime of a coop-
erative CoEA and a (1+1) EA on separable functions. The authors
showed that problem separability cannot be used as a predictor of
whether a cooperative CoEA performs better than the (1+1) EA. The
first rigorous runtime analysis on competitive population-based
CoEAs was made by Lehre [21]. The author proposed and theoreti-
cally analysed a population-based CoEA called PD-CoEA, showing
that with the appropriate parameter values, it can efficiently find
an 𝜀-approximation of the Nash equilibria on some instances of
a pseudo-Boolean Bilinear problem. Additionally, Lehre showed
that for an incorrect parameter setting the PD-CoEA is inefficient
on every problem, as long as the problem does not have too many
optima. Following this work, Hevia Fajardo and Lehre [14] stud-
ied how fitness aggregation methods affect the performance of a
(1, 𝜆) CoEA on a discrete lattice Bilinear problem. The authors
showed that using the average of interactions as a fitness aggrega-
tion results in inefficient optimisation whilst using the worst case
interaction as a fitness aggregation results in efficient optimisation.

1.1 Our Contributions

In this work, we analyse a simple CoEA that we name Randomised
Local Search CoEA using Pairwise Dominance (RLS-PD, Algo-
rithm 1) on some instances of the pseudo-Boolean Bilinear* prob-
lem2 (formally defined in Section 2.1). Our main contribution is to
demonstrate that utilizing a (1+1)-type CoEA can lead to undesired
pathological behaviors, and it is essential to incorporate additional
considerations such as archives in order to circumvent these issues.

First, we analyse the time it takes the RLS-PD to create a Nash
equilibrium on instances of the Bilinear* problem where all Nash

2We use a small variation of the Bilinear function from [21] denoted by Bilinear*

equilibria are at a Hamming distance of at most 𝑂 (
√
𝑛)-bits from

𝑛/2-bits for both populations. Reaching a solution with 𝑛/2-bits is
arguably the easiest problem setting, because the inherent genetic
drift pushes the RLS-PD towards 𝑛/2-bits. Nevertheless, the setting
where the Nash equilibria is moved by Θ(

√
𝑛) from 𝑛/2-bits can be

challenging both for the RLS-PD to optimise and for us to analyse.
This is because on Bilinear*, RLS-PD does not receive any signal
towards or away from the optimum when selecting individuals.
Therefore, it relies on the aforementioned genetic drift to approach
the Nash equilibria. But once it draws near the Nash equilibria the
genetic drift starts to work against the RLS-PD pushing it away.
Despite this, we are able to show that the RLS-PD can find the Nash
equilibrium efficiently on Bilinear*.

However, we also show that the RLS-PD does not converge
to the Nash equilibrium. To illustrate this, we use the concept of
regret and total regret. The concept of regret is commonly used
in Maximin optimisation to comprehend the extent to which a
decision’s performance can be improved. In turn, the total regret
provides a comprehensive measure of the overall deviation from the
Maximin-solution in terms of fitness during a run, quantifying the
extent to which a search-based algorithm’s trajectory differs from a
Maximin-solution. We give total regret bounds for the RLS-PD on
Bilinear* showing that even after finding the Nash equilibrium,
the algorithm quickly forgets it and stays away from it for a large
proportion of the time resulting in a large total regret. The bounds
for regret of RLS-PD are estimated by using Hajek’s Occupation
Time Bounds [12, Theorem 3.1].

Finally, we show that if an archive is used to retain promising
solutions, the RLS-PD is able to reduce the total regret significantly.
The reader may think that this is trivial, but due to the intransitivi-
ties of the Bilinear* problem an archive might prefer bad solutions
over good solutions depending on what competing solutions are
used during the comparison.

Due to the complexity of the coevolutionary dynamics, our anal-
yses need analytical tools rarely used in runtime analysis, such as
the Occupation Time Bound [12] and our newly developed vari-
ance drift theorem. The variance drift theorem builds on previous
work where the variance of the process (or random fluctuations of
the process) is used to overcome weak drift or zero drift tenden-
cies [5, 7, 10, 11, 18]. In our case we extend previous variance drift
theorems to allow even small negative drift as long as the variance
is large enough and the distance to traverse is not too large. We
are confident that this tool is of independent interest and can help
further advance runtime analysis in both CoEAs and EAs.

We note that a similar drift analysis tool dealing with small
negative drift in a small part of the optimisation have been used
by Kötzing et al. [20]. The proof idea in [20] relies on a different
drift transformation function which in turn results in different
conditions needed to apply each theorem. Therefore, our theorem
extends the toolbox of drift analysis.

A preliminary version of our results without the analyses on
total regret (Section 4.1 and parts of Section 4.2) has been published
as a poster at GECCO 2023.
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2 PRELIMINARIES

We study a simple (1+1)-type of algorithm called Randomised Local
Search with Pairwise Dominance (RLS-PD) shown in Algorithm 1.
The algorithm initialises two solutions 𝑥 ∈ X and 𝑦 ∈ Y uniformly
at random from the strategy spacesX,Y = {0, 1}𝑛 . Being consistent
with [21], we call 𝑥 predator and 𝑦 prey. Due to space constraints,
we removed some proofs from the paper; the detailed proofs can
be found in the supplementary material.

After the initialisation, in each iteration, the algorithm creates
a new pair of solutions (𝑥 ′, 𝑦′) by copying the parents (𝑥,𝑦) and
flipping exactly one bit from either 𝑥 or 𝑦. Later, the algorithm
uses a dominance relation (Definition 2.1) to compare the created
bit strings. If (𝑥 ′, 𝑦′) ⪰𝑔 (𝑥,𝑦) then the new pair replaces the bit
strings (𝑥,𝑦).
Definition 2.1 ([21]). Given a function 𝑔 = X × Y → R and
two pairs (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ X ×Y, we say that (𝑥1, 𝑦1) dominates
(𝑥2, 𝑦2) with respect to 𝑔, denoted (𝑥1, 𝑦1) ⪰𝑔 (𝑥2, 𝑦2), if and only
if

𝑔(𝑥1, 𝑦2) ≥ 𝑔(𝑥1, 𝑦1) ≥ 𝑔(𝑥2, 𝑦1).

Algorithm 1 RLS-PD: Randomised Local Search with Pairwise
Dominance.
Require: Maximin-objective function 𝑔 : X ×Y → R.
1: Sample 𝑥1 ∼ Unif ({0, 1}𝑛)
2: Sample 𝑦1 ∼ Unif ({0, 1}𝑛)
3: for 𝑡 ∈ {1, 2, . . . } do
4: Create 𝑥 ′, 𝑦′ ∈ {0, 1}𝑛 by copying 𝑥𝑡 and 𝑦𝑡 and flipping

exactly one bit chosen uniformly at random from either 𝑥𝑡 or
𝑦𝑡 .

5: if (𝑥 ′, 𝑦′) ⪰𝑔 (𝑥𝑡 , 𝑦𝑡 ) then(𝑥𝑡+1, 𝑦𝑡+1) := (𝑥 ′, 𝑦′)

2.1 The Bilinear Problem

The pseudo-Boolean Bilinear problem (from now on we call it
Bilinear) was proposed by Lehre [21] as a simple and well-defined
class of Maximin-optimisation problems, where the Maximin-
gradient is intransitive. These characteristics allow a better un-
derstanding of the behaviour of CoEAs via theoretical analysis,
especially the pathological behaviours discussed before.

In this work, we use a slight variation of Bilinear denoted by
Bilinear* because the original definition from [21] contains small
plateaus where changing the decision of the predator 𝑥 does not
affect the best decision of the prey 𝑦. Although experimentally the
small plateaus do not seem to have a large effect on the behaviour
of the algorithm, it creates a problem in the theoretical analysis
of the algorithm that to the best of our knowledge neither current
nor our newly developed analytical tools are able to deal with. The
Bilinear* function used in this work is defined for two parameters
𝛼, 𝛽 ∈ (0, 1) by

Bilinear*𝛼,𝛽 (𝑥,𝑦) := |𝑦 |1 |𝑥 |1 − |𝑦 |1 𝛽𝑛 − 𝛼𝑛 |𝑥 |1

+
max{(𝛼𝑛 − |𝑦 |1)2, 1}

𝑛3
− max{(𝛽𝑛 − |𝑥 |1)2, 1}

𝑛3
.

where for any bit string 𝑧 ∈ {0, 1}𝑛 , |𝑧 |1 :=
∑𝑛
𝑖=1 𝑧

(𝑖 ) , that is, the
number of 1-bits in 𝑧. Furthermore, we only consider the problem

0 5000 10000 15000 20000 25000 30000 35000 40000
Runtime

Bilinear

Mod. Bilinear

Figure 1: Average runtime over 100 runs of RLS-PD on the

Bilinear function from [21] and the Bilinear* function

studied here with 𝑛 = 1000 and 𝛼 = 𝛽 = 0.56 ≈ 0.5 + 2/
√
𝑛.

setting 𝛼 = 1/2 ± 𝑂 (1/
√
𝑛) and 𝛽 = 1/2 ± 𝑂 (1/

√
𝑛). While this

is arguably the easiest problem setting, it suffices to demonstrate
that RLS-PD without an archive has unsatisfactory dynamics on
Bilinear* (see Section 4).

