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A B S T R A C T

Governments’ net zero emission target aims at increasing the share of renewable energy sources as well
as influencing the behaviours of consumers to support the cost-effective balancing of energy supply and
demand. These will be achieved by the advanced information and control infrastructures of smart grids
which allow the interoperability among various stakeholders. Under this circumstance, increasing number
of consumers produce, store, and consume energy, giving them a new role of prosumers. The integration of
prosumers and accommodation of incurred bidirectional flows of energy and information rely on two key
factors: flexible structures of energy markets and intelligent operations of power systems. The blockchain
and artificial intelligence (AI) are innovative technologies to fulfil these two factors, by which the blockchain
provides decentralised trading platforms for energy markets and the AI supports the optimal operational control
of power systems. This paper attempts to address how to incorporate the blockchain and AI in the smart grids
for facilitating prosumers to participate in energy markets. To achieve this objective, first, this paper reviews
how policy designs price carbon emissions caused by the fossil-fuel based generation so as to facilitate the
integration of prosumers with renewable energy sources. Second, the potential structures of energy markets
with the support of the blockchain technologies are discussed. Last, how to apply the AI for enhancing the
state monitoring and decision making during the operations of power systems is introduced.
. Introduction

The power systems represent around 40% of global carbon emis-
ions from the combustion of fossil fuels [1]. In efforts to meet the
argets of net zero power systems, policy makers formulate measures
or facilitating the integration of renewable energy sources (RESs) and
ncouraging changes in energy consumption behaviours. The smart
rids refer to an intelligent power network which cost-effectively in-
egrates information and control infrastructures to allow more reliable
nd efficient operations of power systems [2]. From the perspective
f information system infrastructure, the smart grids enable bidirec-
ional communications between stakeholders in power systems such
s the system operator, generators, and consumers, which facilitates
he optimal operation of generators and the active engagement of
onsumers [3]. From the control perspective, the interoperability of the
mart grids enables the optimal coordination of various entities such as
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generation units or loads, to cooperatively achieve the overall benefits
of power systems [4].

The regulatory supports and advances of smart grids enable con-
sumers to actively produce, consume, and store energy through using
distributed RESs, storage devices, and advanced metering infrastruc-
tures. The energy markets are transitioning to recognise and pro-
mote the emerging role of prosumers [5]. The prosumers are small
or medium sized energy users [6], e.g., residents, businesses, and
industries, who also generate energy on-site, and strategically exchange
energy with the utility grid or other prosumers to meet their own
demand or make profits from the energy arbitrage. The emerging role of
prosumers is expected to promote the demand side management (DSM)
and therefore reduce the dependency on the fossil-fuel based generation
with the long-distance transmission. Nevertheless, the involvement of
prosumers also brings the following challenges from the perspectives of
energy markets and power systems:
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Fig. 1. Conceptual graph of incorporating the blockchain and artificial intelligence in smart grids.
∙ The structures of current energy markets are not suitable to
accommodate the role of prosumers, since energy pricing schemes and
balancing mechanisms are independent of the behaviours of energy
exchange among prosumers [7,8].

∙ The information infrastructures of the current power systems
cannot handle the increasing information flows caused by the decision
making and transactions of large amounts of distributed prosumers [9].

∙ Given limited budgets for small or medium sized prosumers’ con-
trol systems, it is hard for them to exploit historical data for optimally
scheduling the generation and consumption according to their specific
energy patterns [10].

∙ It is challenging to accurately predict prosumption behaviours
given uncertainties caused by the intermittency of distributed RESs and
flexible demand [11].

Flexible structures of energy markets and intelligent operations of
power systems are two crucial factors for addressing these challenges.
These two factors can be fulfilled by recent scientific innovations on
the blockchain and artificial intelligence (AI). From the perspective of
the energy market, the blockchain provides the trading platform and
technical supports for decentralised energy markets which are open
and accessible to individual prosumers with the enhanced automation,
security, and privacy [12]. From the operational perspective, the AI
supports control systems to strategically make decisions for optimising
system operations and achieving certain goals [13], such as saving
electricity bills, improving generating profits, mitigating carbon emis-
sions, and predicting system uncertainties. The decisions are yielded
by intelligent controlling approaches, such as the optimisation, game
theory, and machine learning, which can take advantage of historical
data from power systems. The conceptual graph of incorporating the
blockchain and AI in smart grids with the prosumers’ integration is
presented in Fig. 1.

The review presented in this paper is inspired by the issue of how
the applications of blockchain and AI in smart grids could enable
the integration of prosumers to decarbonise power systems. The rest
of this paper is organised as follows: From the regulatory aspect,
Section 2 introduces how to trace carbon emissions and then impose
the carbon cost on fossil-fuel based generation while promote the
engagement of prosumers with the distributed RESs. From the aspect
of market structures, Section 3 identifies the potential structures of
energy markets when integrating the role of prosumers, and reviews the
research on blockchain implemented in decentralised energy trading.
From the operational aspect, Section 4 reviews the research on how the
AI supports the control and decision making of stakeholders in power
systems. Section 5 draws the conclusion of this paper.
2

2. Carbon emissions tracing and pricing

This section reviews approaches for carbon emissions tracing in
power systems as a foundation to inform the policy design, and then
discusses how international regulations and existing research price
carbon emissions from the fossil-fuel based energy generation.

2.1. Carbon emissions tracing in power systems

In the context of this review paper, the term of carbon emissions
refers to the carbon dioxide equivalent which is a metric to mea-
sure the emissions from various greenhouse sources by converting
the amounts of these sources to the equivalent amount of the carbon
dioxide according to their global warming potentials [14]. The carbon
emissions from power systems can be accounted by the carbon inten-
sities or carbon emission flows (CEFs). The carbon intensities quantify
the amount of carbon emissions per unit of energy generation by eval-
uating the carbon content of fossil fuels and generating efficiency [15].
The CEFs trace carbon emissions from generation when the power is
transmitted and consumed [16], which is crucial for fairly allocating
the responsibilities of carbon reduction and encouraging the demand
side engagement.

2.1.1. Carbon intensities
Evaluation of carbon intensities has been focused by a majority of

research [17–20]. The research in [18] investigated the relationship
between the dynamic carbon intensities and the levels of the part-
load operation of fossil-fuel based power stations using historical data
from power systems. The marginal generators, e.g., coal and gas, are
generators which respond to the changes of RESs outputs by operating
at the part-load state [18]. The part-load operation of the marginal
generators would reduce efficiencies, which consumes more fossil fuels
and raises the carbon intensities. To further investigate the impacts of
this part-load operation on the carbon emissions, researchers analysed
the historical data of all generation sources [17], marginal genera-
tors [19], and demand [21], through which three corresponding types
of emission factors were defined: the average emission factor, marginal
displacement factor, and marginal emission factor. The average emis-
sion factor quantifies the part-load impacts on the annual average
carbon emissions from all power generation sources; The marginal
displacement factor quantifies the part-load impacts on the carbon
emissions from generators operating at the margin; The marginal emis-
sion factor quantifies the part-load impacts on the carbon emissions
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from the marginal changes of the power demand. Moreover, to audit
the carbon emissions caused by the RESs, the long-term average carbon
intensities evaluated by the life-cycle carbon analysis [22] are used.

