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Physiological responses and cognitive behaviours: Measures of 
heart rate variability index language knowledge 

Dagmar Divjak a,b,*, Hui Sun a,1, Petar Milin a 

a Department of Modern Languages, University of Birmingham, Edgbaston, Ashley Building, Birmingham, B15 2TT, United Kingdom 
b Department of English Language & Linguistics, University of Birmingham, Edgbaston, Ashley Building, Birmingham, B15 2TT, United Kingdom  

A B S T R A C T   

Over the past decades, focus has been on developing methods that allow tapping into aspects of cognition that are not directly observable. This 
includes linguistic knowledge and skills which develop largely without awareness and may therefore be difficult or impossible to articulate. Building 
on the relation between language cognition and the nervous system, we examine whether Heart Rate Variability (HRV), a cardiovascular measure 
that indexes Autonomic Nervous System activity, can be used to assess implicit language knowledge. We test the potential of HRV to detect whether 
individuals possess grammatical knowledge and explore how sensitive the cardiovascular response is. 

41 healthy, British English-speaking adults listened to 40 English speech samples, half of which contained grammatical errors. Thought Tech
nology’s 5-channel ProComp 5 encoder tracked heart rate via a BVP-Flex/Pro sensor attached to the middle finger of the non-dominant hand, at a 
rate of 2048 samples per second. A Generalised Additive Mixed Effects Model confirmed a cardiovascular response to grammatical violations: there 
is a statistically significant reduction in HRV as indexed by NN50 in response to stimuli that contain errors. The cardiovascular response reflects the 
extent of the linguistic violations, and NN50 decreases linearly with an increase in the number of errors, up to a certain level, after which HRV 
remains constant. 

This observation brings into focus a new dimension of the intricate relationship between physiology and cognition. Being able to use a highly 
portable and non-intrusive technique with language stimuli also creates exciting possibilities for assessing the language knowledge of individuals 
from a range of populations in their natural environment and in authentic communicative situations.   

1. Introduction 

Over the past decades, much effort has been put into developing methods that allow tapping into cognition, and in particular into 
those aspects of cognition that are not directly observable. These so-called implicit measures infer mental contents from responses on 
performance-based tasks, thereby making it possible to capture a hypothesized function or process without (conscious self-)assessment 
(De Houwer, Teige-Mocigemba, Spruyt, & Moors, 2009; Gawronski & De Houwer, 2014). In this respect, implicit measures differ 
markedly from explicit measures which have been criticized due to their susceptibility to various forms of bias (e.g., response styles, 
socially desirable responding, impression management; see Rust & Golombok, 2014; Gawronski & Hahn, 2018). 

In research on language, the question of which measures to use is of particular importance. Accurately assessing an individual’s 
linguistic abilities, regardless of age and physical or cognitive abilities, is important for many questions pertaining to core areas of life 
relating to cognition, including brain health. Because the linguistic knowledge of first language (L1) and the associated skills are 
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largely implicit, i.e., they have been developed without awareness and are typically deployed without awareness (see Ellis, 2015 for a 
discussion), this knowledge may therefore be difficult or impossible to articulate explicitly and hence to access using explicit measures. 
Yet, the main methods theoretical linguists use to assess linguistic knowledge rely on an explicit intermediary: metalinguistic ability. 
Language users are asked, for example, to judge the grammaticality of an utterance. However, explicitly judging the grammaticality of 
an utterance is not something language users usually do. Typically, language users produce and process language for communicative 
purposes, in real time. Judgments, however, expect users to focus on language that has been produced by someone else, and judge it 
along criteria that are related to the forms used, with a little delay. This taps into language user’s metalinguistic ability, i.e., their 
ability to focus attention on language as an object in and of itself, to reflect upon language, and to evaluate it (Roehr-Brackin, 2018). 
For this reason, metalinguistic tasks are said to tap into specific resources, in particular cognitive control. This means that, even in 
healthy populations, individual differences in the ability to isolate the formal dimension of language and retain focus on the formal 
aspects may affect judgments. Furthermore, these explicit measures suffer additionally from known problems of bias, in the sense that 
knowledge gained through education regarding which forms are and are not (considered) acceptable may cloud judgments since 
off-line judgments allow sufficient time for participants who have such knowledge to access and involve it. 

To address these issues and enable the reliable detection of linguistic knowledge without reliance on explicit, metalinguistic 
judgments, research has long relied on reaction times. Reaction times measure the amount of time it takes an individual to respond to a 
stimulus. The elapsed time is taken as an indicator of the cognitive efficiency in processing the stimulus. Through careful manipulation 
of properties of the stimulus, it is possible to establish what facilitates or impedes processing. In recent years, and with technological 
advances, the arsenal of implicit measurements has been expanded with a number of ways to capture physiological responses that 
correlate with cognitive behaviours but occur automatically and therefore involuntarily (cf. Soares et al. (2015) report that neuro
physiological versions of language tests detect cognitive decline more reliably). These physiological responses are obtained using 
techniques ranging from eye-tracking over electro-encephalography to brain imaging. An added benefit of these techniques is that they 
track stimulus processing in real time while allowing a look inside the black box of our minds. 

The goal of this paper is to zoom in on the relation between language cognition and the autonomic nervous system (ANS), which has 
so far received less attention, even though data from pupillometry suggests that ANS-related measures offer a promising avenue for 
studying language cognition. In Section 1.1, we will first survey some of the physiological ways in which the effects of the Autonomic 
Nervous System manifest. In Section 1.2 we will survey key studies that demonstrate a link between one particular physiological 
measure, Heart Rate Variability, and cognitive function. In Sections 2 and 3 we will present a study, designed to test whether car
diovascular measures allow us to record an individual’s sensitivity to grammatical violations accurately enough to help us assess their 
language knowledge. 