During our analysis, we divide the search space into four quad-
rants. We say that a pair of search points (𝑥,𝑦) is in:
• the first quadrant if 0 ≤ |𝑥 |1 < 𝛽𝑛 ∧ 𝛼𝑛 ≤ |𝑦 |1 ≤ 𝑛,
• the second quadrant if 𝛽𝑛 ≤ |𝑥 |1 ≤ 𝑛 ∧ 𝛼𝑛 < |𝑦 |1 ≤ 𝑛,
• the third quadrant if 𝛽𝑛 < |𝑥 |1 ≤ 𝑛 ∧ 0 ≤ |𝑦 |1 ≤ 𝛼𝑛, and
• the fourth quadrant if 0 ≤ |𝑥 |1 < 𝛽𝑛 ∧ 0 ≤ |𝑦 |1 < 𝛼𝑛.

We also denote the set of Nash equilibria as OPT, that is, OPT :=
{(𝑥,𝑦) | |𝑥 |1 = 𝛽𝑛 ∧ |𝑦 |1 = 𝛼𝑛}. Note that this pure Nash equilib-
rium corresponds to the optimum solution of the Maximin optimi-
sation problems. Our analysis and conclusions remain unchanged
if we consider the variant of the problem.

We note that our definition of Bilinear* takes the same values
as the definition of Bilinear from [21] almost everywhere and
empirical analysis show that RLS-PD have a similar behaviour
in both functions. That is, RLS-PD finds the optimum efficiently
(Figure 1) but stays relatively far away from the optimum most
of the time (Figure 2). The main purpose of the modification is to
allow the theoretical analysis whilst maintaining the same general
behaviour as the Bilinear function from [21]. We achieve this by
adding a small gradient towards the Nash equilibrium when either
|𝑥 |1 = 𝛽𝑛 or |𝑦 |1 = 𝛼𝑛. In the following lemma, we show that the
change in function values is minimal.

Lemma 2.2. Let ℎ(𝑥,𝑦) := max{(𝛼𝑛 − |𝑦 |1)2, 1}/𝑛3 −max{(𝛽𝑛 −
|𝑥 |1)2, 1}/𝑛3. Then, for any (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ X×Y and any 𝛼, 𝛽 ∈
[0, 1]

|ℎ(𝑥1, 𝑦1) − ℎ(𝑥2, 𝑦2) | ≤
2
𝑛
− 2
𝑛3
.

We now characterise the behaviour of RLS-PD. In the following
lemma we show the required conditions for an iteration of RLS-PD
to generate a pair of search points (𝑥 ′, 𝑦′) for which (𝑥 ′, 𝑦′) ⪰𝑔
(𝑥,𝑦).

Lemma 2.3. Let 𝑔 := Bilinear*. Let (𝑥,𝑦) be the current pair of
search points of Algorithm 1 and (𝑥 ′, 𝑦′) be a pair of search points
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Figure 2: Median distance and interquartiles over 100 runs of

RLS-PD on the Bilinear function from [21] and the Bilin-

ear* function studied here with 𝑛 = 1000 and 𝛼 = 𝛽 = 0.56 ≈
0.5 + 2/

√
𝑛.

created in Line 5 of Algorithm 1. Then (𝑥 ′, 𝑦′) ⪰𝑔 (𝑥,𝑦) if and only
if any of the following conditions are true

• 0 ≤ |𝑥 |1 < 𝛽𝑛 ∧ 𝛼𝑛 ≤ |𝑦 |1 ≤ 𝑛 and

(
��𝑦′��1 = |𝑦 |1 + 1 ∧ ��𝑥 ′��1 = |𝑥 |1)

∨ (
��𝑦′��1 = |𝑦 |1 ∧ ��𝑥 ′��1 = |𝑥 |1 + 1),

• 𝛽𝑛 ≤ |𝑥 |1 ≤ 𝑛 ∧ 𝛼𝑛 < |𝑦 |1 ≤ 𝑛 and

(
��𝑦′��1 = |𝑦 |1 − 1 ∧ ��𝑥 ′��1 = |𝑥 |1)

∨ (
��𝑦′��1 = |𝑦 |1 ∧ ��𝑥 ′��1 = |𝑥 |1 + 1),

• 𝛽𝑛 < |𝑥 |1 ≤ 𝑛 ∧ 0 ≤ |𝑦 |1 ≤ 𝛼𝑛 and

(
��𝑦′��1 = |𝑦 |1 − 1 ∧ ��𝑥 ′��1 = |𝑥 |1)

∨ (
��𝑦′��1 = |𝑦 |1 ∧ ��𝑥 ′��1 = |𝑥 |1 − 1),

• 0 ≤ |𝑥 |1 ≤ 𝛽𝑛 ∧ 0 ≤ |𝑦 |1 < 𝛼𝑛 and

(
��𝑦′��1 = |𝑦 |1 + 1 ∧ ��𝑥 ′��1 = |𝑥 |1)

∨ (
��𝑦′��1 = |𝑦 |1 ∧ ��𝑥 ′��1 = |𝑥 |1 − 1),

• |𝑥 ′ |1 = 𝛽𝑛 ∧ |𝑦′ |1 = 𝛼𝑛

We remark that Lemma 2.3 implies that as long as the algorithm
does not reach the a Nash equilibria, it moves through the search
space from quadrant to quadrant in order, that is first, second,
third, fourth and back to first. This is because in the first quadrant
only individuals 𝑥 ′ (𝑦′) with more one-bits than the parent 𝑥 (𝑦)
dominate their parents. In the second quadrant only individuals
𝑥 ′ (𝑦′) with more (less) one-bits than the parent 𝑥 (𝑦) dominate the
parents. In the third quadrant only individuals 𝑥 ′ (𝑦′) with fewer
one-bits than the parent 𝑥 (𝑦) dominate the parents. Finally, in the
fourth quadrant only individuals 𝑥 ′ (𝑦′) with fewer (more) one-bits
than the parent 𝑥 (𝑦) dominate the parents.

2.2 Notation and Probability Estimates

Consider a filtration F𝑡 , we write E𝑡 (·) := E(·|F𝑡 ). We use the fol-
lowing notation for RLS-PD (Algorithm 1) on Bilinear* throughout
our analyses.

Definition 2.4. Let 𝑀 (𝑥,𝑦) be the Manhattan distance from a
search point (𝑥,𝑦) ∈ X × Y to the optimum, that is, 𝑀 (𝑥,𝑦) :=
|𝑛𝛽 − |𝑥 |1 | +

��𝑛𝛼 − |𝑦 |1��. Let𝑀𝑡 := 𝑀 (𝑥𝑡 , 𝑦𝑡 ). For all 𝑡 ∈ Nwe define:
𝑝+𝑥,𝑦 := Pr (𝑀𝑡+1 > 𝑀𝑡 | 𝑀𝑡 = 𝑀 (𝑥,𝑦)) ;
𝑝−𝑥,𝑦 := Pr (𝑀𝑡+1 < 𝑀𝑡 | 𝑀𝑡 = 𝑀 (𝑥,𝑦)) .

The comparisons between individuals depend on the number
of 1-bits of the solutions 𝑥 and 𝑦. To improve readability, we often
use 𝑖 := |𝑥𝑡 |1 to denote the number of 1-bits in 𝑥𝑡 and 𝑗 := |𝑦𝑡 |1 to
denote the number of 1-bits in 𝑦𝑡 .

Lemma 2.5. For RLS-PD on Bilinear*, the quantities from Defini-

tion 2.4 are:

𝑝+𝑥,𝑦 =



𝑛− 𝑗
2𝑛 0 ≤ 𝑖 < 𝛽𝑛 ∧ 𝛼𝑛 ≤ 𝑗 ≤ 𝑛
𝑛−𝑖
2𝑛 𝛽𝑛 ≤ 𝑖 ≤ 𝑛 ∧ 𝛼𝑛 < 𝑗 ≤ 𝑛
𝑗
2𝑛 𝛽𝑛 < 𝑖 ≤ 𝑛 ∧ 0 ≤ 𝑗 ≤ 𝛼𝑛
𝑖
2𝑛 0 ≤ 𝑖 ≤ 𝛽𝑛 ∧ 0 ≤ 𝑗 < 𝛼𝑛
1 𝑖 = 𝛽𝑛 ∧ 𝑗 = 𝛼𝑛

(1)

𝑝−𝑥,𝑦 =



𝑛−𝑖
2𝑛 0 ≤ 𝑖 < 𝛽𝑛 ∧ 𝛼𝑛 ≤ 𝑗 ≤ 𝑛
𝑗
2𝑛 𝛽𝑛 ≤ 𝑖 ≤ 𝑛 ∧ 𝛼𝑛 < 𝑗 ≤ 𝑛
𝑖
2𝑛 𝛽𝑛 < 𝑖 ≤ 𝑛 ∧ 0 ≤ 𝑗 ≤ 𝛼𝑛
𝑛− 𝑗
2𝑛 0 ≤ 𝑖 ≤ 𝛽𝑛 ∧ 0 ≤ 𝑗 < 𝛼𝑛
0 𝑖 = 𝛽𝑛 ∧ 𝑗 = 𝛼𝑛

(2)

2.3 Drift Theorems

In this section we include drift theorems that we will use during
our analysis. We first state the “additive drift” theorem3 which is
due to [13].

