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Effects of task difficulty on performance and event-related bradycardia 
during preparation for action⋆ 

Jennifer Henderson a, Maria Kavussanu a, Germano Gallicchio b, Christopher Ring a,* 

a School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, UK 
b School of Sport, Health & Exercise Sciences, Bangor University, Bangor, UK  

A B S T R A C T   

The slowing of heart rate prior to movement onset has been presented as a marker of task-related cognitive processing and linked with performance accuracy. Here 
we examined this event-related bradycardia and task performance as a function of task difficulty. Forty experienced golfers completed a series of golf putting 
conditions that manipulated task difficulty by varying target distance, target size, and surface contour. Performance was measured by the number of holed putts and 
finishing distance from the hole. Physiological activity was recorded throughout. Analyses confirmed that performance varied as a function of task difficulty, 
worsening with longer distances to target, smaller targets, and sloping paths to target. Task difficulty also impacted the cardiac response, including the rate of heart 
rate deceleration, change in heart rate, and heart rate at impact. These heart rate metrics were found to correlate with performance strongly, moderately, and weakly, 
respectively. In conclusion, heart rate deceleration in the moments preceding movement onset was affected by task difficulty. Features of this cardiac deceleration 
pattern were characteristic of successful performance. Our findings are discussed in terms of the role of cognitive and motor processes during the execution of 
complex motor skills.   

1. Introduction 

The sufficient and necessary allocation of attentional resources is a 
key feature of expertise and performance excellence in self-paced sport 
skills (Abernethy et al., 2007; Wulf, 2007). Physiological recordings can 
tell us about preparatory cognitive and motor processes and thereby 
serve as markers of movement preparation when executing and learning 
motor skills (Cooke, 2013). One such marker is the transient bradycardia 
that can be observed before cued and uncued (self-paced) movements. A 
short-term phasic pattern of heart rate deceleration is typical in the 
seconds preceding self-paced acts, such as golf (Cooke et al., 2010, 2011, 
2014; Cotterill & Collins, 2005; Moore et al., 2012; Neumann & Thomas, 
2009), pistol (Tremayne & Barry, 2001), and rifle (Hatfield et al., 1987; 
Hoffman & Street, 1992) shots. Despite consensus on the reproducibility 
of this phenomenon, its interpretation remains open to debate. Prepa-
ratory bradycardia has been interpreted as a marker of somatic quies-
cence by some (Obrist, 1968; Obrist et al., 1969, 1972, 1974) and a 
marker of attentional focus by others (Lacey & Lacey, 1970, 1974, 
1980). The current study sought to contribute to this unresolved debate 
by examining cardiac activity and performance outcomes in relation to 
task difficulty for a self-paced motor task. 

Lacey and Lacey’s (1970, 1974, 1980) intake-rejection hypothesis 

argues that the event-related heart rate deceleration pattern reflects a 
relative shift in the allocation of attentional resources whereby in-
dividuals preferentially process (intake) external events and ignore 
(reject) internal events. In broad terms, it can be considered as repre-
senting a change in stimulus processing towards exteroception and away 
from interoception. For instance, the bradycardia before overt move-
ment onset might be interpreted in terms of attentional focus, namely, a 
shift to external from internal focus of attention. The intake-rejection 
hypothesis is grounded in evidence from reaction time studies (Lacey & 
Lacey, 1970) showing that heart rate decelerates in the fixed foreperiod 
between the presentation of the ready signal and the presentation of the 
imperative signal. 