1.1. The autonomic nervous system and its physiological expression 

Physiological responses are governed by the autonomic nervous system (ANS). The ANS comprises two parts: the sympathetic 
(SNS) and the parasympathetic (PNS) nervous system. Simply put, the sympathetic nervous system activates the “fight or flight” 
response during a threat or perceived danger, while the parasympathetic nervous system controls the “rest and digest” or “feed and 
breed” functions of the body. The sympathetic nervous system, which controls the body’s responses to perceived threats, is responsible 
for increasing heartbeat, tensing muscles, dilating the pupil (to let in more light) and inhibiting saliva secretion, among other things. 
Due to the short(er) neural pathway of the SNS, it has a faster response time than the PNS which regulates the body’s functions while at 
rest. Together they regulate the involuntary and reflexive functions of the body. 

Physiological expressions of the ANS have been linked to aspects of cognition. A widely known use of ANS-related measures in this 
regard is found in lie detectors: physiological measures (autonomic, electrocortical, or neurovascular) have long been used to detect 
concealed information in suspects. Although as of yet no physiological profile of lying has been established, ANS measures have been 
used to successfully differentiate between concealed knowledge (e.g., crime-related knowledge of a guilty person) and absent 
knowledge (of an innocent person) with remarkable accuracy (Ambach & Gamer, 2018). 

In the study of language the desire to replace explicit measures with implicit measures, and record involuntary physiological re
sponses to a stimulus, has led to the reliance on information gleaned from eye movements (Rayner, 1998, 2009). The measurement of 
pupil dilation or changes in pupil diameter is of particular relevance here as the pupillary response is thought to reflect the combined 
contributions of the ANS and as such captures some amalgamation of attention, engagement, arousal, anxiety, and effort (Zekveld, 
Heslenfeld, Johnsrude, Versfeld, & Kramer, 2014; Winn, Wendt, Koelewijn, & Kuchinsky, 2018, pp. 2, 4). Task-evoked pupil responses 
have been demonstrated in numerous studies (see Beatty, 1982 for an overview): changes in pupil dilation distinguish cognitive tasks 
that are more or less effortful across a wide variety of domains and pupil dilation amplitude has become a useful measure of 
task-evoked resource allocation (Beatty & Lucero-Wagoner, 2000). At the same time, an increase in pupil dilation therefore also signals 
arousal, often interpreted as the extent to which an individual engages with the task since pupils also dilate with activation of the 
sympathetic nervous system and inhibition of the parasympathetic system (Loewenfeld, 1993; Steinhauer, Siegle, Condray, & Pless, 
2004). However, the neurology2 behind cognition-mediated pupil responses requires further investigation to be fully understood (see 
Zekveld et al., 2014 for a first study). Likewise, whether the pupil dilation that occurs on increased load is due to task-demand or 

2 The pupillary response appears to reflect activation of the locus coeruleus (LC) and norepinephrine (NE) system (LC-NE), which has been 
associated with several cognitive functions such as memory, attention, reward anticipation and decision making (Zekveld et al., 2014). The LC-NE 
plays an important role in controlling automatic functions and pupil size. 
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task-engagement (arousal) remains to be determined. Despite this, the technique has seen a considerable uptake in the study of 
language over the past decade (see Schmidtke, 2018 for an overview) and has been applied across a range of visual (Just & Carpenter, 
1993) and auditory (Ben-Nun, 1986) tasks, including in younger (Chapman & Hallowell, 2015) and older (Scherger, 2022) clinical 
populations. 

While the pupil diameter can increase by as much as 3–4 mm, or roughly 120%, when changing from light to dark environments, 
cognitive task-evoked pupil dilations are much smaller by comparison, in the order of 0.1–0.5 mm, depending on testing conditions 
and task (Winn et al., 2018). Language-related tasks involving eye-tracking typically expect literate participants with normal or 
corrected-to-normal vision to view stimuli, be it images or text, on a computer screen. To obtain reliable pupil size measurements for 
objects the size of letters, a costly, high-precision eye-tracker must be used and participants must have their head fixated in a chin rest. 
This set-up restricts the researcher’s ability to observe individuals from a wide range of populations, regardless of age or disability 
(affecting vision) and educational background (affecting literacy levels) for longer periods of time in their natural environment and in 
authentic communicative situations. 

In this study, we explore other physiological indicators that can be used to assess language knowledge. We are particularly 
interested in measures that are governed by the same neuro-physiological system as the pupils and can (now) be reliably recorded 
using non-invasive and low-cost techniques, using instruments that are highly portable and non-disruptive. This enables the obser
vation of individuals from a wide range of populations for longer periods of time in their natural environment and in interactive 
communicative situations. Being able to use these techniques with language stimuli opens up many possibilities for assessing (implicit) 
language knowledge across a range of populations and settings; it also enables us to open up and explore new dimensions of the 
intricate relationship between physiology and cognition. Heart Rate Variability (HRV), an ANS measure that has long been used as 
diagnostic (for a history see Berntson et al., 1997), is of particular interest. HRV measures the variability between successive heartbeats 
and captures the fluctuation of the length of the heartbeat intervals: low HRV is indicative of a highly regular heart rate, while high 
HRV reveals a highly irregular heart rate. The time between beats is measured in milliseconds (ms) and is called a regular-to-regular 
(R–R) interval or inter-beat interval (IBI). Changes in heart rate variability mainly capture the vagal innervation of the heart (Berntson 
et al., 1997) and HRV is considered an index of autonomic control of the heart: the variations are thought to result mainly from the 
dynamic interaction between the parasympathetic and the sympathetic inputs to the heart through the sinoatrial node (Forte, Favieri, 
& Casagrande, 2019; Thayer & Lane, 2000), although some argue that HRV only reliably indexes the cardiac activity of the para
sympathetic nervous system (Malik, 1996; Reyes del Paso, Langewitz, Mulder, Van Roon, & Duschek, 2013; Laborde, Mosley, & 
Thayer, 2017; Thomas, Claassen, Becker, & Viljoen, 2019; Huang, Ko, & Liao, 2022). While the mechanics behind HRV responses 
require further investigation to be fully understood,3 as is the case for the link between pupil dilation and effort, the applied literature 
generally accepts that HRV indexes stress: several studies have revealed a correlation between HRV variation and psychologically 
stressful situations whereby mental stress leads to an increase in interval regularity and thus a decrease in heart rate variability (for a 
meta-analysis of the use of HRV to diagnose stress, see Kim, Cheon, Bai, Lee, & Koo, 2018). 

