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Review article 

Is predictive coding falsifiable? 
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A B S T R A C T   

Predictive-coding has justifiably become a highly influential theory in Neuroscience. However, the possibility of 
its unfalsifiability has been raised. We argue that if predictive-coding were unfalsifiable, it would be a problem, 
but there are patterns of behavioural and neuroimaging data that would stand against predictive-coding. Contra 
(vanilla) predictive patterns are those in which the more expected stimulus generates the largest evoked- 
response. However, basic formulations of predictive-coding mandate that an expected stimulus should 
generate little, if any, prediction error and thus little, if any, evoked-response. It has, though, been argued that 
contra (vanilla) predictive patterns can be obtained if precision is higher for expected stimuli. Certainly, using 
precision, one can increase the amplitude of an evoked-response, turning a predictive into a contra (vanilla) 
predictive pattern. We demonstrate that, while this is true, it does not present an absolute barrier to falsification. 
This is because increasing precision also reduces latency and increases the frequency of the response. These 
properties can be used to determine whether precision-weighting in predictive-coding justifiably explains a 
contra (vanilla) predictive pattern, ensuring that predictive-coding is falsifiable.   

1. Introduction 

Predictive coding (Friston, 2018; Rao and Ballard, 1999; Clark, 
2013) has proved to be one of the most influential theories in cognitive 
neuroscience, with many authors identifying brain responses that are 
consistent with the theory (e.g. Brodski-Guerniero et al., 2017; Den 
Ouden et al., 2012; Garrido et al., 2009; Bekinschtein et al., 2009; 
Shirazibeheshti et al., 2018; Witon et al., 2020). The most basic (vanilla) 
predictive coding theory makes a particularly clear claim concerning the 
nature and presentation of evoked brain responses. We call this basic 
claim, the predictive pattern, and state it as follows: the brain’s (bot-
tom-up) evoked response to a stimulus should reflect prediction errors. 
That is, the size of this bottom-up evoked response should reflect the size 
of the prediction error, i.e. completely unexpected stimuli should 
generate the largest evoked response, and stimuli that are “in all senses” 
expected should not generate an evoked response (we give further 
justification that this position is prominent in the field in Appendix 1: 
Further Justification of PC-Evoked model; see inline heading Evoked 
Response as Prediction Error). Consistent with this, there are many 
event-related potential responses that increase in size as a stimulus be-
comes more unexpected: classic examples are the mismatch-negativity 

(Näätänen, 1995; Garrido et al., 2009), the Odd-ball P3 (Donchin and 
Coles, 1988) and the N400 semantic anomaly (Kutas and Federmeier, 
2011). Basic predictive coding beautifully explains these phenomena. 

One can interpret this link between predictive coding and evoked 
responses as a neuro-biological realisation of Shannon’s efficient coding 
scheme (Shannon, 1948), a key characteristic of which is that to opti-
mally compress communication, the more unlikely a message is, the 
longer/ more complex the code representing it should be. In other 
words, shorter codes should be reserved for more frequently occurring 
stimuli. If one relates the size of an evoked response to the code length, i. 
e. a larger, or perhaps more complex, evoked response corresponds to a 
longer/ more complex message being sent up the sensory processing 
pathway, the evoked response should be bigger/ more complex for more 
unexpected stimuli. This is the basic (vanilla) predictive coding theory 
of evoked response amplitude/ form. 

However, although predictive evoked response patterns are very 
common, contra-predictive patterns (or strictly, contra vanilla predictive 
patterns) can also be observed – i.e. where the largest evoked response is 
generated by the most expected stimulus (e.g. Vidal-Gran et al., 2020; 
Banellis et al., 2020). As highlighted in (Bowman et al., 2013a), a case in 
point is pop-out/ breakthrough effects in M/EEG studies of conscious 
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perception (Bowman et al., 2013a; Bowman et al., 2013 and 2014; 
Banellis et al., 2020). In this context, the brain is faced with stimuli 
presented on the threshold of awareness, perhaps because noise has 
been overlaid (Davis et al., 2005) or because the brain is being deluged 
with fleeting stimuli (Potter and Levy, 1969; Vul et al., 2009; Bowman 
and Avilés, 2021). Here, the perceptual system is attempting to select 
“salient” stimuli (where the term salient is broadly defined) from 
amongst the noisy or overloaded background, and stimuli are perceived 
as a “pop-out”/ breakthrough into awareness event (Davis et al., 2005; 
Banellis et al., 2020; Alsufyani et al., 2019; Bowman et al., 2014; Harris 
et al., 2021; Alsufyani et al., 2021). 

A common way to incorporate these contra (vanilla) predictive 
evoked response patterns into the predictive coding framework is to use 
top-down modulated precision-weighting of prediction errors, giving a 
refinement of vanilla predictive coding, which we call precision-modu-
lated Predictive Coding (or pmPC-Evoked).1 More specifically, if one ar-
gues that expected stimuli (e.g. standards in a mismatch paradigm) are 
treated as higher precision, perhaps because they engage attention more 
strongly, then one can generate larger responses for expected stimuli, 
essentially because the system has more “confidence” in their processing 
(Kok et al., 2012). Indeed, such an extension of the vanilla predictive 
coding framework is essential in order to reflect the strong top-down 
attentional effects that the brain exhibits. For example, a phenomenon 
such as Inattentional Blindness (Simons and Chabris, 1999) seems highly 
contra (vanilla) predictive: a man jumping in a black gorilla’s costume in 
the middle of a basketball game would seem to be a clear prediction 
error, but it is not noticed by those counting passes between players in 
white. In order to accommodate this phenomenon, one has to assume 
that a strong task set turns black feature detectors right down, which, 
within the prediction framework, would amount to an extremely low 
precision on black, quenching any prediction error that the gorilla may 
induce. 

A classic precision-modulation interpretation of attention can be 
found in Feldman and Friston (Feldman and Friston, 2010); further 
justification that this position is prominent in the literature can found in 
Appendix 2: Precision, Gain and Attention. This elegantly accommo-
dates contra (vanilla) predictive response patterns with the 
perception-as-inference perspective (Knill and Richards, 1996; Boring, 
2008) that is central to predictive coding. For example, ignoring degrees 
of freedom, a two-sample t-test from inferential statistics can be 
expressed as a product of a prediction error term (difference of means) 
and a precision term (reciprocal of the standard deviation of the dif-
ference of means).2 

Bowman et al. (2013a) and more recent papers (Banellis et al., 2020; 
Heilbron and Chait, 2018) raised the possibility that using precision to 

re-weight predictive patterns to turn them into contra (vanilla) predic-
tive patterns offers considerable degrees of freedom to the theory, 
indeed, running the risk of generating an unfalsifiable theory.3 In other 
words, predictive coding becomes tautological: any evoked response 
pattern can be accommodated by the theory and no experiment can be 
run that would produce a pattern of data that would ever stand against 
it. 

We consider predictive coding’s susceptibility to unfalsifiability 
here. We do this with simple neural simulations of evoked response 
patterns, where, under Occam’s Razor, we consider this simplicity to be 
an advantage. On the basis of these simulations, we then discuss how the 
field should effectively go forward in a fashion that could allow the 
possibility of falsification. 

In this way, we seek to differentiate between two claims: 1) predic-
tive coding explains a large part of the behaviour of the brain; and 2) 
predictive coding explains all of the behaviour of the brain. A positive 
response to the first of these seems difficult to argue against – there is a 
substantial extent to which the brain seeks to predict the world. This 
paper specifically considers whether the second of these claims is sup-
ported, or at least lays a foundation for how to empirically test it. 

2. Methods 

2.1. Neural simulations 

Our simulations use a simple predictive coding model, called PC- 
evoked, which focusses on the mechanisms that directly drive the evoked 
response (matlab code of the model can be found at the OSF repository: 
https://osf.io/zm9w5/, which has the following DOI 10.17605/OSF. 
IO/ZM9W5). This is depicted in Fig. 1 and described in the caption; 
full details can be found in Appendix 5: Details of PC-Evoked model. In 
these first simulations, we are interested in the first evoked transient 
following the onset of a stimulus. One reason for focussing on this is that 
it is the brain response that can most easily be studied, as it is not 
contaminated by overlaid feedback components. Although, we will add 
a second (higher-level) circuit to this model later in the paper. 

We would argue that the simplicity of our model is a virtue. 
Importantly, our modelling objective is not to build a neural network 
model that can classify stimuli, predict on a variable or even implement 
a working generative model. Rather, our objective is to illustrate ca-
nonical patterns of brain responses. From an Occam’s Razor perspective, 
the simpler the model that enables you to do this, the better, i.e. if one 
can differentiate amongst key hypotheses with a simple model, one 
should prefer that. Additionally, we relate our model to the classic 
model by Rao and Ballard (1999) in Appendix 1: Further Justification 
of PC-Evoked model. 

The activation equations we use are inspired by those in O’Reilly and 
Munakata (2000), which have similarities to those introduced by 
Grossberg (Ellias and Grossberg, 1975) and to Hodgkin-Huxley equa-
tions (Ermentrout et al., 2010). 

Membrane potential: the membrane potential is the key measure of 
how excited a neuron is; its dynamics are described by the following 
ordinary differential equation: 

V̇(t) = ρ(t)⋅Inet(t)

where t ∈ R≥0. Here, V̇ is the first time-derivative of the membrane 
potential, V ; ρ is a (time-varying) neural responsiveness, and Inet is the 
net current. For simulation, the equation was discretised and numeri-
cally integrated using a 4th order Runge-Kutta method. For simplicity, 
neurons have the identity function as the output mapping, i.e. it is this 

1 Even in the early presentation of predictive coding by Rao and Ballard 
(1999), prediction errors were weighted with precisions. However, the Rao and 
Ballard precisions just reflected noise, specifically being the reciprocal of the 
sensory noise/variance; see also (Feldman and Friston, 2010). That is, pre-
cisions were not seen to be manipulable by top-down feedback. Our real interest 
in this paper is with top-down manipulation of these precisions; the term 
precision-modulated is specifically introduced to describe such top-down con-
trol of precision. 

The full predictive coding theory incorporates precision weighting both on 
prediction errors (i.e. likelihoods) and on priors. Indeed, a good deal of the 
“richness” of the theory’s capacity to explain psychiatric conditions is associ-
ated with relative weighting strengths of these two classes of precisions (Yon 
and Frith, 2021). Additionally, even in Rao and Ballard (1999), precisions were 
present on both prediction errors (i.e. likelihoods) and priors. However, for 
simplicity of presentation in this paper, we focus exclusively on precision 
modulation of prediction errors.  

2 In fact, Cohen’s d would be an exact statistical analogue of this concept. 
3 Essentially, one has a case of the law of the excluded middle in classical 

logic, that is, ⊢ P ∨ ¬P, i.e. for any proposition P (which here would be a 
predictive evoked response pattern), the logical statement P or not P is true. 
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membrane potential that is output. 
Net current: the net current is a sum of excitatory, inhibitory and leak 

currents: 

Inet(t) = Ie(t)+ Ii(t) + Il(t)

Individual currents: equations for the contributing currents all have 
the same basic form: 

Ie(t) = ge(t)⋅Ge⋅(Reve − V(t))

Ii(t) = gi(t)⋅Gi⋅(Revi − V(t))

Il(t) = gl(t)⋅Gl⋅(Revl − V(t))

where, first considering constants, Ge, Gi and Gl are maximum con-
ductances, one for each channel, reflecting the maximum extent that a 
channel can be open, and Reve, Revi and Revl are reversal potentials (also 
called driving potentials or equilibrium channel potentials), one for each 
channel. ge(t) is the extent to which the excitatory channels are open at 
time t and mediates the action of excitatory inputs, such as those from 
the stimulus or a pre-synaptic unit. Similarly, gi(t) is the extent to which 
the inhibitory channels are open and mediates the action of inhibitory 

inputs coming from the prediction units. gl(t) models the opening of leak 
channels, which are, in fact, always fully open, and so for all t, gl(t) = 1. 
The reversal potentials bound the values that the membrane potential 
can take, with Reve = 1, giving the top of the range and Revi = Revl = 0, 
the bottom. Thus, the (Reve − V(t) ) term ensures that excitation drives 
the membrane potential up towards the top of its range, while 
(Revi − V(t) ), respectively (Revl − V(t) ), ensure that inhibition, respec-
tively leak, drives it down to the bottom. Thus, the excitatory current has 
a positive polarity, while inhibition and leak are negative. 

Time-dependent conductances: Additionally, the excitatory and 
inhibitory time-dependent conductances are set to be sums of weighted 
inputs. Thus, the extent to which a conductance channel is open at a 
particular time point, is determined by the efficiency of the synapses 
containing the channel and the corresponding presynaptic activations. 
Neuro-physiologically, the product of the presynaptic activations and 
their synaptic efficiencies determines the quantity of the corresponding 
neurotransmitter (e.g. glutamate for excitation and GABA for inhibition) 
that is released into the synaptic cleft, thereby opening ion channels. 
This electrochemical process is abstracted away from, by simply setting 
time-dependent conductances to sums of weighted inputs, e.g. with 
neuron indices added to our notation (j for the current unit and k for pre- 

Fig. 1. Depiction of PC-evoked model: [A] two stimulus circuits are included, which are called Stimulus 1 and Stimulus 2. The first level contains an early prediction 
error unit (Stim1_1 or Stim2_1), which is excited by the input, but inhibited by a prediction unit. Thus, the activation of a prediction unit reflects how expected that 
stimulus is (according to recent presentations), and the activation of a first level prediction error unit can be quenched through inhibition, if it is strongly predicted. 
However, this activation is also modulated by a top-down precision signal, which adjusts the gain on first level prediction error units. The evoked response is 
modelled as the post synaptic activation entering the second level relay unit (Stim1_2 or Stim2_2). This is an analogue of the dendritic currents that are known to 
underlie the M/EEG signal (da Silva, 2004; Murakami and Okada, 2006). [B] Input time-series are injected into the Stimulus 1 and Stimulus 2 circuits at s1, 
respectively s2, with gamma shaped stimulus deflections. We show the stimulus presentation associated with a Standard condition: Stimulus 1 presented twice (at s1) 
and no Stimulus 2 (at s2). The presentation for a Deviant condition involves an initial presentation (at s2) of Stimulus 2 (deflection earlier in time) and then (at s1) of 
Stimulus 1 (the deviant). 
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synaptic units) for excitation, 

ge,j(t) =
∑

k
wkjAk(t),where Ar(t) = Vr(t)

and similarly for gi,j(t), the time-dependent Inhibitory conductance. As 
previously discussed, for simplicity we do not include an activation 
function and thus, the output activation of a unit is simply its current 
membrane potential. 

Neural Responsiveness: ρ, which in electrical terms could be related to 
the reciprocal of the capacitance, is defined as follows: 

ρ(t) = τ + (1 − τ)⋅(1 − 1/eπ(t)) (Eqn Responsiveness)

where τ (0 < τ ≤ 1) is a time-constant, and π(t) is a time-varying 
precision, which is subject to the constraint that ∀t ∈ R≥0 • π(t) ≥ 0. 
Thus, the time-constant provides a basic responsiveness, i.e., update 
rate, but this increases as precision, π, increases, as one would expect 
from an increase of gain. The relationship between precision and 
responsiveness is shown in Fig. 2, and the association of precision with 
responsiveness and gain is further justified in Appendix 2: Precision, 
Gain and Attention, with formal justification in Appendix 3: Mathe-
matical Definition of Responsiveness. 