These original studies have been replicated and extended by studies 
of simple and complex motor skill tasks. Heart rate was shown to 
decelerate between the warning signal and imperative signal cueing 
participants to perform leg lifts, climb a flight of stairs, and pedal on a 
cycle ergometer (Chase et al., 1968; Stern, 1976). It is worth noting that 
the size of the heart rate deceleration was relatively small in these cued 
reaction time studies, generally averaging less than five beats per min-
ute. In contrast, evidence from studies that examined self-paced sport 
skills have reported greater falls in heart rate (Cooke et al., 2010, 2011, 
2014; Cotterill & Collins, 2005; Cottyn et al., 2008; Hatfield et al., 1987; 
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Hoffman & Street, 1992; Moore et al., 2012; Neumann & Thomas, 2009; 
Tremayne & Barry, 2001). For instance, experts exhibited more sub-
stantial and profound heart rate deceleration (i.e., − 12 bpm) before the 
onset of the backswing than novices (i.e., − 4 bpm) while performing a 
golf putting task (Neumann & Thomas, 2009). It has been suggested that 
the superior performance of experts compared to novices may reflect 
differences in the extent to which performers pay attention to their 
external environment (e.g., the hole, the ball, and the path between the 
ball and hole) that may inform the programming of the movement (i.e., 
the direction and extent of the swing of the putter), and, that this con-
tributes to the more pronounced drop in heart rate. 

Obrist and colleagues (e.g., Obrist, 1968; Obrist et al., 1969, 1970, 
1974) challenged the cognitive interpretation of the movement-related 
heart rate deceleration pattern. Instead, they offered an interpretation 
based upon a general inhibition hypothesis, whereby decreases in heart 
rate are attributable to lower peripheral muscle activity/metabolism 
driven by diminished efferent central motor commands. Thus, 
cardiac-somatic coupling is considered an organising feature of the 
cardiovascular and motor systems of the body under standard condi-
tions, and, therefore, it is likely that variations in heart rate are closely 
connected with variations in somatomotor activity. By way of illustra-
tion, Howard et al. (1974) observed that variations in heart rate in the 
context of classical aversive conditioning were closely related to pe-
ripheral (i.e., general activity) and central (i.e., pyramidal tract activity) 
movement-related activity, thereby demonstrating how physical de-
mands can orchestrate the heart rate response to a motor task. 

With the aim of contributing to the debate on the interpretation of 
heart rate deceleration during preparation for action, the present study 
adopted a multi-method approach to explore the effects of task difficulty 
on phasic heart rate during a golf putting task in experienced golfers. 
Based on the assumption that increased task difficulty requires increased 
cognitive processing (e.g., Henry & Rogers, 1960; Walters-Symons, 
2018), and that increased task difficulty is associated with greater heart 
rate deceleration (e.g., Coles, 1972, 1974; Coles & Duncan-Johnson, 
1977), we manipulated task demands by altering distance from the 
hole (target), hole size, and putting surface curvature. Evidence that the 
degree of bradycardia preceding task-relevant movement onset (i.e., 
swinging the club) is related to task difficulty independently of muscle 
activity would provide support for the intake-rejection hypothesis (Lacey 
& Lacey, 1970, 1974, 1980). In contrast, evidence that the degree of 
bradycardia is related to task difficulty relative to changes in muscle 
activity would provide support for the general inhibition hypothesis (e.g., 
Obrist, 1968; Obrist et al., 1969, 1970, 1974). 

2. Methods 

2.1. Participants 

Male (n = 31) and female (n = 9) right-handed sport and exercise 
science students participated in exchange for course credit. Participants 
(M = 20.18, SD = 1.34 years) were regular golfers with on-course 
playing experience (M = 17.34, SD = 14.39 golf handicap). The proto-
col was approved by the local research ethics committee and all par-
ticipants provided informed consent. Power calculations using GPower 
3.1.9.7 (Faul, et al., 2007) software indicated that with a sample size of 
40 the current study was powered at .80 to detect significant (p < .05) 
differences among the conditions using repeated measures analyses of 
variance corresponding to a small-to-medium (f = 0.19 to 0.20) effect 
size (Cohen, 1992). The current sample size also exceeded those 
recruited for previous experiments that compared the effects of task 
manipulations on various outcome measures in this context (see 
Introduction). 

