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Abstract
Let A be a finite-dimensional algebra over an algebraically closed field. We use a functorial
approach involving torsion pairs to construct embeddings of endomorphism algebras of
basic projective A–modules P into those of the torsion submodules of P . As an application,
we show that blocks of both the classical and quantum Schur algebras S(2, r) and Sq(2, r)
in characteristic p > 0 are Morita equivalent as quasi-hereditary algebras to their Ringel
duals if they contain 2pk simple modules for some k.

Keywords Torsion pairs · Ringel duality · Schur algebras
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1 Introduction

The classical Schur algebras S(n, r) and their q-analogues Sq(n, r) are finite-dimensional
algebras which arise naturally in algebraic Lie theory. Viewing them as quasi-hereditary
algebras allows tools from the representation theory of finite-dimensional algebras to be
used in their study, which has led to new insight, including the discovery of tilting modules
in algebraic Lie theory.

The endomorphism algebra of a full tilting module T of a quasi-hereditary algebra
is again quasi-hereditary. It is called a Ringel dual of the quasi-hereditary algebra, and
is unique up to Morita equivalence (see [16]). In [10], the main result classifies when a
classical Schur algebra S(2, r) is Morita equivalent to its Ringel dual, as an algebra.
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In this paper, we study blocks of both classical and quantum Schur algebras from the
perspective of torsion pairs. More generally, for any finite-dimensional algebra A, we show
that under suitable conditions the endomorphism algebra of a basic projective A–module
P embeds into that of the torsion submodule of P . We apply this result to show that a
block of S(2, r) or Sq(2, r) with 2pk simple modules is Ringel self-dual. This proof has the
advantage of being functorial.

Along the way, we review and extend symmetry properties for decomposition numbers
for Schur algebras, as well as multiplicities of standard modules in tilting modules, provid-
ing block versions of these results. A recent theorem by Coulembier [2] shows that for a
quasi-hereditary algebra with a duality fixing simple modules, there is essentially a unique
quasi-hereditary structure. With this, we deduce that the blocks with 2pk simple modules
are in fact Ringel self-dual as quasi-hereditary algebras.

The paper is organized as follows: we start with torsion pairs and our result on embed-
dings of endomorphism algebras described above (Theorem 2.4). We then recall preliminary
material on quasi-hereditary algebras, and in Section 3 we discuss blocks of Sq(2, r)
and S(2, r). In Section 4 we prove a number of combinatorial identities on decomposi-
tion numbers and multiplicities for tilting modules, exhibiting symmetry properties in the
decomposition matrix and the corresponding matrix for tilting modules. In Section 5 we
apply the embedding to give a functorial proof that blocks of Schur algebras with 2pk simple
modules are Ringel self-dual as quasi-hereditary algebras.

2 Preliminaries

Throughout, let K be an algebraically closed field, and in Section 2 the characteristic of K

is arbitrary. All modules considered will be finite-dimensional. In Sections 2.1 and 2.2, A

is an arbitrary finite-dimensional K–algebra. We denote by A-mod the category of finite-
dimensional left A–modules.

2.1 Torsion Pairs

We follow the notation of [1, Chapter 4], and refer the reader also to [15, §4.1] for further
detail. Recall that a module M is generated by a module G if it is isomorphic to a quotient
of a direct sum of copies of G.

Definition 2.1 A torsion pair is a pair (G,F) of full subcategories of A-mod such that

F = {M ∈ A-mod | Hom(G,M) = 0} and G = {M ∈ A-mod | Hom(M,F) = 0}.

Modules in G (sometimes also T in the literature) and F are often referred to as torsion
and torsion-free modules respectively.

Proposition 2.2 [15, §4] Let G be a fixed projective A–module. Then (G,F) is a torsion
pair, where

• F := {M | Hom(G,M) = 0}, and
• G := {M | M is generated by G} = {M | topM ∈ add(topG)}.
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Torsion Pairs and Ringel Duality for Schur Algebras

Note here add(V ) denotes the full subcategory of A-mod consisting of modules which
are direct sums of direct summands of V , and topG = G/ radG refers to the top (or head)
of the module G, its largest semisimple quotient.

2.2 The Algebra Map

Let G be a (basic) projective A–module, so G = Ae for some idempotent e of A. Defining
module categories (G,F) as in Proposition 2.2 gives a torsion pair. Furthermore, we have
the additive functor

t : A-mod −→ A-mod, M �−→ AeM,

that is, t (M) = AeM is the largest submodule of M generated by G. For a homomorphism
θ : M → N , the map t (θ) is the restriction θ |t (M) : t (M) → t (N). The following says that
any module can be written uniquely as the extension of a torsion-free module by a torsion
module.

Proposition 2.3 [1, VI Proposition 1.5] For any A–module M , there is a short exact
sequence

0 → t (M) → M → ˜M → 0 (1)

where t (M) ∈ G is the largest submodule of M generated by G, and ˜M ∼= M/t(M) ∈ F .
It is unique up to isomorphism of short exact sequences.

Let {L(λ) | λ ∈ �} denote a complete set of pairwise non-isomorphic simple A–
modules, with corresponding indecomposable projective modules P(λ). When clear from
context, we write Lλ and Pλ for L(λ) and P(λ), and similarly omit other parentheses, to
ease the notation.

Theorem 2.4 Let e and t be defined as above. Suppose �′ is a subset of �. Assume that
for all λ ∈ �′ we have socP(λ) = Ae socP(λ). Then t : EndA(P ) → EndA(t (P )) is an
injective algebra homomorphism, where P = ⊕

λ∈�′ P(λ).

Note that the assumption on the socle implies that t (Pλ) is non-zero. Given an arbitrary
choice of G = Ae, one may take �′ to be the largest subset of � such that the socle
condition holds. Alternatively, we may start with a set �′ ⊂ � and then take e to be a
(smallest) basic idempotent such that the socle condition holds.

Proof of Theorem 2.4 That the map is an algebra homomorphism is clear. Let λ, μ ∈ �′.
We show that each component

tλμ : HomA(Pλ, Pμ) → HomA

(

t (Pλ), t (Pμ)
)

(2)

is injective. That is, for 0 �= θ ∈ HomA(Pλ, Pμ), we show that θ |t (Pλ) �= 0.
Since θ is non-zero, there is a simple submodule S ⊆ socP(μ) such that S ⊆ im θ (note

that the socle is semisimple). By the assumption, S = AeS and eS ⊆ S is non-zero. Hence
there is some 0 �= w′ ∈ im θ with w′ = ew for some w ∈ S. Say ew = θ(v) for some
v ∈ Pλ. Then 0 �= ew = e2w = e(θ(v)) = θ(ev), where ev ∈ AePλ = t (Pλ).
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We focus on the case �′ = �. If we choose G to be the full basic projective module
⊕

λ∈� P (λ) then the above theorem simply gives the identity map. However, choosing G to
be a different (basic) projective module gives us a non-trivial embedding of algebras. In our
main application, G is the direct sum of all indecomposable projective-injective modules in
a block of a Schur algebra where char(K) = p > 0, and an application of the combinatorial
results in the rest of the paper is the identification of the module t (P ) for this choice of
G. When there are 2pk simples in the block, Theorem 2.4 allows us to show that the basic
algebra of the Schur algebra embeds into its Ringel dual, from which we can deduce Ringel
self-duality of the block, in Section 5.1.