Evoked response: the M/EEG signal originates from dendritic currents 
(da Silva, 2004), the closest analogue of which is the net current, Inet. 
Thus, the evoked response is defined as follows, 

Evoked(t) = C⋅Inet(t)

where, C = − 10 scales the net current, which flips polarity, in order that 
our model can be related to mismatch negativity data.4 

Ensemble response: one interpretation of the M/EEG signal is that it is 
the result of averaging over the dendritic currents of large neuronal 
populations. More or fewer neurons may be active in these ensembles at 
any one time, leading to additive effects on the measured current, 
Evoked(t). We therefore define an ensemble response as such, 

Ensemble(t) = Evoked(t)⋅Ic  

where Ic ∈ R≥0 is a scaling constant. The additive ensemble response 
provides an alternative response pattern to the multiplicative effects of 
precision realised as neural responsiveness. In this way, this ensemble 
enhancement will serve as a contrast condition to which the multipli-
cative effects can be juxtaposed. 

Running Model: When a simulation is run, all constants are set by 
hand and all time-varying parameters are initialized at zero. Since we 
are generating Event Related Potentials, we sum the activation of the 
Evoked response from the two stimulus circuits. 

2.2. Time-frequency analysis 

For our time-frequency analysis, we obtained the power of the 
evoked response through a Morlet wavelet transform of the data. The 
wavelets were defined as such: 

Ψ(f , t) = exp(2ⅈπft)⋅exp
(

−
t2

2σ2

)

Where f denotes the frequency of interest, t denotes time, ⅈ is the 
imaginary unit and σ is the standard deviation of the Gaussian envelope, 
defined using the (frequency-varying) wavenumber k: 

σ =
k(f )
2πf 

We analysed 50 linearly spaced frequencies ranging from 1 to 40 Hz. 
The wavenumber ranged from 4 to 10 cycles and was increased loga-
rithmically with the frequency of interest to ensure greater temporal 
precision of low-frequency signal components. Wavelets were convolved 
with the evoked signal (Evoked(t)) via frequency-domain multiplication 
after being passed through a Fast Fourier Transform (FFT). An inverse 
FFT was used to recover the time-domain signal and power was 
extracted by taking the squared absolute of this signal. 

3. Results 

3.1. Simulations 

3.1.1. Vanilla predictive pattern 
Fig. 3A presents a classic predictive evoked response pattern. The PC- 

evoked model was run with precision set to zero. Thus, we are observing 
vanilla prediction errors, without precision-modulation. The response to 
the repeated (standard) stimulus is lower amplitude (i.e., less extreme 
from zero) than the response to the non-repeated (deviant) stimulus. 
This is caused by the inhibitory projection from the Stim1 prediction 
unit, which is strongly active for the second presentation in the standard 
condition, because stimulus 1 was previously presented, but not in the 
deviant condition. 

When configured with a precision of zero, the response to the 
Deviant will not be smaller than for the Standard, i.e., a contra (vanilla) 
predictive pattern cannot be generated. 

3.1.2. Contra (vanilla) predictive pattern 
However, by increasing the precision parameter (π), one can obtain a 

contra (vanilla) predictive pattern from the PC-evoked model. This is 
shown in Fig. 3[B&C], where increasing precision can generate an 
evoked response for the standard that is larger in amplitude than the 
evoked response for the deviant. This is because precision is a gain 
parameter, which can be used to “turn-up” the evoked response. Thus, 
once precision is added into the PC-evoked model, and precision- 
modulated prediction errors are being generated, both classic predic-
tive patterns (low or zero precision), as well as contra (vanilla) predic-
tive patterns (large precision) can be generated from the model. 

Of course, there is one situation in which increasing precision would 

Fig. 2. Neural responsiveness by precision: precision (π) is shown on the x-axis 
and responsiveness (ρ) on the y-axis. The (basic) time constant (τ) is set to 0.05. 
As a result, responsiveness is 0.05, when precision is zero. Responsiveness rises 
as precision increases, asymptotically approaching 1 for large precisions. 

4 Physiologically, the fact that we set C to a negative number reflects the 
orientation of the electrical dipole in the brain to the electrode at which the 
component is recorded from. At the electrode the mismatch negativity is typi-
cally recorded from, it manifests as an initially negative-going component. If we 
could place an electrode on the other side of the electrical dipole, it would be 
initially positive-going. This mapping from brain dipole to electrode would be 
reflected in a forward/lead-field model in source localisation algorithms, which 
exactly map from time-series in the brain to a response at the sensor (i.e. 
electrode) level. 
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not be able to turn a predictive into a contra (vanilla) predictive pattern. 
This is if the Standard generated zero prediction error, i.e. the stimulus 
was completely expected. In this situation, it does not matter how large 
precision (π) is, since it is multiplied with nothing, the precision- 
modulated prediction error (i.e. the evoked response) will be zero. 

However, from a philosophical perspective, it may be argued that 
perfect prediction is impossible, i.e. there is always a prediction error, 
even if it is extremely small. Indeed, the presence of noise in the brain, 
might be argued to prevent a brain signal from ever perfectly matching 
the expected signal. 

Thus, this capacity to generate both predictive and contra (vanilla) 
predictive patterns from a theory based upon precision-modulated 
prediction errors, does raise the possibility that predictive coding be-
comes unfalsifiable. That is, one arrives at a situation in which, whatever 
pattern any experiment generates, it can be accommodated within the 
theory, i.e. there is no experiment that can (at least qualitatively) be run 
that could find definitive evidence against the theory. 

However, the results in Fig. 3[B&C] suggest that this absolute 
unfalsifiability may not in fact be the case. Specifically, if precision- 

modulation is used to generate a contra (vanilla) predictive pattern, it 
implies a latency change; that is, one can make the standard bigger than 
the deviant by increasing precision, but that has the knock-on conse-
quence that latency shortens. Very simply, this arises from the link be-
tween precision and gain: increasing gain, increases neural 
responsiveness, and increased responsiveness implies reduced latency, 
as well as increased amplitude. 

Thus, a finding of a contra (vanilla) predictive pattern (evoked- 
standard larger than evoked-deviant) in which the latency of the stan-
dard is not less than the latency of the deviant, would stand against 
predictive coding. 

3.1.3. Characteristics of contra (vanilla) predictive pattern 

3.1.3.1. Modulation of latency. As just indicated, perhaps our main 
contention is that, while a contra (vanilla) predictive pattern can be 
generated from a predictive coding model by titrating precision modu-
lation, suggesting unfalsifiability, that titration does have consequences. 

Fig. 3. Predictive and non-predictive patterns from PC-evoked model: in all cases, we are showing the response to the second (always Stimulus 1) of two stimulus 
presentations. In the Deviant case, Stimulus 2 was previously presented; in contrast, in the Standard case, it was Stimulus 1. [A] Predictive pattern, with precision 
parameter, π, set to zero (see Simulation 1, Appendix 5). [B] Contra (vanilla) predictive pattern generated using precision parameter. By increasing precision (the π 
parameter) onto Stimulus 1 (but not Stimulus 2), the standard can be made higher amplitude (see Simulation 3, Appendix 5). In this way, a predictive pattern can be 
turned into a contra (vanilla) predictive pattern, ultimately, [C] with standard substantially higher in amplitude (i.e. more extreme from zero) than deviant when 
precision is 0.54 (see Simulation 2, Appendix 5). 
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These consequences yield a new set of predictions that could be the focus 
of further empirical work. We explored these consequences in the PC- 
evoked model. As shown in Fig. 4[A], as precision is increased, ampli-
tude increases (more negative for a negative component). This is the 
basic mechanism that enables a contra (vanilla) predictive evoked 
response to be generated from a predictive-coding model and is evident 
in Fig. 3[B&C]. Also, we can clearly see that the pattern observed is non- 
linear, reflecting the fact that precision is a multiplicative term in the 
activation equations. This non-linearity is also shaped by progression 
towards saturation. 

Importantly, also evident in Fig. 3[B&C], is a reduction in latency 
with increasing precision. This relationship is characterised in Fig. 4[B]. 
Indeed, this reduction in latency exhibits a very similar characteristic 
pattern to the increase in amplitude (for a negative component). 

These coincidental increases in amplitude and reduction in latency 
arise simply because an increase in precision is really an increase in gain. 
If one pushes the gain up, a system will respond both more quickly and 
with greater strength. This is shown by the near linear relationship be-
tween amplitude and latency observed for this particular formulation of 
predictive coding in Fig. 4[C]. 

Thus, the relationships characterised in Fig. 4, suggests a constraint 
on the contra (vanilla) predictive pattern that can be generated by the 
predictive coding framework. That is, if a claim is made that precision is 
enabling an empirically observed contra (vanilla) predictive pattern to 
be viewed as consistent with predictive coding, then that argument can 
only be sustained if latencies reduce with the putative increase in 
precision. 

3.1.3.2. Evoked frequency characteristics. The contra (vanilla) predictive 
pattern shown in Fig. 3[B&C] also generates characteristic evoked pat-
terns in the frequency domain; see Fig. 5. This is nothing more than a 
change of the data feature space. However, it may be that time- 
frequency plots offer a particularly clear representation of the discrim-
inating features of the contra (vanilla) predictive pattern. In particular, 
we can identify the following characteristics of the time-frequency plots 
for a Standard, as precision increases.  

1. The maximum of the power feature moves to higher frequencies as 
precision increases; see Fig. 5, particularly panels C, and D. The 
former of these shows the qualitative change in the frequency feature 
with amplitude differences normalised away. Changes to precision, 
and thereby to the gain, can also be viewed as adjusting the effective 
time constant. Increasing the time constant makes the neuron more 
responsive; that is, in response to stimulation, the neuron will in-
crease its membrane potential more rapidly, as well as, decaying 
faster when driving input is removed. The resulting change in the 
shape of the evoked components, which can be seen in Fig. 3[B&C], 
generate the increase in maximum frequency.  

2. As evident in Fig. 4, increasing precision, increases amplitude (more 
extreme from zero) and reduces latencies. In the frequency domain, 
this manifests as an increase in power (not shown in Fig. 5 due to 
normalisation) and reduction in latency of the point of maximum 
power (see Fig. 5[C,D]). 

Fig. 5[D] is probably the best summary of the changes in time- 
frequency features we are proposing accompany the generation of a 

Fig. 4. Results of running PC-evoked model (see Simulation 3, Appendix 5) to characterise properties of contra (vanilla) predictive pattern. As precision increases, 
[A] component amplitude (here of first negativity) increases (down on y-axis), [B] latency of component decreases, and [C] for this configuration of the model, an 
almost linear relationship between amplitude and latency is observed. 
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contra (vanilla) predictive evoked response pattern from predictive 
coding. It can be clearly seen that the increase in precision causes a 
simultaneous reduction in latency and increase in frequency, here with a 
linear trajectory. 

3.1.3.3. Contrast with additive ensemble (enhancement) effects. Are there 
ways of producing contra (vanilla) predictive patterns that lack the 
empirical foothold of latency modulation? It is possible to produce 
contra (vanilla) predictive patterns without twin amplitude-latency ef-
fects by titrating a scaling constant of the evoked response. The scaling 
modulation acts to model additive ensemble effects, i.e. the recruitment 
of a different quantity of neurons in the response. As evoked potentials 
find their origin in current summation over the dendrites and soma of 
responding cells, the ensemble effect is additive and only modulates 
amplitude. We can therefore contrast this response pattern to the contra 

(vanilla) predictive pattern produced by precision-modulation. 
As shown in Fig. 6, titrating the scaling constant allows one to pro-

duce contra (vanilla) predictive evoked responses. Increasing the con-
stant will increase the amplitude, as is the case with precision- 
modulation. However, whereas the effects of precision modulation are 
non-linear and saturating, (as implemented in PC-evoked) the effects of 
scale modulation are linear and non-saturating. Most importantly, there 
is no reduction in latency with increased scaling. The system is not 
responding with greater speed, only greater strength. 

The frequency characteristics of ensemble-modulation (found in  
Figure App 5[A,B,C] in appendix 6) also differ from those of precision- 
modulation. An ensemble-modulation increases the power across the 
component, and particularly at the point of maximum power. The 
component becomes broader both in time and frequency. However, the 
peak of the component remains stationary as the scaling constant is 

Fig. 5. Frequency domain features of contra (vanilla) predictive pattern obtained from PC-evoked model (see Simulation 3, Appendix 5). Panels A, B and C are simple 
time-frequency plots; panel D contains four such plots that are overlaid on top of each other, with some transparency added to each constituent plot. [A] time- 
frequency feature obtained when precision is low. [B] time-frequency feature obtained when precision is high. Panels A and B have been amplitude-normalised, 
such that the maximum power was one and the minimum power zero in both plots. This allows one to see qualitative changes in signal, unobscured by ampli-
tude differences. [C] panel B minus panel A. [D] time-frequency plots for four values of precision overlaid on one another, with the time-frequency point of maximum 
power indicated for each plot. Clearly, as precision increases, the point of maximum power moves simultaneously earlier and to higher frequencies, here following a 
linear trajectory. 
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increased. Thus, the peak frequency does not change. 
This ensemble-modulation hypothesis corresponds to one of the two 

most prominent theories of how ERP components arise in the brain: a 
pure power increase rather than a phase-reset (Fell et al., 2004; Min 
et al., 2007). That is, an ERP component could increase simply because 
more neurons (of the same basic kind) are activated in response to a 
stimulus presentation (or indeed, if the number of neurons does not 
increase, but their activation is additively boosted), generating a simple 
increase in power, without a corresponding increase in phase consis-
tency across trials (the marker of a phase-reset). 

In the context in which we are considering this additive ensemble 
increase to happen, i.e. when a stimulus is expected, one obtains a 
theory quite different to predictive coding (see Figure App 5 in Appen-
dix 6), regardless of whether prediction errors are vanilla or precision- 
weighted. That is, the more expected a stimulus is, the more neurons 
become excited, and indeed, we will argue, see subsection “The P3 in 
Rapid Serial Visual Presentation (RSVP)”, that presenting stimuli on the 
fringe of awareness may be a way to elicit higher amplitude responses 
for expected stimuli. 

This “more neurons for more expected stimuli” hypothesis contrasts 
with what one would expect from the Shannon efficient coding theorem 
(Shannon, 1948), which would suggest that more neural/ representa-
tional resource should be deployed to represent more unexpected stim-
uli. Indeed, notwithstanding the discussion early in the section “Contra 
(vanilla) predictive pattern”, if it were possible for a stimulus to be 100% 
expected, there would be no need for any prediction error neurons to be 
active. 