Theorem 2.6 (Additive Drift [13]). Let (𝑋𝑡 )𝑡 ∈N, be a stochastic
process, adapted to a filtration (F𝑡 )𝑡 ∈N, over some state space 𝑆 ⊆ R,

and let 𝑏, 𝛿u, 𝛿ℓ > 0. Then for 𝑇0 := min{𝑡 | 𝑋𝑡 ≤ 0} it holds:
(i) If 𝐸 (𝑋𝑡 − 𝑋𝑡+1 − 𝛿u ; 𝑋𝑡 > 0 | F𝑡 ) ≥ 0 and 𝑋𝑡 ≥ 0 for all for

all 𝑡 ∈ N then E(𝑇0 | F0) ≤ 𝑋0
𝛿u

.

(ii) If 𝐸 (𝑋𝑡 − 𝑋𝑡+1 − 𝛿ℓ ; 𝑋𝑡 > 0 | F𝑡 ) ≤ 0 and 𝑋𝑡 ≤ 𝑏 for all

𝑡 ∈ N, then E(𝑇0 | F0) ≥ 𝑋0
𝛿ℓ
.

Most drift theorems require the process to have in expectation
a positive drift. However, sometimes the processes studied have a
small negative drift pushing the process away from the target in
expectation. In the following theorem, we present a transformation
for such a process where the variance of the process can be used
to counteract the small negative drift and allows us to apply drift
theorems to show that the target is reached efficiently despite the
negative drift. Doerr and Kötzing [5] use a similar idea to tackle
the case of low drift. While compared with [5], we use a quadratic
transformation instead of log-transformation to allow the Ω

(
1
𝑛

)
negative drift before reaching the optimum.
3Following [22], the theorem is restated in terms of general stochastic processes instead
of populations.
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Theorem 2.7 (Variance drift transformation). Let (𝑋𝑡 )𝑡 ∈N
be a sequence of random variables with a finite state space S ⊆
R adapted to a filtration (F𝑡 )𝑡 ∈N, and let 𝑇 = inf{𝑡 | 𝑋𝑡 ≤ 0}.
Furthermore, suppose that, given 𝑏 > 0,
(A1) there exist 𝛿 > 0 such that for all 𝑡 ∈ N, it holds that

E𝑡
(
(𝑋𝑡+1 − 𝑋𝑡 )2 − 2(𝑋𝑡+1 − 𝑋𝑡 ) (𝑏 − 𝑋𝑡 ) − 𝛿 ; 𝑡 < 𝑇

)
≥ 0

Then, given that 𝑌𝑡 = 𝑏
2 − (𝑏 − 𝑋𝑡 )2 for all 𝑡 ∈ N

E𝑡 (𝑌𝑡 − 𝑌𝑡+1 − 𝛿 ; 𝑡 < 𝑇 ) ≥ 0.

Proof. We define the process 𝑌𝑡 = 𝑏2 − (𝑏 −𝑋𝑡 )2 for all 𝑡 ∈ N.
For all 𝑡 < 𝑇 we determine the drift of 𝑌𝑡 :

E𝑡 (𝑌𝑡 − 𝑌𝑡+1; 𝑡 < 𝑇 )

= E𝑡
(
(𝑏 − 𝑋𝑡+1)2 − (𝑏 − 𝑋𝑡 )2; 𝑡 < 𝑇

)
= E𝑡

(
𝑏2 − 2𝑏𝑋𝑡+1 + 𝑋 2

𝑡+1 − (𝑏
2 − 2𝑏𝑋𝑡 + 𝑋 2

𝑡 ); 𝑡 < 𝑇
)

= E𝑡
(
𝑋 2
𝑡+1 − 𝑋

2
𝑡 − 2𝑏 (𝑋𝑡+1 − 𝑋𝑡 ); 𝑡 < 𝑇

)
= E𝑡 (𝑋 2

𝑡+1 − 2𝑋𝑡+1𝑋𝑡 + 𝑋
2
𝑡 − 2𝑋 2

𝑡

+ 2𝑋𝑡+1𝑋𝑡 − 2𝑏 (𝑋𝑡+1 − 𝑋𝑡 ); 𝑡 < 𝑇 )
= E𝑡 ((𝑋𝑡+1 − 𝑋𝑡 )2 − 2𝑋 2

𝑡

+ 2𝑋𝑡+1𝑋𝑡 − 2𝑏 (𝑋𝑡+1 − 𝑋𝑡 ); 𝑡 < 𝑇 )
= E𝑡 ((𝑋𝑡+1 − 𝑋𝑡 )2 + 2𝑋𝑡 (𝑋𝑡+1 − 𝑋𝑡 )

− 2𝑏 (𝑋𝑡+1 − 𝑋𝑡 ); 𝑡 < 𝑇 )

= E𝑡
(
(𝑋𝑡+1 − 𝑋𝑡 )2 − 2(𝑋𝑡+1 − 𝑋𝑡 ) (𝑏 − 𝑋𝑡 ); 𝑡 < 𝑇

)
(A1)
≥ 𝛿.

□

Corollary 2.8 (Variance upper additive drift). Let 𝑎 ≤ 0 and 𝑏 > 0.
Let (𝑋𝑡 )𝑡 ∈N be a sequence of random variables with a finite space

state S ⊆ R adapted to a filtration (F𝑡 )𝑡 ∈N, and let 𝑇 = inf{𝑡 |
𝑋𝑡 ≤ 0}. Furthermore, suppose that, given 𝑏 > 0,
(A1) there exist 𝛿 > 0 such that for all 𝑡 ∈ N, it holds that

E𝑡
(
(𝑋𝑡+1 − 𝑋𝑡 )2 − 2(𝑋𝑡+1 − 𝑋𝑡 ) (𝑏 − 𝑋𝑡 ) − 𝛿 ; 𝑡 < 𝑇

)
≥ 0

(A2) and for all 𝑡 ∈ N, it holds that 𝑎 ≤ 𝑋𝑡 ≤ 𝑏
Then,

E0 (𝑇 ) ≤
(𝑏 − E0 (𝑋𝑇 ))2 − (𝑏 − 𝑋0)2

𝛿
.

Proof. We define the process 𝑌𝑡 = 𝑏2 − (𝑏 − 𝑋𝑡 )2 for all 𝑡 ∈ N
again. Notice that 𝑌𝑡 ≤ 0 is equivalent to 𝑋𝑡 ≤ 0 by using 𝐴2
condition. Then

𝑇 = inf{𝑡 | 𝑋𝑡 ≤ 0} = inf{𝑡 | 𝑌𝑡 ≤ 0}.

We apply a version of the additive drift theorem from [19, The-
orem 7] on the stochastic process 𝑌𝑡 and get the claimed upper
bounds for the expected runtime. □

When applying drift analysis, we need to use potential functions
that describe the progress of the algorithm towards a target. Some-
times different parts of the process are better described by different
potential functions, but we need to choose only one potential func-
tion to describe the whole process because of the requirements
imposed by the drift theorems. In Lemma 2.9 we show a new and in-
tuitive way for which we can join two potential functions allowing
us to use more than one potential function.

Lemma 2.9 (Joining potential functions). Let (𝑋𝑡 )𝑡 ∈N be a se-

quence of random variables with a finite state spaceS ⊆ R adapted to

a filtration (F𝑡 )𝑡 ∈N, 𝜀 > 0, 0 ≤ 𝑥min ≤ 𝑎 ≤ 𝑥max and let𝑇 be a stop-

ping time. Additionally, let A = [𝑥min, 𝑎 + 𝜀] and B = [𝑎 − 𝜀, 𝑥max]
be real intervals that contain at least all values 𝑥 that, for all 𝑡 ≤ 𝑇 ,
any 𝑋𝑡 can take. Furthermore, suppose that,

(B1) for all 𝑡 < 𝑇 , it holds that |𝑋𝑡 − 𝑋𝑡+1 | ≤ 𝜀,
(B2) there exist a function 𝑓 : A → R and a function 𝛿1 : A \ (𝑎, 𝑎 +

𝜀] → R+ such that for all 𝑡 < 𝑇 , it holds that

E𝑡 (𝑓 (𝑋𝑡 ) − 𝑓 (𝑋𝑡+1) − 𝛿1 (𝑋𝑡 ); 𝑡 < 𝑇 ∧ 𝑋𝑡 ≤ 𝑎) ≥ 0,

(B3) there exist a function 𝑔 : B → R and a function 𝛿2 : B \ [𝑎 −
𝜀, 𝑎) → R+ such that for all 𝑡 < 𝑇 , it holds that

E𝑡 (𝑔(𝑋𝑡 ) − 𝑔(𝑋𝑡+1) − 𝛿2 (𝑋𝑡 ); 𝑡 < 𝑇 ∧ 𝑋𝑡 > 𝑎) ≥ 0,

(B4) for all 𝑥 ∈ [𝑎, 𝑎 + 𝜀], 𝑓 (𝑥) ≥ 𝑔(𝑥) and for all 𝑥 ∈ [𝑎 − 𝜀, 𝑎],
𝑔(𝑥) ≥ 𝑓 (𝑥).

Then, for all 𝑡 < 𝑇 , it holds that

E𝑡 (ℎ(𝑋𝑡 ) − ℎ(𝑋𝑡+1) − 𝛿 (𝑋𝑡 ); 𝑡 < 𝑇 ) ≥ 0
with

ℎ(𝑥) =
{
𝑓 (𝑥) if 𝑥 ≤ 𝑎
𝑔(𝑥) if 𝑥 > 𝑎

𝛿 (𝑥) =
{
𝛿1 (𝑥) if 𝑥 ≤ 𝑎
𝛿2 (𝑥) if 𝑥 > 𝑎.