2.1.2. Carbon emission flows
To facilitate the demand side engagement for decarbonising power

systems, the responsibilities of carbon emissions from generators can
be shared by consumers and prosumers, since the consumption and
power import from the utility grid are the primary driver to the fossil-
fuel based generation. Sharing the responsibilities of carbon emissions
requires the information of how much carbon emissions are produced
by generators when transmitting and consuming per unit of energy.
This information can be obtained by analysing the topological struc-
tures and power flows of power networks using the CEFs. The CEFs
are virtual network flows concurrent with the power flows to analyse
the responsibilities of carbon emissions for every component of power
networks including transmission lines and loads [16]. The approach
of CEFs has been focused in the literature. The concept of CEFs was
initially created from international trades to audit carbon responsi-
bilities among countries. Ståhls et al. [23] analysed the international
carbon flows from a consumption-based perspective and identified the
portion of carbon emissions from industrial exports. Further research
implemented this concept into power systems to identify the carbon
emissions incurred by consumption behaviours. In [24], an approach
was developed for analysing the CEFs to determine the indirect carbon
emissions caused by consumption behaviours, by which the regional
variation of carbon emissions was identified. Kang et al. [25] quantified
the carbon emissions from the power delivery process by analysing
the operational characteristics and topological structures of power
networks.

2.2. Policy design for pricing carbon emissions

The carbon pricing is a market based policy to address carbon
emissions caused by the combustion of fossil fuels [26]. This policy
enforces the pollutant emitters to compensate the environmental dam-
age in a monetary manner, which increases the costs of using fossil
fuels and subsequently encourages the engagement of prosumers with
their distributed RESs. Two primary forms of carbon pricing are the
carbon tax and emissions trading scheme. By the end of 2019, the policy
of carbon pricing has been implemented in 46 countries, of which 25
countries adopt the carbon tax and 21 countries adopt the emissions
trading scheme [27].

2.2.1. Carbon tax
The carbon tax levies a fixed rate on carbon content of fossil

fuels [28]. This fixed rate is determined by the social cost of carbon
which quantifies the marginal damage costs of carbon emissions to the
society [29].

2.2.2. Emissions trading scheme
The emissions trading scheme, also known as the cap-and-trade

scheme, is an alternative form to the carbon tax. Under the emissions
trading scheme, the policy makers allocate a certain amount of car-
bon allowances for a given time period [30]. Carbon producers are
obliged to have an enough amount of carbon allowances covering the
amount of their carbon emissions. The surplus or deficiency of carbon
allowances can be traded among these carbon producers [31].

Nonetheless, an inappropriate carbon price determined by the emis-
sions trading scheme would inefficiently deliver the targets of carbon
reduction. If the carbon price lies below the social cost of carbon or
the rate at which the targets of carbon reduction can be achieved,
it would insufficiently stimulate the mitigation of carbon emissions;
If the carbon price in one region is higher than the carbon price in
another region, the market competitiveness of carbon producers in the
high-price region would be harmed. The carbon producers are prone to
3

discharging carbon emissions in the low-price region, while the total
amount of carbon emissions remains unchanged, which is defined as
the carbon leakage issue [32].

To overcome the issue of an inappropriate carbon price, the carbon
price floor and ceiling are implemented in current international carbon
markets by setting additional limits to carbon prices [33]. For the
case of the U.K. carbon market, since the carbon price of the E.U.
emissions trading scheme is lower than the social cost of carbon in
the U.K., the carbon price had failed to incentivise the U.K. coal-to-gas
transition before 2013 [34]. Afterwards, the U.K. has formulated the
carbon price floor as the lower bound of the carbon prices from the
E.U. emissions trading scheme. The U.S. has set a similar price floor
and facilitated the carbon auctions since 2009 [35]. In New Zealand, a
carbon price ceiling has been enacted by a fixed price option to prevent
high carbon prices and protect the market competitiveness of domestic
carbon producers [36].

The relationship between the emissions trading scheme and energy
markets is presented in Fig. 2. The emissions trading scheme is linked to
the energy markets through the carbon emissions and incurred carbon
cost of generation companies. As a key stakeholder in energy markets,
generation companies need to register an operator holding account in
order to participate in the carbon markets [37]. With this operator
holding account, generation companies can (1) receive free carbon al-
lowances from regulators if they are eligible, (2) bid carbon allowances
from the auction market held by regulators, (3) buy/sell carbon al-
lowances from/to other pollutant emitters with surplus/deficiency of
carbon allowances at the secondary market, and (4) prove to regulators
that their carbon allowances cover their reportable emissions.

Purchasing carbon allowances, i.e., carbon cost, is a part of op-
erational costs of generation companies, and the carbon cost varies
depending on the carbon intensities of different generation technologies
as

𝑐carbon
𝑛 = 𝜋carbon ⋅

∑

𝑔∈𝐺

[

𝑖𝑔,𝑛 ⋅
∑

𝑡∈𝑇

(

𝑝𝑔,𝑛,𝑡 ⋅ 𝛥𝑡
)

]

, (1)

where 𝑐carbon
𝑛 is the carbon cost of the generation company 𝑛, 𝜋carbon is

the carbon price determined at the auction or secondary markets with
the unit of GBP/ton, 𝑖𝑔,𝑛 is the carbon intensity of the power plant 𝑔
belonging to the generation company 𝑛 with the unit of ton/MWh, 𝐺 is
the index set of all power plants belonging to the generation company
𝑛, 𝑝𝑔,𝑛,𝑡 is the power output of the power plant 𝑔 belonging to the
generation company 𝑛 at the time step 𝑡 with the unit of MW, 𝑇 is the
index set of time steps, and 𝛥𝑡 is the time interval.

The life-cycle carbon intensities of different generation technologies
are compared in Table 1. It can be seen from the table that the carbon
intensities of fossil-fuel based generation technologies are higher than
those of RESs, and therefore the generation companies with fossil-fuel
based generation need to afford more carbon cost according to Eq. (1).
In the energy market, the carbon cost is further passed from generation
companies to consumers through wholesale energy markets and retail
energy markets (see Fig. 2), in the form of increased electricity bills.