3.1.4. Sustained prediction 
We can also ask whether the PC-evoked model makes predictions 

about predictive coding more broadly – predictions that could be used to 
test the veracity of both vanilla and precision-modulated predictive 
coding. The common denominator between the two variations is the 
suppression of prediction error units via top-down inhibition5 and the 
propagation of a prediction error through the cortical hierarchy. We 
could ask: what happens to the prediction error as the stimulus 

approaches complete predictability? 
We therefore presented the PC-evoked model with 45 repeated 

stimuli in close succession. Predictive coding might be considered to 
suggest that – as the stimulus becomes more and more predictable – the 
prediction error will tend toward zero. In other words, the stimulus will 
become completely predictable, and so, one might expect that the pre-
diction units will perfectly inhibit the prediction error units, generating 
a null response. 

What we find in the PC-evoked model (Fig. 7[A]) is a large prediction 
error for the first presentation followed by a rapid stabilisation of 
response amplitude to the successive presentations of the stimuli. The 
prediction error amplitude stabilises by around the seventh or eighth 
presentation and is not much lower than the onset transient at the start 
of the stream. 

In the attempt to generate a null response (zero prediction error), we 
modified the PC-evoked model in two ways: reducing the value of the 
time constant and increasing the weight of the prediction unit’s pro-
jection. This has the effect of allowing prediction to ‘stack-up’ more 
effectively over time by slowing down the return of the membrane po-
tential of the prediction unit to its resting value. Additionally, the 
increased inhibitory weight increases the suppression of excitation in 
the prediction error units. These modifications result in a prolonged 
decrease of the prediction error with each stimulus presentation (Fig. 7 
[B]), leading to a very substantial reduction in amplitude relative to the 
onset transients, although the attractor dynamics in the PC-evoked 
model mean that the prediction error is never completely quenched. 

We then went further in attempting to reach an absolute quenching 
of the prediction error response (Fig. 7[C]). We removed the reversal 
term in the calculation of excitatory currents. The relevant term in our 
equations is as follows: 

Ie(t) = ge(t)⋅Ge⋅(Reve − V(t))

We change this term to the following: 

Ie(t) = ge(t)⋅Ge 

This change brings the model more into line with Rao & Ballard’s 
equations (see subsection Removal of Excitatory Reversal Term in ap-
pendix 1, Further Justification of PC-Evoked model). Our simulations 
show that with this change, one can obtain a full quenching to zero. This 
is because the upper bound on excitation (which is present with our 
basic equations) has been removed and the prediction unit can become 
more excited and clamp down further on the prediction error unit. 

In conclusion, perhaps surprisingly, the combination of the attractor 
dynamics of the predictive coding circuit and the possibility that pre-
dictions may evaporate rapidly, means that predictive coding, as real-
ised in the (basic) PC-evoked model, does not definitively imply the 
possibility to completely quench the evoked response. It is within the 
parameter space of the model to obtain a substantial (even complete, if 
the excitatory reversal potential is removed) quenching, but it is not 
mandated. 

3.2. Informal predictions of contra (vanilla) predictive pattern 

Taking inspiration from the PC-evoked model, we can also highlight 
some informal predictions. Notably, these informal predictions are in 
some sense more general then our previous predictions, since they are 
not dependent upon our model of evoked responses. 

3.2.1. Sensory noise vs attention 
One aspect of a basic predictive coding theory is that noise (for 

example, sensory noise) and attention act on the same variable, i.e. 
precision. One could parametrically manipulate the sensory noise on its 
own and attention on its own and ask whether these two manipulations 
have the same effect on the features of the evoked response. If they do 
have different effects on these features, it suggests they are not mediated 
by a common mechanism, which would be precision. For example, the 

Fig. 6. Contra (vanilla) predictive pattern generated using the scaling param-
eter (see Simulation 3, Appendix 5). As in Fig. 3[B&C], we take a standard 
response (to Stimulus 1 after a previous Stimulus 1 presentation) and titrate the 
value of a parameter in order to increase the amplitude of the evoked response. 
Here, we have increased the value of the scaling parameter, Ic, from 1 to 2 in 
steps of 0.05. 

5 Although, see Rauss and Pourtois (2013) for an alternative view of the use 
of the terms top-down and bottom-up in predictive coding. 
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amplitude of the response might change linearly with one, but loga-
rithmically with the other. One could plot the panels in Figs. 5 and 6 for 
separate manipulations of attention and sensory noise, and ask the 
question, do these exhibit the same relationships with latency, ampli-
tude and frequency? 

3.2.2. Counter-intuitive prediction 
The most telling predictions that can be made by a theory are those 

that would only be true if the theory were true. In this sense, you could 
think of such predictions as “counter-intuitive” from the perspective of 
all other theories. If such a counter-intuitive prediction is demonstrated, 
it provides strong evidence for the theory. A good example of this would 
be the empirical effort to verify General Relativity by observing the 
position of stars during an eclipse in order to measure the gravitational 
deflection of starlight passing near the Sun (Coles, 2001). 

We tentatively offer the following prediction. 

3.2.3. Shared channel saturation effect 
Precision-modulated predictive coding would seem to imply that 

sensory noise and attention act on the same variable, i.e. precision. In 
this sense, the theory suggests that sensory noise and attention share the 
same “channel”. This suggests that they share a ceiling. Thus, when each 
is manipulated alone to improve performance, they should asymptote at 
the same performance level. 

This shared-channel also suggests the presence of an interaction. 
Interaction between sensory noise and attention: as shown in Figs. 4 and 

5, the model suggests a saturation effect on precision. Since sensory 
noise and attention share the same channel, elevation of precision 
through reduced sensory noise, should reduce the effect of attention, 
simply because there is less dynamic range of the precision variable for 
attention to act on as saturation is approached. Fig. 8[B] shows a po-
tential interaction pattern that would reflect this shared-channel satu-
ration effect. For example, for behavioural accuracy or amplitude of a 
positive going magneto-electrophysiological component, the effect of 
attention should be reduced as sensory noise reduces. Such an interac-
tion could be tested with a range of behavioural and physiological 
measures, although, the direction of the dependent variable axis would 
change if, for example, reaction times, component latency or amplitude 
of a negative going component was under consideration. 

One could push this interaction phenomenon to its limit and 
completely quench any effect of attention. That is, one could experi-
mentally reduce sensory noise to a point of saturation of the precision 
parameter, i.e. where further reduction in sensory noise has no impact 
on the dependent variable. If sensory noise and attention share the same 
channel, at this saturation point, attention should have no effect. 

These interaction effects would be especially compelling if one could 
also show that the observed interaction is not caused by an absolute 
“overall” ceiling. There will be ceilings to all dependent variables, but 

Fig. 7. Evoked responses from PC-evoked model under repetition of stimuli (see Simulation 4, Appendix 5). [A] evoked responses to repetitive stimuli with no 
modifications to the model from earlier sections. [B] evoked responses to repetitive stimuli after modifications to model. The time-constant, τp, for the Stim1 
prediction unit was reduced from 0.04 to 0.005, i.e. stimuli induce more temporally sustained predictions. The weight from the prediction unit to the prediction error 
unit was increased from 14.5 to 100, i.e. much stronger suppression of predicted stimuli. [C] same settings as [B] in all respects apart from removal of Excitatory 
Reversal term (see Simulation 5, Appendix 5). Purple line in [B] and [C] is the membrane potential of the prediction unit, showing that it ends up higher in [C] than 
in [B]. This is due to the removal of the Reversal term from the prediction unit, which, in [B], limits the excitatory drive, i.e. constrains how excited the prediction 
unit can get, and thus how much it can suppress the bottom up response. 
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we are specifically interested in one associated with attention and the 
impact of noise. So, the demonstration would be particularly telling if it 
were possible to demonstrate that the observed ceiling effect is specific 
to the precision channel and that manipulation of other variables could 
place performance beyond that obtained through its manipulation. 

This prediction could be explored in a simple behavioural-MEEG 
experiment in which attention is manipulated through (highly predict-
able) spatial cueing (see, for example, the Posner Cueing task (Posner, 
1980)) and random visual noise is overlaid on the stimuli. These pre-
dictions would suggest that as the environment becomes more reliable 
(i.e. less noisy), the impact of attention reduces. Indeed, the prediction 
might suggest that cueing has its biggest effect when sensory noise is at 
its highest, e.g. when it is most difficult to detect the cue and the target 
from amongst noise. These might be considered counter-intuitive pre-
dictions, simply because one may believe that attention would have 
more effect when stimuli are more easily discriminated, i.e. the envi-
ronment has the least sensory noise. 

Another way to think about this experiment is that it is considering 
whether sensory noise and attention have the same or different 

saturation ceilings. If they have different saturation ceilings, then they 
represent different variables. To be clear, this finding would not 
necessarily stand against the notion that attention controls gain, a 
notion that attention theorists have subscribed to for a very long time (e. 
g. Cave, 1999; Mozer and Baldwin, 2007 and Wyble et al., 2009; and see 
subsection “Confidence, Attention and the Predicted” in the Discus-
sion section). Rather, it would suggest that attention does not act upon 
the precision variable originally conceptualised in predictive coding 
theories (Rao and Ballard, 1999), as variability due to noise. 

3.3. Empirical evidence 

We present the following pieces of empirical evidence related to the 
predictive vs contra (vanilla) predictive question. Importantly, our 
objective in this paper is not to definitively disprove predictive coding, 
but rather lay down an experimental framework in which there is the 
potential to disprove it. Part of the reason for an “Empirical Evidence” 
section is to highlighted published experiments that could be adjusted to 
become tests of the predictions we have identified. 

Fig. 8. [A] ERPs of Posner task from Mangun and Hillyard (1991). Occipital electrodes are shown. Time-series are shown from the onset of the target (following a 
central cue, which pointed with equal probability towards either the left or the right). The target could appear in either visual field, giving ipsilateral and 
contralateral evoked responses for a target in left or in right visual fields. Positive is plotted down. The clearest pattern is that both P1 and N1 are higher amplitude 
for valid (i.e. expected) trials. [B] potential (counter-intuitive) interaction emerging from shared-channel saturation effect: a sensory noise manipulation is crossed 
with an attention manipulation. Due to proximity to ceiling for the precision variable, the high noise condition (small precision) should exhibit a stronger effect of 
attention then the low noise condition (high precision). The dependent variable could be behavioural, e.g. accuracy, or physiological, e.g. component amplitude 
(positive going). Reaction time or component latency could also serve as the dependent variable, but with the direction of the dependent variable reversed. [C] A 
typical RSVP experiment, with positive plotted upwards. Each individual distractor appears very rarely (once or twice), while pre-specified Targets appear frequently. 
A large evoked response is observed for the Target (a P3 component), but effectively, no such response is elicited for distractors, save for the much lower amplitude 
steady-state visually evoked potential, which oscillates at the frequency of the stream (7.5 hz). A control condition (here called Irrelevant) is also displayed, in which 
a task-Irrelevant stimulus is presented as many times as the Target. This does not induce a P3, since the Irrelevant is not being searched for. However, of most 
relevance here, this condition shows the sequence of transients set-up by distractors, unaffected by the occurrence of a P3, with their low amplitude relative to the P3 
being evident. 
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3.3.1. Contra (vanilla) predictive pattern in Posner task 
Mangun and Hillyard (1991) observed a strongly contra-predictive 

ERP pattern for early transients on the Posner task. Fig. 8[A] re-
produces their data, in general showing a much larger P1 (and N1) 
transient for the validly cued target. This is the opposite pattern to that 
expected by vanilla predictive coding. Typically, the increased ampli-
tude for valid cuing looks most like a scaling (additive ensemble) effect, 
apart from Ipsilateral in the right visual field (see panel Aiv), which 
might be exhibiting a pattern consistent with an increased gain. 

3.3.2. The P3 in rapid serial visual presentation (RSVP) 
Bowman et al. (2013a) highlighted the P3 evoked response in RSVP 

streams as a contra (vanilla) predictive pattern. Importantly, the P3 may 
behave quite differently in the context of conscious break-through ex-
periments compared to experiments in which all stimuli are presented 
clearly above the threshold of awareness; see discussion section of 
Pincham et al. (2016). In particular, classic Odd-Ball experiments, where 
conscious break-through is not an issue, elicit canonical (vanilla) pre-
dictive patterns (Polich, 1986; Donchin and Coles, 1988). 

However, in RSVP search experiments, often, participants look for 
and find the same target in very many trials, thus the target stimulus 
becomes highly predictable. Nonetheless, contrary to a vanilla predic-
tive pattern, the target elicits a very high amplitude evoked response. 

The ERP in Fig. 8[C] shows this phenomenon. RSVP streams were of 
faces presented at an SOA of 133 ms, i.e. with a presentation frequency 
of 7.5 hz. The band passed by the filter was 0.1–30 hz. Within a block, a 
single Target was searched for, which was a famous face, e.g. the face of 
Donald Trump. The target was presented 12 times during a block. Dis-
tractors were sampled at random (with replacement) from a large 
database of (560) faces. Within a block, most distractors that occurred, 
were only presented once. Thus, they are much less expected than tar-
gets. For more details see, Aviles et al. (2023). 

Thus, this is a contra (vanilla) predictive pattern. Indeed, even 
though they are highly unexpected, distractors neither attract attention, 
in fact, they are largely rejected subliminally (Avilés et al., 2020; 
Bowman and Avilés, 2021; Bowman et al., 2014), or generate a sub-
stantial evoked response, unlike the (highly predicted) target. This data 
and that presented in the previous subsection “Contra (vanilla) pre-
dictive pattern in Posner task" are the sort of data that 
precision-modulation is required to explain. 

3.3.3. Steady state response 
As discussed earlier, one might think that the evoked response should 

reduce in amplitude very substantially if one continued to present the 
stimulus. As shown in Fig. 7, this could be the case (panels [B] and [C]), 
but it does not have to be (panel [A]). In fact, evoked responses to long 
trains of repeating stimuli have been extensively explored. A typical 
pattern of data is shown in Fig. 9, where the onset of the stream of 
stimuli generates a transient response, which might be related to a 
prediction error. However, after a number of repetitions, the evoked 
response settles into a relatively stable oscillation at the frequency of the 
visual stimulation, which has an amplitude not much lower than the 
evoked (onset) transient. In particular, there is little evidence of sub-
stantial attenuation of the response. Thus, the data looks more like Fig. 7 
[A] than Fig. 7[B or C]. 

3.3.4. Shared-channel noise versus attention prediction 
Interestingly, there is a literature focused on the impact of noise on 

higher cognition, e.g. Moss et al. (2004) and some of this has considered 
the interplay between sensory noise and spatial attention, e.g. Dosher 
and Lu (2000) and Herweg and Bunzeck (2015). These studies could 
inform our shared-channel noise versus attention behavioural predic-
tion. The most relevant study is Dosher and Lu (2000), since they 
manipulated noise in the same modality as attention (Herweg and 
Bunzeck, 2015 added auditory noise to a visual Posner task). 

One might believe that the more direct test of the shared-channel 

noise vs attention prediction would be when noise is applied in the 
same modality in which attention is manipulated. Dosher and Lu (2000) 
employed a form of Posner task that tested the effect of overlaid visual 
noise on an orientation judgement task. We reproduce their key finding 
in our Fig. 10. 