We will also need the following drift theorem from [18] (see also
Corollary 4.1 in [34]).

Theorem 2.10 ([18]). Let (𝑋𝑡 )𝑡 ∈N be random variables over R,

each with finite expectation and let𝑚 > 0. With 𝑇 := inf{𝑡 ≥ 0 |
𝑋𝑡 ≥ 𝑚}, we denote the random variable describing the earliest point

that the random process exits the interval [0,𝑚). Suppose there are
𝜀, 𝑐 > 0 such that for all 𝑡 ,

1. E(𝑋𝑡+1 − 𝑋𝑡 − 𝜀;𝑇 > 𝑡 | 𝑋0, . . . , 𝑋𝑡 ) ≤ 0
2. |𝑋𝑡 − 𝑋𝑡+1 | < 𝑐
3. 𝑋0 ≤ 0
Then, for all 𝑠 < 𝑚/(2𝜀), Pr (𝑇 < 𝑠) ≤ exp

(
− 𝑚2

8𝑐2𝑠

)
.

3 RLS-PD SOLVES BILINEAR* EFFICIENTLY

In this section we analyse the expected runtime of RLS-PD on
Bilinear*.

First, we show that RLS-PD optimises Bilinear* in 𝑂 (𝑛1.5) ex-
pected function evaluations. The following theorem states the main
result of this section.

Theorem 3.1. Consider 𝛼 ∈ [1/2 −𝐴/
√
𝑛, 1/2 +𝐴/

√
𝑛] and 𝛽 ∈

[1/2 − 𝐵/
√
𝑛, 1/2 + 𝐵/

√
𝑛], where 𝐴, 𝐵 > 0 are constants and 3(𝐴 +

𝐵)2 ≤ 1/2−𝛿 ′ for some constant 𝛿 ′ > 0. Define𝑇 := inf{𝑡 | (𝑥𝑡 , 𝑦𝑡 ) ∈
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OPT}, where (𝑥𝑡 , 𝑦𝑡 ) are the current solutions of RLS-PD. Consider
RLS-PD on Bilinear*𝛼,𝛽 . Then, for any initial search points (𝑥0, 𝑦0),
E(𝑇 ) = 𝑂 (𝑛1.5).

The proof of Theorem 3.1 relies on the optimum being located
roughly at 𝑛/2 1-bits for both predator and prey. The intuition
behind the proof is as follows. When the current solutions are far
from the optimum, it is easier to flip bits that reduce the Manhattan
distance of the current points to the optimum than flipping bits
that increase it because of the genetic drift inherent to the mutation
operator. For example, if the current search points are in the first
quadrant with |𝑥 |1 = 𝑜 (1) and |𝑦 |1 = 𝑛 − 𝑜 (1), then there are
much more 1-bits in 𝑦 than in 𝑥 , hence the probability of flipping
a 0-bit in 𝑦 (increasing the Manhattan distance) is smaller than
the probability of flipping a 0-bit in 𝑥 (reducing the Manhattan
distance). In Figure 3 (a) we visualise this behaviour in detail for
𝛼𝑛 and 𝛽𝑛 different than 𝑛/2.

We use this behaviour and compute the expected decrease in
Manhattan distance to the optimum using drift analysis (Lemma 3.2)
to show that the algorithm approaches the optimum efficiently
when the current Manhattan distance is sufficiently large. Fig-
ure 3 (b) shows in green the regions where this is true.

Once the current solution is near the optimum, if 𝛼𝑛 ≠ 𝑛/2
or 𝛽𝑛 ≠ 𝑛/2 the genetic drift can work against the algorithm,
increasing the Manhattan distance in expectation (as seen in the
pink region of the right hand-side plot in Figure 3 (b)). Despite
this, with the use of our new variance drift theorem (Theorem 2.7),
we can show that the expected increase in Manhattan distance is
negligible and the variance of the mutation operator is enough to
guide the current solution towards the optimum efficiently.

n

2

n

2

α

β

(a)

n

2

n

2

α

β

(b)

Figure 3: Expected change in position (a) and expected change

in Manhattan distance (b) for 𝛼 ≠ 𝑛/2 and 𝛽 ≠ 𝑛/2.

Lemma 3.2. Consider RLS-PD on Bilinear* as in Theorem 3.1. Define

𝑇 := inf{𝑡 | 𝑀𝑡 = 0}, then for every generation 𝑡 < 𝑇

E
(
𝑀𝑡 −𝑀𝑡+1 −

𝑀𝑡 − (𝐴 + 𝐵)
√
𝑛

2𝑛 ; 𝑡 < 𝑇 | 𝑀𝑡

)
≥ 0.

From Lemma 3.2 we can see that when𝑀𝑡 ≤ (𝐴 +𝐵)
√
𝑛 the drift

cannot be guaranteed to be positive, therefore, we need a different
approach to show that we can reach the optimum. For this purpose,
we use the variance drift theorem (Theorem 2.7).

Lemma3.3. Consider RLS-PD on Bilinear* as in Theorem 3.1. Define

𝑇 := inf{𝑡 | 𝑀𝑡 = 0}. Define the process (𝑌𝑡 )𝑡 ∈N with 𝑌𝑡 = 𝑏
2 − (𝑏 −

𝑀𝑡 )2 and 𝑏 = 2(𝐴 + 𝐵)
√
𝑛 + 1, then there exists a constant 𝛿1 > 0 for

which

E𝑡 (𝑌𝑡 − 𝑌𝑡+1 − 𝛿1; 𝑡 < 𝑇 ∧𝑀𝑡 ≤ 𝑏) ≥ 0

Finally we use Lemma 2.9 to combine Lemmas 3.2 and 3.3 and
show that the algorithm reaches the optimum in 𝑂 (𝑛1.5).

Proof of Theorem 3.1. We aim to use Lemma 2.9 to combine
Lemmas 3.2 and 3.3, therefore we need to show that the conditions
of the lemma hold. We consider the values 𝑋𝑡 = 𝑀𝑡 , 𝑥min = 0,
𝑥max = 𝑛 + 𝑏, 𝑎 = 2(𝐴 + 𝐵)

√
𝑛 and 𝜀 = 1 for the variables in

Lemma 2.9. The algorithm flips at most one bit per iteration, hence
|𝑋𝑡−𝑋𝑡+1 | ≤ 1whichmeets Condition (B1). Conditions (B2) and (B3)
hold for 𝑓 (𝑥) = 𝑏2 − (𝑏 − 𝑥)2 and 𝑔(𝑥) = 𝑏2 − (𝑏 − 𝑥) with 𝑏 =

2(𝐴 + 𝐵)
√
𝑛 + 1 by Lemmas 3.3 and 3.2 respectively. We note that

Lemma 3.3 pertains only the Manhattan distance 𝑀 , but since 𝑀
and𝑔(𝑀) only differ by an additive constant, Lemma 3.3 also applies
for 𝑔(𝑀). Finally, for Condition (B4) we compute

𝑓 (𝑥) − 𝑔(𝑥) = (𝑏 − 𝑥) − (𝑏 − 𝑥)2 = (𝑏 − 𝑥) (𝑥 − (𝑏 − 1)) . (3)

For 𝑥 = 𝑎 = 𝑏 − 1 and 𝑥 = 𝑎 + 1 = 𝑏 this is equal to 0. For 𝑥 ∈
(𝑎, 𝑎 + 1) = (𝑏 − 1, 𝑏) both terms in Equation (3) are positive, hence,
𝑓 (𝑥) ≥ 𝑔(𝑥) for all 𝑥 ∈ [𝑎, 𝑎 + 1]. For 𝑥 ∈ [𝑎 − 1, 𝑎) = [𝑏 − 2, 𝑏 − 1)
the first term in Equation (3) is positive and the second term is
negative, hence, 𝑔(𝑥) ≥ 𝑓 (𝑥) for all 𝑥 ∈ [𝑎 − 1, 𝑎].

Given that all conditions in Lemma 2.9 hold we know that the
drift in the potential function

ℎ(𝑀𝑡 ) =
{
𝑏2 − (𝑏 −𝑀𝑡 )2 if𝑀𝑡 ≤ 2(𝐴 + 𝐵)

√
𝑛

𝑏2 − (𝑏 −𝑀𝑡 ) if𝑀𝑡 > 2(𝐴 + 𝐵)
√
𝑛

is lower bounded by the function

𝛿 (𝑀𝑡 ) =
{
𝛿1 if𝑀𝑡 ≤ 2(𝐴 + 𝐵)

√
𝑛

𝑀𝑡−(𝐴+𝐵)
√
𝑛

2𝑛 if𝑀𝑡 > 2(𝐴 + 𝐵)
√
𝑛.

Since ℎ(𝑀𝑡 ) = 0 implies 𝑀𝑡 = 0 we use 𝛿 (𝑀𝑡 ) to find an up-
per bound on E(𝑇 ) as follows. First we note that 𝑀𝑡−(𝐴+𝐵)

√
𝑛

2𝑛 ≥
1/(2
√
𝑛) for all 𝑀𝑡 > 2(𝐴 + 𝐵)

√
𝑛 and for a sufficiently large

𝑛, 𝛿1 ≥ 1/(2
√
𝑛). Then using additive drift (Theorem 2.6) with

ℎ(𝑀0) = 𝑂 (𝑛) we obtain

E(𝑇 ) ≤ 𝑂 (𝑛)
1/(2
√
𝑛)

= 𝑂 (𝑛1.5).