2.2. Measures 

Perceived difficulty. Participants rated task difficultly on a 7-point 

Likert scale, anchored by 1 “not at all difficult” and 7 “very difficult”. 
Performance. The primary measure of performance was number of 

holed putts (out of 9). A secondary measure of performance, mean radial 
error (i.e., arithmetic mean of the distances the ball finished from the 
hole), indexed putting accuracy (Hancock et al., 1995). Distance of the 
ball from the hole was recorded as the distance (cm) from the centre of 
the hole to the closest point of the ball. The number of putts per con-
dition was a compromise between the effectiveness of each experimental 
manipulation (Cooke et al., 2011) and the reliability of the measure-
ments (Schweizer et al., 2020). On the one hand, on a one-off trial, the 
impact of a manipulation on the performer has high effectiveness and 
high ecological validity whereas measurements have low reliability and 
high variability (e.g., Woodman & Davis, 2008). On the other hand, with 
large numbers of trials, the impact of a manipulation on the performer 
has low effectiveness and low ecological validity whereas measurements 
have high reliability and low variability (e.g., Cooke et al., 2014). 
Mindful of the influence of consecutive repetitions on the attenuation of 
motor preparatory and control processes (Gallicchio & Ring, 2019), we 
designed 9 trials per condition. 

Kinematics. A tri-axial accelerometer (ADXL337 Breakout, Cool 
Components) recorded putter head acceleration in three planes: X, Y, 
and Z acceleration measured lateral, vertical, and back-and-forth club-
head movements. Contact between the ball and putter was measured by 
an impact sensor (Piezo Vibration Sensor, Measurement Specialties). 
The accelerometer and impact sensor were attached to the bottom of the 
putter shaft. Movement kinematics were determined during the time 
between the initiation of the downswing and impact with the ball. The Z- 
axis (mediolateral), which is the primary movement in putting (Cooke 
et al., 2010, 2011; Maxwell et al., 2003), was used to calculate measures 
of kinematic proficiency (Nelson, 1983; Stelmach et al., 1989), namely, 
root mean square jerk (i.e., rate of change of acceleration) and 
smoothness (i.e., number of sign changes in jerk signal). Mean values for 
each kinematic variable were computed by averaging values across all 
putts in each condition. 

Muscular activity. Left forearm and right upper arm muscle activity 
was recorded using single differential surface electrodes (DE 2.1, Delsys) 
and amplifier (Bagnoli-4, Delsys), with a ground electrode attached on 
the collar bone. The left flexor carpi radialis and right biceps brachii 
muscles have been implicated in putting (Smith et al., 2000; Stinear 
et al., 2006). EMG signals were amplified, (Power 1401, CED), filtered 
(20–450 Hz), digitalized (2500 Hz), and recorded using Spike 2 soft-
ware. Mean EMG amplitude (μV) was calculated during the entire con-
dition (i.e., mostly resting muscle activity between the first and nineth 
ball strike) and during the brief window (c. 500 m s) just before the 
initiation of the upswing of the putter stroke (see Cooke et al., 2010). We 
computed the change in EMG (i.e., pre-initiation minus overall resting 
activity) to capture the characteristic increase in muscle activity in the 
preparatory period (see Moore et al., 2012). 

Cardiac activity. An electrocardiogram was recorded using three sil-
ver/silver chloride spot electrodes (Cleartrace, ConMed) in a modified 
chest configuration. The signal was amplified (Bagnoli-4 Delsys), 
filtered (1–100 Hz), and digitalized at 2500 Hz with 16-bit resolution 
(Power 1401, CED) using bespoke software (Spike 2, CED). R-wave 
peaks were identified and verified by an interactive program. The R–R 
intervals were used to compute heart rate (bpm) for each 0.5 s epoch, 
from 10 s before impact with the ball to 5 s post-impact to capture the 
heart rate deceleration profile (Cooke et al., 2014; Neuman & Thomas, 
2009; 2011). T tests were used to confirm the highest and lowest heart 
rate in the 10 s before impact for the group in each condition. Heart rate 
at putter-ball impact corresponded with the lowest point of the heart 
rate deceleration response. The heart rate change was computed as the 
difference between the mean highest heart rate and mean lowest heart 
rate per condition for each participant. The rate of heart rate decelera-
tion was computed as the heart rate change described above divided by 
the time between the two heart rate epochs. 
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2.3. Task and conditions 

Participants performed a golf putting task. Similar tasks have been 
used in previous preparation for action studies (e.g., Cooke et al., 2014; 
Neuman & Thomas, 2009; 2011). To be successful in this task, partici-
pants were expected to accurately plan and program both movement 
force and direction. Accordingly, cognitive processes, such as external 
focus of attention, were likely in the seconds before movement 
execution. 