The projection of the future UK carbon cost under the UK emissions
trading scheme is presented in Fig. 3, which includes four scenarios
of societal changes in achieving the 2050 net zero target identified by
the nationalgridESO future energy scenarios 2020 [40]. The scenario of
the steady progression indicates the slowest path to the decarbonisation
compared to other scenarios, under which the energy supply would
heavily rely on the natural gas and domestic heating, while there
will be slight increase of the home insulation and uptake of electric
vehicles. Due to the relatively low carbon cost, this scenario would
fail to achieve the net zero target by 2050. The scenario of the system
transformation indicates a significant transformation on the supply side
while slight changes on the consumers, whereas the scenario of the
consumer transformation indicates a significant level of consumers’ en-
gagement through the high penetration of low carbon heating sources,

electric vehicles, smart energy managements, and storage devices. Both
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Fig. 2. Relationship between the emissions trading scheme and energy markets.
Table 1
Comparison of life-cycle carbon intensities of different generation technologies.

Carbon intensity (ton/MWh) Coal Gas Biomass Solar PV Hydro Wind onshore Wind offshore Nuclear

IPCC [38] 0.820 0.490 0.230 0.048 0.024 0.011 0.012 0.012
UNECE [39] 1.000 0.430 – 0.037 0.011 0.012 0.013 0.005
Fig. 3. The projection of the future UK carbon cost under the UK emissions trading
scheme, which includes four scenarios of societal changes in achieving the 2050 net
zero target identified by the nationalgridESO future energy scenarios 2020 [40].

scenarios of the system transformation and consumer transformation
have the same trend of the carbon cost and will achieve the net
zero target by 2050. The scenario of the leading the way indicates the
most progressive path to the net zero target, by which different areas
will achieve decarbonisation in their earliest dates with the highest
consumers’ engagement, improvement of energy efficiency, and invest-
ment in low carbon technologies, and therefore this scenario yields the
highest carbon cost.

Given the link between the emissions trading scheme and energy
markets, separately designing the carbon and energy markets would
be inefficient. Recent research has highlighted the importance for
coupling the energy and carbon markets. Zhang et al. [41] integrated
the emissions trading scheme into the unit commitment problem of
electricity generators, enabling generation companies to trade energy
and carbon allowances simultaneously. Huang et al. [42] analysed how
the emission price, emission quality, and time related factors drive
energy generation companies to participate in the emissions trading
scheme. Researchers in [43] implemented the EU emissions trading
scheme to control the emissions from a group of micro-generators.

Since increasing numbers of prosumers participate in the peer-to-
peer energy trading and take the responsibilities of carbon reduction,
designing decentralised emissions trading scheme has drawn atten-
tions from recent research. Fawcett [44] reviewed the personal carbon
4

trading undertaken by the UK government in 2008 which assigns indi-
viduals a tradable carbon allowance to cover emissions from personal
energy consumption, and highlighted its importance for the individual
and social change in terms of carbon reduction. A peer-to-peer trading
framework was developed in [45] enabling prosumers to trade en-
ergy and carbon allowances together, in which a decentralised carbon
incentive was formulated targeting on specific energy behaviours of
prosumers to achieve the local energy balance and carbon reduc-
tion. Yan et al. [46] proposed a blockchain based transacting energy
and carbon allowance between microgrids and the distribution system
operator.

2.2.3. Comparison remark
As two well-established policy instruments, the carbon tax and

emissions trading scheme have following aspects in common:
∙ Both the carbon tax and emissions trading scheme impose a price

on carbon emissions for facilitating carbon producers to internalise the
cost of environmental damages.

∙ Instead of the command-and-control based policy that sets out and
enforces specific actions for carbon reduction, the market based policy
can flexibly incentivise carbon producers for strategically responding
to the carbon prices.

∙ Market based policy can generate public revenue through charging
the carbon tax or selling the carbon allowances. This revenue can be
further redistributed for investing in low carbon technologies such as
RESs and the carbon capture and storage, so as to achieve the carbon
revenue neutrality [47].

The differences between the carbon tax and emissions trading
scheme are as follows:

∙ The carbon tax gives a certainty to the price of carbon emissions
through a fixed tax rate, whereas the emissions trading scheme gives
a certainty to the quantity of carbon emissions through the fixed total
carbon allowances [48].

∙ The carbon tax is easier to be implemented since it is based
on the established tax systems. By contrast, the emissions trading
scheme is more flexible since it can embed financial innovations,
e.g., peer-to-peer trading and options.
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Table 2
Comparison for structures of decentralised energy markets with the integration of the role of prosumers.

Peer-to-peer trading markets Intermediary-based trading markets Microgrid-based trading markets

Structure Prosumer-centric Community-centric Prosumer to microgrid to utility grid (or islanded)
Control unit Prosumers Intermediary Prosumers

Objective Individual prosumers’ benefits Community’s benefits Profits for exporting (when connected to utility grid)
Community’s benefits (when islanded)

Pricing scheme Prosumers’ bidding/selling prices Intermediary’s bidding/selling prices Retail prices (when connected to utility grid)
Microgrid’s bidding/selling prices (when islanded)

Implementation RWE [49], Power Ledger [50] Stem [51], Energy and Meteo Systems [52] Asea Brown Boveri Ltd [53], LO3 Energy [54]
Advantage Fully decentralised Coordinated within the community Decentralised and coordinated within the microgrid
Disadvantage High burdens of information and control Centralised by the intermediary Difficulty of aligning individual prosumers’ profits

with microgrid benefits
Structure Least structured framework Moderate structured framework Most structured framework
difference
Common Flexible structures of decentralised energy markets which accommodate increasing burdens of information and control incurred by the engagement of

prosumers
2.3. Remark of research challenges

Although the carbon pricing has been implemented as practical reg-
ulations and investigated in the literature, there are still opportunities
to incorporate dynamic and decentralised policy measures targeting on
high-carbon generators and consumers. This is because the long-term
policy for overall power systems cannot specifically target on real-time
power profiles and incurred carbon emissions.

Furthermore, with the increasing engagement of prosumers into
local energy markets, tracing carbon emissions caused by individual
energy patterns presents a challenge. These energy patterns are re-
flected by how a prosumer responds to pricing incentives through
determining its on-site generation, consumption, and energy exchange.
Tracing prosumer-centric carbon emissions is particularly important
when assigning personal carbon allowances to individual prosumers.

3. Energy markets transition with prosumers’ integration

This section identifies the potential structures of decentralised en-
ergy markets with the integration of the role of prosumers, and then
reviews the research and innovations on how to exploit the blockchain
technologies including smart contracts for facilitating the decentralised
energy trading.