□

Corollary 3.4. Consider 𝛼 = 𝛽 = 1/2. Define𝑇 := inf{𝑡 | (𝑥𝑡 , 𝑦𝑡 ) ∈
OPT}, where (𝑥𝑡 , 𝑦𝑡 ) are the current solutions of RLS-PD. Consider
RLS-PD on Bilinear*𝛼,𝛽 . Then, for any initial search points (𝑥0, 𝑦0),
E(𝑇 ) = 𝑂 (𝑛 log(𝑛)).

3.1 Lower Bounds

In this section we show that the algorithm needs at least a linear
number of function evaluations to reach a Nash equilibrium. We
start by giving an upper bound on the expected change in Manhat-
tan distance.
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Lemma3.5. Consider RLS-PD on Bilinear* as in Theorem 3.6. Define

𝑇 := inf{𝑡 | 𝑀𝑡 = 0}, then for every iteration 𝑡 ∈ N,

E
(
𝑀𝑡 −𝑀𝑡+1 −

𝑀𝑡 + (𝐴 + 𝐵)
√
𝑛

2𝑛 ; 𝑡 < 𝑇 | 𝑀𝑡

)
≤ 0.

With Lemma 3.5 we can now present the main theorem of this
section.

Theorem 3.6. Consider any 𝛼 ∈ [1/2 −𝐴/
√
𝑛, 1/2 +𝐴/

√
𝑛] and

𝛽 ∈ [1/2 − 𝐵/
√
𝑛, 1/2 + 𝐵/

√
𝑛]. Define 𝑇 := inf{𝑡 | (𝑥𝑡 , 𝑦𝑡 ) ∈ OPT},

where (𝑥𝑡 , 𝑦𝑡 ) are the solutions of RLS-PD in iteration 𝑡 ∈ N when

applied to Bilinear*𝛼,𝛽 . In particular, if 𝑀 (𝑥0, 𝑦0) ≥ 𝐶
√
𝑛, 𝐴, 𝐵 =

Θ(1) and 𝐶 > 1, then the lower bound is of order Θ(𝑛) where 𝑀 is

defined in Definition 2.4.

Proof. For a lower bound, we only count the iterations where
𝑀𝑡 := 𝑀 (𝑥𝑡 , 𝑦𝑡 ) < 𝐶

√
𝑛. For all 𝑡 ∈ N let 𝑋𝑡 := 𝑀𝑡 and define 𝛿ℓ :=

𝐴+𝐵+𝐶
2
√
𝑛

and 𝑏 := 𝐶
√
𝑛. By Lemma 3.5, the conditions of Theorem 2.6

are satisfied, which implies

E(𝑇 ) ≥ 𝐶
√
𝑛

𝛿ℓ
=

2𝐶𝑛
𝐴 + 𝐵 +𝐶 .

□

4 RLS-PD FORGETS THE NASH EQUILIBRIUM

Despite the algorithm finding a Nash equilibrium efficiently, the
inherent characteristics of the function cause the algorithm not
only to forget the Nash equilibrium found but also move away from
it by a distance Ω(

√
𝑛) in 𝑂 (𝑛) iterations. This is shown in the

following theorem.

Theorem 4.1. Let 𝛼 = 1/2 ±𝐴/
√
𝑛 and 𝛽 = 1/2 ± 𝐵/

√
𝑛, where

𝐴, 𝐵 > 0 are constants. Define 𝑇 := inf{𝑡 | 𝑀𝑡 ≥ (𝐴 + 𝐵)
√
𝑛}, where

𝑀𝑡 is the current Manhattan distance to the set OPT. OPT is the set

of the current solutions of RLS-PD. Consider RLS-PD on Bilinear*𝛼,𝛽 .

Then, for any initial search points (𝑥0, 𝑦0), E(𝑇 ) = 𝑂 (𝑛).

Proof. If the initial search points (𝑥0, 𝑦0) have𝑀0 > (𝐴+𝐵)
√
𝑛

then, 𝑇 = 1 = 𝑂 (𝑛). Hence from now on we assume 𝑀0 ≤ (𝐴 +
𝐵)
√
𝑛.

Notice that for𝑀𝑡 ≤ (𝐴 + 𝐵)
√
𝑛 the E𝑡 (𝑀𝑡 −𝑀𝑡+1) can be pos-

itive or negative, in order to cope with this, we use the variance
drift theorem (Corollary 2.8) to show the desired expected runtime.
Let us set 𝑎 = 0, 𝑏 = (𝐴 + 𝐵)

√
𝑛 and 𝑋𝑡 = 𝑏 −𝑀𝑡 in conditions of

Corollary 2.8. Since𝑀𝑡 ≥ 0 then 𝑋𝑡 ≤ 𝑏. Additionally, we note that
|𝑀𝑡 −𝑀𝑡+1 | = 1, and if𝑀𝑡+1 ≥ 𝑏, then from the definition of 𝑇 we
are done. Hence, for all 𝑡 ≤ 𝑇 , 0 ≤ 𝑋𝑡 ≤ 𝑏 meeting Condition (A2).

Now, we check Condition (A1). We first need to compute the
second moment of (𝑋𝑡+1 − 𝑋𝑡 ). For every generation 𝑡 < 𝑇 , we
have

E𝑡
(
(𝑋𝑡+1 − 𝑋𝑡 )2

)
= E𝑡

(
(𝑀𝑡 −𝑀𝑡+1)2

)
= 𝑝+𝑥,𝑦 (𝑀𝑡 − (𝑀𝑡 + 1))2

+ 𝑝−𝑥,𝑦 (𝑀𝑡 − (𝑀𝑡 − 1))2

= 𝑝+𝑥,𝑦 + 𝑝−𝑥,𝑦 .

by Lemma 2.5, we write the expression explicitly as

E𝑡
(
(𝑋𝑡+1 − 𝑋𝑡 )2

)

=



𝑛− 𝑗
2𝑛 +

𝑛−𝑖
2𝑛 0 ≤ 𝑖 < 𝛽𝑛, 𝛼𝑛 ≤ 𝑗 ≤ 𝑛,

𝑛−𝑖
2𝑛 +

𝑗
2𝑛 𝛽𝑛 ≤ 𝑖 ≤ 𝑛, 𝛼𝑛 < 𝑗 ≤ 𝑛,

𝑖
2𝑛 +

𝑗
2𝑛 𝛽𝑛 < 𝑖 ≤ 𝑛, 0 ≤ 𝑗 ≤ 𝛼𝑛,

𝑖
2𝑛 +

𝑛− 𝑗
2𝑛 0 ≤ 𝑖 ≤ 𝛽𝑛, 0 ≤ 𝑗 < 𝛼𝑛,

1 𝑖 = 𝛽𝑛, 𝑗 = 𝛼𝑛.

≥ 1
2 −

𝐴 + 𝐵
√
𝑛
, (4)

where the last inequality follows by bounding 𝑖 and 𝑗 as done in
the proof of Lemma 3.3 but using 𝑏 = (𝐴 + 𝐵)

√
𝑛 instead of 𝑏 =

2(𝐴 + 𝐵)
√
𝑛 + 1. Now we note that E𝑡 (𝑋𝑡+1 − 𝑋𝑡 ) = E𝑡 (𝑀𝑡 −𝑀𝑡+1)

and compute E𝑡 (𝑀𝑡 −𝑀𝑡+1).

E𝑡 (𝑀𝑡 −𝑀𝑡+1)
= 𝑝−𝑥,𝑦 − 𝑝+𝑥,𝑦

=



𝑗−𝑖
2𝑛 0 ≤ 𝑖 < 𝛽𝑛, 𝛼𝑛 < 𝑗 ≤ 𝑛
𝑗+𝑖−𝑛
2𝑛 𝛽𝑛 < 𝑖 ≤ 𝑛, 𝛼𝑛 < 𝑗 ≤ 𝑛

𝑖− 𝑗
2𝑛 𝛽𝑛 < 𝑖 ≤ 𝑛, 0 ≤ 𝑗 < 𝛼𝑛
𝑛− 𝑗−𝑖
2𝑛 0 ≤ 𝑖 < 𝛽𝑛, 0 ≤ 𝑗 < 𝛼𝑛

1 𝑖 = 𝛽𝑛, 𝑗 = 𝛼𝑛

With the same arguments used in the proof of Lemma 3.2 we obtain

E𝑡 (𝑀𝑡 −𝑀𝑡+1) ≤
𝑀𝑡 + (𝐴 + 𝐵)

√
𝑛

2𝑛 .

Hence,

E𝑡 (2(𝑋𝑡+1 − 𝑋𝑡 ) (𝑏 − 𝑋𝑡 )) ≤ 2𝑀𝑡 ·
𝑀𝑡 + (𝐴 + 𝐵)

√
𝑛

2𝑛

= 𝑀𝑡 ·
𝑀𝑡 + 𝑏
𝑛

≤ 𝑏 − 1
𝑛

≤ (𝐴 + 𝐵)√
𝑛

(5)

Joining Equations (4) and (5) yields

E𝑡
(
(𝑋𝑡+1 − 𝑋𝑡 )2 − 2(𝑋𝑡+1 − 𝑋𝑡 ) (𝑏 − 𝑋𝑡 ); 𝑡 < 𝑇

)
≥ 1

2 −
2(𝐴 + 𝐵)
√
𝑛

For sufficiently large 𝑛 and 𝛿 := 1/4 the Condition (A1) in Corol-
lary 2.8 is met. Hence, the expected runtime is

𝐸 (𝑇 ) ≤ (𝑏 − 𝑎)
2 − (𝑏 − 𝑋0)2
𝛿

≤ 𝑏
2

𝛿
= 𝑂 (𝑛) .