1.2. Heart rate variability as an expression of autonomic nervous system activity and its relation to cognitive function 

Forte et al. (2019) systematically reviewed data on the link between resting-state HRV, as recorded by a continuous electrocar
diogram in all but one case, and cognitive function from 19,431 healthy individuals. They found that higher HRV, in both the time and 
frequency domains (where high/medium/low frequency bands are distinguished), were associated with better cognitive performance, 
even after adjustment for the confounding variables commonly associated with HRV (i.e., age, gender, years of education, body mass 
index, blood pressure, cardiovascular diseases). This effect was observed across the domains of global cognitive functioning, attention, 
processing speed, executive functions, memory, language, and visuospatial skills. This conclusion highlights the important role of the 
ANS in cognitive functioning and confirms that ANS measurements can be used as a proxy for specific aspects of internal information 
processing that are not amenable to conscious retrieval and articulation. 

However, Forte et al. (2019) also pointed out that ANS measurements remain vanishingly rare in the study of language. Among the 
exceptions are Britton et al. (2008) who tested short-term verbal memory, reasoning (Alice Heim 4-I), vocabulary, phonemic and 
semantic fluency in 5375 middle-aged adults. Their data includes the Mill Hill vocabulary test where the task is to explain the meanings 
of words or (in an alternative form of presentation) to select the correct synonym for each word from a list of six alternatives provided. 
They did not find any consistent relationship between HRV and language cognition, using both frequency- and time-related measures, 
on any of the tests. The study run by Zeki Al Hazzouri, Elfassy, Carnethon, Lloyd-Jones, and Yaffe (2017) tested participants at two 
points in time. At first contact, they took 10-s 12-lead electrocardiogram recordings from 2118 middle-aged adults and calculated two 
measures of HRV, standard deviation of normal-to-normal intervals (SDNN) and the root mean square of successive differences 
(RMSSD). Five years later, 3 cognitive tests were administered for verbal memory (the Rey Auditory-Verbal Learning Test), processing 
speed (the Digit Symbol Substitution Test), and executive function (the Stroop interference task). It was found that lower SDNN is 
associated with worse executive function only (as measured by Stroop) among middle-aged adults, above and beyond cardiovascular 

3 The models that have been developed to explain this link, such as the Neurovisceral Integration Model (Thayer, Hansen, Saus-Rose, & Johnsen, 
2009), propose that HRV is linked to prefrontal cortex activity via the vagus nerve, which connects the heart and the brain. Individual differences in 
vagally mediated HRV translate into differences in prefrontal cortex activity and HRV, an index of cardiac vagal tone, has indeed been found to 
predict performance on several cognitive control tasks that rely on the prefrontal cortex, a key area that drives cognitive control (Colzato, Jongkees, 
de Wit, van der Molen, & Steenbergen, 2018): lower HRV is indicative of poorer cognitive function. 
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risk factors. 
Frewen, Finucane, Savva, and al. (2013) included the language subtests on the Montreal Cognitive Assessment, i.e., language via 

confrontation naming with low-familiarity animals and repetition of complex sentences, when testing a sample of 4763 older adults 
(mean age 61.7). They likewise used both frequency- and time-related measures but did report that reduced HRV is associated with 
lower linguistic performance, even after adjustment for confounding variables of demographic, clinical and behavioural nature. 
Mahinrad et al. (2016) studied 3583 older participants with a mean age of 75 years. They recorded baseline 10-s ECGs from which the 
SDNN was calculated as index of HRV. Four cognitive domains were tested: selective attention, reaction time, processing speed and 
memory (using the picture-word learning test). Individuals were assessed at baseline and again during a mean follow-up period of 3.2 
years. Lower HRV at baseline was associated with worse performance in reaction time (as measured by performance on the Stroop 
task) and processing speed (as measured by the Letter-Digit coding test). During follow-up, participants with lower HRV had a steeper 
decline in processing speed. 

Given this, ANS measures such as HRV might well be useful in detecting linguistic knowledge that individuals have. However, 
although autonomic nervous activity has been shown to be strongly related to numerous cognitive functions, there is a paucity of 
research looking at language specifically in relation to cardiovascular expressions of ANS activity. The goal of this paper is, therefore, 
to test, for the first time, whether a cardiovascular response can help us detect grammatical knowledge in individuals and to explore 
how sensitive the cardiovascular response is to grammatical violations. 

2. Methods 

The current study goes beyond previous work in four crucial respects. Firstly, existing studies, surveyed above, that have included 
cognition, have looked at the relationship between reduced HRV and measures of cognitive function for language, rather than between 
HRV and linguistic knowledge per se. Secondly, if linguistic stimuli were used, these were virtually exclusively related to the lexicon in 
that the tasks were intended to assess memory for vocabulary. Yet in order to use language proficiently, a thorough command of 
grammar is required. Third, in existing studies, resting state HRV was correlated with cognitive function for language; in this study, we 
focus on acute HRV reactivity in response to a particular stimulus. And lastly, previous studies have contrasted the presence with the 
absence of a property, but have not tested sensitivity to different levels of intensity, which would be a prerequisite for research in the 
area of language, but also applies to other areas of cognition where the gradedness of the stimulus is important (e.g., general goal 
difficulty in Gellatly & Meyer, 1992; or the nature of reward vs. punishment in Löw, Lang, Smith, & Bradley, 2008; Gu, Bai, & Wang, 
2015). As a starting point, we focus on individuals’ overall performance in an error detection task that is presented as a speech rating 
task, where stimuli are manipulated for the density of grammatical errors against the background of accent. If HRV responses are 
sensitive enough to reflect the recognition of grammatical violations, HRV measures should be able to differentiate the speech stimuli 
depending on the manipulated conditions. 