3.1. Potential structures of decentralised energy markets

A transition of energy markets towards decentralised generation
and consumption is crucial for the integration of the emerging role
of prosumers. The potential structures of such markets have been well
investigated [5] and three primary structures are identified: (1) peer-
o-peer trading markets, (2) intermediary-based trading markets, and
3) microgrid-based trading markets. These three structures of energy
arkets are based on the information and control infrastructures of

mart grids, and categorised by the functions of control units and asso-
iated manners of the information exchange. A schematic illustration of
hese three structures is presented in Fig. 4, where each dot represents
control unit and each interconnected line represents an information

low. The comparison of these three structures is presented in Table 2
ith details introduced as follows.

.1.1. Peer-to-peer trading markets
The peer-to-peer trading markets are structured as a completely

ecentralised framework [55], under which the energy and services,
.g., DSM, storage capacities, and carbon credits, can be directly traded
mong prosumers. In comparison to the other two market structures,
he peer-to-peer trading markets are the least structured framework.
nstead of using central authorities, e.g., aggregator, as a control unit,
ach individual prosumer becomes an independent unit to perform
ontrol functions and exchange information with each other [56]. The
ehaviours of prosumers are directly incentivised by their individual
5

bidding/selling prices. The role of the distribution system operator
remains as managing the trading platform and providing the power
distribution function [57]. Hence, this framework allows individual
prosumers to directly participate in energy markets while increases the
burdens of control and information flows.

As practical cases, the RWE [49] has developed the peer-to-peer
trading platforms integrating the functions of the decentralised gen-
eration control, grid management, communication, automation, and
security. The Power Ledger [50] provides a software based peer-to-peer
energy trading for 11,000 participants from residential and commercial
consumers in Australia.

3.1.2. Intermediary-based trading markets
The intermediary-based trading markets are more structured than

the peer-to-peer trading markets, under which an ensemble of pro-
sumers is organised as a community such as smart buildings and
virtual power plants. Each community is managed by an intermediary,
e.g., aggregators or retailers, as a control unit to perform control
functions and exchange information with each other. All generation
sources, loads, and storage capacities within a community are pooled
to collectively coordinate resources for local benefits. The intermediary
can earn bonus from regulators or utilities by providing prosumers with
services, e.g., the improvement of residential energy efficiency, DSM,
and setup of RESs.

An example of the intermediary is the Stem [51] which has designed
a platform to provide the storage service and DSM for consumers in
California through the real-time optimisation and automated control.
The company of Energy and Meteo Systems [52] in Germany has
established a virtual power plant via a digital control centre with the
services of the real-time data management, remote control of wind and
solar generation, energy scheduling, DSM, and balancing management.

3.1.3. Microgrid-based trading markets
The microgrid-based trading markets are the most structured frame-

work, under which prosumers connect to microgrids and microgrids can
either connect to utility grids or operate in an islanded mode [58].
Analogous to the peer-to-peer trading markets, each individual pro-
sumer is an independent control unit connecting to the microgrid
without the intermediary. When a microgrid connects to the utility
grid, prosumers can sell surplus generation to the utilities [5]. In this
case, prosumers would be incentivised to generate more energy for
earning profits. When a microgrid operates in an islanded mode, the
surplus generation can be stored within the microgrid or used for load
shifting services [59]. In this case, prosumers would be incentivised to
strategically schedule their generation and consumption for the local
energy balance.

As practical cases, the Asea Brown Boveri Ltd [53] provides mi-
crogrid solutions for customers to ensure the reliable, stable, and
affordable power supply. The LO3 Energy [54] has developed the
Brooklyn microgrid integrating 130 buildings to facilitate the DSM and

improve communication infrastructures.
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Fig. 4. Schematic illustration for structures of decentralised energy markets with the integration of the role of prosumers. Dots indicate the control units. Lines indicate the
information flows exchanged among these units. Under the peer-to-peer trading markets, prosumers interconnect with each other to trade energy and other services; Under the
intermediary-based trading markets, an ensemble of prosumers is organised by an intermediary to pool generation sources, flexible demand, and storage capacities for collective
control; Under the microgrid-based trading markets, prosumers connect to microgrids and microgrids either connect to the utility grid or operate in an islanded mode as indicated
by dashed lines.
3.2. Blockchain supporting decentralised energy trading

This subsection introduces the concepts, advantages and limitations
of blockchain technologies. The smart contracts which are the sec-
ond generation of the blockchain technologies and the most potential
application in the decentralised energy trading [60] are specifically
focused. The research and implementations on applying the blockchain
technologies in the decentralised energy trading are reviewed and
subsequently compared to the conventional centralised trading.

3.2.1. Blockchain technologies
Blockchain technologies [61], as one of the distributed ledger tech-

nologies, have the potential to establish a platform for the decentralised
energy trading. The blockchain can prevent the replay attack and
double spending attack [62] in energy markets, i.e., the same energy
is sold twice or the same digital currency is spent twice, through
accounting the ownership of these assets. The decentralised feature of
the blockchain enables a ledger to be held and verified by all energy
market participants [62]. Hence, the trading platform is open and
accessible for all prosumers, system operators, and market operators.
The disintermediating feature of the blockchain transits the role of
energy suppliers or aggregators to a neutral facilitator for encouraging
prosumers’ participation [63]. The encryption of the blockchain pro-
tects prosumers’ private information such as addresses, transactions,
and power profiles. The computational difficulty of block mining and
collective validation for reaching a consensus guarantee the security of
trading networks [64].

Nonetheless, due to the technical limitations of current blockchain
technologies and the conflicts with physical assets of power systems,
the application of blockchain technologies also brings challenges. First,
theoretically the blockchain networks allow the prosumers at anywhere
to trade energy with each other. However, this would violate the
physical restriction of power systems and cause higher power losses
over the long-distance transmission. How to ensure prosumers to trade
energy within their distribution networks presents a challenge. Second,
the throughput, i.e., transactions per second, of the blockchain is lower
than the existing trading technologies, whereas the latency, i.e., time
per verified transaction, of the blockchain is higher than the existing
trading technologies. For instance, the throughputs of the Ethereum,
Bitcoin, and Visa are 15 [65],7 [66], and 2000 [67] transactions per
second, respectively, whereas the latencies of them are 3 [68], 10 [69],
and 0.05 [70] min, respectively.
6

3.2.2. Smart contracts
Blockchain technologies have evolved from the first generation

of the Bitcoin and cryptocurrency to the second generation of the
Ethereum and smart contracts. In the field of the decentralised energy
trading, the most potential application of the blockchain technolo-
gies is the smart contracts. The smart contracts, coined by Szabo in
1994 [71], enable executable programs to be performed in a manner
of the self-enforcing settlement and setting out negotiation [72]. This
supports the automatic control and interoperability of the smart grids,
so as to reduce the burdens of handling information exchanges among
prosumers. A general form of the smart contracts is ‘If an event A
happens, the smart contracts pay the currency B, deposited by the buyer C,
to the seller D’ [73]. The replicable feature of this general form of the
smart contracts ensures standardised trading procedures with reduced
transactional costs, and also prevents unforeseen trading behaviours.
On the context of the energy trading, the event could be the supply of
energy or other services, e.g., the DSM, which is monitored by smart
meters of prosumers. The pay function is executed in a self-enforcing
manner. Hence, the trustworthiness of the energy trading is dependent
on the trustworthiness of smart meters and programs to be executed on
the smart contracts. Nevertheless, the interactions between the smart
contracts and smart meters or controllers require the design of new
communication protocols and interfacing domains.