□

4.1 Large Regret

The Maximin-regret is commonly used as a performance measure
for Maximin optimisation. This is because it allows us to under-
stand how much the performance of a decision can be improved.
Following [1], we define the Maximin-regret of Bilinear* as
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𝑟 (𝑥) :=Bilinear*(𝑥0, 𝑦0) −min
𝑦

Bilinear*(𝑥,𝑦)

=


−𝛼𝑛𝛽𝑛 + 𝛼𝑛𝑖 − 𝑛(𝑖 − 𝛽𝑛)
+ (𝛼𝑛−𝑛)

2−(𝛽𝑛−𝑖 )2
𝑛3 𝑖 < 𝛽𝑛

−𝛼𝑛𝛽𝑛 + 𝛼𝑛𝑖 + (𝛼𝑛)
2−(𝛽𝑛−𝑖 )2
𝑛3 𝑖 > 𝛽𝑛

0 𝑖 = 𝛽𝑛

=


(𝑖 − 𝛽𝑛)𝑛(𝛼 − 1) + O( 1𝑛 ) 𝑖 < 𝛽𝑛

(𝑖 − 𝛽𝑛)𝑛𝛼 + O( 1𝑛 ) 𝑖 > 𝛽𝑛

0 𝑖 = 𝛽𝑛.

where (𝑥0, 𝑦0) ∈ OPT = {(𝑥,𝑦) | |𝑥 |1 = 𝛽𝑛 ∧ |𝑦 |1 = 𝛼𝑛}.
In turn, the total Maximin-regret quantifies the extent to which

a search-based algorithm’s trajectory deviates from a Maximin-
solution in terms of fitness, providing a comprehensive measure
of overall deviation. A large total Maximin-regret imply that the
algorithm does not converge to a Maximin-solution. We define the
total Maximin-regret of a run as:

𝑅 =

𝑇∑︁
𝑡=1

𝑟 (𝑥𝑡 ),

for any 𝑇 ≥ 1. For algorithms which in iteration 𝑡 maintain an
archive of𝑚𝑡 solutions 𝑥 (1)𝑡 , . . . , 𝑥

(𝑚𝑡 )
𝑡 , we define the total regret

of the run as 𝑅 =
∑𝑇
𝑡=1min𝑖∈[𝑚𝑡 ] 𝑟 (𝑥

(𝑖 )
𝑡 ).

Comparing this regret with the regret for the definition of Bi-
linear in [21], we have at most an additional term 𝑂 (1/𝑛). In the
following analysis, we state the cumulative regret in asymptotic
notation where lower-order terms are not shown. Hence, we will
proceed as we analyse the regret for the original variant of Bilinear
defined in [21].

4.1.1 Lower bound. We first prove a lower bound on the regret.
Our analysis follows the intuition that the search point induced
by the algorithm will quickly reach within Manhattan distance
(𝐴 + 𝐵)

√
𝑛 from the optimum, however from that point, it will

take Ω(𝑛) iterations to reduce the Manhattan distance further to
(𝐴 + 𝐵)

√
𝑛/2. Within this time interval, the algorithm will “cycle”

multiple times around the optimum. The lower bound on the regret
corresponds to the regret accumulated within this time interval.

We start by showing that the Manhattan distance will remain
within Θ(

√
𝑛) during a time interval of Θ(𝑛) iterations.

Lemma 4.2. Assume that 𝐴 + 𝐵 ≥ 1. Given that 𝑀𝑡 from Defini-

tion 2.4, there exists a constant 𝑐 > 0 such that for any starting point

(𝑥1, 𝑦1), Pr
(∧𝑐𝑛+𝑛/16

𝑡=𝑐𝑛 𝑀𝑡 ≥ (𝐴 + 𝐵)
√
𝑛/2

)
≥ 1/5.

As defined above, the Maximin-regret depends only on 𝑥 and
is independent of 𝑦. Hence, the Manhattan-distance 𝑀𝑡 = | |𝑥 | −
𝛽𝑛 | + | |𝑦 | −𝛼𝑛 | cannot be used directly to bound the regret. Instead,
we will show that during Ω(𝑛) iterations, the algorithm will “cycle”
around OPT Ω(

√
𝑛) times. Given the lower bound on𝑀𝑡 , we must

have | |𝑥 | − 𝛽𝑛 | = Ω(
√
𝑛) during Ω(

√
𝑛) iterations of each cycle.

Taking into account that the algorithm requires in expectation
Θ(𝑛) iterations to reduce the Manhattan distance from (𝐴 + 𝐵)

√
𝑛

to (𝐴+𝐵)
√
𝑛/2, this will be sufficient to prove an almost tight lower

bound on the regret.

Theorem 4.3. Let 𝛼 = 1/2 ±𝐴/
√
𝑛 and 𝛽 = 1/2 ± 𝐵/

√
𝑛, where

𝐴, 𝐵 > 0 are constants. The expected total regret of RLS-PD on

Bilinear*𝛼,𝛽 is Ω(𝑇𝑛1.5), where 𝑇 is the number of iterations for

which the algorithm has run.

Proof. For a lower bound on the regret, we modify the process
𝑀𝑡 so that𝑀𝑡 ≤ (𝐴 + 𝐵)

√
𝑛 for all 𝑡 ≥ 𝑐𝑛, where 𝑐 is as defined in

Lemma 4.2.
We consider a phase of 𝑇 := 𝑐𝑛 + 𝑛/16 iterations, and call the

phase a failure if the event
∧𝑐𝑛+𝑛/16

𝑡=𝑐𝑛 𝑀𝑡 ≥ (𝐴 + 𝐵)
√
𝑛/2 does not

occur. By Lemma 4.2, the probability of this failure is at most 4/5.
We call a step “relevant” if the total number of 1-bits in 𝑥 and 𝑦

changes by 1. By Lemma 2.5, the probability of a relevant step is
at least 𝑛/2−(𝐴+𝐵)

√
𝑛

𝑛 > 1/3. Hence, by a Chernoff bound [26], the
probability of less than 𝑛/48 relevant steps during 𝑛/16 iterations
is 1 − 𝑒−Ω (𝑛) , and we call the phase a failure otherwise.

Assuming no failure, it follows that

(𝐴 + 𝐵)
√
𝑛/2 ≤ 𝑀𝑡 ≤ (𝐴 + 𝐵)

√
𝑛 (6)

for all 𝑐𝑛 ≤ 𝑡 ≤ 𝑐𝑛 + 𝑛/16.
We call a “cycle” a sub-phase starting from an iteration 𝑡 to

iteration 𝑡 ′ > 𝑡 such that at iteration 𝑡 , it holds |𝑦 | = 𝛼𝑛 and
|𝑥 | > 𝛽𝑛, at iteration 𝑡 ′ it holds |𝑦 | > 𝛼𝑛 and |𝑥 | > 𝛽𝑛, and at
iteration 𝑡 ′ + 1, it holds |𝑦 | = 𝛼𝑛 and |𝑥 | > 𝛽𝑛. Therefore, each cycle
starts at the third quadrant and generation 𝑡 ′ is the last generation
where the algorithm transitions from the second quadrant to the
third quadrant. We remark that due to the dominance relation
the algorithm can only accept new individuals if they follow the
direction of a cycle, that is third quadrant followed by the fourth
quadrant, then first quadrant and finally the second quadrant.

The number of one-bits in 𝑥 and 𝑦 cannot both increase or both
decrease, within one step. Hence, since (6) holds from iteration 𝑇
until the end of the phase, the duration of each cycle is at most
𝑂 (
√
𝑛) relevant steps.

Furthermore, (6) also implies that during each cycle, there must
be Θ(

√
𝑛) relevant steps where | |𝑥 |1 − 𝛽𝑛 | ≥ (𝐴 + 𝐵)

√
𝑛/4. During

such a step, the regret is Ω(𝑛
√
𝑛). Within 𝑛/48 relevant steps, there

must have been at least Ω(
√
𝑛) cycles. Hence, between iteration 𝑐𝑛

and iteration 𝑐𝑛 + 𝑛/16, there must be at least Ω(𝑛) relevant steps
where the regret is Ω(𝑛

√
𝑛).

Overall, unless a failure occurs, the accumulative regret during𝑇
iterations is Ω(𝑛2.5) = Ω(𝑇𝑛1.5). The result now follows by taking
into account that no failure occurs with constant probability. □

4.1.2 Upper bound. For the upper bound on the regret, our analysis
will follow the intuition that the algorithm has positive drift towards
the optimum when the Manhattan distance is above (𝐴 +𝐵)

√
𝑛. We

will prove that it is unlikely that the algorithm spends significant
amount of by a log-factor above this distance. The analysis relies on
occupation-time bounds which have rarely been applied in theory
of evolutionary algorithms (see e.g. [30]).

We first lower bound the probability of an improving step.