2.1. Participants 

A total of 41 healthy adults who were native speakers of British English (21 female) were recruited and invited to the lab through 
social media such as Facebook. Their age ranged from 18 to 44 (M = 21.9, SD = 6.4), and none of them were diagnosed with any 
learning difficulty or cardiac rhythm issues. Twelve of the participants held a degree of higher education. 27 out of 40 participants 
spoke another language (with 10 reporting a native-like level in their second language, and one speaking a Slavic language). All of 
them reported to be familiar with foreign accented English speech to some degree (with at least monthly contact with non-native 
speakers). 

2.2. Speech rating task 

Participants were asked to listen to 40 short English speech samples, half of which contained grammatical errors against articles (e. 
g., a/an, the). To examine the sensitivity of physiological responses to grammatical errors in different contexts, the speech samples 
were presented in different accents (native vs. foreign) and by speakers of different gender (female vs. male), as these conditions have 
been found to affect listeners’ responses (Hanulíková, Van Alphen, Van Goch, & Weber, 2012; Linek, Gerjets, & Scheiter, 2010). 

Each speech sample was created based on a transcribed response to an interview question about one of eight common topics (i.e., 
education, environment, culture, globalisation, health, city, minority group, addiction). The transcripts were extracted from the 
BACKBONE4 English as Lingua Franca (ELF) Corpus of Polish speakers (i.e., the original interviewees). Firstly, 40 samples of tran
scribed responses (5 samples per topic) were selected and examined by a qualified linguist and by a trainee linguist (a native speaker of 
British English) to correct any language errors other than errors against articles. Then, half of the samples were designated to represent 
the error condition; in these, additional English article errors were inserted to reach the desired error density levels. 

English article errors were used as they are frequent in the English speech of non-native speakers. In English, one in five words is 
estimated to be an article (Dryer, 1989) but linguists have not been able to provide a concise and comprehensive description of how the 
article system works (Yoon, 1993). Moreover, these errors are not usually corrected as they do not tend to impede communication 

4 The corpus was developed via the EU project “BACKBONE – Corpora for Content & Language Integrated Learning”, which was funded by the EU 
Lifelong Learning Programme, 143502-LLP-1-2008-1-DE-KA2-KA2MP, 2008–2010. 
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(Vann, Meyer, & Lorenz, 1984). As shown in Example A below (with article errors and their nouns underlined), some articles were 
redundant (a globalisation) while some were omitted (same music/books); some definite and indefinite articles are substituted (the 
positive or negative impact). The context provided by the coherent discourses across samples on the same topic allows for different types 
of article errors (e.g., misuse of definite articles). 

Example A. with errors 

I think that culture is one of the areas most affected by a globalisation and it’s hard to say whether it is the positive or negative 
impact. I think that thanks to a globalisation, people all around the world listen to same music, watch the same movies, and read 
same books. They can discuss the same issues with each other, and understand each other better, because they know what they 
are talking about. 

Example B. without errors 

I think that immigration is a positive outcome of globalisation because people have the possibility to meet each other, to travel 
from one country to another and to get a job in a new country. This helps with integration and creating a multicultural 
environment. However, some emigrants live in very bad conditions and sometimes they are unwilling to integrate with the 
native citizens of the country where they live. 

The density of grammatical errors, calculated as the number of errors divided by the number of nouns, varied from 18% to 56% 
among the 20 samples with errors. For example, the sample with the lowest error density (18%) comprised five medium-to-long 
sentences (92 words in total) and had only four errors (no more than one error in each sentence). On the contrary, the speech sam
ple with the highest error density (56%) comprised four shorter sentences (63 words in total) but five errors. 

Based on the 40 written samples, 160 speech samples were recorded by four speakers who were either native or foreign English 
speakers (British and Polish, female and male). The length of the speech samples varied from 13 to 39 s (M = 25). To counterbalance 
the combination of content and voice, four sets of experimental stimuli were created using a Latin square design (set A, B, C, and D as 
shown in Table 1 in SupMatA) and allocated randomly to participants. Each participant listened to eight blocks, with two blocks in the 
voice of the same speaker and each block consisting of five speech samples about the same topic. Each block was independently rated 
by a different group of 60 native speakers (Mage = 36.5, 30 female) for intelligibility (extent of understanding) and comprehensibility 
(ease of understanding) on a scale from 1 to 100. The majority of the speech samples were rated as highly intelligible and compre
hensible (see Table 2 in SupMatA for the ratings distribution). 

During the task, participants were seated comfortably in front of a computer in a quiet lab. They were given at least 10 minutes to 
return to normal and slow breathing between arriving at the lab and before starting the task. Speech stimuli and instructions were 
presented to them through BioGraph Infiniti software by Thought Technology. Participants were instructed to listen to the audio 
samples and were asked to rate on an iPad how much they would like to be represented by each speaker in terms of argument and 
language (note that each participant listened to all stimuli and hence heard all arguments). After every block of five speech samples, 
participants gave two ratings on a 7-point Likert scale ranging from “not at all” on the left end (− 3) to “very much” on the right end (3). 
During the speech rating task, participants took a short break of 5 s after each trial, and a longer break of 90 s after four blocks of trials 
while listening to relaxing music (i.e., resting state). The session took about 30 minutes in total. 