In the control condition, participants putted nine standard sized golf 
balls (Pro V1, Titleist) to a standard sized golf hole (10.8 cm diameter), 
located 2 m away using a standard length (90 cm) steel-shafted blade 
style putter (Sedona 2, Ping). The hole was centrally located 0.25 m from 
the end of a flat 1.5 m × 5 m artificial putting surface (Augin Turftiles) 
with a Stimpmeter reading of 4.27 m. The finishing position of each putt 
was marked by a dot sticker and the ball removed; these dots were used 
to measure distance from the hole at the end of each condition. 

Task difficulty was manipulated in three ways: distance from target, 
hole diameter, and surface contour. In the distance from target condi-
tions, participants putted to a hole located 3 m, 1 m and 0.5 m away. 
These distances were expected to be harder, easier, and much easier 
than control, respectively. In the hole diameter conditions, participants 
putted to a hole with a diameter of 8.1 cm and 5.4 cm; these were 75 % 
and 50 % the size of a standard golf hole. These hole diameters were 
expected to be harder and much harder than control, respectively. In the 
surface profile conditions, participants putted to a hole with a right-to- 
left break and left-to-right break. These sloping surfaces were expected 
to be harder and much harder than control (Carnegie et al., 2020). Aside 
from the manipulated factor, conditions were otherwise the same as 
control (see above). 

2.4. Procedure 

Participants attended a single testing session. Following preparation 
and instruction, they completed nine practice putts. They completed 
eight conditions (described above), with order counterbalanced using a 
Latin square (Williams, 1949). No technical putting instructions were 
provided. Participants were instructed to putt at their own pace. They 
were told that performance was based on the number of holed putts and 
radial error, and, therefore, they should try to hole the putt and, if they 
miss the putt, to finish as close to the hole as possible. A £20 reward was 
offered for the best overall performer. Standard scripted instructions 
were read out by the experimenter. A ball was placed in position by the 
experimenter prior to each putt to ensure participants always stood 
upright. Participants completed self-report measures using a tablet 
computer after each condition creating a 3 min rest period between 
conditions. 

2.5. Statistical analysis 

A series of condition multivariate analyses of variance (ANOVAs), 
followed by Student t tests, were employed to examine how perfor-
mance, psychological, physiological, and kinematic measures changed 
with task difficulty compared to control. This analytic approach was also 
used to establish the effects of task difficulty within the three sub- 
themes: distance from target, hole diameter, and surface profile. Heart 
rate was subjected to a condition × epoch ANOVA. We report multi-
variate statistics for these repeated measures ANOVAs to minimize the 
risk of violating sphericity and compound symmetry assumptions (Vasey 
& Thayer, 1987). Partial eta-squared (ηp

2) is reported as a measure of 
effect size, with values of 0.02, 0.12 and 0.26 indicating small, medium, 
and large effect sizes, respectively (Cohen, 1992). Within-participant 
correlations were computed between our measures of performance 
(holed putts, radial error) and each of the heart rate metrics (rate of 
heart rate deceleration, change in heart rate, heart rate at impact) in 
each of the eight conditions. These correlation coefficients were 

transformed using the Fisher Z-transformation (Siegel & Castellan, 
1956), and were then averaged, back-transformed, and interpreted. The 
effect size of the back-transformed coefficients were evaluated using 
guidelines, with values of 0.10, 0.30 and 0.50 reflecting small, medium, 
and large effect sizes, respectively (Cohen, 1992). 