Lemma 4.4. Let 𝛼 = 1/2 ± 𝐴/
√
𝑛 and 𝛽 = 1/2 ± 𝐵/

√
𝑛, where

𝐴, 𝐵 > 0 are constants. Let 𝛿 := 1√
𝑛−1 , 𝑎 := (𝐴 + 𝐵)

√
𝑛 + ((1 + 𝛿)2 −

1) · (𝑛/2 + (𝐴 + 𝐵)
√
𝑛) and 𝑀𝑡 ≥ 𝑎. Then, 𝑝−𝑥,𝑦 ≥ 𝑝+𝑥,𝑦 (1 + 𝛿)2 and

for sufficiently large 𝑛 𝑝−𝑥,𝑦 ≥ 1/4 − (𝐴 + 𝐵)/
√
𝑛 ≥ 1/8.
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We then derive an occupation-time bound, applying a result from
[12]. Informally, the statement implies that the algorithm will not
spend too much time at a Manhattan distance significantly larger
than (𝐴 + 𝐵)

√
𝑛.

Lemma 4.5. Assume 𝑛 large enough (i.e. 𝑛 ≥ 5), let 𝛼 = 1/2±𝐴/
√
𝑛

and 𝛽 = 1/2 ± 𝐵/
√
𝑛, where 𝐴, 𝐵 > 0 are constants. Consider RLS-PD

on Bilinear*𝛼,𝛽 . Let 𝛿 := 1√
𝑛−1 , 𝑎 := (𝐴 + 𝐵)

√
𝑛 + ((1 + 𝛿)2 − 1) ·

(𝑛/2 + (𝐴 + 𝐵)
√
𝑛) and 𝑏 := 𝑎 + 1 + 𝑐

√
𝑛 ln𝑛 for any 𝑐 > 0. Then, for

any 𝑇 > 1 there exist constants 𝐾 > 0 and 0 < 𝛿0 < 1 for which

Pr
(
𝑇∑︁
𝑡=1
1{𝑀𝑡 ≥𝑏} ≥ 9𝑇 · 𝑛1−𝑐

)
≤ 𝐾𝛿𝑇0 .

Proof. We aim to use the occupation time bounds from Hajek
[12, Theorem 3.1]. To do so we need to meet Conditions D1 and D2
and in addition show that the random variable𝑀0 is of exponential
type. We begin with the latter.

The random variable 𝑀0 is the sum of two random variables
𝑋 := | |𝑥0 |1 − 𝛽𝑛 | and 𝑌 :=

��|𝑦0 |1 − 𝛼𝑛�� where |𝑥0 |1 and |𝑦0 |1 denote
the number of 1-bits in 𝑥0 and 𝑦0. Since both initial search points
(𝑥0, 𝑦0) are sampled uniformly at random from {0, 1}𝑛 , the number
of 1-bits in (𝑥0, 𝑦0) are sampled from a binomial distribution which
by definition is of exponential type. Hence, 𝑀0 is of exponential
type.

Now, we show Condition D1: There exists 𝜂 > 0 and 0 < 𝜌 < 1
for which E𝑡

(
𝑒𝜂 (𝑀𝑡+1−𝑀𝑡 ) ;𝑀𝑡 > 𝑎

)
≤ 𝜌 . In the following we use

𝑝0𝑥,𝑦 = 1− 𝑝+𝑥,𝑦 − 𝑝−𝑥,𝑦 to denote the probability that the Manhattan
distance to the optimum does not change from step time 𝑡 to 𝑡 + 1.

E𝑡
(
𝑒𝜂 (𝑀𝑡+1−𝑀𝑡 ) ;𝑀𝑡 > 𝑎

)
= 𝑝0𝑥,𝑦 + 𝑝+𝑥,𝑦𝑒𝜂 + 𝑝−𝑥,𝑦𝑒−𝜂

= 1 − 𝑝+𝑥,𝑦 (1 − 𝑒𝜂 ) − 𝑝−𝑥,𝑦 (1 − 𝑒−𝜂 )

= 1 + 𝑝+𝑥,𝑦𝛿 − 𝑝−𝑥,𝑦
(
1 − 1

1 + 𝛿

)
,

Where the last step uses 𝜂 := ln(1 + 𝛿) > 0. By Lemma 4.4 𝑝+𝑥,𝑦 ≤
𝑝−𝑥,𝑦/(1 + 𝛿)2 for all𝑀𝑡 > 𝑎, hence,

E𝑡
(
𝑒𝜂 (𝑀𝑡+1−𝑀𝑡 ) ;𝑀𝑡 > 𝑎

)
≤ 1 + 𝑝−𝑥,𝑦

𝛿

(1 + 𝛿)2
− 𝑝−𝑥,𝑦

𝛿

1 + 𝛿

= 1 − 𝑝−𝑥,𝑦
(
𝛿

1 + 𝛿

)2
≤ 1 − 1

8𝑛 ,

where in the last step we used 𝑝+𝑥,𝑦 ≥ 1/8 (Lemma 4.4) and the
definition 𝛿 := 1√

𝑛−1 .
In Condition D2 of the occupation time bounds, we require

E𝑡
(
𝑒𝜂 (𝑀𝑡+1−𝑎) ;𝑀𝑡 ≤ 𝑎

)
≤ 𝐷 with 𝐷 < ∞. Since the Manhattan

distance to the Nash equilibrium can only change by at most 1 and
𝑀𝑡 ≤ 𝑎 then𝑀𝑡+1 − 𝑎 ≤ 1. Hence, E𝑡

(
𝑒𝜂 (𝑀𝑡+1−𝑎) ;𝑀𝑡 ≤ 𝑎

)
≤ 𝑒𝜂 .

Now, the occupation time bounds tells us that

Pr
(
𝑇∑︁
𝑡=1
1{𝑀𝑡<𝑏} ≤ 𝑇𝜌0 (1 − 𝜀)

)
≤ 𝐾𝛿𝑇0 ,

for any 𝜀 > 0 and 𝜌0 = 1 − 1
1−𝜌𝐷𝑒

𝜂 (𝑎−𝑏 ) . This is equivalent to

Pr
(
𝑇∑︁
𝑡=1
1{𝑀𝑡 ≥𝑏} > 𝑇 (1 − 𝜌0 (1 − 𝜀))

)
≤ 𝐾𝛿𝑇0 . (7)

It remains to compute 𝜌0.

𝜌0 = 1 − 8𝑛𝑒𝜂 (𝑎−𝑏+1)

= 1 − 8𝑛
(

1
1 + 𝛿

)𝑏−𝑎−1
.

Using 1
1+𝛿 = 1 − 𝛿

1+𝛿 ≤ exp
(
− 𝛿
1+𝛿

)
= exp

(
1√
𝑛

)
and the definition

of 𝑏 := 𝑎 + 1 + 𝑐
√
𝑛 ln𝑛 yields 𝜌0 ≥ 1 − 8𝑛1−𝑐 . Plugging this back

into Equation (7) and choosing 𝜀 = 𝑛1−𝑐

1−8𝑛1−𝑐 > 0 for some constant
𝑐 proves the claim. □

Given the statement about occupation time [12], we can now
derive an upper bound on the regret.

Theorem 4.6. Let 𝛼 = 1/2 ±𝐴/
√
𝑛 and 𝛽 = 1/2 ± 𝐵/

√
𝑛, where

𝐴, 𝐵 > 0 are constants. For any 𝑇 > 1 the expected total regret of

RLS-PD on Bilinear*𝛼,𝛽 is 𝑂 (𝑇𝑛1.5 log𝑛).

Proof. Let E denote the event that
∑𝑇
𝑡=1 1{𝑀𝑡 ≥𝑏} < 𝑇𝜎 , for

any 𝑏 > 0 and 0 ≤ 𝜎 ≤ 1. If the event is true the total re-
gret 𝑅 is at most 𝑇𝑛min{𝛼, 1 − 𝛼}((1 − 𝜎)𝑏 + 𝜎 max0<𝑡≤𝑇 (𝑀𝑡 ))
and max0<𝑡≤𝑇 (𝑀𝑡 ) ≤ 2𝑛. Otherwise, the total regret is at most
𝑇𝑛min{𝛼, 1 − 𝛼}max0<𝑡≤𝑇 (𝑀𝑡 ) ≤ 2𝑇𝑛2min{𝛼, 1 − 𝛼}. Hence,

E(𝑅) ≤ Pr (E) ·𝑇𝑛min{𝛼, 1 − 𝛼}((1 − 𝜎)𝑏 + 2𝜎𝑛)

+ Pr
(
E
)
· 2𝑇𝑛2min{𝛼, 1 − 𝛼}.

Using 𝜎 = 𝑛−2, Lemma 4.5 gives Pr
(
E
)
≤ 𝐾𝛿𝑇0 for some con-

stants 𝐾 > 0 and 0 < 𝛿0 < 1. Hence,

E(𝑅) ≤ 1 ·𝑇𝑛min{𝛼, 1 − 𝛼}(𝑏 − 𝑏𝑛−2

+ 2𝑛−1) + 𝐾𝛿𝑇0 · 2𝑇𝑛
2min{𝛼, 1 − 𝛼}.