Thought Technology’s 5-channel ProComp 5 encoder was used to track participants’ cardiovascular activity. A BVP-Flex/Pro 
sensor was attached to the middle finger of their non-dominant hand, to record the blood volume pulse (BVP) signal (in millivolts) 
at a rate of 2048 samples per second. Participants were asked to find a comfortable position for their non-dominant hand and keep it 
still till the end of the task to avoid artifacts. Cardiovascular measures were calculated for each trial, while the baseline measures (i.e., 
resting state) were based on the 90 s recording during the longer break. We also collected skin conductance data as supplementary 
automatic nervous system measure. As the focus of the current study is on heart rate variability, the electrodermal measures are re
ported in SupMatC. 

Upon completion of the task, the participants were given an exit survey. Recall that all speakers listened to samples by all four 
speakers and that article errors were the only errors present in the stimuli. Participants were first asked about the origins of the foreign 
accent; 5 did not identify the accent as Polish. They were also asked whether there were any errors in the speech they heard, to which 
only 1 participant responded negatively. When asked to estimate the number of errors they heard from each speaker on a scale from 
0 to 100, participants showed substantial variability with the British female voice being given a much lower error estimate than the 
other speakers (M = 16.54 and SD = 18.49 for British female speaker, M = 23.73 and SD = 25.35 for British male speaker, M = 22.20 
and SD = 18.47 for Polish female speaker, M = 22.83 and SD = 18.67 for Polish male speaker). Participants were then asked to describe 
the type of errors they heard in their own words. While no single participant uniquely identified article errors, only 7 participants did 
not name article errors at all; many were unaware of the name of the category, declaring instead that “the letter ‘a’ was missing” or that 
‘the’ was “forgotten or added in unnecessary places”. When asked to tick “all that applied” from a list of 6 errors and suggest any other 
errors they heard, only 2 participants selected/suggested “incorrect use of articles” as only category alongside “incorrect pronunci
ation” and 4 did not include “incorrect use of articles” at all. 

2.3. Cardiovascular measures of ANS activity 

The cardiovascular measures based on blood volume pulse data were recorded and extracted using BioGraph Infiniti software (for 
details see SupMatB). In addition to heart rate variability measures, heart rate and pulse amplitude were included as supplementary 
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cardiovascular measures: heart rate variability measures reflect parasympathetic nervous system activity (Laborde et al., 2017; Malik, 
1996); heart rate and pulse amplitude measures reflect both parasympathetic and sympathetic nervous system activity (Kantono et al., 
2019; Salimpoor, Benovoy, Longo, Cooperstock, & Zatorre, 2009; Lin, Lin, Lin, & Huang, 2011; Soni & Rawal, 2020. 

Heart rate variability analysis can be conducted in the time domain, in the frequency domain (where high/medium/low frequency 
bands are distinguished), and by using non-linear analyses (Forte et al., 2019). No frequency-domain HRV measures were exported 
because a minimum 64 s of recording is required to produce a value by the software, yet none of our trials were longer than 39 s. HRV 
analysis can also be conducted in the time domain and two time-domain HRV measures, NN50 and RMSSD, were exported via the 
session statistics report from BioGraph Infiniti. Line graphs were inspected visually for artifacts via the session reviewing function, i.e., 
sudden dips or spikes in the data caused by movement of the sensor or finger which disturb the regular patterns of finger pulse data. 
Trials with artifacts (34 out of 1640) were removed from subsequent data analysis. 

Both exported HRV measures reflect beat-to-beat variance via the differences between successive normal sinus (NN) intervals. More 
specifically, NN50 refers to the number of pairs of adjacent NN intervals differing by more than 50 ms in each recording session, while 
RMSSD captures the root mean square of differences between adjacent NN intervals. Rather than using raw HRV measurements, we 
opted for relative values (see also Christensen, 2012) and calculated the difference between the value measured during the perfor
mance on the task and the resting state (i.e., during the 90s break in the middle of the task). This was done for each measure, for each 
participant and each item. In that sense, we obtained a measure of (relative) change to the relaxed state, when a participant was not 
engaged in any task. 

Although longer recording sessions (>5min) are preferred conventionally, ultra-short-term periods (<1min) have been found to 
predict long-term measures reliably (e.g., Baek, Cho, Cho, & Woo, 2015; Salahuddin, Cho, Jeong, & Kim, 2007). For example, Sala
huddin et al. (2007) validated that mental stress in mobile settings can be reflected by RMSSD from a 30-s recording, where both 
measures showed significant differences between baseline and Stroop test conditions. Furthermore, in our design, many similar events 
were used (half of the stimuli contained errors, while the other half did not contain errors), and the data for all error-ridden stimuli was 
considered as being of the same type, as was the data for all stimuli that were grammatically correct. Capturing a particular physi
ological measure at a particular point in time is a unique event and using many similar events helps obtain more stable measurements. 
Overall, participants heard from 503 to 510 s (M = 507.5) of grammatically correct recordings, and from 502 to 509 s (M = 505.3) of 
grammatically incorrect recordings. 

3. Data analysis and results 

Faced with a literature that lacks firm agreement as to the type of ANS activity the different measures reflect and relies on a wide 
range of variables to capture HRV, we turned to Graphical Modelling5 (cf., Lauritzen, 1996; Edwards, 2000; Højsgaard, Edwards, & 
Lauritzen, 2012) to establish the direct and indirect relationships within the variables typically used in the literature on physiological 
measures and language cognition. 

3.1. Variable selection 

Simplified, a graphical model represents the variables of interest (vertices) and their relations (edges), where missing edges indicate 
conditional independence (CI; cf., Németh & Rudas, 2013). The approach aims to find CIs in a set of correlated variables in order to 
simplify the joint density of these variables as much as possible. More formally, if XA, XB, and XC are such variables, we establish a 
conditional independence of XA and XB given XC if: 

f (XA,XB|XC)= f (XA|XC)f (XB|XC)

where f( ) denotes probability mass function. This statistical procedure can also reveal variables that are endogenous, meaning they are 
determined (i.e., informed) by their relationships with other variables within the model. For example, a variable such as word 
orthographic density can be informed by other variables, like word length and frequency, bigram frequency and others, but at the same 
time, it does not inform any other variable itself. Similarly, an exogeneous variable would be informative about other variables in the 
model, while none of the remaining variables would provide information about that exogeneous variable. 