They observed a pattern consistent with our prediction, with a strong 
attentional effect with high sensory noise, but no attentional effect in the 

Fig. 9. Steady state visually evoked potential from (Garcia-Molina and Mila-
nowski, 2011). A visual stimulus was repeated at 15 Hz. 

Fig. 10. Results from Dosher and Lu (2000) (their Fig. 3). Data for the four 
participants are shown, one per quadrant. X-axis is the contrast level of the 
overlaid visual noise, i.e. noise level increases from left to right. Y-axis shows 
the contrast of the (signal) stimuli, i.e. stimulus strength increases from bottom 
to top. Data points are level of stimulus contrast at which 62.5% performance 
accuracy is obtained for a particular noise level. Thus, a data point higher on 
the y-axis indicates worse performance, i.e. that a stronger stimulus was 
required to obtain the 62.5% performance level, for a given level of noise. In all 
quadrants, the higher curve (squares) is for invalid cuing (i.e. unattended) and 
the lower curve (circles) is for valid cuing (i.e. attended). This, then, is the same 
pattern as our interaction prediction (Fig. 8[B]), but with y-axis reversed, since 
stimulus strength required to reach a performance threshold is plotted (i.e. 
lower is better performance). That is, we observe a large effect of attention 
when sensory noise is high and a small effect when noise is low. 
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absence of sensory noise (in fact, this no-sensory noise condition 
exhibited a strong ceiling effect; see our Fig. 10 and also Fig. 2 in Dosher 
and Lu, 2000). Remember, our prediction was that, if attention and 
levels of sensory noise share the same channel (i.e. precision), the effect 
of attention should increase as sensory noise increases (i.e. induced 
precision reduces), since the resulting greater distance to ceiling, would 
give more room for attention to act. Although, the extra demonstration 
highlighted in subsection Shared channel saturation effect that this 
ceiling is specific to precision and not an absolute behavioural ceiling 
was not investigated by Dosher & Lu. 

Dosher and Lu (2000) fitted their perceptual-template model (PTM) 
to the full data pattern and explained the findings in terms of 
perceptual-template sharpening. A very interesting direction for further 
work would be to formulate a model comparison between the Dosher & 
Lu perceptual-template model and a shared-precision predictive coding 
model on results of their experimental paradigm. 

Finally, although not explicitly prediction experiments, there has 
been neuroimaging work crossing manipulation of sensory noise (clear 
speech versus noise vocoded) and attention (dichotic listening) (Wild 
et al., 2012; Rimmele et al., 2015). Adding a prediction component to 
these paradigms could be a fruitful direction for research. 

3.4. 2nd-level prediction circuit: the breakthrough-P3 

We focus here on modelling Rapid Serial Visual Presentation (RSVP) 
and specifically, the SSVEP and P3 observed in that context. This follows 
from Bowman et al. (2013a) who highlighted the P3 evoked response in 
RSVP streams as a contra (vanilla) predictive pattern. Importantly, as 
previously discussed, the insensitivity to prediction of the P3 in RSVP 
should be distinguished from that classically observed for the odd-ball 
P3 (Donchin and Coles, 1988), which exhibits a pattern of data that is 
much more predictive in nature. Thus, what follows is only intended to 
obtain for the Breakthrough-P3. Additionally, what we present is not in 
any sense, a complete treatment of the Breakthrough-P3, rather our 
interest here is to show specific data patterns by building on top of the 
predictive coding framework. 

Reasons for focusing on the Breakthrough-P3 are as follows. 1) It is a 
classic example of a breakthrough (into consciousness) component, 
which we have argued earlier may reflect a situation in which predictive 
coding is not strongly at play. In RSVP search experiments, participants 
look for and find the same target in very many trials, thus the target 
stimulus becomes highly predictable. Nonetheless, contrary to a vanilla 
predictive pattern, the target elicits a very high amplitude evoked 
response. Additionally, Wierda et al. (2013) found little evidence of an 
effect of (pre-experimental) word-frequency on the evoked response 
during an (RSVP) attentional blink experiment. 2) It may be that there is 
more “room” to observe precision/gain bringing the component earlier 
in time with the P3, rather than the N1/P1 (the components we have 
focussed on so far in this paper), which, as early components, are closer 
in latency to the physiologically minimum possible latency (thus, if such 
a latency decrease is not observed, it may represent a more compelling 
finding for the P3, since there was considerable “room”/potential for it 
to be observed). 3) For the P3, a model exists that proposes an additive 
effect of attention, viz the blaster response in the Simultaneous Type/ 
Serial Token model (Bowman and Wyble, 2007). This model has 
credence because of the spectrum of effects it successfully simulates, 
giving the additive ensemble hypothesis credibility in the context of the 
Breakthrough-P3 (e.g. Bowman and Wyble, 2007; Bowman et al., 2008) 
including modelling of the P3 (e.g. Chennu et al., 2009; Craston et al., 
2009). 

Here, then, we take the Predictive Coding-Evoked (PC-Evoked) model 
and simulate RSVP, the Breakthrough-P3, as well as the SSVEP, in what 
we call the Hierarchical-PC-Evoked model. We relate this revised model 
to Rao & Ballard’s classic model under heading Hierarchical Model of 
Appendix 1: Further Justification of PC-Evoked model. 

We perform two sets of simulations with the Hierarchical-PC-Evoked 

model. 

3.4.1. Early circuit simulations 
We make the following changes to the simple PC-Evoked model, 

focussed on up to this point in this paper.  

1) We repeat the prediction circuits, since there are many distractors, 
giving us one per distractor or target. These all have absent precision, 
since it is not manipulated in the early circuit in these simulations. 
The RSVP SSVEP arises from these early circuits.  

2) The target is presented more often than the distractors, but only ever 
across streams. We model this by having relatively small time- 
constants at early circuit prediction units, enabling residual activa-
tion (in prediction units) in different circuits to build-up and last 
across RSVP streams. 

Thus, these simulations reflect vanilla predictive coding in the early 
circuit, i.e. without any difference in precision between distractors and 
targets. 

Our main finding is that once prediction has built-up across streams, 
the model generates a weaker response for the target, which is sup-
pressed by residual prediction from earlier presentations in previous 
streams; see Fig. 11. Thus, this suggests that, assuming relatively long 
prediction dynamics, vanilla predictive coding, generates reductions in 
amplitudes of targets in SSVEPs once expectations have accumulated 
sufficiently. We are not aware of any reports of such a phenomenon in 
RSVP experiments, although of course, this may be because the effect is 
small and nobody has determinedly looked for it. This is a good focus for 
future work. 

3.4.2. Late circuit simulations 
As previously discussed, see Fig. 8[C], the really big response in 

RSVP experiments is the P3 for targets. This is even though, as just 
emphasized, targets are more expected than distractors, which only 
elicit a single deflection in the (low amplitude) SSVEP and no P3 at all. 
To explore such (contra (vanilla) predictive) P3s, we add a late circuit to 
our model; see Fig. 12. Specifically, we make the following changes to 
our model:  

1) We add later higher level circuits, one for each distractor and target, 
but where task set ensures that only targets become active. 

Fig. 11. Early Circuit response to RSVP stimulation (see Simulation 6 in Ap-
pendix 5). Two RSVP streams (each of 15 items) are presented in succession to 
the model. Since an expectation carries over from the first stream to the second, 
the amplitude of the target is reduced in the second stream; see red arrow. This 
is because distractors are not repeated across streams, but the target is. 
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Specifically, the inhibitory link from the task demand unit shown in 
Fig. 12 (see grey dashed arrow) is set to 0.13 for distractors and zero 
for targets. This blocks activation from passing into the Late circuit 
for Distractors, on the grounds that Distractors are not being 
“searched for” by participants.  

2) Version 1 (gain-control): in our first version of the high-level circuit 
(see Fig. 12[A]), modulation by precision works similarly for this 
second level response as it does at the first level (N1/P1). Accord-
ingly, we change precision (late precision in Fig. 12[A]) in this 
higher-level circuit in a similar way to our manipulation of the N1/ 
P1.  

3) Version 2 (additive ensemble): as a reflection of the additive 
ensemble theory (see inline heading “Evoked response” of the 
Methods section), we import a simplified version of the transient 
attentional enhancement (the blaster) introduced in the Simulta-
neous Type/ Serial Token model (Bowman and Wyble, 2007),6 in 
which the P3 scales with the level of attention, i.e. blaster firing. This 
mechanism amplifies on detection of a salient (e.g. task-relevant, 
emotionally salient, personally salient) stimulus, being realised 
with a separate pathway from the stimulus (see Fig. 12[B]). This 
pathway is assumed to be more like a traditional recognition system 
(what we call Brain as Recognizer in the Discussion) that is seeking to 
detect stimuli that are salient to the organism. 

Version 1 of this second simulation shows that the P3 exhibits the 
same pattern as the N1/P1 when precision is titrated; see Fig. 13[A]. 
Thus, the large amplitude P3 observed in RSVP experiments could be 

obtained by precision weighting, but this second-level response (i.e. the 
P3) changes in the manner suggested by our precision-weighted effects, 
i.e. as precision increases, the response is higher amplitude, higher 
frequency and earlier. 

Version 2 shows a plausible alternative to a predictive coding 
explanation of the Breakthrough-P3. That is, this component may be 
generated by an additive attentional enhancement, whereby the atten-
tional enhancement increases with stimulus salience, but with an ad-
ditive, rather than multiplicative, effect; see Fig. 13[B] and compare to 
Fig. 6, but now, of course, with polarity reversed, since we are consid-
ering an initially positive going, rather than negative going effect.7 

3.4.3. Summary of predictions 
In summary, three predictions that experimentalists can explore, 

have been identified from this section.  

1) Can one observe a reduction in SSVEP-deflection amplitude once a 
frequently presented stimulus (particularly a target in a classic RSVP 
experiment) has become expected? Vanilla predictive coding sug-
gests this could be present.  

2) Does the high-amplitude P3 observed for targets in RSVP, behave in a 
fashion consistent with precision modulation, i.e. becoming earlier, 
higher amplitude and higher frequency as attentional enhancement 
increases? This would be consistent with precision-modulated pre-
dictive coding.  

3) Does this P3 behave according to an additive enhancement, 
whereby, most importantly, the component does not become earlier 

Fig. 12. Hierarchical PC-Evoked models. A late circuit is added to the (early) circuit of the original PC-Evoked model. We only depict the Stimulus 1 part of the full 
model. The basic Late circuit has the same general form as the Early circuit, apart from the addition of a task demand system (solid grey node), which backgrounds 
Distractors, preventing them from being able to generate activation in the Late circuit. We show two versions of this model. [A] (version 1, gain control) mirrors the 
early precision pathway, with a late precision pathway. [B] (version 2, additive enhancement), taking inspiration from the blaster in the STST model, a transient 
attentional enhancement mechanism is implemented, which amplifies on detection of a salient (e.g. task-relevant, emotionally salient, personally salient) stimulus. 
This mechanism is realised with a separate pathway from the stimulus, which is assumed to be more like a traditional recognition system that is seeking to detect 
stimuli that are salient to the organism. 

6 Although, this did change in the eSTST model, where a multiplicative 
attentional enhancement was implemented (Wyble et al., 2009). 

7 One could also drive the blaster from the early precision unit and make the 
P3 bigger when it is expected, rather than when it is salient. 
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as attentional enhancement increases? This would be inconsistent 
with precision-modulated predictive coding. 

3.5. Further empirical evidence: latency in a contra (vanilla) predictive 
evoked response pattern 

As just illustrated, in order to generate a contra (vanilla) predictive 
Breakthrough-P3 evoked response pattern, precision needs to be used to 
elicit the larger amplitude for the unpredicted condition. As demon-
strated in the Hierarchical PC-evoked model simulations, this should 
reduce the latency of the evoked response. Accordingly, we present an 
ERP approach that is relevant to testing this hypothesis. 

Within the field of psycholinguistics, there is considerable evidence 
that successful comprehension of degraded speech relies on active pre-
dictions generated by the listener (e.g., Davis et al., 2005; Sohoglu et al., 
2012; Wild et al., 2012). Consistent with a vanilla predictive coding 
account, we recently observed a predictive pattern in the magnitude of 
the ERPs elicited by degraded speech at approximately 200–250 ms 
post-stimulus – i.e. more extreme values for unexpected stimuli relative 
to expected stimuli (Banellis et al., 2020). However, the subsequent ERP 
component, between approximately 250–350 ms post-stimulus, exhibi-
ted a contra (vanilla) predictive pattern when participants were actively 
attending to the speech stimuli – i.e. more extreme values for expected 
stimuli relative to unexpected. Furthermore, when participants were 
distracted from the speech stimuli, the ERPs in that same time-window 
maintained the earlier predictive pattern. 

As in the RSVP data above, to explain this contra (vanilla) predictive 
pattern within a prediction error framework, one must appeal to 
precision-modulation. As detailed above, such differential precision- 
modulation will also affect the latencies of the ERP components, with 
a shortening of component latency under high precision. Nevertheless, 
in Banellis et al. (2020), we found no evidence of an interaction between 
prediction and attention for the latency of this contra (vanilla) predic-
tive ERP component (nor any other component). Furthermore, using 
Bayesian equivalent analyses, the latencies of the ERP components were 
between approximately 2- and 4-times more likely under a model con-
taining no interaction term – a result that is inconsistent with a role for 
precision-modulation in this contra (vanilla) predictive ERP. 

We acknowledge that the above Bayes Factors, while in the direction 
of the null, are relatively small. Furthermore, our original experiment 
was not designed to explicitly test for latency effects. However, 

incorporating manipulations of prediction and attention alongside 
Bayesian analyses in this way is one possible principled means for future 
targeted efforts to falsify a precision-modulated prediction error char-
acterisation of ERP components. 

4. Discussion 

4.1. Falsifiability vs falsification 

It is important to differentiate unfalsifiability from failure to falsify. 
A theory is unfalsifiable if there is no experiment that could be run that 
could come out in a way that stands against it, meaning that the theory is 
tautological. In contrast, a failure to falsify a theory, simply means that 
no experiment has been run (to date) that provides evidence against it, 
but this does not mean that no experiment exists that could falsify the 
theory. In particular, a failure to falsify does not imply unfalsifiability, 
and falsifiability does not imply falsification. That is, the fact that a 
theory is falsifiable does not mean that it will be falsified. Taking Physics 
as an example: there are many theories that have not been falsified, but 
this does not mean that they were tautological (i.e. unfalsifiable), it just 
means that attempts to falsify them failed. Take the laws of thermody-
namics as examples (Cengel et al., 2011). If experiments had come out 
differently, they could have been falsified. Thus, the laws of thermo-
dynamics have not been falsified, but they are falsifiable. 

The issue with predictive coding with precision-modulation and a 
purely amplitude-oriented means of discriminating evoked responses is 
that it really does risk becoming unfalsifiable. That is, it can generate 
both predictive and contra (vanilla) predictive patterns, raising the 
possibility that no empirical scientist can inform the correctness of the 
theory, i.e. there is no point in running experiments to test the theory. 