2.3 Quasi-Hereditary Algebras and Ringel Duality

Assume S is a finite-dimensional algebra over K and that (�,≤) is a poset labelling the
simple S–modules. For λ ∈ �, let L(λ) be the corresponding simple module, and let P(λ)

and Q(λ) be its projective cover and injective hull respectively. The standard module �(λ)

is defined to be the largest quotient of P(λ) such that all its composition factors are of the
form L(μ) with μ ≤ λ. Dually, one defines the costandard module ∇(λ). We will also
refer to λ as the highest weight of the modules just introduced. With these, the algebra S is
quasi-hereditary if for all λ ∈ �,

(i) the simple module L(λ) occurs only once as a composition factor of �(λ), and
(ii) the projective module P(λ) has a filtration with quotients isomorphic to �(μ) for

λ ≤ μ.

Recently, Coulembier showed that a finite-dimensional algebra with simple preserving
duality admits at most one quasi-hereditary structure [2, Theorem 2.1.1], which we will see
in Section 3.1 is the case for Schur algebras.

For a module M we write [M : L(λ)] for the multiplicity of L(λ) as a composition factor
of M . If M has a filtration whose quotients are standard modules then the multiplicity of
�(λ) in such a filtration is independent of the filtration (see for example [8, §A1 (7)]); we
denote this multiplicity by [M : �(λ)]. Similarly, if M has a filtration whose quotients are
costandard modules then we write [M : ∇(λ)] for the filtration multiplicity.

If the simple modules have 1-dimensional endomorphism algebras, which will hold in
our setting of Schur algebras from Section 3 onwards, then we have the following reciprocity
relation:

[P(λ) : �(μ)] = [∇(μ) : L(λ)] ∀ λ, μ ∈ �.

Let F (�) be the category of S–modules which have a filtration by standard modules,
and similarly define F (∇). For each λ ∈ � there is a unique indecomposable module in
F (�) ∩ F (∇) with highest weight λ, and we denote this module by T (λ). We have short
exact sequences

0 → �(λ) → T (λ) → X(λ) → 0 and 0 → Y (λ) → T (λ) → ∇(λ) → 0

where X(λ) ∈ F (�) has a standard filtration consisting only of quotients �(μ) where
μ ≤ λ, and similarly Y (λ) ∈ F (∇) has a costandard filtration consisting only of quotients
∇(μ) where μ ≤ λ.

Any direct sum of such indecomposable modules is called a tilting module. Let T be a
full tilting module, that is, each T (λ) occurs as a summand. Then the endomorphism algebra
of T is again quasi-hereditary with respect to (�, ≤op) [16]. This endomorphism algebra
is a Ringel dual S′ of S, and is unique up to Morita equivalence. Moreover, (S′)′ is Morita
equivalent to S.
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3 Schur Algebras S(2, r) and Sq(2, r)

In the remainder of this article, we consider classical Schur algebras S(2, r) and quantum
Schur algebras Sq(2, r) for q a fixed primitive �-th root of unity with � ≥ 2, over K of
characteristic p > 0. Where arguments for the classical and quantum cases are very similar,
we will illustrate only one in detail and describe how to obtain the analogous argument for
the other. In general, the characteristic p and the parameter � are unrelated, except that they
should be coprime in order for a primitive �-th root of unity q to exist.

3.1 The Algebras

We refer the reader to [6, 8, 12] for further background on Schur algebras. One construction
of Schur algebras is as follows: consider the bialgebra A(2), resp. Aq(2), with algebra gen-
erators cij , 1 ≤ i, j ≤ 2. These are graded with |cij | = 1, and can be written as the direct
sum

⊕

r≥0 A(2, r), resp.
⊕

r≥0 Aq(2, r), of subcoalgebras where A(2, r), resp. Aq(2, r),
is the component of degree r . Then S(2, r) = A(2, r)∗ and Sq(2, r) = Aq(2, r)∗, each an
algebra of dimension

(3+r
3

)

.
Let dq = c11c22 − c12c21 be the q-determinant. Then the localization of Aq(2) at dq is

a Hopf algebra, and Gq(2) is the quantum group whose coordinate algebra is equal to this
Hopf algebra. This is an appropriate setting for homological techniques analogous to those
for group representations to be applied.

The set� := �+(2, r) of partitions of r with at most two parts labels the simple modules
of both S(2, r) and Sq(2, r). For each λ ∈ �, there is a costandard module ∇(λ) with
simple socle L(λ). As in the classical case, a costandard module is also isomorphic to a
q-symmetric power of the natural module, up to tensoring with the q-determinant (see [5,
2.1.8]). There is also a contravariant duality (−)◦ fixing each simple module (see [8, p. 83]).
The standard module �(λ) is defined by �(λ) := ∇(λ)◦, and we note that T (λ)◦ ∼= T (λ)

and P(λ)◦ ∼= Q(λ).
These standard modules and costandard modules define a quasi-hereditary structure on

the algebras, and hence their blocks, in both the classical and quantum cases (see [7] and
[14]). The partial order is the dominance order of partitions.

3.2 Twisted Tensor Products and Short Exact Sequences

The notation for weights as used in [3] is as follows. Consider a restricted partition λ =
(λ1, λ2), i.e. a partition of the form

λ = (i + δ, δ), where δ = λ2 and i = λ1 − λ2

such that 0 ≤ i ≤ � − 1 and δ ≥ 0. Let ρ := (1, 0) and 	 := (1, 1). We focus on such
weights where 0 ≤ i ≤ � − 2. Define ī by i + ī = � − 2, and let

˜λ := īρ + (i − � + 1 + δ)	

When λ is restricted, note that �(λ) and �(˜λ) are simple. In fact, we may parametrise
weights λ by their difference i = λ1 − λ2 and˜λ will correspond to ī = � − 2 − i, as we
now describe, showing why these are particularly useful partitions to consider.

We may relate the algebras Sq(2, r) and Sq(2, r − 2) for r ≥ 2 as follows. Let ε = ξ(r)

(following the notation of [8, §4.2] ), a certain idempotent in S := Sq(2, r). There is an
isomorphism of algebras

S/SεS ∼= Sq(2, r − 2) (3)
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(see [8, §4.2 (18)], and for the classical case [9, 1.2]).
The inflation functor identifies the simples, standard and costandard, and tilting modules

of S with highest weights λ �= (r) in �+(2, r) with those with highest weight λ − 	 in
�+(2, r − 2). Iterating this allows us to ignore factors of the q-determinant, and therefore
in explicit calculations we will identify a weight μ = (μ1, μ2) with μ1 − μ2. Note that if
λ and μ are partitions of the same size, then λ ≥ μ in the dominance order if and only if
λ1 − λ2 ≥ μ1 − μ2.

There is a Frobenius morphism F : Gq(2) → G(2) [3, §1.3]. We also denote the clas-
sical Frobenius map G(2) → G(2) by F , and Gq(2) by G and G(2) = GL2(K) by Ḡ.
We recall from [4] short exact sequences and isomorphisms crucial for computing decom-
position numbers and filtration multiplicities (see also [11, §3]). We state these using our
convention on the labelling of weights, and write L̄, �̄, ∇̄, T̄ for the simple, standard,
costandard and tilting modules for the classical Schur algebra when it is useful to distin-
guish them from modules for the quantum Schur algebra. The tensor products below are
over the field K , that is, ⊗ = ⊗K throughout.