We applied Graphical Modelling specifically to determine if our set of physiological measures contains an endogenous variable that 
would be used in further analyses. The logic of this approach is simple: as endogenous variables do not inform about but are informed 
by other variables in the given set, they can be used as representative or proxy of that set of variables. In other words, rather than using 
a principal component (i.e., a composite variable), we searched for the variable that is informed (or determined) by other skin- 

5 The standard statistical approach in a case that offers multiple independent variables would be to look for indicators that are highly correlated as 
such a relationship would suggest that these variables might share a common source. This new, latent variable is typically isolated as an optimally 
weighted composite (i.e., Principal or Independent Component), which can enter into further analyses. The problem with this approach is that it can 
result in something that is difficult to understand and interpret. Further to this, in our case, the great majority of possible bi-variate correlations was 
low (r < 0.2), with two exceptions only: moderate r = 0.53 between SC.SD and SC.M (t = 25.04,p < 0.0001), and low r = 0.28 between HRV.NN50 
and HR.SD (t = 11.74,p < 0.0001). This might not be surprising as such co-relationships between the position (mean) and scale (standard deviation) 
parameters have been found for other response measures too (e.g., for response times: Wagenmakers & Brown, 2007; for heart period variability and 
mean period length: Fleiss, Bigger, & Rolnitzky, 1992). 

D. Divjak et al.                                                                                                                                                                                                         



Journal of Neurolinguistics 69 (2024) 101177

7

conductance measures. Similar to running a Principal or Independent Component Analysis, this proposed approach is data-driven and 
replicable, and, at the same time, more parsimonious than the alternative of analysing all possible dependent variables, which posits a 
problem of multiple tests and, hence, increases the chance of “discovery” (i.e., null-rejection). 

To run a Graphical Model we utilised the pcalg package (Kalisch, Maechler, Colombo, Maathuis, & Buehlmann, 2012) in the R 
software environment (Team, 2022). For visualization we made use of the igraph (Csardi & Nepusz, 2006, p. 1695), and gRim 
(Højsgaard et al., 2012) packages for R. Given our focus on cardiovascular measures (Fig. 1), in addition to the HRV measures of 
interest (HRV.NN50 and HRV.RMSSD), we also included several other available heart rate measures (HR.M, HR.SD, PULSE.M, PULSE. 
SD) used in the literature to allow for competition in the identification of the best endogenous candidate. Although, as explained above, 
all variable values were relative to the resting state, they were still rather different in location and scale, which means not directly 
comparable. To facilitate statistical modelling and comparability we transformed all difference-variables using a rank-normal 
(Gaussian) transformation, converting differences to standardised units (i.e., z-values). 

Fig. 1 shows that, within the set of cardiovascular measures, HRV.NN50 and HR.M are both candidate endogenous variables. In 
fact, they are determined by other variables, either directly (PULSE.M, HR.SD, HR.M, and HRV.RMSSD) or indirectly (PULSE.SD). 
Finally, HR.M and HRV.NN50 are mutually co-dependent (as represented by a direct connection, i.e., a two-way arrow, in Fig. 1). Thus, 
within the set of cardiovascular measures, HR.M and HRV.NN50 are the best candidate-representatives for the set of biofeedback 
measures. The main model considered HRV.NN50 as the dependent variable and HR.M as its covariate (i.e., continuous predictor), 
since, in statistical terms, variability depends on the mean tendency. The model with HR.M as dependent variable and HRV.NN50 as its 
covariate are included in SupMatC, for completeness. 

3.2. Statistical model 

The complete dataset available for modelling consisted of N = 1640 datapoints. As the focus of the study is on testing whether 
manipulation of the linguistic variable ErrorDensity has an observable effect on the dependent variable HRV.NN50, we removed all 
measurements of experimental items where there were no errors (ErrorDensity = = 0), leaving a dataset to N = 820. This decision 
follows standard practice across the range of two-alternative forced choice tasks (2AFC); for example, in lexical decision data, typically 
only real word latencies are considered. The same applies to time latency analyses for semantic or grammaticality judgements and 
other similar tasks. Finally, we removed an additional 16 points as artifacts, retaining a final dataset of size N = 804. 

Using the mgcv (Wood, 2006, 2011) and itsadug (van Rij, Wieling, Baayen, & van Rijn, 2022) packages for R, we applied a 
Generalised Additive Mixed Effect Model, which allowed us to test for a possible non-linear relationship between ErrorDensity and the 
main dependent variable HRV.NN50, as well as to specify random factor smooths of Participants over experimental Trials. Random 
factor smooths allow for an efficient account of the individual random variation over the course of the experiment (which can be due 
to, e.g., attention loss, distraction, fatigue etc.). Our base model was specified as follows: 

gam(HRV.NN50 ∼ SpeakerAccent+ s(TrialOrder)+ s(ErrorDensity)+ s(HR.M)+ s(TrialOrder,Participant, bs=′fs′,m= 1),…)

The model has three fixed effect terms: a 2-level factor (SpeakerAccent: British vs. Polish) and two smoothed covariates, i.e., 
TrialOrder that was scaled (z-transformed) to control for its typically large variance, and ErrorDensity. As explained above, the 
dependent variable HRV.NN50 was rank-normally transformed. 