4.2. Bayesian approaches 

The main focus of this paper is to identify properties that can quali-
tatively differentiate theories, i.e. properties that one theory can exhibit, 
but the other cannot (for any setting of its parameters). However, two 
models that can both generate the observed data can be differentiated 
using Bayesian techniques, by considering how likely the data is given 
the range of possible parameter settings of each model. This is certainly 
a strategy that could be employed to assess the validity of predictive 
coding. For example, one could pit the additive ensemble theory of 

Fig. 13. Competing predictions for the Breakthrough-P3 from Hierarchical PC-Evoked model. Responses correspond to late evoked response in Fig. 12. [A] Pre-
diction from precision-weighted prediction error theory, in which precision/gain (πE) is modulated by stimulus salience/engagement of attention, low precision was 
0 and high precision was 0.54 (see Simulation 6, Appendix 5). As expected, increasing gain, increased amplitude, increased component frequency and reduced 
latency. [B] Prediction from additive (ensemble) enhancement theory, where an additive effect of enhancement is obtained (Blaster weight, WbB, increased from 0 to 
0.02; see Simulation 7, Appendix 5). Note, the change of y-axis scales between these two plots. 
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contra (vanilla) predictive evoked responses (i.e. higher amplitude re-
sponses to expected stimuli), against the PC-evoked model in a Bayesian 
model comparison. 

However, while Bayesian approaches could be used to quantify dif-
ferences between theories, if qualitative predictions are available then 
they are the most useful to experimentalists, providing the strictest, most 
incontrovertible, falsification. Accordingly, ways to qualitatively differ-
entiate between theories is our main focus in this paper. 

4.3. Latency, frequency-domain features and precision-modulation 

The modelling in this paper can be considered scientifically positive, 
since it more strongly constrains the claims made by predictive coding 
with precision-modulation, providing a target for empirical scientists. If 
the latency of evoked responses is considered in addition to amplitude, 
an experimentalist can find evidence against predictive coding. This 
would occur if a standard condition having a larger amplitude than a 
deviant condition (i.e. a contra (vanilla) predictive pattern) is not 
associated with a shorter latency. There may be the necessity to find 
evidence for the null, but Bayes can be used for that (Dienes, 2014). 

In fact, since precision is a gain parameter, as demonstrated in Fig.s 4 
and 5, obtaining a contra (vanilla) predictive pattern from predictive 
coding, implies a change in form of the evoked response. These char-
acteristics might be most easily observed in the frequency domain (see 
Fig. 5), where the frequency of the evoked transients increases as pre-
cision/ gain is increased. 

These frequency domain features are focused on the evoked 
response. However, even though the PC-evoked model cannot inform 
such features, one can also make an argument about induced-responses 
in the frequency domain, since also in this case, increased precision 
should move power to higher frequencies. This is essentially because 
increasing effective time-constants in an oscillator, would cause the 
(oscillator) circuit to be traversed more quickly, increasing its intrinsic 
frequency. 

These kinds of changes of timing and frequency dynamics can be 
investigated with Dynamic Causal Modelling (Kiebel et al., 2008). In 
particular, self-loops in DCM micro-circuit models really act as gains on 
neural responses. Thus, fitting DCM micro-circuit models to experi-
mental manipulations of deviance and interrogating the strength of 
self-loops, offers one approach to testing the amplitude and latency 
claims of precision-weighted predictive coding. (Additionally, Bastos 
et al., 2012 present a Canonical MicroCircuit (CMC) model that realises 
predictive coding concepts in a neurophysiologically detailed mannner, 
including with a realisation of precision. Changes of timing and fre-
quency dynamics could also be explored with this CMC model.). 

4.4. Confidence, attention and the predicted 

Does precision become an overloaded concept in precision-weighted 
Predictive Coding? We highlighted three different flavours by which 
precision may enter the theory.  

1) Confidence. This is the root definition of precision. Consider, for 
example, the equations of Rao and Ballard (Rao and Ballard, 1999), a 
highly influential, formulation of the framework. Precision terms 
(reciprocal of standard deviation) appear in these equations, which 
at the sensory level reflect the noise in the sensory input, and thus the 
confidence that the system has in the prediction errors it will pass up 
the sensory pathway. Thus, for example, high precision (i.e. low 
variance) will correspond to high certainty and thus, to high confi-
dence. This link between precision, certainty and confidence has 
been frequently made in the literature, e.g. Clark (2015), Allen et al. 
(2016), Spence et al. (2016) and Boldt et al. (2017).  

2) Attentional control: Friston has argued that attentional signals can be 
realised in predictive coding using precision modulation (Friston & 
Feldman, 2010). This position associates attentional control with 

modulation of gain, e.g. if attended, the gain at a particular position 
in space is increased.  

3) Predicted: more speculatively, as a by-product of the association of 
attention with precision, is there a sense to which precision comes to 
be positively correlated with prediction, i.e. it increases when a 
signal is expected and decreases when it is not? 

Considering these three flavours of precision, the first seems un-
controversial: prediction error uncertainty arising due to noise needs to 
be reflected in the model. However, there may be more to discuss about 
the other two. 

4.4.1. Attentional Control 
Firstly, while precision as attentional gain is a theoretically elegant 

approach, it does not fully answer the question of the mechanics by 
which the brain engages in top-down (and bottom-up) attentional con-
trol, and perhaps particularly the implementation of feature-based 
attention (Bowman et al., 2013; Ransom and Fazelpour, 2015; 
Ransom et al., 2017; Ransom and Fazelpour, 2020). Indeed, many 
attention researchers would agree that attention can modulate the sen-
sory pathway with gain control (see, for example, Experience-Guided 
Search (Mozer and Baldwin, 2007); the blaster in the eSTST model 
(Wyble et al., 2009) (although, as previously discussed, STST employed 
an additive enhancement (Bowman and Wyble, 2007; Bowman et al., 
2008)); the FeatureGate model (Cave, 1999); etc), but the further 
question is the overall architecture and associated “wiring” by which it 
does this, proposals for which have been made in a range of computa-
tionally instantiated models, e.g. RAGNAROC (Wyble et al., 2020); STST 
(Bowman and Wyble, 2007; Wyble et al., 2009; Bowman et al., 2008); 
Saliency-map model (Itti et al., 1998; Itti and Koch, 2000); 
Experience-Guided Search (Mozer and Baldwin, 2007); and Neural 
Theory of Attention (Bundesen et al., 2005). 

Moreover, in and of itself, a finding that attention does act as gain 
control is certainly required for the precision-weighted prediction error 
theory to be supported, but it would not definitively verify it. This is 
because, as just highlighted, there are many extant theories that predict 
the same (i.e. attention as gain-control), without being predictive in 
nature. So, it would be an important demonstration for predictive cod-
ing, but it would not be conclusive. In contrast, identification of a non- 
gain pattern would stand against predictive coding being a complete 
explanation of cognition. 

Neuromodulatory mechanisms are also candidates for adjusting 
precision in order to realise attentional control. For example, Friston and 
co-workers have proposed that dopamine might play this role (Friston 
et al., 2012; Friston et al., 2014); see also (Dayan and Yu, 2002; 2005) 
for proposals concerning neuromodulators and uncertainty. 

Secondly, is it a problem that precision represents both attention and 
confidence? The link between confidence and attention seems to be 
strong in Cueing experiments (Feldman and Friston, 2010). That is, the 
cue typically directs attention to a spatial location, and if a stimulus 
appears there, confidence as to whether a prediction error has occurred 
is indeed likely to be high, since the stimulus falls in the focus of (pre-
viously cued) covert attention. 

However, there certainly are situations in which we can attend to 
low-confidence stimuli. For example, in some situations when driving, 
we may monitor the pavement for pedestrians crossing the road, a re-
gion that would (let’s hope) be in the periphery of our vision. Thus, 
presumably, attention will be pushing up our effective confidence in 
prediction errors in a circumstance in which we would actually have low 
confidence (since the pavement is in our periphery). If the two concepts 
were conflated, would it be possible to attend and also have low- 
confidence about the attended stimulus? 

Indeed, by requiring them to use, if you like, the same “channel”, is 
there a sense to which the “attention as confidence” hypothesis loses 
valuable information by conflating the two, preventing them from being 
differentiable? For example, at a higher level of the sensory processing 
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hierarchy, the system may register a very large precision-weighted 
prediction error, but it would not know what had caused that large 
amplitude – was it that there was high confidence in sensory inputs, but 
low attention, or was it that there was low confidence, but high atten-
tion? In fact, since the precision-weighted prediction error is a single 
number, it could actually also be that there was an extremely high 
prediction error, but low confidence and low attention. 

4.4.2. Predicted 
The third flavour of precision-modulation is perhaps the most serious 

with regard to unfalsifiability. In many experiments, attention is 
assumed to be engaged by presenting a stimulus frequently, i.e. making 
it expected, with cuing tasks a classic example. For example, in the basic 
Posner task (Posner et al., 1978; Posner, 1980), the Valid cue is pre-
sented more frequently than the Invalid cue, see also, (Garner et al., 
2021) and many others. Thus, in this context, we attend to what is ex-
pected, and, as shown in Fig. 8[A], it generates the largest evoked 
response,8 even if there is no direct instruction to attention (which might 
be argued to directly regulate precision). At the least, this position does 
not sit well with vanilla predictive coding, in which the largest evoked 
response is to the unexpected stimulus. Indeed, resolving this inconsis-
tency may have been a motivator for the attention as precision associ-
ation (Feldman and Friston, 2010). 

Thus, might it be that it is not just confidence and attention that 
become conflated in precision-modulation, but it is also the expected. If 
high precision becomes high expectation, then prediction enters the 
model in two different ways – additively (subtraction) with top-down 
prediction and multiplicatively with precision, and in typical cases, 
these would work in opposition to each other. 

This seems particularly problematic, since it implies that precision- 
modulated prediction errors really can be largest for unexpected stim-
uli in one setting and for expected stimuli in another. It is simply the 
amount that precision is titrated that determines whether the theory will 
generate predictive or contra (vanilla) predictive evoked patterns. 

4.4.3. Implications 
The overloaded nature of precision should be an issue that experi-

mentation can inform, for example, suggesting experiments that would 
compare the effect of manipulating sensory noise and attention on 
behaviour and/ or evoked responses. A number of potential experiments 
of this kind were highlighted in subsections “Sensory Noise vs Attention” 
and “Counter-intuitive Prediction” of the “Informal Predictions of 
Contra (vanilla) predictive Pattern” section of the results. In addition 
to these, attention as precision-modulation of prediction error seems to 
suggest that low confidence-high attention cannot be distinguished from 
high confidence-low attention. 

As highlighted recently (Litwin and Miłkowski, 2020), precision is 
operationalised in many different ways across the prediction error 
literature, including being synonymous with attention, subjective feel-
ings of confidence, and salience, thus allowing all predictive and contra 
(vanilla) predictive results to be interpreted within the predictive coding 
framework. Consequently, the field will benefit from both clear 
computational models of the implications of precision-modulation, and 
from testable characterisations of the conditions under which precision 
will vary. 

4.5. Is the brain a recognizer or a predictor? 

What though is the theory of brain function that predictive coding 
can be placed in opposition to? The fundamental debate is really be-
tween the Brain as a Recognizer and the Brain as a Predictor. The 
recognition system perspective might be considered the dominant the-
ory of cognitivism (Haugeland, 1978; Lindsay and Norman, 2013; 
Mandler, 2002), which although still prominent, may, in some circles, be 
considered “on the back foot” because of the pervasiveness of predictive 
coding. 

Notwithstanding the implications that we have discussed of 
precision-modulation, a central principle, as we have said, of (vanilla) 
predictive coding is that large evoked responses correspond to large 
prediction errors. This is in contrast to the recognition system perspec-
tive that the brain is trying to recognise the stimuli in the environment 
that fall onto sensory receptors, where the evoked response would 
reflect this recognition process. Importantly, recognition could simply 
be a feedforward process, i.e. whenever a stimulus is presented to the 
brain, the representation of the stimulus propagates forward along the 
sensory processing pathway in order to determine what the stimulus 
being viewed is. Furthermore, from this perspective, the evoked 
response tracks this forward propagation, and is generated whether that 
stimulus is predicted or not. 

This recognition system perspective fits well with the mainstream of 
connectionism, neural networks and deep learning. For example, the 
brain’s (putative) recognition system can be seen as solving a similar 
problem to deep learning systems that are categorising objects in images 
on the internet, e.g. (Ciresan et al., 2011). There are actually versions of 
the Brain as Recognizer perspective that go beyond pure feedforward 
models, with a key example being Adaptive Resonance Theory (ART) 
(Carpenter and Grossberg, 2010). ART suggests that a large evoked 
response should be seen on a match (to a learnt pattern), which has some 
similarities to what we have called a contra (vanilla) predictive pattern, 
while vanilla Predictive Coding suggests that a predictive evoked 
response pattern should be observed. Vanilla Predictive Coding reso-
nates on mismatch, while Adaptive Resonance Theory resonates on 
match. 

There has also been work suggesting a link between purely feedfor-
ward neural networks trained to perform recognition/ categorisation 
tasks and the brain’s sensory processing pathways. For example, Kha-
ligh-Razavi and Kriegeskorte (2014) provided evidence that a deep 
convolution neural network trained to perform recognition/ catego-
risation, constructs similar representations to those that can be observed 
in the ventral stream in the brain (although Kietzmann et al., 2019 argue 
that the addition of recurrent connections does improve the model fit). 
This work raises the possibility that the “good-old fashioned” 
recognition-based perspective may explain, at the least, a part of the 
computation performed by the visual processing pathway, or, in other 
words, predictive coding is not computationally the “only game in 
town”. 

From a broader theoretical perspective, the recognition versus pre-
diction debate in many respects revisits the famous dispute in perception 
research between Gibson’s direct perception (Gibson, 2002) and Greg-
ory’s constructivist perception (Gregory, 1970; Gregory, 1997); see also 
(Norman, 2002). Direct perception, as associated with ecological psy-
chology, emphasised the need for the world to be veridically experi-
enced, in order that it can be acted upon; thus, from this perspective, 
experience is not constructed, top down, it is specified bottom-up 
(Warren, 2021).9 In contrast, constructivist perception argued for 

8 As an illustration of this point, Hohwy (2012) says: “without attention, the 
better a stimulus is predicted the more attenuated its associated signal should 
be. Attention should reverse this attenuation because it strengthens the pre-
diction error. However, attention depends on the predictability of the stimulus: 
there should be no strong expectation that an unpredicted stimulus is going to 
be precise. So there should be less attention-induced enhancement of the pre-
diction error for unpredicted stimuli than for better predicted stimuli.” 

9 Indeed, the success of modern (purely feedforward) machine learning seems 
to sit well with Gibson’s basic point that there is sufficient information in the 
world to support perception. Well, at the least, it suggests that there is sufficient 
information in 2d-images to classify without prior prediction, with the neces-
sary information extracted through (bottom-up) statistical learning. 
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top-down shaping of experience on the basis of expectation. Thus, there 
is a sense to which the Brain as Recognizer fits with the Gibsonian po-
sition, while the Brain as Predictor fits with the Gregorian position. 
Could, then, the Gibsonian critique also be applied to the constructivist 
perspective that is inherent to predictive coding, i.e. that it does not sit 
well with our capacity to act in the world?10. 