Note that we only interchange the order in tensor products between classical factors.
Within twisted tensor products where one factor is classical but the other is not, we always
have the twisted factor to the right, as in [3].

Proposition 3.1 [4, §3] Let n ∈ N. Let 0 ≤ i ≤ l − 2 and ī be such that i + ī = l − 2. Then
we have non-split short exact sequences

0 −→ �(ī) ⊗ �̄(n − 1)F −→ �(�n + i) −→ �(i) ⊗ �̄(n)F −→ 0 (4)

and

0 −→ �(�n + i) −→ T (� + i) ⊗ �̄(n − 1)F −→ �
(

�(n − 1) + ī
) −→ 0. (5)

Moreover, we also have isomorphisms

�(�n − 1) ∼= �(� − 1) ⊗ �̄(n − 1)F , (6)

T (�n − 1) ∼= T (� − 1) ⊗ T̄ (n − 1)F , (7)

T (�n + i) ∼= T (� + i) ⊗ T̄ (n − 1)F . (8)

We also have the analogous short exact sequences and isomorphisms for the corresponding
classical modules and 0 ≤ i ≤ p − 2, replacing each occurrence of � by p (see [10]).

Remark 3.2 Recall that the indecomposable tilting modules belong to F (�); the above
can be used inductively to determine their �-quotients. In particular, the sequence Eq. 5
immediately gives the �-quotients of T (� + i). Furthermore, by Eq. 5 and Eq. 7, the total
number �-quotients of an indecomposable tilting module is a power of 2, and hence so is
each diagonal Cartan number for the Ringel dual of a block of a Schur algebra.

It is also known precisely which standard modules are irreducible; the classical analogue
also holds, replacing � by p (see [10]).

Theorem 3.3 [3, Corollary 2.1.2] Let n ∈ N0. Then �(n) is irreducible if and only if
n ∈ {0, 1, . . . , l − 1} ∪ {�apk − 1 : a ∈ {2, 3, . . . , p}, k ∈ N0}.

There is also a q-analogue of Steinberg’s tensor product theorem [8, §3.2 (5)].
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The indecomposable tilting modules, as well as other twisted tensor products that we
will consider, have simple tops, by [10, Lemma 11] in the classical case and its q-analogue
which we state below. This may be proved using Frobenius kernels as in the classical case.

Lemma 3.4 Let V̄ be a module for Ḡ, and λ = �m + i where 0 ≤ i ≤ � − 2. Then

HomG(T (� + j) ⊗ V̄ F , L(λ)) ∼=
{

HomḠ

(

V̄ , L̄(m)
)

if i + j = � − 2,

0 otherwise.

3.3 Blocks

From now on, a block will always refer to a block of a Schur algebra, either classical or
quantum. A block will be viewed either as an algebra, or as the set of weights for its simple
modules; it will be clear from the context what is meant. For the rest of the article, unless
otherwise stated, we fix an integer a such that 2 ≤ a ≤ p. Let Bw denote a block with w

weights. (In other words, B is a block of size |B| = w, meaning that B contains exactly w

simple modules.) Our focus will be on blocks with apk weights where k ∈ N0, as later we
will show in Lemma 4.7 that blocks Bw with w not of form apk cannot be Ringel self-dual.

From [3, §4.2], a quantum block is primitive if no weight in it is congruent to −1 (mod
�). Thus, by Eq. 4, primitive blocks of Sq(2, r) are of the form

{s ≤ r | s = 2k� + i or s = (2k + 1)� + ī, k ∈ N0}
where 0 ≤ i ≤ � − 2 and i + ī = � − 2. The same holds for primitive classical blocks,
replacing � by p.

Moreover, any two classical blocks with the same number of simple modules are Morita
equivalent as quasi-hereditary algebras [10, Theorem 13], and using this combined with
[3, Proposition 4.2.4], so too are any classical block and imprimitive quantum block with the
same number of simple modules. By an analogous argument, two primitive quantum blocks
with the same number of simple modules are also Morita equivalent as quasi-hereditary
algebras, and so it will suffice for our main results to consider blocks B as only dependent
on their size, as well as to assume that B is primitive.

In order to prove results for B = Bapk , many of our arguments will involve induction
on k, and so it will be necessary to describe the above Morita equivalences explicitly as
the smaller blocks involved in the induction may themselves be imprimitive. Also intrinsic
to the combinatorial patterns found in decomposition numbers and tilting multiplicities is a
partitioning of Bapk into intervals of pk weights each. We describe these general features in
the following section.

3.4 Intervals

Consider the (quantum) primitive block B with lowest weight i where 0 ≤ i ≤ � − 2. (The
classical case is entirely analogous.) Write ī = � − 2 − i. Each weight of B is of the form
λ = �m + i∗ for some m ∈ N0 and i∗ ∈ {i, ī} depending on the parity of m. (Note that we
allow the possibility that p = 2 or � = 2, but of course these cannot occur at the same time
since q is a primitive �-th root of unity in K .)

Definition 3.5 For c ∈ {0, 1, . . . , p − 1} and k ∈ N0, define the pk-interval

I (k)
c := {λ = �m + i∗ ∈ B | cpk ≤ m < (c + 1)pk}.
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We remark that the above intervals should include an extra subscript i depending on the
lowest weight in the block, but we omit this to lighten the notation and interpret I

(k)
c to

depend on B itself. Letting B be a block such that |B| = apk , we observe that

B = I
(k)
0 � I

(k)
1 � . . . � I

(k)
a−1.

We now describe the different cases of blocks B that will appear in our inductive
arguments.

(i) If B is primitive, then its weights and intervals are as described above. We will with-
out loss of generality always assume that its lowest weight is i, for some 0 ≤ i ≤ �−2
(or 0 ≤ i ≤ p − 2 in the classical case).

(ii) In the inductive steps of our proofs, arbitrary classical blocks will occur, namely
when we apply inductive hypotheses on blocks or intervals of smaller size. For a
weight λ = �m + i∗ ∈ I

(k)
c , we have that m = cpk + m0 with 0 ≤ m0 ≤ pk − 1.

(a) If m0 �≡ −1 (mod p), then m lies in a primitive classical block Bapk−1 .
Namely, we can write m = p(cpk−1 + m′

0) + j for some 0 ≤ j ≤ p − 2,

and m belongs to the interval I (k−1)
c .

(b) If m0 ≡ −1 (mod p), then m lies in an imprimitive classical block. Suppose
that m ≡ −1 (mod pt ) but m �≡ −1 (mod pt+1) for some 1 ≤ t < k.
(Note that (a) corresponds to t = 0, while t = k would hold if and only if
m = (c + 1)pk − 1, in which case �̄(m) is simple.)

Then we can write m = (pt − 1) + pt (cpk−t + m1) where m1 �≡ −1
(mod p). Thus, m belongs to a block �̄(pt − 1) ⊗ B̄F t

which is Morita
equivalent to B̄ as quasi-hereditary algebras (see [10]), and B̄ is a primitive
block of size apk−1−t .

Moreover, m maps to cpk−t + m1 ∈ Ī
(k−1−t)
c ⊆ B̄. (Note the lowest

weight of B̄ is not necessarily equal to i nor ī.)