Fig. 1. Results of graphical modelling for cardiovascular measures.  
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3.2.1. Modelling heart rate variability (HRV.NN50) 
We applied model criticism to detect if the effects are affected by influential datapoints, i.e., outliers or extremes, where the former 

can deflate and the latter may inflate the magnitude of an effect (Baayen & Milin, 2010). Only 15 datapoints fell outside the interval of 
2.5 standardised residuals and were removed. The trimmed model showed an increase in significance of critical predictors: Speak
erAccent, ErrorDensity, and HR.M. Overall, the model fit is very strong: R2

Adjusted = 0.96; Deviance explained = 96.3% (for the un
trimmed model: R2

Adjusted = 0.94; Deviance explained = 95%). The trimmed model is summarised in Table 1 and its main effects of 
SpeakerAccent, ErrorDensity, and HR.M are presented in Fig. 2. 

The effect of TrialOrder appeared linear (edf and Ref.df are 1.0) and not significant. It was, however, retained among the model’s 
fixed effects as it figures in the random part as well, revealing the participants’ non-linear trajectories over the experimental trials. 

As hypothesized, there was a significant effect of ErrorDensity on HRV.NN50: the mid panel in Fig. 2 shows a steep decrease in 
Heart Rate Variability when the ErrorDensity is between 0.2 and 0.4. From about 0.45, the confidence intervals include zero, indi
cating that the effect should not be considered in this region; moreover, when the number of knots is reduced to 3, the curve attenuates. 
In simple terms, if speech is punctuated by errors, Heart Rate Variability decreases at a rate that is in line with the density of the errors, 
up to a density of 0.4. 

SpeakerAccent also influences HRV.NN50: HRV.NN50 is lower, i.e., less variable, when errors are made by native speakers of 
English. This is visualised in the left panel in Fig. 2. The effect is rather mild, as indicated by the relatively wide Confidence Intervals, 
but as the strength of the effect increased after trimming (p-value reduced from 0.016 to 0.001), the effect can be considered reliable. 

Average heart rate, which was included as a control predictor, also revealed the expected relationship: the higher the mean heart 
rate, the lower the heart rate variability (right panel in Fig. 2). 

As an additional test, we ran a comparable model on data for correct items, which implies that, if compared with the original model 
specification above, the term s(ErrorDensity) had to be removed. Crucially, the effect of SpeakerAccent remained significant (p-value 
= 0.03; and 0.01 for the untrimmed model). 

4. Discussion 

Over the past decades, focus has been on developing methods that allow tapping into cognition, and in particular into those aspects 
of cognition that are not directly observable. Linguistic knowledge and skills are an area that is in particular need of such implicit 
methods, as linguistic knowledge develops largely without awareness and is deployed without awareness which may make it difficult 
or impossible to articulate without formal linguistic training. Yet, accurately assessing an individual’s linguistic abilities is important 
for a number of reasons, including designing interventions that prevent or address delays in cognitive development or deterioration of 
brain health. 

The goal of this paper was to test, for the first time, whether a cardiovascular response such as HRV that taps into the para
sympathetic system can help us detect whether individuals possess grammatical knowledge and explore how sensitive the cardio
vascular response is to linguistic stimuli. Up until now, pupil size, which reflects the workings of the sympathetic nervous system, has 
been the ANS measure of choice for detecting language knowledge without relying on explicit judgments. In our study, we exposed 41 
healthy native speakers of British English to audio-recordings of speech stimuli that were either grammatically correct or contained 
errors against the English article system and differed in the density of these errors. The texts were read in a native British and a Polish 
accent by both a male and a female voice. Participants were instructed to listen to the four different speakers in both error-free and 
error-ridden conditions and were occasionally asked to rate how much they would like to be represented by each speaker. 

Taking into account the properties of the dataset, the data was analysed using a Generalised Additive Mixed Effects Model. The 
model confirmed that there is a cardiovascular response to grammatical violations: we registered a statistically significant reduction in 
HRV as indexed by NN50 in response to stimuli that contain errors. More specifically, the cardiovascular response reflects the extent of 
the linguistic violations, and HRV decreases in line with an increase in the number of errors. Listening to speech containing errors 
reduces HRV, and the reduction increases with the number of violations, up to a certain level. Recall that all participants heard and 
rated all stimuli, hence the degree to which participants agree with the arguments in the stimuli does not affect our findings. The fact 

Table 1 
Trimmed (i.e., criticised) Generalised Additive Mixed Effect Model fitted to heart rate variability (HRV.NN50), on the subsample of the data con
taining errors.  

Parametric coefficients:  

Estimate Std. Error t value Pr(>|t|) 

Intercept − 0.047 0.146 − 0.320 0.749 
SpeakerAccent (Polish) 0.047 0.014 3.255 0.001  

Smooth terms:  

edf Ref.df F p-value 

s(TrialOrder) 1.000 1.000 0.926 0.336 
s(ErrorDensity) 2.863 3.465 12.739 <0.0001 
s(HR.M) 4.164 5.202 13.555 <0.0001 
s(TrialOrder, Participant) 81.711 368.000 45.494 <0.0001  
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that there is a cardiovascular response to the violation of regularities that can be observed in language, and that the cardiovascular 
response becomes stronger as the violations become more frequent, supports the assumption that language users have absorbed the 
usage patterns that are typical of their language, have come to expect them, and therefore respond to them being violated. HRV 
measures can thus be used to reveal linguistic knowledge that language users have, without relying on their ability to declare their 
knowledge. The observation that linguistic knowledge can be detected using cardiovascular measures brings into focus a new 
dimension of the intricate relationship between physiology and cognition and opens up new pathways for exploring this link. 

The knowledge language users have is not limited to grammatical linguistic information: their expectations go beyond the form, 
into the social domain. In addition to sensitivity to error density, participants were also sensitive to accent, with a British accent 
triggering a slight but significant reduction in HRV in sentences containing grammatical violations compared to a Polish accent. In 
other words, hearing speakers with a native accent commit errors against a core property of their native language reduces HRV more 
than hearing speakers with a foreign accent make those same errors. A foreign accent is the hallmark of the speech of someone who has 
learned the language at a later age (Moyer, 2013), as very few later learners manage to develop a native-like pronunciation. Later 
learners are also known to struggle with (aspects of) grammar in their second language (Abrahamsson, 2012), in particular with 
grammatical structures that are absent from their first language (Sabourin, Stowe, & De Haan, 2006). Taken together, these two facts 
make errors more expected in foreign-accented speech than in native-accented speech, which explains why a Polish accent triggered 
less of a reduction in HRV, and a British accent triggered more of a reduction. 