Furthermore, it is notable that the direct vs constructivist debate in 
perception ran and ran, without a definitive winner, suggesting that 
neither theory is in an absolute sense complete. Should we expect the 
same with regard to the Brain as Recognizer vs Brain as Predictor 
debate? 

Perhaps the key point that this discussion of the Brain as Recognizer 
and as Predictor highlights is that from a philosophical/ theoretical 
perspective, there really are competing explanations of human percep-
tion. The existence of such alternatives does not sit well with the notion 
that one of these perspectives is unfalsifiable. In fact, there need to be a 
range of experimental claims that differentiate recognition from pre-
dictive theories and enable the relative contribution of the two to be 
assessed in empirical work. 

4.6. Tractability and the localist vs distributed debate 

The long running debate in connectionist research concerning 
whether the brain uses localist or distributed codes (O’Reilly & Muna-
kata, 2000) informs how predictive coding might be implemented; see 
also appendix 4 for a discussion of the implications of the choice of 
learning algorithm. In localist models, neurons are narrowly tuned to a 
unique concept (see Page, 2000 for a more nuanced definition of localist 
representations). In contrast, with distributed representations, neurons 
are broadly tuned. 

Predictive coding theories are often formulated within a localist 
neural network framework. In particular, predictions need to be directed 
to the relevant prediction error units, e.g. stimulus one in Fig. 1, and it is 
more difficult to do this fully generally with a distributed representation 
(although continuing developments in variational autoencoders and 
generative neural network models Doersch, 2016 may be changing this 
perspective). 

There are strong arguments as to why localist representations would 
be found in the brain (Page, 2000; Bowers, 2009), however, localist 
representations do not scale as well as distributed representations. For 
example, with localist representations, a new neuron is required for 
every new concept being represented, while N neurons can represent 
many more than N concepts with distributed representations (Rolls and 
Treves, 1998). Additionally, modern deep learning is typically focused 
on distributed representations. 

This raises the possibility of a trade-off between the predictor and 
recogniser hypotheses. Predictive coding/ Bayesian generative models 
enable perception as inference and are information-theoretically effi-
cient, but the question is does the approach scale? However, the 
recognizer perspective, as instantiated in feed-forward neural networks, 
including deep ones, does scale and demonstrably so. Is there an argu-
ment here for why the brain has both prediction and recognition? 

This question of localist versus distributed representation and its 
relevance to predictive coding theories in cognitive neuroscience, could 
be explored experimentally by recording and analysing neural responses 
in non-human animals, e.g. Fusi et al. (2016), as well as in humans, with 
implanted electrodes, e.g. Engel et al. (2005). This work could focus on 

relevant laminar in brain areas where a link has been made to compo-
nents of predictive coding, e.g. see Bastos et al. (2012), and could 
explore how broadly tuned units are in those areas. As evidence that 
such a procedure is feasible, in different brain regions, experimentalists 
have found evidence for both distributed (mixed selectivity) units 
(Rigotti et al., 2013) and sparser more representation-invariant units 
(Quiroga et al., 2005), suggestive of more localist representations. 

4.7. Conscious breakthrough 

A number of the examples of contra (vanilla) predictive evoked 
response patterns that we have identified have been conscious break- 
through effects, where stimuli are presented on the fringe of aware-
ness (Bowman et al., 2013, 2014; Bowman et al., 2013a; Banellis et al., 
2020). Could conscious break-through be a phenomenon that fits 
particularly badly with (certainly vanilla) predictive coding? That is, 
expecting that a salient stimulus will be presented, either as a result of 
instruction or the contingencies of prior presentations, may be critical to 
enabling detection of that stimulus and evoked response generation. 
Importantly, detection and ensuing perception of salient stimuli is 
exceptionally challenging in this context, since the brain is trying to 
locate those stimuli from amongst a demanding background of high 
noise or attention-grabbing distractor onsets. 

A salient stimulus being expected enables the perceptual system to 
set-up a template (broadly construed) to “look for” in the demanding 
presentation, and particularly focus on seeing matches for that template 
(see Meijs et al., 2018 for behavioural evidence for this). This might be 
the optimal strategy in these demanding detection and identification 
environments. Indeed, as noted in sections “The P3 in Rapid Serial Visual 
Presentation (RSVP)” and “2nd-level Prediction Circuit: the Break-
through-P3”, in RSVP, the stimuli that are most unexpected are the 
distractor fillers, which typically occur very infrequently in the experi-
ment. Thus, as we have discussed, from a predictive coding perspective, 
distractors should generate the largest prediction errors and would carry 
the most information. Distractors do contribute to the Steady State Vi-
sual Evoked Potential (SSVEP) (see, Fig. 8[C]), but do not elicit an 
evoked response beyond early visual processing areas of the brain; 
however, “expected” salient stimuli generate large (P3) responses, see 
Fig. 8[C]. 

Finally, our modelling in section 2nd-level Prediction Circuit: the 
Breakthrough-P3 can motivate experiments that look at the characteris-
tics of how the Breakthrough-P3 changes its features (amplitude, latency 
and frequency) in response to manipulation of target stimulus salience 
and target predictability. Such experiments could specifically focus on 
whether precision-weighted (see Fig. 13[A]) or additive enhancement 
(see Fig. 13[B]) P3 patterns are obtained. 

4.8. Looking forward 

Consistent with the central argument of this paper, we need to know 
whether contra (vanilla) predictive evoked response patterns, which are 
certainly present in the literature, involve a latency decrease and an 
increase in maximum frequency. This will tell us whether precision- 
modulation could generate the pattern. 

4.8.1. Phase-resets 
The PC-evoked model and the extant modelling in predictive coding 

is typically focussed on amplitude-change evoked responses. In such re-
sponses, a new set of neurons are driven to become active or, at least, to 
become more active, in response to a stimulus onset, i.e. where there 
would be a clear power increase associated with the evoked response. 
However, there is also considerable evidence that stimulus-driven 
transients can also arise from phase-reset patterns, e.g. Makeig et al. 
(2002), i.e. simply because the phase of an on-going oscillation is reset 
by the stimulus onset, but without a power increase. 

There are a number of neural models that generate phase-reset 

10 Interestingly, Friston’s more recent computational theory of brain function 
– Active Inference (Friston et al., 2011) – tackles this question “head on”, by 
combining the capacity to act in the world (the Act in Active Inference, i.e. the 
Gibsonian perspective) with perception, indeed cognition, as inference (the 
Inference in Active Inference, i.e. the Helmholtz, Gregory perspective). In this 
sense, Active Inference may provide a key computational framework by which 
resolution of the constructivist vs direct perception debate can be explored. 
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patterns in response to a stimulus onset, e.g. Parish et al. (2021). 
However, further work is required to see how the PC-evoked model 
could be extended with phase-reset dynamics to obtain a classic reset 
data pattern for prediction errors, and thereby, to see whether phase 
reset dynamics can be reconciled with predictive coding. 

4.8.2. Other neuroscience methods 
Predictive coding comes with some quite strong claims concerning 

neurophysiological components of the theory, e.g. Kanai et al. (2015). 
These could be used in intracranial recordings to inform some of the 
questions considered in this paper. For example, the central question of 
whether latencies shorten in situations in which evoked responses in-
crease in amplitude, could be explored by recording from pyramidal 
cells. The latency of the response of superficial pyramidal cells, which 
are claimed to carry prediction errors, is of particular interest, while 
deep pyramidal cells should carry sustained predictions, indicating 
whether a stimulus is expected in the current context. More specula-
tively, considering the visual processing pathway, one may be able to 
obtain an indication of the current level of top-down precision from a 
structure such as the Pulvinar, with these top-down effects likely carried 
by neuromodulators (Kanai et al., 2015). 

Additionally, elegant fMRI studies have been performed to search for 
predictive coding patterns in the BOLD response, as well as the possible 
presence of multiplicative gain, i.e. precision effects, e.g. Egner et al. 
(2010). However, due to its low temporal resolution, it is difficult to see 
how fMRI could be used to identify the latency change predictions 
proposed in this paper. 

4.8.3. New deep learning approaches 
There are now a number of deep learning approaches that endeavour 

to incorporate predictive coding, e.g. Choksi et al. (2021) and Han et al. 
(2018). For example, Choksi et al. (2021) add predictive coding-like 
mechanisms to a deep convolution neural network (see appendix 1, 
Further Justification of PC-Evoked model, and Figure App 1 for more 
details), and provide evidence suggesting that the addition leads to a 
deep learning model that is more robust to noise. Very interestingly, 
these approaches do indeed combine Recognition and Prediction, with 
the former provided by the deep neural network and the latter by the 
augmentation with prediction mechanisms. Additionally, Heeger (2017) 
incorporates prediction mechanisms with a recognition neural network, 
with hyper-parameters regulating the extent to which these different 

functional influences dominates. These hybrid models highlight that 
such combined Recognizer-Predictors may be a key direction for future 
research in computational and cognitive neuroscience. 

In the “Results” section, we highlighted a number of predictions that 
could assess the validity of predictive coding. This offers the possibility 
that one could constrain the theory from many experiments. If model 
fitting is used to do this, it is important not just to fit models separately 
to the results of each experiment, but to fit a single model across many 
experiments, essentially reducing “wiggle room” and constraining the 
parameter space for model fits. 

Finally, the possibility that the brain is both a Recognizer and a 
Predictor needs to be embraced. This raises important theoretical 
questions about how these two theoretical frameworks could function 
together, i.e. how could a feedforward Brain as Recognizer be integrated 
with a generative Brain as Predictor, with emerging deep learning 
models providing initial steps in this direction? 

5. Conclusion 

Predictive coding is one of the most important and well attested 
theories in neuroscience, and there is no doubt that it is a substantial 
part of the story of brain processing, but the question is, is it the whole 
story? That is, our point is not that predictive coding is wrong, but 
rather, we raise the question of whether it is a complete explanation. 
However, to test this completeness, one requires properties that pre-
dictive coding does not imply. These are what we have sought to identify 
in this paper. 

Data Availability 

Matlab code of the model can be found at the OSF repository: 
https://osf.io/zm9w5/, which has the following DOI 10.17605/OSF. 
IO/ZM9W5. 
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Appendix 1. : Further justification of PC-evoked model 

Evoked response as prediction error 

In our first model, we are interested in the first evoked transient following the onset of a stimulus. Thus, the analogue in Rao and Ballard’s model of 
our evoked transient is the first feed forward prediction error (which computes I − f(Ur)); see figures App 1[B] and App 2 (annotation PErr). f(Ur)) is 
the prediction and is not changing in this first response, since activation (i.e. prediction errors) need to propagate upwards first before (feedback) 
predictions can change. I is the sensory input, U a weight matrix and r are the causes/prediction. We see a similar configuration in Kanai et al. (2015); 
see Figure App 1[A], although the orientation of the circuits depiction has changed and a top-down precision pathway has been added. 
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Figure App 1. Comparison of predictive coding models. [A] Friston et al. predictive coding model, showing a part of Fig. 2 from Kanai et al. (2015). [B] Rao and 
Ballard predictive coding model, showing a part of Fig. 1 from Rao and Ballard (1999). [C] Deep convolution predictive coding model, showing Fig. 1 from Choksi 
et al. (2021). Importantly, [C] contains feedforward recognition links (green arrows), while [A & B] do not; see blue cross in each panel, showing where the 
recognition link is or would be, if it were present, for the first stage of each model. In [A & B], the only feedforward links are prediction errors. 
. 

We reproduce in Figure App 1[C] a recent, deep learning model incorporating predictive coding by Choksi et al. (2021); see inline heading New 
Deep Learning Approaches in the Looking forward section of the Discussion. In an excellent appendix, Choksi et al. (2021) compare their equations 
directly to those of Rao and Ballard, and identify a difference between their model and Rao and Ballard’s in terms of the feedforward sweep, stating, 

“Equation 23 [of Choksi et al.] also highlights the fact that our approach has an extra feedforward term that is not present in the original Rao and 
Ballard proposal. We believe that such a modification allows for rethinking the role of error-correction in network dynamics; where error-correction 
constituted the predominant mode of feed-forward communication in the Rao and Ballard implementation, it plays a more supporting role in our 
implementation, iteratively correcting the errors made by the feedforward convolutional layers.” 

This makes clear an important trend in the emerging deep learning literature on predictive coding: their models are combining feedforward 
recognition with feedforward prediction errors, to obtain what might be called hybrid approaches. However, as formulated, the PC-Evoked model only 
reflects the classic feedforward as prediction error formulation in the cognitive neuroscience literature; although, the blaster pathway in the 2nd 
version of our Hierarchical model is more consistent with the traditional feedforward theory. 

More Detailed Relating to Rao and Ballard Model 

Figure App 2 gives a more detailed relating of the PC-Evoked model to Rao and Ballard’s predictive coding circuit. The PC-Evoked model (see 
Fig. 1, main body) provides an implementation that is conceptually related to the input end of Rao and Ballard’s model. Thus, PC-Evoked’s Stim1 and 
Stim2 prediction are playing the role of Rao and Ballard’s Prediction [f(Ur)], PC-Evoked’s s1 and s2 projections correspond to I here and the Evoked 
Response (in PC-Evoked) corresponds to PErr here.

Figure App 2. Rao and Ballard predictive coding circuit, showing a part of Fig. 1 from Rao and Ballard (1999). The PC-Evoked model (see Fig. 1, main body of this 
paper) provides an implementation of the input end of Rao and Ballard’s model. Thus, PC-Evoked’s Stim1 and Stim2 predictions are playing the role of Rao and 
Ballard’s Prediction [f(Ur)], PC-Evoked’s s1 and s2 projections correspond to I here and the link labelled Evoked Response (in PC-Evoked) corresponds to PErr here. 
. 

Note, the PC-Evoked model cannot be exactly the same as Rao and Ballard’s model, since PC-Evoked contains shunting dynamics and bio- 
physiologically more plausible activation dynamics, as required to generate evoked responses. However, we would argue that the PC-Evoked 
model has a broad correspondence to the Rao and Ballard model. 

To understand PC-Evoked, it is important to see the analogue of the dynamics of Rao and Ballard’s variable r (which corresponds to our prediction 
unit), which changes according to the following equation: 
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dr
dt

= −
k1

2
∂E
∂r

=
k1

σ2UT ∂f T

∂x
(I − f (Ur))+

k1

σ2
td

(
rtd − r

)
−

k1

2
g′(r)

where E is the objective function, i.e. energy that is being minimised; k1 is a constant update rate; σ2 is the variance of the input; σ2
td is the variance of 

the top-level prediction; U is a weight matrix; f is an activation function; rtd is the top-level prediction and g is the negative logarithm of the prior over r. 
There are a number of simplifications that would apply to the context of the PC-Evoked model.  