3.2.3. Research and implementations
The blockchain and smart contracts applied in the power systems

control and decentralised energy trading are the subject of active
research and practical implementations. Thomas et al. [12] proposed a
general form of smart contracts for negotiation and controlling energy
transfer process between separated distribution networks. In [74], the
real-time power losses caused by energy trading in microgrids were
accounted by the blockchain, by which the prosumers were considered
as negotiators of energy trading and distributors were responsible for
computing losses. Li et al. [75] applied smart contracts into distributed
hybrid energy systems to facilitate the energy exchange among the end-
user. The DSM and uncertainties caused by the renewable generation
were considered into the designed framework of the peer-to-peer en-
ergy trading. Mihaylov et al. [76] designed a paradigm for the energy
trading with a virtual currency generated from the energy supply. Case
studies of this research testified that the designed currency incentivised
prosumers to achieve the demand response and energy balance. Saxena
et al. [77] proposed a blockchain based transactive energy system



Renewable and Sustainable Energy Reviews 161 (2022) 112308W. Hua et al.
Table 3
Comparison between the conventional centralised trading and blockchain based decentralised trading in energy markets.

Conventional centralised trading Blockchain based decentralised trading

Generators Large scale power plants Prosumers with distributed RESs
Pricing scheme Determined by wholesale or retail markets Prosumer-centric bidding/offering pricing
Contract type Idiosyncratic contracts [83] Standardised smart contracts
Settlement enforcement [72] Legal restriction Self-enforcement
Trustee [72] Third party Smart meters, smart contracts, and consensus
Advantage Centralised coordination and negotiable contracts Decentralisation, standardisation, and automation to prevent unforeseen

trading behaviours
Disadvantage Pricing and contract may not reflect individual Pricing may not reflect supply–demand balance in overall energy markets,

behaviours, and dependence on a third party and attacks to blockchain networks
Objective difference Designed for large-scale power plants Designed for prosumers
Common Incorporating pricing and regulatory mechanisms into energy markets to ensure the supply–demand balance and security of supply
to address the incentivising, contract auditability and enforcement of
the voltage regulation service. The smart contracts were used by this
research to enforce the validity of each transaction and automate the
negotiation and bidding processes. In [78], a transparent and safe en-
ergy trading algorithm executed on the Ethereum blockchain platform
was presented.

To enhance the carbon pricing scheme, blockchain technologies
have also been developed to trade the carbon allowances or allocate
the incentives for decarbonisation. Khaqqi et al. [79] customised the
trading of carbon allowances to industries using a reputation based
blockchain network by which the reputation signified participants’ per-
formances and commitments for the carbon reduction. Pan et al. [80]
implemented the blockchain into the trading of carbon credits to reduce
the entry threshold of carbon markets and improve the reliability of in-
formation exchange. Analogously, Richardson and Xu [81] proposed a
blockchain based emissions trading scheme to ensure the transparency,
tamper-resistance, and high liquidity. With respect to the application of
smart contracts, a distributed carbon ledger system fitted with existing
emissions trading schemes was designed in [82] to strengthen the
corporate carbon accounting systems.

3.2.4. Comparison between the centralised trading and blockchain based
decentralised trading

The difference between the conventional centralised trading and
blockchain based decentralised trading in energy markets is sum-
marised in Table 3, with detailed explanations as follows:

First, the primary generators in the conventional centralised trading
are large-scale fossil-fuel based power plants connecting to transmis-
sion networks, whereas the primary generators in the decentralised
trading are prosumers with distributed RESs connecting to distribution
networks.

Second, the pricing scheme in the conventional energy trading
reflects the supply–demand balance of overall energy markets. For
instance, the wholesale electricity prices are determined by the uniform
market clearing pricing or pay-as-bid pricing [84]. By contrast, the
prosumer-centric pricing scheme in the decentralised energy trading
can reflect individual supply–demand balance.

Third, the contracts for the conventional energy trading are idiosyn-
cratic [83], which means that the contents of contracts are negotiated
between generators, suppliers, system operators, market operators, and
policy makers. By contrast, the smart contracts formulate standard-
ised auction procedures for the decentralised energy trading, which
is replicable for all prosumers, which can prevent unforeseen trading
behaviours of prosumers

Fourth, the settlement of the centralised energy trading is enforced
by legal restrictions, which means that if the energy or other services
are not delivered, generators or suppliers would receive penalty af-
terwards. By contrast, the self-enforcing settlement of smart contracts
enables the violation of contracts to be prevented beforehand by query-
ing smart meters to ensure that the prosumers have enough capacities
to supply.

Fifth, the trustworthiness of the conventional energy trading relies
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on a third party, e.g., the auditing institutions or market operators,
Fig. 5. Average transaction fee for Bitcoin and Ethereum blockchain platforms [89].

whereas in the blockchain based decentralised energy trading, the
trustworthiness of prosumers relies on the consensus of blockchain
networks and the interface between smart contracts and smart meters.

3.3. Remark of research challenges

Although these innovative structures of energy markets and the
blockchain based decentralised energy trading can support the integra-
tion of prosumers, the transition of energy markets also raises a series
of challenges as follows:

First, when prosumers feed their distributed generation into the
utility grid, the issues on market operations, e.g., negative energy
prices [85], and grid operations, e.g., the voltage spike [86], power
imbalance [87], and harmonic distortion [88], would challenge the
control infrastructures and protocols of current power systems.

Second, for these decentralised energy markets without central
authorities, how to maintain the overall benefits of power systems,
e.g., the resilience and carbon mitigation, presents a challenge. This re-
quires sophisticated rulesets, incentive measures, and pricing schemes
to align individual prosumers’ behaviours with systems’ benefits.

Third, the transaction costs of the current blockchain platforms are
high compared to the conventional IT based trading systems. Fig. 5
shows the average transaction fee for two of the most prominent
blockchain platforms, i.e., Bitcoin and Ethereum. The high transac-
tion cost would pose a barrier for prosumers to participate in the
peer-to-peer energy trading.