(iii) Take two (quantum) blocks B ′ and B ′′ which both have 0 ≤ i ≤ � − 2 as lowest
weight, and write �1, �2 for the weights of B ′, B ′′ respectively. If |�1| ≤ |�2|,
then �1 ⊆ �2, and every B ′–module can be viewed as a B ′′–module. Namely, B ′
is isomorphic to B ′′/B ′′eB ′′ as quasi-hereditary algebras, for some idempotent e,
which follows from iterating the isomorphism (3) and projecting onto blocks.

3.5 The Socle of�(λ)

In this section, let c ∈ {1, 2, . . . , p − 1} and k ∈ N0. Let B = Bapk be a (primitive) block
of a Schur algebra. For 0 ≤ i∗ ≤ � − 2, let ī∗ = � − 2− i∗, replacing � by p in the classical
case.

The socles of standard modules are simple: as remarked in Section 3.2, the top of T (λ) is
simple, so by the contravariant duality T (λ) ∼= T (λ)◦ we have that top T (λ) = soc T (λ) =
soc�(λ). The following gives an explicit description, and this will be an important input
when describing the symmetry of decomposition numbers later.

Definition 3.6 (a) [Classical weights] Suppose n = cpk + n0 and −1 ≤ n0 ≤ pk − 2.
Define

σ̄ (n) := cpk − 2 − n0.
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Note that if λ = pm + i∗ with 0 ≤ i∗ ≤ p − 2 and m = cpk + m0 with 0 ≤ m0 ≤
pk − 1, then

σ̄ (λ) = p(cpk − m0 − 1) + ī∗ = pσ̄ (m − 1) + ī∗.

(b) [Quantum weights] Suppose λ = �m + i∗ where 0 ≤ i∗ ≤ � − 2 and m = cpk + m0
with 0 ≤ m0 ≤ pk − 1. Define

σ(λ) = �(cpk − m0 − 1) + ī∗ = �σ̄ (m − 1) + ī∗.

The following is clear by Definition 3.6; we remark that the classical analogue also holds.

Lemma 3.7 The map σ gives an order-reversing bijection I
(k)
c → I

(k)
c−1 for all 1 ≤ c ≤

p − 1. In particular, every weight μ ∈ I
(k)
d for 0 ≤ d ≤ p − 2 is of the form μ = σ(λ) for

a unique λ ∈ I
(k)
d+1.

Lemma 3.8 [10, Lemma 3] Suppose n = cpk+n0 and−1 ≤ n0 ≤ pk−2. Then soc �̄(n) =
L̄(σ̄ (n)).

Lemma 3.9 (a) Suppose λ = pm + i∗ with 0 ≤ i∗ ≤ p − 2 and m = cpk + m0 with
0 ≤ m0 ≤ pk − 1. Then soc �̄(λ) = L̄(σ̄ λ).

(b) Suppose λ = �m+ i∗ where 0 ≤ i∗ ≤ �−2 and m = cpk +m0 with 0 ≤ m0+pk −1.
Then soc�(λ) = L(σλ).

Proof Part (a) follows from Lemma 3.8. For part (b), we have by Eq. 4 that the socle of
�(λ) equals that of �̄(m − 1)F ⊗ L(ī∗), which is L(�σ̄ (m − 1) + ī∗).

We make two more observations useful for our investigations into decomposition
numbers and tilting multiplicities later.

Lemma 3.10 Let ρ be the largest weight in I
(k)
c where 1 ≤ c ≤ a − 1. Then L(σρ) is the

unique composition factor of �(ρ) with highest weight in I
(k)
c−1.

Proof We have ρ = �s+i∗ with s = (c+1)pk −1. From Eq. 4, we have the exact sequence

0 → L(ī∗) ⊗ �̄(s − 1)F → �(ρ) → L(i∗) ⊗ �̄(s)F → 0.

The last term of the sequence is the simple module L(ρ), by Steinberg’s tensor product
theorem. Letting μt = (c+1)pt −2 for 0 ≤ t ≤ k, then the first term of the exact sequence
is L(ī∗) ⊗ �̄(μk)

F .
Moreover, for any t ≥ 1 the classical version of Eq. 4 gives the exact sequence

0 → �̄(μt−1)
F → �̄(μt ) → L̄(p − 2) ⊗ �̄((c + 1)pt−1 − 1)F → 0

where the last term is isomorphic to L̄(μt ). Furthermore, we have �̄(μ0) = L̄(c − 1). This
shows that the composition factors of �̄(μk) have highest weights

μk, pμk−1, p2μk−2, . . . , pkμ0.
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Therefore the composition factors of L(ī∗)⊗ �̄(s −1)F have highest weights �ptμk−t + ī∗
for 0 ≤ t ≤ k.

Now observe that ptμk−t = (c + 1)pk − 2pt = cpk + (pk − 2pt ), and pk − 2pt ≥ 0
if and only if t ≤ k − 1. Also, pkμ0 = pk(c − 1). Hence �ptμk−t + ī∗ belongs to I

(k)
c if

t ≤ k − 1, and to I
(k)
c−1 if t = k. This shows that σ(ρ) = �pkμ0 + ī∗ is the only highest

weight of a composition factor of �(ρ) which is in I
(k)
c−1.

Lemma 3.11 Let λ be in Bapk , and assume λ �∈ I
(k)
0 . Then T (λ) has precisely two �-

quotients if and only if λ is the smallest weight in I
(k)
c for some c ≥ 1.

Proof Let λ = �m + i∗. By Eq. 8, we have that T (λ) ∼= T (� + i∗) ⊗ T̄ (m − 1)F . By
Eq. 5, modules of the form T (�+ i∗)⊗ �̄(n)F each have two �-quotients. Thus if T (λ) has
precisely two �-quotients, then T̄ (m − 1) has precisely one �̄-quotient and so is simple.
Therefore m − 1 = cpk − 1 for some 1 ≤ c ≤ p − 1, and hence λ = �cpk + i∗ which is the
smallest weight in I

(k)
c . The converse is clear.

4 The DecompositionMatrix and the TiltingMatrix of a Block

Throughout Section 4, fix B a primitive block of a Schur algebra of size apk , where a ∈
{2, 3, . . . , p} and k ∈ N0. Let its lowest weight be i ∈ {0, 1, . . . , � − 2} and let ī∗ =
� − 2 − i∗, replacing � by p in the classical case. Let c ∈ {1, 2, . . . , a − 1}.

The decomposition matrix of B is defined to be the apk ×apk matrix indexed by weights
λ, μ ∈ B whose (λ, μ)-entry is the decomposition number [�(λ) : L(μ)]. Here we order
the weights λ, μ by the natural order on integers. By the tilting matrix of B, we mean the
apk × apk matrix indexed in the same way whose (λ, μ)-entry is [T (λ) : �(μ)]. We refer
to these quantities as tilting multiplicities.

While the classical decomposition numbers [�̄(λ) : L̄(μ)] are known in terms of the
p-adic expansions of λ and μ (see [13, Theorem 2.1]), their values can be calculated by
straightforward induction on the short exact sequences and isomorphisms introduced in
Section 3.2. The same is true of the tilting multiplicities (see [10, Lemma 6] and [8, §3.4
(3)]), but we remark that in proving the following propositions we do not need to use the
explicit formulas: it will turn out to be natural to prove these combinatorial patterns by
induction using only Eqs. 4–8, which is the approach we take.