1. The activation function (f) is the identity (which has a derivative of 1) in the PC-Evoked model, i.e. it can be dropped.  
2. Since the PC-Evoked model does not have cross-talk connections (e.g. from the Stimulus 1 circuit to the Stimulus 2 circuit) and the weights in one 

circuit are mirrored in the other, U = w.I, where I denotes the identity matrix and w is a scalar.  
3. rtd is assumed to be zero, suggesting that there are no higher-order expectations about the category or sequence of stimuli that are most probable. 

Also, it remains zero over the course of a simulation. This reflects the fact that higher-level prediction operates on a much longer time-scale. The 
Rao & Ballard circuit (see Figure App 2) is set-up so that with zero input (I) and zero rtd, it will stabilse with r equal to zero. The leak in the PC- 
Evoked neurons will ensure the same. 

Consequently, the update equation for r, 

dr
dt

= −
k1

2
∂E
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=
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σ2UT ∂f T
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−
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can be simplified to, 

1
k1

dr
dt

=
1
σ2 w(I − w.r) −

r
σ2

td
−

g′(r)
2 

If we assume a Gaussian prior for r, then since g is a negative logarithm of the prior, g’(r) = 2αr, where α is a positive constant related to the 
variance of the Gaussian prior; see appendix of Rao and Ballard (1999). This allows us to rewrite our equation to, 

1
k1

dr
dt

=
1
σ2 w(I − w.r) −

r
σ2

td
−

2αr
2  

=
1
σ2 w(I − w.r) − (

1
σ2

td
+ α)r 

If we make the reasonable assumption that σ2
td is constant then we can see that the term − ( 1

σ2
td
+ α)r is just a decay term, which we can write as − Dr, 

with D a positive constant. Thus, we have, 

1
k1

dr
dt

=
1
σ2 w(I − w.r) − Dr =

1
σ2(wI − w.wr) − Dr 

The remaining terms are as follows: 1
σ2 is the multiplicative precision; I the input vector, corresponding to s1 and s2 in PC-Evoked; and r corresponds 

to Stim1 prediction and Stim2 prediction. The decay is subsumed by the leak in the PC-Evoked equations, with D being reflected in the maximum 
conductance for the leak channel, Gl. 

(I − w.r) here is the prediction error and it is computed in PC-Evoked’s prediction error units, where r is reflected by PC-Evoked’s prediction unit. 
w(I − w.r) corresponds to excitatory input into the prediction unit (see solid blue arrow in early circuit in Fig. 12). In conclusion, the implementation of 
prediction in the PC-Evoked model has a broadly consistent form to this update equation for r. 

Learning: the weights in PC-Evoked are set by hand. Thus, there is no learning and Rao & Ballard’s gradient descent adaptation of the weights in U is 
not relevant to our simulations. 

Precision weighted prediction error: Although, Rao & Ballard’s model did not associate precision with attention, see Appendix 2: Precision, Gain 
and Attention for that, they did have precision terms that weighted the prediction error. For example, in the following formula, 1

σ2 is a precision and 
(I − f(Ur)) is a prediction error (the one PC-Evoked is focussed on), while 1

σ2
td 

is a precision and (rtd-r) a (higher level) prediction error, in their update 

equation for r: 

dr
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= −
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2
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=
k1
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k1

σ2
td
(rtd − r) −

k1

2
g′(r)

Removal of Excitatory Reversal Term: In our efforts to obtain a formulation of the PC-Evoked model in which the evoked response is fully quenched 
with sustained prediction, we explored a version of the model in which the excitatory reversal term was removed from all units; see subsection 
Sustained Prediction of section Simulations of the Results. We justify the statement that this reduced version of a unit is more consistent with the Rao 
and Ballard model here. 

The relevant term in our equations is: 

Ie(t) = ge(t)⋅Ge⋅(Reve − V(t))

which is changed to: 

Ie(t) = ge(t)⋅Ge 

This change brings the model more into line with Rao & Ballard’s equation: 
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1
k1

dr
dt

=
1
σ2 w(I − w.r) − Dr =

1
σ2 wI −

1
σ2 w.wr − Dr 

since the equivalent of Ie(t) is 1
σ2 wI, i.e. these are the excitatory contributions to the change in prediction, with ge(t) providing a weighting of the input 

in PC-Evoked. 

Hierarchical model 

In section 2nd-level Prediction Circuit: the Breakthrough-P3 of the main-body of the paper, we introduce a hierarchical extension of our 
predictive coding model, called the Hierarchical-PC-Evoked model. We give more background on this extension here. Firstly, figure App 3 relates the 
model to Rao & Ballard’s model, showing that there are structural correspondences between the two.

Figure App 3. Hierarchical PC-Evoked model compared to Rao and Ballard, where the Rao and Ballard model image (panel [B]) would have to be rotated to have 
input at the bottom to align with the depiction of the Hierarchical PC-Evoked model (panel [A]). [A] Hierarchical PC-Evoked model in which a late circuit is added to 
the early circuit. We only depict the Stimulus 1 part of the full model. Also, we do not depict the blaster, which we add to the late circuit to simulate additive 
ensemble effects. [B] Rao and Ballard 2-level circuit, with annotations in red. [C] Mapping between PC-Evoked model and Rao and Ballard model. 
. 

Hierarchical model derivation 
In the same way as we did in the derivation following inline heading “More Detailed Relating to Rao and Ballard Model” of Appendix 1, the update 

equation for r, 
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can be simplified to, 
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1
σ2

td

(
rtd − r

)
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If we again assume a Gaussian prior for r, then as previously, g’(r) = 2αr. Now, we can rewrite our equation to, 

1
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2  
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(
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since α is a positive constant, we can see that the term − αr is a decay term, which we write, for notational consistency with earlier derivations, as −
Dr, with D a positive constant. Thus, we have, 

1
k1

dr
dt

=
1
σ2 w(I − w.r) −

1
σ2

td

(
r − rtd) − Dr 

The terms that remain in this equation can (broadly) be related to the Hierarchical PC-Evoked model (see figure App 3[A]) as follows: 
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• 1
σ2 is the early circuit multiplicative precision;  

• 1
σ2

td 
is the late circuit multiplicative precision;  

• I is the input vector (s1 and s2);  
• r corresponds to early prediction unit and rtd to late prediction unit;  
• the decay is subsumed by the leak in the Hierarchical PC-Evoked equations, with D being reflected in the maximum conductance for the leak 

channel, Gl;  
• (I − w.r) here corresponds to the early prediction error and it is computed in Hierarchical PC-Evoked’s early prediction error unit;  
• w(I − w.r) here corresponds to the (excitatory) bottom-up input to the early prediction unit (after passing through the relay unit in Hierarchical PC- 

Evoked);  
• r − rtd here corresponds to the late prediction error, computed in Hierarchical PC-Evoked’s late prediction error unit (task demand does not appear 

in Rao & Ballard’s model and so we ignore it in this comparison); and  
• − (r − rtd) here corresponds to the “effectively times − 1” link in Hierarchical PC-Evoked. 

Thus, we contend that broad correspondences can be made between the implementation of prediction in the Hierarchical PC-Evoked model and the 
update equation for r from Rao and Ballard. Note, we are definitely not arguing for a quantitative correspondence between the two models, many 
things prevent this, including the very different activation equations used. 

Appendix 2. : Precision, gain and attention 

The linking of precision to gain and also then to attention, is justified by a large body of literature. For example, Feldman and Friston (2010) (a 
highly influential paper that, as of 10/5/2023, has 1310 citations) very explicitly makes this link, e.g. Feldman and Friston (2010) state that, “Inverse 
variance is called precision; therefore precision increases with certainty about states of the world. We will see that precision is encoded by the 
post-synaptic gain of sensory or prediction error-units. This means that state-dependent changes in precision may be modelled in the brain by 
activity-dependent modulation of the synaptic gain of principal cells originating forward connections. This is the optimization we associate with 
attention.” 

This perspective on precision and attention is also shown in Figure App 4, which is a re-presentation of Fig. 2 from Kanai et al. (2015). The purple 
lines transmit a setting of a modulatory gain, which manifests in the activation equations as a precision term. These modulatory links originate from 
the pulvinar, an area associated with top-down attentional control. In Kanai et al. (2015), it is explicitly stated that, “The prediction errors are 
weighted by their expected precision— which we have associated with projections from the pulvinar.”

Figure App 4. Fristonian perspective on attention and precision: re-presentation of Fig. 2 from Kanai et al. (2015), see caption in that paper for full details. For our 
purposes, these images show precision as a modulator on prediction errors; see purple lines, with a precision-setting neuron indicated with a purple triangle. The 
image on the right is a more neurophysiologically detailed representation of the abstract representation on the left. The neuron setting precision is placed in the 
pulvinar, an area associated with top-down attentional control. 

The prediction we make for an interaction between attention and sensory noise (see subsection Shared channel saturation effect in section Counter- 
intuitive Prediction of Informal Predictions of Contra (vanilla) predictive Pattern) is formulated assuming a single shared channel by which 
precision weights prediction errors. It is assumed that this single channel is shared between precision’s standard representation of the reciprocal of the 
sensory noise level and by attentional influences. This idea of a shared channel is suggested by the theory developed in Feldman and Friston (2010). 
For example, Feldman and Friston (2010) explicitly state that, “Attention can be viewed as a selective sampling of sensory data that have 
high-precision (signal-to-noise) in relation to the model’s predictions.” and they also state that, “ [we] consider generative models in which the states 
of the world (for example the presence of attentional cues) can change the precision of sensory data. A simple example of this would be the direction 
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(state) in which we pointed a searchlight. This determines which part of the sensorium contains precise information; namely visual information 
reflected by surfaces that are illuminated.” 

Thus, for Feldman and Friston, it is the case that attentional mechanisms will reduce sensory noise (although, see Bowman et al., 2013a). 

Appendix 3. : Mathematical definition of responsiveness 

Our definition of neural responsiveness (see equation Responsiveness of Neural Simulations section), gives us the relationship shown in Fig. 2, and 
reproduced here.

Figure 2′. Neural responsiveness by precision: precision (π) is shown on the x-axis and responsiveness (ρ) on the y-axis. The time constant (τ) is set to 0.05. As a 
result, responsiveness is 0.05, when precision is zero. Responsiveness rises as precision increases, asymptotically approaching 1 for large precisions. 

The properties that we wanted for our responsiveness variable were,  

1) a fixed minimum responsiveness, so responsiveness cannot go to zero, which would have “flat-lined” the model;  
2) a saturation level for precision, since there must be a maximum level for any parameter in the brain, due to fixed amounts of metabolic resource;  
3) a responsiveness profile that followed a neurophysiologically plausible increase with precision; the “top” of a logistic function (which is what we 

see here) is exactly this - see prominence of logistic functions as a standard activation function for a neuron. 

Fig. 2 indicates that our implementation successfully realises these three properties. 

Appendix 4. : Local vs global learning 

The Brain as Recognizer and the Brain as Predictor hypotheses bring with them associated learning algorithms, which inform the neurophysio-
logical plausibility of these hypotheses. Firstly, as discussed previously, we take feedforward neural networks as the neuro-computational un-
derpinnings of the Brain as Recognizer position. The learning algorithm typically employed in this context is back-propagation of error (O’Reilly and 
Munakata, 2000; Rumelhart, Hinton and Williams, 1986), in which, importantly, an error is determined at the output end of the neural network, and 
then propagated back through it. In this sense, back-propagation is a global learning rule – it is seeded at the output end and then passed backwards, to 
determine the contribution of earlier layers to that overall error. This leaves the question of how the error is transmitted backwards in the brain to 
neurons potentially many many synapses before the output layer. 

A key contribution of predictive coding is to suggest how a hierarchical generative model enables errors to be generated at all hierarchical levels 
through local “message” exchange (e.g. Rao and Ballard, 1999). Thus, predictive coding provides a local learning rule, which in this respect, could 
much more plausibly be found in the brain, essentially because it does not require a long-range error signal, which would impact the entire 
configuration of the brain. 

To clarify, some connectionists have, in fact, emphasized prediction-like mechanisms for some time – see for example, O’Reilly and Munakata 
(Implicit Expectation in Figure 5.12 in O’Reilly and Munakata, 2000) and McClelland (McClelland, 1994), who discuss how expectation can be used to 
avoid the need for an explicit teacher. However, these formulations were still based upon back-propagation or variants of it, such as, the Generalised 
Recirculation algorithm (O’Reilly and Munakata, 2000; Su, Gomez and Bowman, 2014). 

Interestingly, there has been recent work identifying mappings between back-propagation and predictive coding, e.g. Song et al. (2020) and 
Whittington and Bogacz (2017), with the objective of finding a more biologically plausible (local-learning) version of back-propagation. Could this 
line of research hold the key to reconciling the Brain as Recognizer with the Brain as Predictor? 

Appendix 5. : Details of PC-Evoked model 

More mathematical details of the model are presented here. We present the full (hierarchical) model here. However, in the code, the early circuit, 
the simple (non-hierarchical) PC-Evoked model, can be obtained by just instantiating the early circuit of the model, with the late circuit units not 
present. 

The full hierarchical model consists of two ‘circuits’: an early circuit and a late circuit. Subscripts indexing variables in the early circuit are in 
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lowercase, whereas subscripts indexing variables in the late circuit are in uppercase. 
Membrane potential equation for early prediction error units (denoted Stim1_1 and Stim2_1 in Fig. 1): 

V̇ j
ϵ = ρϵ(t)⋅Inet(t)

Inet(t) = Ie(t)+ Ii(t) + Il(t)

Ie(t) = Wsϵ⋅sj(t)⋅Geϵ⋅
(
Reve − Vj

ϵ(t)
)

Ii(t) = Wpϵ⋅Vj
p(t)⋅Giϵ⋅

(
Revi − Vj

ϵ(t)
)

Il(t) = Glϵ⋅
(
Revl − Vj

ϵ(t)
)

where the ϵ indicates an early circuit prediction error unit; j ∈ {1,…, k} indexes the stimulus and k is the number of stimuli; ρϵ(t) is precision weighting 
of early prediction error, effectively modulating the time constant; Wsϵ is the weight from the stimulus to the early prediction error units (this is the 
same for all stimuli); sj(t) is the stimulus input for stimulus j; Wpϵ is the weight from the jth early prediction unit to the early prediction error unit (this is 
the same for all stimuli); Vj

p(t) is the membrane potential of the jth early prediction unit at time t (to be defined shortly). Additionally, since our output 
activation functions are the identity, Vj

p(t) is the output activation of the prediction unit. 
Membrane potential equation for early relay units (denoted Stim1_2 and Stim2_2 in Fig. 1): 

V̇ j
r = τr⋅Inet(t)

Inet(t) = Ie(t)+ Il(t)

Ie(t) = Wϵr⋅Vj
ϵ(t − lagr)⋅Ger⋅

(
Reve − Vj

r(t)
)

Il(t) = Glr⋅
(
Revl − Vj

r(t)
)

where r indicates early relay unit (which is not to be confused with the r unit in Rao & Ballard, which denotes the prediction unit); Wϵr is the weight 
from the early prediction error unit to the early relay unit (the same for all stimuli); and Vj

ϵ is the membrane potential of the jth early prediction error 
unit (as just defined); and τr is a time constant. For simplicity, we reference Vj

ϵ directly, without an activation equation. The time-lag between the early 
prediction error units and early relay units is given by lagr. 