4. Artificial intelligence supporting operations of power systems

The advanced metering infrastructures of smart grids produce a
substantial volume of useful data. This data could be exploited by the AI
to improve the situational awareness and operability of power systems.
This is particularly useful when small or medium sized prosumers
participate in the operations of power systems and make decisions in-
dependently, given limited budgets of their control systems. According
to the research [10], the cost of control solution at the household level
is on the order of 57 USD per year. In this section, the state-of-the-art
approaches of the AI applied in the operations of power systems are

reviewed.
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4.1. Analysing and optimising operations of power systems

This subsection introduces the approaches implemented to analyse
and optimise the operations of power systems. The game theory is
a collection of analytical tools for modelling the strategic decision
making and interactions among stakeholders in power systems. The
optimisation provides a solution to find optimal decisions for delivering
certain objectives. Additionally, uncertainties caused by the intermit-
tency of RESs and flexible demand would affect the accuracy of the
power systems modelling. This review also discusses the statistical
approaches for predicting these uncertainties.

4.1.1. Game theory
The Cournot and Stackelberg are two classic models for analysing

decision making of stakeholders. The Cournot model describes that
market players supply homogeneous products, and compete on the
amount of supplied products by making decisions independently and
simultaneously [90]. The Stackelberg model features a hierarchical
two-level or multi-level sequential decision making process [91]. For
the two-level decision making, the players are categorised into a leader-
level which makes decisions first and a follower-level which makes
subsequent decisions responding to the leader’s strategies. For the
multi-level decision making, after the first level of followers makes
responding decisions, they become a leader-level to make decisions
prioritising the decisions of the next level of followers. This pro-
cess continues until the last level of followers makes their responding
decisions.

4.1.2. Optimisation approaches
The optimisation approaches can be categorised as programming

techniques and heuristic algorithms. The programming techniques in-
clude the linear programming, integer linear programming, mixed in-
teger linear programming, and non-linear programming. The linear
programming refers to an optimisation problem in which all objective
functions and constraints are the linear functions of decision vari-
ables [92]. In the integer linear programming, only binary values
and integers can be used as decision variables [93]. In the mixed
integer linear programming, both integers and non-integers can be
used as decision variables [94]. The non-linear programming refers to
an optimisation problem in which at least one objective function or
constraint is the non-linear function of decision variables [95].

Although the non-linear programming problems can accurately
model the practical operations of power systems, it is difficult to
be solved by analytical approaches and ensure the global optimality.
To overcome this issue, further research has focused on the heuris-
tic algorithms. The heuristic algorithms can iteratively search over
the entire feasible space to guarantee the global optimal solutions,
including the particle swarm algorithm, genetic algorithm, artificial
immune algorithm, and other heuristic algorithms. The particle swarm
algorithm [96] optimises a problem by searching from solution set
consisting of particles, and moving particles within the searching space
according to predefined functions of particles’ position and velocity.
The movements of particles are determined by both the local best
known position and global best known position of the searching space.
A swarm of particles would ultimately move towards the best solution.
The genetic algorithm [97] is based on the Darwin’s theory of evolu-
tion, by which a population of candidate solutions to an optimisation
problem is randomly generated and defined as a generation. The
values of objective functions for every individual in the population
are evaluated and defined as the fitness. The highly fitted individuals
are selected and mutated to form a new generation. The population is
iteratively evolved towards the best solution. Analogous to the genetic
algorithm, for the artificial immune algorithm [98], a population of
candidate solutions to an optimisation problem is randomly generated
and defined as antigens. The values of objective functions for every
antigen in the population are evaluated and defined as the antibodies.
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The antigens are iteratively cloned towards the best solution.
4.1.3. Research and implementations
The game theory and optimisation have been well documented by

research on the power systems scheduling. The game-theoretic models,
players, solving approaches, advantages, challenges, differences, and
commons from the current research are summarised in Table 4. Belgana
et al. [99] developed a multi-leader and multi-follower Stackelberg
game-theoretic problem to find optimal strategies that could maximise
profits of utilities and minimise carbon emissions. The problem was
solved by a hybrid multiobjective evolutionary algorithm. The results
demonstrated a trade-off between emissions, profits, and bills, while
there was an opportunity to improve the searching mechanism of the
algorithm and consider power losses. Meng and Zeng [100] proposed a
1-leader, n-follower Stackelberg game to maximise the profits of retail-
ers at the leader-level and minimise the electricity bills of consumers at
the follower-level considering the real-time pricing scheme. The genetic
algorithm was used to solve the leader’s optimisation problem and
the linear programming was used to solve the follower’s optimisation
problem. This Stackelberg game yielded an efficient retail pricing to
incentivise the demand response of consumers, whereas the competitive
retail markets and imperfect information from consumers could be
extended by this model. Analogously, a Stackelberg game-theoretic
problem was proposed in [101] to model the interactions between the
policy maker and generators/consumers for decarbonising power sys-
tems, which was solved by the designed bi-level multiobjective immune
algorithm. This model could reduce carbon emissions and improve
social welfare for the GB energy system. However, how to reallocate
carbon revenue received from energy sector remained as a challenge.
Ghosh et al. [102] formulated a coupled constrained potential game
to set the energy exchange prices for maximising the amount of the
energy exchange among prosumers and reducing the consumption
from the utility grid. A distributed algorithm was proposed enabling
individual prosumers to optimise their own payoffs. This work could
be further extended to consider the non-linear price of prosumers and
uncertainties caused by RESs. The Cournot game was implemented
in [103] to model the competition between customers and utilities
in distribution networks for satisfying the system reliability. How to
facilitate the engagement of consumers into the reliability improvement
remained to be considered. Similarly, Zhang et al. [104] modelled the
local energy trading as a non-cooperative Cournot game to stimulate
the regional energy balance and promote the penetration of RESs, while
the transmission and intertemporal constraints could be considered to
improve the accuracy of the proposed model.

4.1.4. Analysis of uncertainties in power systems
It is crucial for individual prosumers and power systems to account

possible variations of uncertainties when modelling and optimising the
operations. Using a set of scenarios is a statistical approach to predict
these variations, by which each variation is defined as a scenario [105].
The uncertain scenarios are generated from the probabilistic distribu-
tions of historical data by using sampling approaches [106], such as
the Monte Carlo simulation [107,108], Latin hypercube sampling [109–
111] and stochastic analysis [112,113]. The typical literatures, uncer-
tain variables, advantages, challenges, differences, and commons are
summarised in Table 5. Santos et al. [107] implemented the Monte
Carlo simulation to generate scenarios of RESs and solved the system
optimisation problem under these scenarios using the deterministic ap-
proach. The proposed approach improved the computational efficiency
compared to stochastic approaches, while the responding measures to
the predicted uncertainties could be considered into the optimisation
problem. Similarly, Hemmati et al. [108] analysed the uncertainties
of RESs and load deviation by the Monte Carlo simulation, and incor-
porated the uncertainty analysis into the decision making process to
maximise the generating profits. The proposed approach helped system
operators make better decisions on the energy dispatch under these
uncertainties. However, the computational efficiency of the proposed

approach could be further improved.
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Table 4
Comparison of literatures on game-theoretic approaches in the field of power systems operation.