3. Results 

3.1. Effects of distance-based task difficulty 

Separate 4 condition (0.5 m, 1 m, 2 m, 3 m) ANOVAs confirmed 
large-sized effects of distance from the hole on 12 out of 15 measures 
(Table 1). The increase in distance from the ball to the hole was asso-
ciated with greater perceived difficulty, decreased putting performance, 
and higher kinematics while putting. Muscle activity increased during 
the preparatory phase but this increase did not vary as a function of task 
difficulty. Although the initial resting heart rate and heart rate at impact 
were broadly similar across difficulty conditions, the rate of heart rate 
deceleration and change in heart rate tended to be smaller with 
increasing distance from the hole (i.e., greater task difficulty). 

Heart rate decelerated in the moments before movement onset 
(Figure 1A). This event-related bradycardia was confirmed by a 4 con-
dition (0.5 m, 1 m, 2 m, 3 m) × 21 epoch (− 10, − 9.5, − 9.0 …. 0 s) 
polynomial contrast analysis. These contrasts yielded time-varying ef-
fects for epoch (linear = F(1, 39) = 64.02, p < .001, ηp

2 = 0.63; quadratic 
= F(1, 39) = 118.91, p < .001, ηp

2 = 0.75; cubic = F(1, 39) = 8.51, p =
.006, ηp

2 = 0.18), condition (linear = F(1, 39) = 21.18, p < .001, ηp
2 =

0.35), and condition by epoch (linear × linear = F(1, 39) = 18.34, p <
.001, ηp

2 = 0.32; linear × quadratic = F(1, 39) = 11.41, p = .002, ηp
2 =

0.23; linear × cubic = F(1, 39) = 18.73, p < .001, ηp
2 = 0.32). 

3.2. Effects of target size-based task difficulty 

Separate 3 condition (100 %, 75 %, 50 %) ANOVAs confirmed large- 
sized effects of target (hole) size on 8 out of 15 measures (Table 2). The 
decrease in hole size was associated with greater perceived difficulty, 
poorer putting performance, and lower kinematics while putting. Mus-
cle activity increased during the preparatory phase, but this increase did 
not vary as a function of task difficulty. The heart rate metrics were 
mostly unchanged by target size-based task difficulty; the exception was 
that the rate of heart rate deceleration was larger with decreasing hole 
size (i.e., greater task difficulty). 

Heart rate deceleration in the moments before movement onset 
(Figure 1B) was confirmed by a 3 condition (100 %, 75 %, 50 %) × 21 
epoch (− 10, − 9.5, − 9.0 …. 0 s) polynomial contrast analysis, which 
yielded time-varying contrast effects for epoch (linear = F(1, 39) =
75.58, p < .001, ηp

2 = 0.65; quadratic = F(1, 39) = 64,23, p < .001, ηp
2 =

0.62). No condition or condition × epoch contrasts were found. 

3.3. Effects of contour-based task difficulty 

Separate 3 condition (straight, right-to-left break, left-to-right break) 
ANOVAs confirmed large-sized effects of surface contour on 9 out of 15 
measures (Table 3). Compared to straight putts on a flat surface, 
breaking putts on a sloping surface, especially those with a left-to-right 
break, were associated with greater perceived difficulty, poorer putting 
performance, and higher kinematics while putting. Muscle activity 
increased during the preparatory phase but did not vary as a function of 
task difficulty. The heart rate metrics were mostly unchanged by 
contour-based task difficulty; the exception was that initial heart rate 
was marginally slower before executing breaking putts (i.e., greater task 
difficulty). 

Heart rate deceleration in the moments before movement onset 
(Figure 1C) was confirmed by a 3 condition (straight, right-to-left break, 
left-to-right break) × 21 epoch (− 10, − 9.5, − 9.0 …. 0 s) polynomial 
contrast analysis. These contrasts yielded time-varying effects for epoch 
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(linear = F(1, 39) = 67.00, p < .001, ηp
2 = 0.63; quadratic = F(1, 39) =

82.35, p < .001, ηp
2 = 0.68), and condition (linear = F(1, 39) = 7.83, p =

.008, ηp
2 = 0.17). No condition × epoch contrast was observed. 