We illustrate these patterns for p = 5 in Figs. 1 and 2 below. In both figures, the part
of the matrix shown corresponds to those rows and columns indexed by I

(2)
0 , and the five

subdivisions indicate the intervals I
(1)
0 , . . . , I

(1)
4 . As evident in these figures, we remark that

[�(λ) : L(μ)] and [T (λ) : �(μ)] ∈ {0, 1}.
We give an example of such inductive arguments using the short exact sequences in the

proof of the following result.

Lemma 4.1 Let ρ ∈ I
(k)
c and γ ∈ B. If [�(ρ) : L(γ )] > 0, then γ ∈ I

(k)
c−1 � I

(k)
c .

Proof We proceed by induction on k. When k = 0, the claim follows immediately from
Eq. 4 and Theorem 3.3 since c ≥ 1. Now suppose k ≥ 1. For the inductive step, suppose
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Fig. 1 Decomposition matrix for p = 5. The (m, n)-entry denotes [�(λ) : L(μ)] where λ = �m + i∗1 ,
μ = �n + i∗2 in the quantum case, or [�̄(λ) : L̄(μ)] where λ = pm + i∗1 , μ = pn + i∗2 in the classical case

Fig. 2 Tilting matrix for p = 5. The (m, n)-entry denotes [T (λ) : �(μ)] where λ = �m + i∗1 , μ = �n + i∗2
in the quantum case, or [T̄ (λ) : �̄(μ)] where λ = pm + i∗1 , μ = pn + i∗2 in the classical case
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ρ = �n + i∗ ∈ I
(k)
c , so cpk ≤ n < (c + 1)pk . By Eq. 4, the composition factors of �(ρ)

are precisely those of �̄(n − 1)F ⊗ L(ī∗) and �̄(n)F ⊗ L(i∗), namely

L(�u + ī∗) s.t. [�̄(n − 1) : L̄(u)] > 0, and
L(�v + i∗) s.t. [�̄(n) : L̄(v)] > 0.

First consider L(�v + i∗). If n �= (c + 1)pk − 1, then as described in Section 3.4 (ii),
n = pt −1+pt (n1+cpk−t ) for some 0 ≤ t < k with n1+cpk−t ∈ Ī

(x)
c where x = k−1−t .

By the inductive hypothesis, [�̄(n) : L̄(v)] > 0 implies that v = pt − 1 + ptw for some
w ∈ Ī

(x)
c−1 � Ī

(x)
c . Hence �v + i∗ ∈ I

(k)
c−1 � I

(k)
c as (c − 1)pk ≤ v < (c + 1)pk .

If n = (c + 1)pk − 1 then σ̄ (n) = n, so �̄(n) is simple by Lemma 3.9. Thus [�̄(n) :
L̄(v)] > 0 implies v = n, and so �v + i∗ = ρ ∈ I

(k)
c .

Now consider L(�u + ī∗). If n �= cpk then �(n − 1) + ī∗ ∈ I
(k)
c is not the maximal

weight in this interval, so by a similar argument to the above, [�̄(n−1) : L̄(u)] > 0 implies
�u+ī∗ ∈ I

(k)
c−1�I

(k)
c . If n = cpk , then σ̄ (n−1) = n−1, so �̄(n−1) is simple by Lemma 3.9.

Thus [�̄(n−1) : L̄(u)] > 0 implies u = n−1, and so �u+ ī∗ = �(cpk −1)+ ī∗ ∈ I
(k)
c−1.

We now proceed with the main results of this section, which relate the decomposition
numbers of B to the tilting multiplicities of B.

Proposition 4.2 Assume λ ∈ I
(k)
c . Let ρ be a weight in B. Then

[T (λ) : �(ρ)] = [�(ρ) : L(σλ)].

The proof of the proposition is postponed to Section 4.2. We first describe some
properties of decomposition numbers and tilting multiplicities that we can deduce from this.

Remark 4.3 (a) If this multiplicity is positive, then σλ ≤ ρ ≤ λ.
(b) Moreover, Proposition 4.2 shows that the column of the decomposition matrix corre-

sponding to L(σλ) is the same as the row in the tilting matrix corresponding to T (λ).
In particular, the number of non-zero entries in the column for L(σλ) is a power of 2,
since it is the total number of �-quotients of T (λ).

Corollary 4.4 If λ ∈ I
(k)
c , then T (λ) ∼= P(σλ), the indecomposable projective B–module

with simple top L(σλ).

Proof Note top T (λ) = soc�(λ) = L(σλ), so there exists a surjective map π : P(σλ) →
T (λ). But [�(ρ) : L(σλ)] = [P(σλ) : �(ρ)] by reciprocity, so P(σλ) and T (λ) have the
same �-quotients by Proposition 4.2. Hence π is an isomorphism.

This corollary shows that P(μ) has simple socle L(μ) whenever μ ∈ B \ Ia−1. Namely,
if μ ∈ Id with 0 ≤ d ≤ a − 1, then μ = σλ for λ in Id+1, and notice T (λ) has simple socle
and top isomorphic to that of �(λ), which is L(σλ) by Lemma 3.9.

Proposition 4.5 Let μ ∈ I
(k)
c−1 and let λ, ρ ∈ I

(k)
c . Then

(a) [�(ρ) : L(μ)] = [�(σρ) : L(μ)], and
(b) [T (σλ) : �(σρ)] = [�(ρ) : L(λ)].
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Remark 4.6 Proposition 4.5(a) shows that the entries in the column corresponding to L(μ)

in the decomposition matrix are symmetric about the horizontal line between I
(k)
c−1 and I

(k)
c

(see Fig. 1, for example). Proposition 4.5(b) shows that σ is a bijection from the part of the
decomposition matrix indexed by weights in I

(k)
c to the part of the tilting matrix indexed by

weights in I
(k)
c−1 (see Figs. 1 and 2).

The proof of Proposition 4.5 is postponed to Section 4.3. We first use the results intro-
duced thus far to show that blocks B with |B| not of the form apk always have at least one
diagonal Cartan number which is not a power of 2. By Remark 3.2, such a block therefore
cannot be Ringel self-dual, as each diagonal Cartan number for the Ringel dual of a block
is a power of 2.

Lemma 4.7 Assume B̂ is a block with |B̂| = apk + s where k > 0 and 1 ≤ s < pk . Then
some diagonal Cartan number of B̂ is not a power of 2.

Proof Observe that Bapk ⊂ B̂ ⊂ ˜B where ˜B = B(a+1)pk if a < p, and ˜B = B2pk+1

otherwise.
Let λ ∈ ˜B be the smallest weight which is not in B̂. Note that λ ∈ I

(k)
a (respectively

λ ∈ I
(k+1)
1 ). Then μ := σλ ∈ I

(k)
a−1 (respectively ∈ I

(k+1)
0 ) and hence μ ∈ B̂. We claim that

the diagonal Cartan number cμ,μ = [P(μ) : L(μ)] corresponding to the weight μ ∈ B̂ is
not a power of 2.

By Remark 4.3, in the decomposition matrix of ˜B in the column corresponding to L(μ),
all entries equal to 1 lie between the rows indexed by μ and λ, and the total number of 1s is a
power of 2, say 2t . It follows that in the decomposition matrix of B̂, the number of 1s in the
column corresponding toL(μ) it 2t −1, since soc�(λ) = L(σλ) and so [�(λ) : L(μ)] = 1.