Note that 𝑏 = 𝑂 (
√
𝑛 log𝑛) and min{𝛼, 1 − 𝛼} = 𝑂 (1), therefore

E(𝑅) = 𝑂 (𝑇𝑛1.5 log𝑛). □

4.2 Improving RLS-PD with an Archive

In the previous sections we have seen that despite RLS-PD finding
the Nash equilibrium efficiently, the algorithm forgets it and re-
mains a large amount of time away from it. We show that a simple
archive shown in Algorithm 2 solves this problem. Algorithm 2
shows RLS-PD embedded with the archive but the archive can be
used in conjunction with any search based algorithm.
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Algorithm 2 RLS-PD: Randomised Local Search with Pairwise
Dominance with archive.
1: Sample 𝑥1 ∼ Unif ({0, 1}𝑛)
2: Sample 𝑦1 ∼ Unif ({0, 1}𝑛)
3: Initialise archive 𝐴1 ← {}
4: for 𝑡 ∈ {1, 2, . . . } do
5: Create 𝑥 ′, 𝑦′ ∈ {0, 1}𝑛 by copying 𝑥𝑡 and 𝑦𝑡 and flipping

exactly one bit chosen uniformly at random from either 𝑥𝑡 or
𝑦𝑡 .

6: if (𝑥 ′, 𝑦′) ⪰𝑔 (𝑥𝑡 , 𝑦𝑡 ) then(𝑥𝑡+1, 𝑦𝑡+1) := (𝑥 ′, 𝑦′)
7: if (𝑥 ′, 𝑦′) ⪰ (𝑥∗, 𝑦∗) ∀ (𝑥∗, 𝑦∗) ∈ 𝐴𝑡 then

8: 𝐴′ ← 𝐴𝑡 ∪ {(𝑥 ′, 𝑦′)}
9: else

10: 𝐴′ ← 𝐴𝑡

11: for (𝑥∗, 𝑦∗) ∈ 𝐴′ do
12: if (𝑥∗, 𝑦∗) ⪰̸ (𝑥 ′, 𝑦′) then
13: 𝐴′ ← 𝐴′ \ {(𝑥∗, 𝑦∗)}
14: 𝐴𝑡+1 ← 𝐴′

In the following lemma we show that the archive maintains
any Nash equilibria that it encounters solving the problem that
RLS-PD has.

Lemma 4.7. Let 𝑔 be a Maximin function and 𝜏 ≥ 1. If (𝑥𝜏 , 𝑦𝜏 ) ∈
OPT, then for every 𝑡 > 𝜏 the archive 𝐴𝑡 contains (𝑥𝜏 , 𝑦𝜏 ).

Proof. By the definition of the set OPT neither the predator nor
the prey benefit from changing strategy, that is,𝑔(𝑥𝜏 , 𝑦𝜏 ) ≥ 𝑔(𝑥,𝑦𝜏 )
for all 𝑥 ∈ X and 𝑔(𝑥𝜏 , 𝑦𝜏 ) ≤ 𝑔(𝑥𝜏 , 𝑦) for all 𝑦 ∈ Y. Then, by
Definition 2.1 (𝑥𝜏 , 𝑦𝜏 ) ⪰𝑔 (𝑥,𝑦) for all (𝑥,𝑦) ∈ X × Y.

This means that at time 𝑡 = 𝜏 the condition in Line 7 will be true
because (𝑥𝜏 , 𝑦𝜏 ) dominates all other pairs of points and (𝑥𝜏 , 𝑦𝜏 ) will
be added to the archive. Additionally, the condition in Line 12 will
never be met for (𝑥𝜏 , 𝑦𝜏 ) because of the same reason. □

Using the archive for RLS-PD allows the algorithm to retain
the Nash equilibrium, therefore, the regret of the algorithm can be
improved significantly. In the following we consider the regret of
the algorithm with respect to the best pair (𝑥,𝑦) in the archive at
time 𝑡 .

Theorem 4.8. Let 𝛼 = 1/2 ±𝐴/
√
𝑛 and 𝛽 = 1/2 ± 𝐵/

√
𝑛, where

𝐴, 𝐵 > 0 are constants and 3(𝐴 + 𝐵)2 ≤ 1/2 − 𝛿 ′ for some constant

𝛿 ′ > 0. Consider RLS-PD with archive on Bilinear*𝛼,𝛽 . Then, for any

initial search points (𝑥0, 𝑦0) and any 𝑇 ≥ 1, E(𝑅) = 𝑂 (𝑛3.5).

Proof. By Theorem 3.1 RLS-PD will reach a Nash equilibrium
in expected 𝑂 (𝑛1.5) iterations, each of these iterations contribute
to the total regret by at most 2𝑛2min{𝛼, 1 − 𝛼} = 𝑂 (𝑛2). There-
fore in expectation the total regret from the first iteration until a
Nash equilibrium is found is 𝑂 (𝑛3.5). Afterwards by Lemma 4.7
the archive will retain the Nash equilibrium, therefore all other
iterations does not contribute to the total regret. □

We note that a simpler archive that retains all search points
visited by the algorithm would obtain the same regret. But this
archive would have 𝑂 (𝑇 ) individuals. In the following lemma we
show that the archive that we study is memory efficient.

Theorem 4.9. Let 𝛼, 𝛽 ∈ [0, 1]. Let OPT = {(𝑥,𝑦) | |𝑥 |1 =

𝛽𝑛 ∧ |𝑦 |1 = 𝛼𝑛}. Define 𝑇 := inf{𝑡 | (𝑥𝑡 , 𝑦𝑡 ) ∈ OPT}, where (𝑥𝑡 , 𝑦𝑡 )
are the current solutions of RLS-PD. Consider RLS-PD with archive on

Bilinear*𝛼,𝛽 . For all 𝑡 < 𝑇 , the archive size is at most 1 and for all
𝑡 > 𝑇 the expected size of the archive is 𝑂 ( |OPT|).

Proof. Let 𝑡 = 2, then 𝐴2 contains only (𝑥𝑡 , 𝑦𝑡 ). In order to
add another pair to the archive the RLS-PD needs to create a pair
of points that dominate (𝑥𝑡 , 𝑦𝑡 ). By Lemma 2.3 for this to happen
the number of ones in either 𝑥 or 𝑦 must change by exactly one.
Due to the nature of the Bilinear* function for two pairs of points
(𝑥1, 𝑦1), (𝑥2, 𝑦2) ∉ OPT with (𝑥1, 𝑦1) ⪰ (𝑥2, 𝑦2), if | |𝑥1 |1 − |𝑥2 |1 | =
1 or

��|𝑦1 |1 − |𝑦2 |1�� = 1 then (𝑥2, 𝑦2) ⪰̸ (𝑥1, 𝑦1). Therefore, before
reaching a Nash equilibrium, every time a pair of points are added
to the archive, the previous pair of points of the archive are taken
out, making the size of the archive at most 1.

Once a Nash equilibrium is added to the archive the only points
that dominate it are Nash equilibria (therefore part of the set OPT)
and points that have either |𝑥 |1 = 𝛽𝑛 ∧ |𝑦 |1 = 𝛼𝑛 ± 1 or |𝑥 |1 =

𝛽𝑛 ± 1 ∧ |𝑦 |1 = 𝛼𝑛. Let 𝑡 ′ denote a time step where (𝑥𝑡 ′ , 𝑦𝑡 ′ ) is a
Nash equilibrium. Every time the optimum is reached there is a
constant probability that in the next 8 iterations a point with exactly
𝑀 = 2 in each quadrant is found. All other pairs in the archive that
are not Nash equilibrium are dominated by a pairs with aManhattan
distance of 2 in the same quadrant as themselves. Therefore, after
visiting a Nash equilibrium the algorithm will remove all pairs that
are not Nash equilibrium with constant probability.

By Theorem 3.1we reach aNash equilibrium in𝑂 (𝑛1.5) iterations
from any initial search point. And by the discussion above each time
there is a constant probability to remove all pairs that are not Nash
equilibrium. Therefore in expectation the size of the archive does
not exceed𝑂 ( |OPT| +𝑛1.5). Noting that 𝑛1.5 = 𝑜 ( |OPT|) completes
the proof. □

5 CONCLUSION

We proved that the RLS-PD identifies the Nash equilibrium for
pseudo-Boolean bilinear zero-sum games, known as Bilinear*,
in expected runtime 𝑂 (𝑛1.5) and Ω(𝑛). This is the first rigorous
analysis of a (1+1)-type CoEA efficiently finding a zero-sum game’s
Nash equilibrium. Yet, RLS-PD tends to forget and quickly deviate
from the found Nash equilibrium, leading to significant total regret.
We derived a bound of Θ̃(𝑇𝑛1.5) for this regret. Implementing a
basic archive significantly improved RLS-PD’s total regret.

To achieve our results, we developed a novel drift theorem that
facilitates efficient expected hitting times for processes, even under
minor negative drift. We believe this theorem holds standalone
value and hope it will widen the runtime analysis toolbox for both
EAs and CoEAs. Additionally, we proposed an innovative, intu-
itive method for integrating two separate potential functions that
characterise the same underlying process.

Several open questions remain, for instance, how the considered
algorithm would perform on other problems with more complex
fitness landscapes and whether other (1+1)-type CoEAs will behave
like RLS-PD, that is, it finds a Nash equilibrium efficiently but
forgets it quickly and how about population-based CoEAs? It is
also interesting to explore the impact of other methods to evaluate
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solutions (instead of pairwise dominance), mutation operators or
crossover operators in these Bilinear* problems.
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