Figure 1. Mean heart rate change (bpm) in the 10 s prior to and 5 s following 
putter-ball impact as a function of (A) distance from the hole, (B) size of the 
hole, and (C) surface contour. 
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3.4. Relationships between cardiac metrics and task performance indices 

Within-participant correlations were performed between each car-
diac metric (rate of heart rate deceleration, change in heart rate, heart 
rate at impact) and the separate performance indices (number of holed 
putts, radial error) across the eight task conditions using the average 
across the 9 putts for each condition (Table S1, Supplementary Mate-
rials). Each participant’s Pearson’s correlation coefficient (e.g., between 
change in heart rate and radial error) was transformed using the Fisher Z 
transformation, the average of these transformed coefficients was 
computed, the average was back-transformed to a Pearson correlation 
coefficient, and the size of this coefficient tested for linear independence 
(i.e., compared with 0 using a t-test) and interpreted as small, medium or 
large (Cohen, 1992). These analyses indicated that the rate of heart rate 
deceleration was strongly related (i.e., large effect size) to the number of 
holed putts, r(6) = − 0.58, p = .07, and radial error, r(6) = 0.48, p = .11. 
The change in heart rate was moderately related (i.e., medium effect 
size) to holed putts, r = − 0.28, p = .25, and radial error, r(6) = − 0.23, p 
= .29. Heart rate at impact was weakly related (i.e., small effect size) to 
holed putts, r(6) = − 0.16, p = .35, and radial error, r(6) = 0.11, p = .40. 
In sum, task performance accuracy was better – more putts were holed 
and putts finished closer to the hole – when heart rate decelerated faster. 

4. Discussion 

The current study sought to evaluate the intake-rejection hypothesis 
(Lacey & Lacey, 1970, 1974, 1980) and general inhibition hypothesis 
(Obrist, 1968; Obrist et al., 1969, 1970, 1974) as explanations for the 
bradycardia response during preparation for action (Cooke, 2013). We 
examined the effects of task difficulty on heart rate in the seconds pre-
ceding a complex self-paced and goal-directed movement. Heart rate 
decelerated by about 12 beats per minute over a period of about 8 s until 
club-ball impact (Figure 1). Subsequently, it then sped up over the next 
6 s and returned to and eventually surpassed initial values. This 
consistent pattern resembled that reported previously in golf putting 
tasks (Boutcher & Zinsser, 1990; Cooke et al., 2014; Moore et al., 2012; 
Neumann & Thomas, 2009, 2011). Our findings confirmed that task 
difficulty influenced the rate but not the magnitude of heart rate 
deceleration. In particular, the magnitude of heart rate deceleration and 
heart rate at impact were relatively invariant whereas heart rate began 
to fall earlier and took longer to reach its minimum with increasing task 
difficulty (Figure 1). By illustration, when the ball was closest to the hole 
and putting was easiest, heart rate only began to fall 4 s before the club 
hit the ball compared to the typical 8 s in the other conditions. 

Previous studies have found that the magnitude of the heart rate 
deceleration response is a feature of expertise, being greater in experts 
than novices (Cooke et al., 2014; Neumann & Thomas 2009, 2011). The 
current findings argue that the extent of this bradycardia is not sensitive 
to task demands. Instead, the onset of the bradycardia was moderated by 
task difficulty. The intake rejection hypothesis (Lacey & Lacey, 1970, 
1974, 1980) would interpret these data as showing that participants 
adopted an external focus of attention when preparing to putt a golf ball 
to a distant target. Variations among task difficulty conditions in the rate 
of heart rate deceleration might suggest that information in the external 
environment, such as required ball path and distance from ball to hole, is 
processed and used to program movement parameters, such as direction 
and force (Moore et al., 2012; Requin et al., 1991). Enhanced extero-
ceptive processing during preparation for action, where novel features 
of the environment provide information about the task, may therefore 
aid motor execution. Previous evidence has linked the onset of heart rate 
changes with performance accuracy (e.g., Moore et al., 2012; Neumann 
& Thomas, 2009; Tremayne & Barry, 2001). For instance, expert pistol 
shooters’ heart rate deceleration began 3.5 s earlier on best shots 
compared to worst shots (Tremayne & Barry, 2001). Accordingly, the 
slower rate of heart rate deceleration observed in the current study 
suggests that attention shifts to process information from the external 