Assume that all diagonal Cartan numbers of B̂ are powers of 2, and so that 2t − 1 is
a power of 2. Thus t = 1. From Proposition 4.2, [�(ρ) : L(σλ)] = [T (λ) : �(ρ)]
for all ρ ∈ ˜B, hence T (λ) has precisely two �-quotients. By Lemma 3.11, λ must
be the smallest weight in I

(k)
a (respectively I

(k+1)
1 ). But this implies that B̂ = Bapk , a

contradiction.

For the proofs of Propositions 4.2 and 4.5, we present the arguments for a quantum block;
for classical blocks it is the same, replacing � by p. We proceed by induction on k, starting
with k = 0.

4.1 The Block B of Size a ≤ p

We consider the case k = 0 of Propositions 4.2 and 4.5.
The weights in B are {i, � + ī, 2� + i, . . . , (a − 1)� + i∗}, where i∗ = i or ī depending

on the parity of a. The decomposition matrix of B is the top left a × a submatrix of the
following p × p matrix

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0

...
...

0 . . . 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

423



K. Erdmann, S. Law

and the tilting matrix has the same form. We observe that Propositions 4.2 and 4.5 clearly
hold when k = 0, since:

• I
(0)
c = {�c + i∗}, where i∗ depends on the parity of c; and

• for c ≥ 1, we have that σ(�c + i∗) = �(c − 1) + ī∗.

4.2 Proof of Proposition 4.2

We now present the inductive step of the proof of Proposition 4.2: let k ≥ 1 and assume that
Proposition 4.2 is true for all x such that 0 ≤ x < k. (In fact, we only need the inductive
hypothesis for classical blocks.) We want to prove

[�(ρ) : L(σλ)] = [T (λ) : �(ρ)]
for all λ = �m + i∗ ∈ I

(k)
c with cpk ≤ m < (c + 1)pk , and all ρ ∈ B.

Proof Suppose λ = �m + i∗ with m = cpk + m0 and 0 ≤ m0 ≤ pk − 1. By Definition 3.6,
we have that

σλ = �(cpk − m0 − 1) + ī∗ = �σ̄ (m − 1) + ī∗.
By Eq. 8, T (λ) ∼= T (� + i∗) ⊗ T̄ (m − 1)F , which has a filtration with quotients given by
T (� + i∗) ⊗ �̄(u)F where �̄(u) runs over the quotients of a �̄-filtration of T̄ (m − 1). By
Eq. 5, T (� + i∗) ⊗ �̄(u)F has �-quotients �

(

�(u + 1) + i∗
)

and �(�u + ī∗).
Write ρ ∈ B as ρ ∈ {�(v + 1) + i∗, �v + ī∗} for some v. Then

[T (λ) : �(ρ)] = [T̄ (m − 1) : �̄(u)]
= [�̄(v) : L̄

(

σ̄ (m − 1)
)]

= [�̄(v)F ⊗ L(ī∗) : L̄
(

σ̄ (m − 1)
)F ⊗ L(ī∗)]

= [�(ρ) : L(σλ)],
where the second equality follows from the inductive hypothesis, and the final equality
follows from Eq. 4 and observing that L(σλ) = L̄

(

σ̄ (m − 1)
)F ⊗ L(ī∗).

4.3 Proof of Proposition 4.5

We now present the inductive step of the proof of Proposition 4.5: let k ≥ 1 and assume that
Proposition 4.5 is true for x such that 0 ≤ x < k. Let μ ∈ I

(k)
c−1.

(a) We want to prove

[�(ρ) : L(σλ)] = [�(σρ) : L(σλ)]
for all ρ ∈ I

(k)
c and μ ∈ I

(k)
c−1.

Proof Wemay assume without loss of generality thatμ = �m+i wherem = (c−1)pk+m0
and 0 ≤ m0 ≤ pk − 1 (the argument is identical if μ = �m + ī). Let ρ = �s + i∗ where
i∗ ∈ {i, ī} and s = cpk + s0 for some 0 ≤ s0 ≤ pk − 1.

First suppose that ρ is the largest weight in I
(k)
c , that is, s0 = pk − 1. Then σρ is the

smallest weight in I
(k)
c−1. Hence

[�(σρ) : L(μ)] =
{

1 if σρ = μ,

0 otherwise.
1

By Lemma 3.10, this is equal to [�(ρ) : L(μ)].
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From now on, we may assume s0 < pk − 1. We have L(μ) ∼= L̄(m)F ⊗ L(i) by
Steinberg’s tensor product theorem. By Eq. 4, �(ρ) has a filtration with quotients �̄(s)F ⊗
L(i∗) and �̄(s − 1)F ⊗ L(ī∗). Hence

[�(ρ) : L(μ)] =
{

[�̄(s) : L̄(m)] if i∗ = i,

[�̄(s − 1) : L̄(m)] if i∗ = ī.

When i �≡ ī (mod �), this follows from Steinberg and considering the residues modulo �

of the highest weights involved. If i ≡ ī (mod �), then we take [�̄(s) : L̄(m)] if m and s

have the same parity, and [�̄(s − 1) : L̄(m)] otherwise, since weights in the same block
must have the same parity. A similar remark applies in all cases below where cases arise
depending on i or ī, and henceforth we will not distinguish whether i ≡ ī or i �≡ ī (mod �).

On the other hand, we have σρ = �(cpk − s0 − 1) + ī∗. Observing that cpk − s0 − 1 =
σ̄ (s − 1) and that cpk − s0 − 2 = σ̄ (s) as s0 < pk − 1, we similarly have that

[�(σρ) : L(μ)] =
{

[�̄(

σ̄ (s − 1)
) : L̄(m)] if ī∗ = i,

[�̄(σ̄ s) : L̄(m)] if ī∗ = ī.

The inductive hypothesis now directly implies our claim.

(b) We want to prove

[T (σλ) : �(σρ)] = [�(ρ) : L(λ)]
for all λ, ρ ∈ I

(k)
c . We may without loss of generality assume that λ = �m+ i; the argument

for λ = �m + ī is identical.

Proof First assume that λ is the largest weight in I
(k)
c . That is, λ = �m + i where m =

cpk + pk − 1. Since ρ ≤ λ, we have that

[�(ρ) : L(λ)] =
{

1 if ρ = λ,

0 otherwise.

By Lemma 3.7, σλ is the smallest weight in I
(k)
c−1 and σλ ≤ σρ. Thus

[T (σλ) : �(σρ)] =
{

1 if ρ = λ,

0 otherwise.

The claim follows.
From now on, we may assume that λ is not the largest weight in I

(k)
c . That is, λ = �m+ i

where m = cpk + m0 with 0 ≤ m0 ≤ pk − 2. Let ρ = �s + i∗ where i∗ ∈ {i, ī} and
s = cpk + s0 for some 0 ≤ s0 ≤ pk − 1.