Literature Belgana et al. [99] Meng and Zeng [100] Hua et al. [101] Ghosh et al. [102] Mohammadi et al. [103] Zhang et al. [104]

Model Stackelberg Stackelberg Stackelberg Potential game Cournot Cournot
Player Microproducers and Retailer and consumers Policy maker, generators Utility and prosumers Customers and utilities Energy providers

consumers and consumers
Solution Hybrid multiobjective Genetic algorithm and Bi-level multiobjective Distributed algorithm Lagrangian function Optimal generation

evolutionary algorithm linear programming immune algorithm Distributed algorithm and KKT conditions plan algorithm
Advantage Trade-off between Efficient retail pricing Carbon reduction and Local energy balance Customer reliability Peak shifting

emissions, profits, and bills improving social welfare and peak reduction
Challenges Improving searching Considering competitive Addressing carbon Considering non-linear Facilitating consumers’ Including transmission

mechanism and considering market and imperfect revenue reallocation pricing and uncertainty engagement and intertemporal
power losses information constraints

Context Microgrids Retail market Whole power system Distribution network Distribution network Whole power system
difference
Common Implementing the game theory for modelling and analysing the decision making and interactions of stakeholders in the operation of power systems
Table 5
Comparison of literatures on scenarios approaches in the field of power systems operation.

Literature Santos et al. [107] Hemmati et al. [108] Preece et al. [109] Mavromatidis et al. [112] Huang et al. [113] Liang et al. [110] Xiao et al. [111]

Uncertain RESs RESs and load Intermittent Energy prices, carbon factors RESs and load Electric vehicle RESs and load
variables generation demand, and solar radiation behaviours
Advantage More efficient than Improved optimal Accurate prediction Accurate prediction Easy for Without pre-defined Remain typical

stochastic approaches energy dispatch with small samples application density functions scenarios
Challenge Including responding Reducing computing Considering online Including decision Determining Behaviours of mixed Scalability

measures time probabilistic analysis criteria probability degree electric vehicles
Approach Monte Carlo Monte Carlo Latin Hypercube Latin Hypercube Stochastic intervals Latin Hypercube Latin Hypercube
difference simulation simulation sampling sampling sampling sampling
Common Using statistical approaches to generate scenarios for predicting potential variations of uncertain variables
The Monte Carlo simulation would cause the issues of computa-
ionally intensive and inefficiency due to the high standard deviations
f samples caused by the randomly sampling. These issues can be
vercome by the Latin Hypercube sampling, since the space-filling of
he Latin Hypercube sampling would reduce the standard deviation of
amples. In [109], the Latin hypercube sampling was used to generate
ncertain scenarios of intermittent generation for overcoming those
ssues of the Monte Carlo simulation and considered the low-probable
onditions. The results yielded accurate predictions for uncertainties
ith small samples, whereas there was an opportunity to consider

he online probabilistic analysis. Mavromatidis et al. [112] proposed a
wo-stage stochastic programming combined with the Latin Hypercube
ampling to incorporate the uncertainties of the energy prices, emis-
ions factors, heating demand, electricity demand, and solar radiation
nto the scheduling of distribution systems. This study demonstrated
hat the designed stochastic method could yield a more accurate estima-
ion of these uncertainties than deterministic methods, while decision
riteria representing risk levels could be considered into the decision
aking process. Huang et al. [113] designed an economic dispatch
odel for virtual power plants, by which the uncertainties caused by

he RESs and flexible demand were described by the stochastic inter-
als. These intervals were subsequently integrated into the problem of
inimising costs. The results demonstrated the industrial applicability

f the proposed approach without the need to obtain the probabil-
ty density function. However, determining the probability degree for
ntervals remained a challenge.

Further research efforts have been dedicated to improving the pre-
icting accuracy and adaptability of scenarios. Liang et al. [110] pro-
osed a non-parametric kernel density estimation method to yield the
robability density distribution of uncertainties from the behaviours
f electric vehicles. The scenarios were generated from the probability
ensity distribution through using the Latin hypercube sampling. How-
ver, the probability behaviours of mixed energy patterns of electric
ehicles could be further investigated. To select the high-probable
cenarios, Xiao et al. [111] proposed an statistical approach to merge
cenarios with a minimum probability distance. The proposed approach
elected typical scenarios for accurate prediction of uncertainties, while
9

he scalability to other power networks remained a challenge.
4.2. Data-driven machine learning

The machine learning is capable of exploiting historical data to
capture typical features of actors in the operation of power systems,
and improving the scalability and computational efficiency from using
optimisation approaches.

4.2.1. Learning approaches
The learning approaches can be categorised as the supervised learn-

ing, unsupervised learning, and reinforcement learning. For the su-
pervised learning, the input is provided as a labelled dataset, such
that the model can learn from the labels to improve the learning
accuracy [114]. By contrast, for the unsupervised learning, there is
no labelled dataset, such that the model explores the hidden features
and predicts the output in a self-organising manner [115]. For the
reinforcement learning, the model learns to react to the environment
by self-adjusting through travelling from one state to another [116].

4.2.2. Research and implementations
Applying learning approaches in solving decision making problems

during the operations of power systems has been well studied in
literatures. The typical literatures, targeted issues, advantages, chal-
lenges, differences, and commons are summarised in Table 6. Zhang
et al. [117] developed an online learning approach to replace heuristic
algorithms for solving a cost minimisation problem under the uncer-
tain RESs and loads. The results demonstrated the improved solution
optimality and computational efficiency compared to heuristic algo-
rithms, while the location planning of RESs could be considered into
this problem. Mbuwir et al. [118] compared two approaches of the
reinforcement learning, i.e., the policy iteration and fitted Q-iteration,
in terms of scheduling the operation of the battery and heat pump in a
residential microgrid. The simulation results demonstrated that the pol-
icy iteration outperformed the fitted Q-iteration, and both approaches
outperformed the optimisation approach in terms of improving the
computational efficiency, whereas the future work could be extended to
consider the grid congestions and energy sharing. In [119], a Q-learning

algorithm was used as a reinforcement learning approach to minimise
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Table 6
Comparison of literatures on learning approaches in the field of power systems operation.