environment depending on the difficulty of the motor task. More diffi-
cult task demands, which required attention to begin earlier and to last 
longer, were associated with earlier onset and more gradual slowing of 
heart rate. It should be noted that, in line with the current findings, most 
previous golf putting studies have failed to find evidence that the ab-
solute change in heart rate was related to variations in putting perfor-
mance. Instead, they found evidence that the absolute change in heart 
rate was a characteristic of expertise. We speculate that this consistent 
finding suggests that the absolute change in heart rate may simply 
reflect the well-honed and practiced pre-shot routines of experts. 

The general inhibition hypothesis (Obrist, 1968; Obrist et al., 1969, 
1970, 1974) explains changes in cardiac activity in terms of accompa-
nying changes in peripheral and/or central somatomotor activity. In 
accordance with the cardiac-somatic coupling principle, decreases in 
cardiac activity should be accompanied by concomitant decreases in 
muscle activity. Several issues need to be considered here. First, the 
hypothesis would expect that the heart rate deceleration response in the 
seconds before movement onset should be accompanied by reductions in 
muscle activity. However, previous golf putting studies (Cooke et al., 
2014; Moore et al., 2012) show that decreases in heart rate in the sec-
onds before the golf swing are accompanied by increases in muscle ac-
tivity in the upper and lower arms, which are explicitly required to 
control the putter and execute the task. Similarly, we observed increased 
electromyographic activity in these arm muscles (see Tables 1, 2 and 3). 
It should be noted that other muscles, such as postural, oculomotor, or 
respiratory muscles, may have been deactivated during this preparatory 
period. This is a possibility given evidence that the eyes are likely to fix 
on the ball and remain relatively still in the period before movement 
onset in golf putting tasks (e.g., Gallicchio et al., 2018; Gallicchio & 
Ring, 2020; Moore et al., 2012). Similarly, it is possible that participants 
varied their rate and depth of breathing before putting (e.g., Neumann & 
Thomas, 2009). None of these muscles were recorded in the current 
study and therefore this possibility cannot be discounted. Second, the 
hypothesis would expect that the onset of the heart rate deceleration 
response should be preceded by greater muscle activity. However, we 
found no differences among the eight task conditions in background 
electromyographic activity in these arm muscles. This evidence would 
therefore argue against this possibility. It should be conceded that we 
did not measure the activity of other muscles, which may have been 
activated prior to the onset of the bradycardia. 

5. Conclusion 

The present study found that the rate but not the magnitude of heart 
rate deceleration in the seconds preceding movement was sensitive to 
variations in task difficulty. These findings may reflect the effects of the 
experimental manipulations on attentional (Lacey & Lacey, 1970, 1974, 
1980) or motor (Obrist, 1968) processes. The current findings are better 
explained by the intake-rejection hypothesis than the general inhibition 
hypothesis. It should be acknowledged that our interpretation favouring 
the intake-rejection hypothesis is best supported by our findings from 
the distance from the hole manipulations (Figure 1A, Table 1). The 
interpretation receives less support from the size of the hole manipula-
tion (Figure 1B, Table 2). Finally, the interpretation is not clearly sup-
ported by the surface contour manipulation (Figure 1C, Table 3). 
Clearly, additional manipulations, including task difficulty, and 
markers, such as cortical activity, are needed before we can confidently 
decide which of the two competing hypotheses best account for cardiac 
deceleration in preparation for action. 
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Data availability 

Data will be made available on request. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.psychsport.2023.102548. 
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