We have that L(λ) ∼= L̄(m)F ⊗ L(i), and by a similar argument to part (a) using Eq. 4,

[�(ρ) : L(λ)] =
{

[�̄(s) : L̄(m)] if i∗ = i,

[�̄(s − 1) : L̄(m)] if i∗ = ī.
(9)

On the other hand, σλ = �σ̄ (m − 1) + ī, and since −1 ≤ m0 − 1 ≤ pk − 2 we have that
σ̄ (m − 1) = cpk − m0 − 1. As c ≥ 1 and m0 ≤ pk − 2, we have σ̄ (m − 1) ≥ 1 and so
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T (σλ) ∼= T (� + ī) ⊗ T̄ (cpk − m0 − 2)F by Eq. 8. Furthermore, m0 ≤ pk − 2 implies
σ̄ (m) = cpk −m0 − 2, and hence T (σλ) ∼= T (�+ ī)⊗ T̄ (σ̄m)F . By Eq. 5, the �-quotients
of T (σλ) are precisely �

(

�(u + 1) + ī
)

and �(�u + i) as �̄(u) varies over the �̄-quotients
of T̄ (σ̄m). Hence

[T (σλ) : �(σρ)] =
{

[T̄ (σ̄m) : �̄
(

σ̄ (s − 1) − 1
)] if i∗ = i,

[T̄ (σ̄m) : �̄
(

σ̄ (s − 1)
)] if i∗ = ī.

(10)

If either i∗ = i but ρ is not maximal (i.e. s0 < pk − 1) so that σ̄ (s) = cpk − s0 − 2 =
σ̄ (s − 1) − 1, or i∗ = ī, then the claim follows from the inductive hypothesis combined
with Eqs. 9 and 10.

Finally, suppose i∗ = i and ρ is maximal (i.e. s0 = pk − 1). In particular, σ̄ (s) = s so
�̄(s) is simple by Lemma 3.8. Since ρ �= λ, we have m �= s and so [�̄(s) : L̄(m)] = 0.
By Eq. 9, this implies [�(ρ) : L(λ)] = 0. On the other hand, Eq. 10 gives [T (σλ) :
�(σρ)] = [T̄ (σ̄m) : �̄(n)] where n := σ̄ (s − 1) − 1 = (c − 1)pk − 1. Observe that
σ̄ (n) = n, so �̄(n) is simple. However, σ̄ (m) �= n, so [T̄ (σ̄m) : �̄(n)] = 0. Therefore
[�(ρ) : L(λ)] = [T (σλ) : �(σρ)] = 0 as desired.

4.4 Relating Projectives and TiltingModules

Recall for μ ∈ I
(k)
d with 0 ≤ d < a − 1 that we have P(μ) ∼= T (λ) by Corollary 4.4, where

μ = σ(λ) and λ = I
(k)
d+1. In particular, such an indecomposable projective B–module P(μ)

has a twisted tensor product factorisation by Eq. 8, since T (λ) ∼= T (� + i) ⊗ T̄ (m − 1)F if
λ = �m + i. We now consider P(μ) where μ ∈ I

(k)
a−1.

As usual, we proceed by induction on k. We will need to keep track of which block our
projective modules come from, since the projective cover of a fixed simple module L(μ)

may change when L(μ) is viewed as a Bw–module for different values of w. Thus we will
write Pw(μ) for the projective cover of L(μ) in the block Bw . (Indeed, we may also observe
from reciprocity [P(μ) : �(λ)] = [�(λ) : L(μ)] that the number of �-quotients of Pw′(μ)

may be larger than that of Pw(μ) if w′ > w.)

Definition 4.8 Suppose λ ∈ I
(k)
c and λ is not the largest weight in this interval. Then

λ = �m + i∗ for some cpk ≤ m < (c + 1)pk − 1. Since m �= (c + 1)pk − 1, there exists
t ∈ {0, 1, . . . , k − 1} such that m ≡ −1 (mod pt ) but m �≡ −1 (mod pt+1). As described in
Section 3.4 (ii), we may write m = (pt − 1) + pt (cpk−t + m1) ∈ �̄(pt − 1) ⊗ B̄F t

where
B̄ is a primitive block of size apk−1−t , and m corresponds to cpk−t + m1 ∈ Ī

(k−1−t)
c . Let

x = k − 1 − t and note that x ∈ {0, 1, . . . , k − 1}. We write

m ∈ Ī (x)
c

to denote that λ and m have the above form.

Lemma 4.9 Suppose λ ∈ I
(k)
c and λ is not the largest weight in this interval. Let λ =

�m + i∗ with m ∈ Ī
(x)
c . If ρ ∈ I

(k)
c is such that [�(ρ) : L(λ)] �= 0, then �(ρ) occurs as a

quotient in a �-filtration of

T (� + ī∗) ⊗ P̄(c+1)px (m)F .
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Proof We remark that T (� + ī∗) ⊗ P̄(c+1)px (m)F indeed belongs to F (�), since
P̄(c+1)px (m) ∈ F (�̄) and then we may identify the �-quotients using Eq. 5.

Write ρ = �s + j with j ∈ {i, ī} = {i∗, ī∗}. Since λ = �m + i∗ ∈ I
(k)
c with c ≥ 1,

then m ≥ 1. Moreover, [�(ρ) : L(λ)] �= 0 implies ρ ≥ λ, so s ≥ m ≥ 1. Then by Eq. 4,
�(ρ) = �(�s + j) has a filtration with quotients �̄(s − 1)F ⊗ L(j̄) and �̄(s)F ⊗ L(j).
Since L(λ) ∼= L̄(m)F ⊗ L(i∗), we have that

[�(ρ) : L(λ)] =
{

[�̄(s) : L̄(m)] if j = i∗,
[�̄(s − 1) : L̄(m)] if j = ī∗.

By reciprocity, this implies

[�(ρ) : L(λ)] =
{

[P̄(c+1)px (m) : �̄(s)] if j = i∗,
[P̄(c+1)px (m) : �̄(s − 1)] if j = ī∗.

We abbreviate P̄(c+1)px (m) to P̄ (m). If j = i∗ then T (�+ ī∗)⊗ P̄ (m)F has a filtration with
one of the quotients isomorphic to T (� + ī∗) ⊗ �̄(s)F , since T (� + ī∗) ⊗ (−)F is an exact
functor. Since s ≥ 1, T (� + ī∗) ⊗ �̄(s)F has �(�s + i∗) = �(ρ) as a �-quotient by Eq. 5.

If j = ī∗ then [�(ρ) : L(λ)] �= 0 implies that T (� + ī∗) ⊗ P̄ (m)F has a filtration with
one of the quotients isomorphic to T (�+ ī∗)⊗�̄(s −1)F . Also by Eq. 5, T (�+ ī∗)⊗�̄(s)F

has �(�s + i∗) = �(ρ) as a �-quotient, which concludes the proof.

Definition 4.10 For γ ∈ I
(k)
c , the indecomposable projective module in the block B(c+1)pk

with highest weight γ is denoted by P(c+1)pk (γ ).

Proposition 4.11 Suppose λ ∈ I
(k)
c and λ is not the largest weight in this interval. Let

λ = �m + i∗ with m ∈ Ī
(x)
c . Then P(c+1)pk (λ) has a twisted tensor product factorisation

P(c+1)pk (λ) ∼= T (� + ī∗) ⊗ P̄(c+1)px (m)F .