Literature Zhang et al. [117] Mbuwir et al. [118] Najafi et al. [119] Shafie-Khah et al. [120]

Targeted issue Replacing heuristic algorithms Extracting policy function and Q-function Extracting Q-function Extracting Q-function
Advantage Improved optimality and Improved computational efficiency Protected privacy and Cost minimisation and

computational efficiency cost minimisation load balance
Challenge Considering locational planning Solving grid congestions and energy Considering physical Facilitating consumers’

sharing constraints of V2G participation
Approach Online convex optimisation Reinforcement learning Reinforcement learning Reinforcement learning
difference

Literature Wen et al. [121] Ruelens et al. [122] Gasse et al. [123] Zhang et al. [124]

Targeted issue Extracting feature representations Extracting policy function Extracting policy function Extracting policy function
Advantage Flexible request of users Cost reduction Computational efficient Bill reduction
Challenge Avoiding synchronised demand Including exploration strategies Application on assisting other Considering load change

response heuristic algorithms
Approach Reinforcement learning Heuristic algorithm and Graph convolutional Optimisation and neural
difference reinforcement learning neural network network
Common Applying learning approaches in solving decision making problems during the operations of power systems
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the costs and protect the privacy when the EV owners exchange energy,
while the physical constraints for the vehicle-to-grid (V2G) could be
further considered. Analogously, Shafie-Khah et al. [120] designed
a Q-learning algorithm to optimally submit the bids of demand re-
sponse for the end-user. The numerical results proved that the proposed
model could reduce the costs of using electricity and improve the load
balance. However, how to facilitate the participation of consumers
to the scheme of demand response could be considered. An energy
management system was designed in [121] to provide demand response
services, by which the predefined model of consumers’ dissatisfaction
was replaced by the feature representations extracted through using
the reinforcement learning. The designed energy management system
enabled flexible requests from different users. However, how to avoid
a new peak caused by the synchronised demand response of a large
number of consumers remained a challenge. Ruelens et al. [122] com-
bined the heuristic algorithm with reinforcement learning to control
a cluster of loads and storage devices. The simulation demonstrated
the effectiveness on the cost reduction through using the proposed
algorithm, while the exploration strategies could be included to im-
prove the learning efficiency. Gasse et al. [123] proposed a learning
model for extracting the branch-and-bound variable selection policies
to solve the combinatorial optimisation problem, and testified that a
series of computational complex problems could be efficiently solved.
How to apply the proposed learning model for assisting other heuristic
algorithms could be further explored. Zhang et al. [124] integrated the
learning mechanism with optimisation techniques to obtain optimal
demand response policies. The designed controller could help con-
sumers reduce electricity bills with improved computational efficiency.
However, how to capture the load change between two set-points
remained a challenge.

4.3. Remark of practicalities, benefits, and challenges

This section remarks the extents for implementing the AI into
operations of power systems, and outlines the benefits and potential
challenges of such implementations.

4.3.1. Practical implementations
The extents of implementing the AI into operations of power systems

can be categorised into four levels as shown in Fig. 6. The first level,
i.e., responsive level, features the conventional operations of power
systems, in which the analytical AI assists the situational awareness,
fault detection, and restoration of power systems after receiving a
call of outages. The development of the deep AI and digitalisation of
power systems enable the transition towards the second level, i.e., pre-
dictive level, where more AI based analytics and decision supporting
tools are included to predict the real-time generation, demand, and
10

uncertainties, so as to maintain system performances, e.g., stability, a
capacity margin, and resilience. At the third level, i.e., prescriptive
level, a number of functions in the first two levels can be performed
automatically with the support of AI based software, so as to minimise
the disturbances and outages from the systematic perspective. At the
fourth level, i.e., autonomous level, full automation of system opera-
tions would be achieved in the future, where the wide area controlling
decisions and network optimisations could be delivered by an AI based
digital layer without the intervention of system operators, so that the
system can maintain the self-healing.

4.3.2. Benefits
The benefits of implementing the AI into the operations of power

systems are summarised as follows:
∙ Automation: The AI can automatically make optimal decisions

for generators (e.g., generation dispatch), power system operators
(e.g., state estimation, real-time control, energy balancing, and contin-
gency screening), consumers (e.g., smart load control).

∙ Computational efficiency: The AI can improve the computational
efficiency for the management of power systems, so as to achieve the
real-time reactive operations.

∙ Interoperability: The AI can assist the strategic coordination of
ctors in power systems, in achieving the overall system benefits.
∙ Scalability: The developed AI based models and software are scal-

ble for different scales of power systems from households, industries,
usinesses, to an entire region, since they only require the historical
ata to extract typical characteristics of these systems.
∙ Adaptability: The AI based management tools can dynamically

dapt the situations of power systems, which ensures the system re-
ilience under both the high-probable but low-impact issues, e.g., power
mbalance, and low-probable but high-impact issues, e.g., extreme
eather conditions.

.3.3. Challenges
There are two primary issues when implementing the AI to the

perations of power systems:
First, when the historical data is too less to train an accurate AI

odel, how to guarantee the model accuracy and avoid the issues of
ver/under fitting presents a challenge.

Second, how to ensure that controlling decisions yielded by the AI
odels align with the physical constraints of power systems presents

nother challenge.

. Conclusion

To investigate how to exploit the blockchain and AI for facilitating
he emerging role of prosumers to be integrated into smart grids and
ecarbonising the power systems, a comprehensive review from the

spects of the regulations, energy markets, and operations of power
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Fig. 6. Four extents of implementing the artificial intelligence into the operations of power systems.
systems is provided by this paper. This review particularly focuses on
the state-of-the-art research and applications of the blockchain and AI
in terms of supporting the decentralised energy trading and decision
making during the operations. From the regulatory perspective, the
vital barrier for facilitating the engagement of prosumers is the lack of
dynamic and decentralised policy measures. Overcoming this barrier
requires future research and practical regulatory design to identify
key responsibilities, assets, roles, and models for prosumers. From the
market perspective, the vital issue for accommodating the new role
of prosumers is to design appropriate local market structures so as to
align individual profits with system benefits, which requires the focus
on the rulesets, pricing, transactions, trading platforms, and auction
mechanisms. From the operational perspective, the vital issue is to
fit novel AI models into the physical operations and constraints of
power systems. This requires the transition towards a digitalised and
interoperable power systems with intensive interactions between the
digital layer and physical layer. Therefore, this review concludes that
by incorporating the blockchain and AI, the smart grids can support
the integration of prosumers with the functions of trading, control,
and policy. Nonetheless, this is achievable only if the vital issues and
barriers on the regulation, market, and operation are overcome.
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