What does the reduction in HRV as indexed by NN50 in response to stimuli that contain errors signal? To answer this question, we 
combine insights gleaned from both the error and accent manipulations of our study. Recall that the majority of the speech samples 
were rated as highly intelligible and comprehensible; therefore, the HRV response to violations is unlikely to index difficulty of un
derstanding. This conclusion is further supported by the observation that identical errors trigger a different response depending on 
accent, and that the response is stronger for the more familiar accent; errors in native accented highly intelligible speech would not be 
expected to increase difficulty of understanding more than errors in its foreign accented equivalent. A more plausible interpretation 
would suggest that changes in HRV as indexed by NN50 are to be interpreted in terms of expectation violation, in the first instance: 
errors are unexpected, and more so in native accented speech. Expectation violations tend to require more cognitive effort, thereby 
putting stress on the cognitive system, and this is picked up by the physiological system. Recall that the applied literature generally 
accepts that HRV indexes stress: mental stress leads to an increase in interval regularity and thus a decrease in heart rate variability (for 
a meta-analysis of the use of HRV to diagnose stress, see Kim et al., 2018). 

Our HRV-based results are in line with findings from pupillometry on the effects of complexity, conflict, accent and errors on 
language processing. Several early pupillometric studies on language processing (Ben-Nun, 1986; Just & Carpenter, 1993) found that 
pupil size increased when more complex information had to be processed; the pupillary response was therefore considered as an 
indicator of how intensely the processing system is operating. The same effect was found in the auditory processing of temporary 
ambiguities, a.k.a. the garden path effect, in the presence of congruent or incongruent prosodic cues: pupil diameter reliably increased 
in case of conflicts between syntax and prosodic cues. Studies have also looked at the effect of accent on pupil size. Porretta and Tucker 
(2019) focused on the way in which the pupil responds to foreign-accent related intelligibility and found a negative correlation be
tween the size of the pupil and the intelligibility of the sentence: as intelligibility decreases, pupil dilation increases. Likewise, they 
observed individual differences: listeners with more experience interacting with accented speech displayed reduced dilation overall, 
but high experience listeners had a higher threshold at which reduced intelligibility elicited greater dilation. As far as accent is 
concerned, Brown, McLaughlin, Strand, and Van Engen (2020) found, again using pupillometry, that even fully intelligible accented 
speech triggers an increase in pupil diameter which was taken to signal a larger burden on the cognitive system: resolving deviations 
between the acoustic input and stored lexical representations incurs a processing cost. However, they also reported that listeners 
habituate quickly to the accent: after 20 sentences (which each were on average 2s long), listeners appeared to have accommodated the 
accent. There is evidence from pupillometry that errors likewise increase cognitive load. Hubert Lyall and Järvikivi (2021) investigated 
a range of errors or violations of morpho-syntactic, semantic and socio-cultural expectations and recorded an increase in pupil size in 

Fig. 2. Effect of speaker accent (left panel), error density in the sample of items (mid panel), and average heart rate (right panel) on HRV as indexed 
by NN50. 
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response to an error or anomaly. 
We started from the claim that linguistic knowledge, which is typically acquired and deployed implicitly, benefits from being 

measured in an implicit fashion. Linguists generally agree that the knowledge language users have of their first language is implicit: 
except for the points that are discussed in educational settings, most language users are able to produce language correctly yet are 
unable to reference the rules that guide usage. In the same spirit, measures are considered implicit if they are taken while language 
users do something they naturally do, e.g., listen to a recording or read a text, and are not aware of what is being measured. In our 
study, participants listened to audio recordings and were asked, after every block of five speech samples, how much they would like to 
be represented by each speaker in terms of argument and language. Data from the exit interview suggests that, when asked, partic
ipants did report awareness of errors. This explicit noticing of errors might also render the knowledge assessment explicit. However, 
relying on the protocol used in studies of implicit knowledge, we established that it remained beyond the participants’ ability to 
uniquely identify the article errors; this supports the idea that the knowledge itself was indeed implicit and suggests that he assessment of 
this knowledge likewise remained implicit, i.e., that participants were not aware we were testing their knowledge of the English article 
system specifically. 

5. Conclusions 

Implicit measures infer mental contents from responses on performance-based tasks, thereby enabling capturing knowledge, 
thoughts and feelings that people are either unwilling or unable to report. Physiological measures are often used where access is 
needed to those aspects of cognition that are not directly observable or where there is a need to circumvent the requirement to provide 
an explicit evaluative judgment, e.g., in work with populations that cannot yet or can no longer express their opinion, due to (young/ 
old) age or ill health (be it physical or cognitive/mental). Building on the relation between language cognition and the nervous system, 
we have provided first evidence to suggest that Heart Rate Variability, a cardiovascular measure of autonomic nervous system activity, 
can be used as indicator of implicit linguistic knowledge. Departures from linguistic normality trigger a clear cardiovascular reaction, 
and thereby reveal linguistic knowledge on the part of the individual without the need for explicit articulation. This observation brings 
into focus a new dimension of the intricate relationship between physiology and cognition, suggesting that cognitive effort re
verberates through the physiological system in more ways than previously thought. Because HRV recordings can be made using 
portable and non-intrusive systems this approach offers possibilities for use in natural environments and with a wider range of 
populations than the standardly used instruments do. This, in turn, improves the ecological validity and representativity of the findings 
and makes the approach suitable for research on language in both clinical and non-clinical settings. 
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