Membrane potential equation for early prediction units (denoted Stim1 prediction and Stim2 prediction in Fig. 1): 

V̇ j
p = τp⋅Inet(t)

Inet(t) = Ie(t)+ Ii(t) + Il(t)

Ie(t) = Wrp⋅Vj
r

(
t − lagp

)
⋅Gep⋅

(
Reve − Vj

p(t)
)

Ii(t) = WEp⋅Vj
E(t)⋅Gip⋅

(
Revi − Vj

p(t)
)

Il(t) = Glp⋅
(

Revl − Vj
p(t)

)

where p indicates early prediction unit; Wrp is the weight from the early relay unit to the early prediction unit; Vj
r is the membrane potential of the early 

relay unit; WEp is the weight from the late prediction error unit to the early prediction unit (marked “effectively times − 1” in Figure App 3[A]); Vj
E is 

the membrane potential of the late prediction error unit; and τp is a time constant for the prediction unit. The time-lag between the early relay units 
and early prediction units is handled by lagp. 

Version 1 of late circuit (gain control): Membrane potential equation for late prediction error units (Stim1_3 in Fig. 12 and note difference between 
lower and upper case p’s): 

V̇ j
E = ρE(t)⋅Inet(t)

Inet(t) = Ie(t)+ Ii(t) + Il(t)

Ie(t) = WpE⋅Vj
p(t)⋅GeE⋅

(
Reve − Vj

E(t)
)

Ii(t) = WPE⋅
(
Vj

P(t)+ T
)
⋅GiE⋅

(
Revi − Vj

E(t)
)

Il(t) = GlE⋅
(
Revl − Vj

E(t)
)

where E indicates late prediction error unit; WpE is the weight from the early prediction unit to the late prediction error unit; Vj
p(t) is the membrane 

potential of the early prediction unit (defined above); WPE is the weight from the late prediction unit to the late prediction error unit; and Vj
P(t) is the 
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membrane potential of the late prediction unit. T is the tonically fixed task set (see Task demand in Fig. 12[A] and App 3[A]), which is set to 0.13 in the 
late prediction error unit membrane potential equation for distractor stimuli and zero for targets. For simplicity, the late prediction unit and task 
demand share a weight. 

Membrane potential equation for late relay units (Stim1_4 in Fig. 12): 

V̇ j
R = τR⋅Inet(t)

Inet(t) = Ie(t)+ Il(t)

Ie(t) = WER⋅Vj
E(t − lagR)⋅GeR⋅

(
Reve − Vj

R(t)
)

Il(t) = GlR⋅
(
Revl − Vj

R(t)
)

where R indicates late relay unit; WER is the weight from the late prediction error unit to the late relay unit; Vj
E(t) is the membrane potential of the late 

prediction error unit; τR is a time constant for the late relay unit and the time-lag between the late prediction error and late relay units is handled by 
lagR. 

Membrane potential equation for late prediction units (Late prediction in Fig. 12): 

V̇ j
P = τP⋅Inet(t)

Inet(t) = Il(t)

Il(t) = GlP⋅
(
Revl − Vj

P(t)
)

where P indicates late prediction unit; τP is a time constant for the late prediction unit. 
Version 2 of late circuit (additive enhancement): For this second version of the late circuit, late relay, prediction and task demand are unchanged from 

version 1 (see Fig. 12[B]). However, late precision is removed, changing the input to the late prediction error unit and a blaster circuit is added. We 
outline the new equations here. 

Membrane potential equation for the blaster relay unit (see Fig. 12[B]): 

V̇b = τb⋅Inet(t)

Inet(t) = Ie(t)+ Il(t)

Ie(t) = Wsb⋅s1(t)⋅Geb⋅(Reve − Vb(t) )

Il(t) = Glb⋅(Revl − Vb(t) )

where s1(t) is stimulus 1 input and Wsb is the weight from stimulus 1 to the blaster relay unit. This projection is only from stimulus 1 because it is 
assumed to be the only salient stimulus in the model. 

Membrane potential equation for the blaster unit11: 

V̇B = τB⋅Inet(t)

Inet(t) = Ie(t)+ Il(t)

Ie(t) = WbB⋅Vb(t)(t − lagB)⋅GeB⋅(Reve − VB(t) )

Il(t) = GlB⋅(Revl − VB(t) )

where VB(t) is the membrane potential of the blaster unit; WbB is the weight from the blaster relay unit to the blaster unit; Vb(t) is the membrane 
potential of the blaster relay unit (defined above); and τB is a time constant for the blaster unit. 

As previously stated, membrane potential equations for the late prediction error unit change between Version 1 and 2 and become the following: 

V̇ j
E = ρE(t)⋅Inet(t)

Inet(t) = Ie(t)+ Ii(t) + Il(t)

Ie(t) = WpE⋅
(

Vj
p(t) +VB(t)

)
⋅GeE⋅

(
Reve − Vj

E(t)
)

11 The blaster (Bowman and Wyble, 2007) is a pure temporal spotlight, generating an item non-specific enhancement when a salient stimulus is detected. Here, this 
is implemented as an enhancement of the target. We could add blaster projections to distractors, but since these are (in any case) strongly suppressed at the second 
level, due to task-demand, the blaster would not be able to drive them to a meaningful level of activation. 
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Ii(t) = WPE⋅
(
Vj

P(t)+ T
)
⋅GiE⋅

(
Revi − Vj

E(t)
)

Il(t) = GlE⋅
(
Revl − Vj

E(t)
)

where the blaster membrane potential now enters as VB(t) and, for simplicity, pairs of excitatory and of inhibitory inputs share the same weight. Also, 
the precision in ρE(t) is set to zero. 

The following table gives the parameter settings of the model.   

Parameter Value Comment 

Wsϵ 0.1 The weight from the stimulus to the early prediction error units, early circuit (Stim1_1 and Stim2_1) 
Wϵr Wpϵ The weight from the prediction error units to the relay units, early circuit 
Wrp 0.1 The weight from the relay units to the prediction units, early circuit 
Wpϵ 14.5 The weight from the prediction units to the prediction error units, early circuit 
WpE 0.1 The weight from the early prediction unit to the late prediction error unit 
WEp 0.1 The weight from the late prediction error unit to the early prediction unit 
WER WPE The weight from the prediction error unit to the relay unit, late circuit 
WPE 14.5 The weight from the prediction unit to the prediction error unit, late circuit 
Wsb 1 The weight from the stimulus to blaster relay unit 
Geϵ 1 The max. excitatory conductance for prediction error units, early circuit 
Giϵ 1 The max. inhibitory conductance for prediction error units, early circuit 
Glϵ 0.9 The max. leak conductance for prediction error units, early circuit 
Ger 1/Wϵr The max. excitatory conductance for relay units, early circuit 
Glr 0.4 The max. leak conductance for relay units, early circuit 
Gep 1 The max. excitatory conductance for prediction units, early circuit 
Gip 1 The max. inhibitory conductance for prediction units, early circuit 
Glp 0.1 The max. leak conductance for prediction units, early circuit 
GeE 1 The max. excitatory conductance for prediction error units, late circuit 
GiE 1 The max. inhibitory conductance for prediction error units, late circuit 
GlE 0.9 The max. leak conductance for prediction error units, late circuit 
GeR 1/Wϵr The max. excitatory conductance for relay units, late circuit 
GlR 0.4 The max. leak conductance for relay units, late circuit 
GeB 1 The max. excitatory conductance for blaster units 
GlB 0.9 The max. leak conductance for blaster units 
GlP 0.1 The max. leak conductance for prediction units, late circuit 
Glb 0.9 The max. leak conductance for blaster relay unit 
Geb 1 The max. excitatory conductance for blaster relay unit 
Reve 1 The excitatory reversal potential 
Revi 0 The inhibitory reversal potential 
Revl 0 The leak reversal potential 
τϵ 0.05 Early prediction error unit time constant 
τr 0.2 Early relay unit time constant 
τp 0.04 Early prediction unit time constant 
τE 0.01 Late prediction error time constant 
τR 0.01 Late relay unit time constant 
τP 0.04 Late prediction unit time constant 
τb 0.01 Time constant for blaster relay unit 
τB 0.01 Blaster unit time constant 
πe 0.54 Early prediction error unit precision (See Neural simulations section of Methods) 
πE 0.54 Late prediction error unit precision 
Cer -10 Early prediction error and relay unit presentation constant (See Neural simulations section of Methods) 
Cp -8 Early prediction unit presentation constant 
CERB 10 Late prediction error, relay, and blaster unit presentation constant 
CP 8 Late prediction unit presentation constant 
lagr 100ms The time-lag between prediction error units and relay units, early circuit 
lagp 70ms The time-lag between relay units and prediction units, early circuit 
lagR 150ms The time-lag between prediction error units and relay units, late circuit 
lagP 70ms The time-lag between relay units and prediction units, late circuit 
lagB 300ms The time-lag between blaster relay and blaster unit  

The details of each simulation are as follows: 

Simulation 1 – No gain 

No changes to standard parameter settings. 

Simulation 2 – Gain on  

Gain turned on, i.e. with ρ(t) as per Eqn Responsiveness, as the time-constant and τϵ= 0.05, no changes to other parameters. 
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Simulation 3 – Titrating the gain and additive ensemble scale modulation 

Gain run for multiple precision values: 
πε – Varied from 0 to 0.54 in steps of 0.02, with τϵ= 0.05. 
For additive response, the zero-gain standard is modulated with a scale parameter: Ic, which is varied from 1 to 2 in steps of 0.05. 

Simulation 4 – RSVP with one stimulus repeated 

Number of stimuli – 45. Length of simulation – 3000 ms (This means stimuli are presented at 15 Hz). 
Repeated stimuli with no changes to parameters, then with the following: 
τp – 0.005, 
Wpe – 100. 

Simulation 5 – RSVP vanishing current 

Number of stimuli – 40 (changed from 45, since removal of reversal term means that there can be instability with more repetitions). 
Length of simulation – 3000 ms. 
With and without the excitatory reversal term in the membrane potential equation: 
τp – 0.005, 
Wpe – 100. 

Simulation 6 – RSVP with targets and distractors, and late circuit active, precision modulation 

Number of stimuli – 15. Number of streams – 2 (for SSVEP simulation) and 1 (for P3 late circuit), 
Parameters changed to the following: 
τp – 0.005, 
Wpe – 80, 
πε – 0. 
And the following parameter is modulated for P3 simulation: 
πE – from 0 to 0.54. 

Simulation 7 – Blaster Simulation 

WbB – Varied from 0 (for non-salient stimuli) to 0.02 (for salient stimuli). 

Removal of Reversal term: 
The early prediction unit has the following dynamics when the reversal term is removed in Simulation 5: 

V̇ j
p = τp⋅Inet(t)

Inet(t) = Ie(t)+ Ii(t) + Il(t)

Ie(t) = Wrp⋅Vj
r⋅Gep  

Ii(t) = WEp⋅Vj
E⋅Gip⋅(Revi − Vj

p(t))

Il(t) = Glp⋅(Revl − Vj
p(t))

Appendix 6. : Frequency domain features for additive ensemble effects 

We present, here, the, rather straightforward, frequency domain features of the Additive Ensemble Effect, i.e. scaling the evoked response. These 
are presented in figure App 5. 
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Figure App 5. Frequency domain features of contra (vanilla) predictive pattern obtained from scale-modulation reflecting additive ensemble effects (see Simulation 
3 of Appendix 5). [A] time-frequency feature obtained when Ic = 1. [B] time-frequency feature obtained when Ic = 2. [C] panel B minus panel A. Unlike Fig. 5, no 
normalizations have been performed here, thus amplitude differences are observable. 
. 

References 

Allen, M., Frank, D., Schwarzkopf, D.S., Fardo, F., Winston, J.S., Hauser, T.U., Rees, G., 
2016. Unexpected arousal modulates the influence of sensory noise on confidence. 
Elife 5, e18103. 

Alsufyani, A., Hajilou, O., Zoumpoulaki, A., Filetti, M., Alsufyani, H., Solomon, C.J., 
Bowman, H., 2019. Breakthrough percepts of famous faces. Psychophysiology 56 
(1), e13279. 

Alsufyani, A., Harris, K., Zoumpoulaki, A., Filetti, M., Bowman, H., 2021. Breakthrough 
percepts of famous names. Cortex 139, 267–281. 

Aviles, A., Anderson, O., Orun, E., Gibson, S., Solomon, C., Via, F., & Bowman, H. (2023). 
Glimpse perception in RSVP can detect weak similarity. in preparation. 

Avilés, A., Bowman, H., Wyble, B., 2020. On the limits of evidence accumulation of the 
preconscious percept. Cognition 195, 104080. 

Banellis, L., Sokoliuk, R., Wild, C.J., Bowman, H., Cruse, D., 2020. Event-related 
potentials reflect prediction errors and pop-out during comprehension of degraded 
speech. Neurosci. Conscious. 2020 (1), niaa022. 

Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J., 2012. 
Canonical microcircuits for predictive coding. Neuron 76 (4), 695–711. 

Bekinschtein, T.A., Dehaene, S., Rohaut, B., Tadel, F., Cohen, L., Naccache, L., 2009. 
Neural signature of the conscious processing of auditory regularities. Proc. Natl. 
Acad. Sci. 106 (5), 1672–1677. 

Boldt, A., De Gardelle, V., Yeung, N., 2017. The impact of evidence reliability on 
sensitivity and bias in decision confidence. J. Exp. Psychol.: Hum. Percept. Perform. 
43 (8), 1520. 

Boring, E.G., 2008. History of experimental psychology. Genesis Publishing Pvt Ltd. 

Bowers, J.S., 2009. On the biological plausibility of grandmother cells: implications for 
neural network theories in psychology and neuroscience. Psychol. Rev. 116 (1), 220. 

Bowman, H., & Avilés, A. (2021). Fragile Memories for Fleeting Percepts. psyArxiv. 
Bowman, H., Wyble, B., 2007. The simultaneous type, serial token model of temporal 

attention and working memory. Psychol. Rev. 114 (1), 38. 
Bowman, H., Wyble, B., Chennu, S., Craston, P., 2008. A reciprocal relationship between 

bottom-up trace strength and the attentional blink bottleneck: Relating the LC–NE 
and ST2 models. Brain Res. 1202, 25–42. 

Bowman, H., Filetti, M., Janssen, D., Su, L., Alsufyani, A., Wyble, B., 2013. Subliminal 
salience search illustrated: EEG identity and deception detection on the fringe of 
awareness. PLoS One 8 (1), e54258. 

Bowman, H., Filetti, M., Wyble, B., Olivers, C., 2013a. Attention is more than prediction 
precision [Commentary on target article. Behav. Brain Sci. 36 (3), 206–208. 

Bowman, H., Filetti, M., Alsufyani, A., Janssen, D., Su, L., 2014. Countering 
countermeasures: detecting identity lies by detecting conscious breakthrough. PloS 
One 9 (3), e90595. 

Brodski-Guerniero, A., Paasch, G.F., Wollstadt, P., Özdemir, I., Lizier, J.T., Wibral, M., 
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