Proof Note when k = 0, the interval I
(0)
c consists of only one weight, so we may assume

k ≥ 1.
Step 1. Suppose k = 1. Then λ = �m + i∗ where m = cp + m0 and 0 ≤ m0 ≤ p − 2 as

λ is not maximal in I
(k)
c . Also m ∈ Ī

(0)
c , so we wish to show that T (� + ī∗) ⊗ P̄c+1(m)F ∼=

P(c+1)p(λ).
Observe that T (� + ī∗) ⊗ P̄c+1(m)F = T (� + ī∗) ⊗ �̄(m)F has simple top L(λ) by

Lemma 3.4 (or by Eq. 5, since it has�-quotients�
(

�(m+1)+ ī∗
)

and�(�m+i∗) = �(λ)).
Hence there exists a surjective homomorphism π : P(c+1)p(λ) → T (� + ī∗) ⊗ �̄(m)F .

If ρ is a weight such that [P(c+1)p(λ) : �(ρ)] > 0, then ρ ≥ λ. Moreover, λ ∈ I
(1)
c and

ρ ∈ B(c+1)p = I
(1)
0 � · · · � I

(1)
c , thus ρ ∈ I

(1)
c also. By reciprocity, [�(ρ) : L(λ)] > 0, so

then by Lemma 4.9 we find that �(ρ) is also a �-quotient of T (� + ī∗) ⊗ �̄(m)F . Thus π

is an isomorphism, and T (� + ī∗) ⊗ P̄c+1(m)F ∼= P(c+1)p(λ).

Step 2. We now describe the inductive step. Assume k ≥ 2, and since λ ∈ I
(k)
c is not

maximal, λ = �m + i∗ where m = cpk + m0 and 0 ≤ m0 < pk − 1. Moreover, m ∈ Ī
(x)
c

as in Definition 4.8. We split into two cases depending on whether m is maximal.
Step 2a. Suppose m is not maximal. (Specifically, m corresponds to cpk−t + m1 ∈

Ī
(k−1−t)
c = Ī

(x)
c and cpk−t + m1 is not the maximal weight of this interval.) Then we may
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apply the inductive hypothesis. By a similar argument to that in Step 1, we deduce from
Lemma 4.9 that

T (� + ī∗) ⊗ P̄(c+1)px (m)F ∼= P(c+1)pk (λ).

In particular, the �-quotients of T (�+ ī∗)⊗P̄(c+1)px (m)F are those of T (�+ ī∗)⊗�̄(u)F as
�̄(u) runs over the �̄-quotients of P̄(c+1)px (m), which are �

(

�(u+1)+ ī∗
)

and �(�u+ i∗)
by Eq. 5.

Step 2b. Finally, suppose that m is maximal. Then P̄(c+1)px (m) = �̄(m). Observe that
T (�+ ī∗)⊗P̄(c+1)px (m)F has �-quotients �

(

�(m+1)+ ī∗
)

and �(λ), and in particular has
simple top L(λ). Then P(c+1)pk (λ) surjects onto T (�+ ī∗)⊗ P̄(c+1)px (m)F . By Lemma 4.9
(since λ is not maximal, and there is no restriction on whether m itself is maximal), every
�-quotient of P(c+1)pk (λ) is also a �-quotient of T (� + ī∗) ⊗ P̄(c+1)px (m)F , so in fact
P(c+1)pk (λ) ∼= T (� + ī∗) ⊗ P̄(c+1)px (m)F = T (� + ī∗) ⊗ �̄(m)F .

5 A Torsion Pair for B-mod

Fix B a primitive block of size |B| = apk where a ∈ {2, 3, . . . , p} and k ∈ N0. As before,
the following will be stated for the quantum block; the classical case is similar. In this
section, we abbreviate P(μ) := Papk (μ) and Ic := I

(k)
c when clear from context.

We fix the multiplicity-free projective B–module

G :=
⊕

μ∈B:
P(μ) is tilting

P(μ)

Since P(μ) is a tilting module if and only if it is projective and injective, G is the basic
direct sum of all indecomposable projective-injective modules. We define G, F , e and t as
in Sections 2.1 and 2.2, setting A = B. First, we investigate t (Pμ) for μ ∈ B.

Lemma 5.1 (a) G = ⊕

μ∈B\Ia−1
P(μ). In particular, topG = ⊕

μ∈B\Ia−1
L(μ).

(b) If μ ∈ Id with 0 ≤ d ≤ a − 2, then t (Pμ) = P(μ) ∼= T (λ) where λ ∈ Id+1 and
μ = σ(λ).

(c) Let λm be the largest weight in B. Then t (Pλm) = L(σλm). This is a tilting module
if and only if a = 2.

Proof (a) From Corollary 4.4, if μ ∈ B \ Ia−1 then P(μ) ∼= T (λ) where μ = σλ. Thus
if μ ∈ Ia−1 and P(μ) is a tilting module, then P(μ) ∼= T (ν) for some ν ∈ I0, but this
is impossible given the ordering on the weights. Therefore P(μ) is tilting if and only
if μ ∈ B \ Ia−1.

(b) This follows immediately from (a) and the definition of t .
(c) That t (Pλm) = L(σλm) follows from Lemmas 3.10 and 4.1. The simple module

L(σλm) is a tilting module precisely when σλm is the smallest weight in the block
(or equivalently, when �(σλm) = L(σλm), which follows from Theorem 3.3). This
is equivalent to σλm = i ∈ I

(k)
0 , in other words a = 2, since λm ∈ Ia−1 and σλm ∈

Ia−2.
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Proposition 5.2 Let λ ∈ I
(k)
1 and suppose λ is not the largest weight in this interval. Let

P(λ) = P2pk (λ). Then

(a) there exists an injective homomorphism T (σλ) → P(λ), and
(b) T (σλ) = t (Pλ).

Proof Let λ = �m + i∗ where m = pk + m0 and 0 ≤ m0 < pk − 1. By Proposition 4.11
we have the factorisation

P(λ) ∼= T (� + ī∗) ⊗ P̄2px (m)F (11)

where m ∈ Ī
(x)
c as in Definition 4.8. Since 0 ≤ m0 ≤ pk − 2, we have that σ̄ (m) + 1 =

σ̄ (m − 1) (see Definition 3.6 (a)).

(a) We use induction on k, starting with k = 1 since λ is not the largest weight in its
interval. Then m = p + m0 where 0 ≤ m0 ≤ p − 2, x = k − 1 = 0, and P̄2(m) =
�̄(m). By Lemma 5.1 (c), we have an exact sequence

0 → L̄(σ̄m) = T̄ (σ̄m) → P̄2(m).

Applying the (exact) functor T (� + ī∗) ⊗ (−)F , we obtain

0 → T (� + ī∗) ⊗ T̄ (σ̄m)F → P2p(λ).

Now T (�+ ī∗)⊗ T̄ (σ̄m)F ∼= T (�(σ̄m+1)+ ī∗) by Eq. 8, but σλ = �σ̄ (m−1)+ ī∗ =
�(σ̄m + 1) + ī∗, so the proof for k = 1 is concluded.

For the inductive step, with notation as in Eq. 11, if m is maximal in Ī
(x)
c then we

proceed exactly as in the case k = 1. If m is not maximal, then the inductive hypoth-
esis gives an injective homomorphism T̄ (σ̄m) → P̄2px (m). As above, we obtain an
inclusion of T (�(σ̄m + 1) + ī∗) ∼= T (� + ī∗) ⊗ T̄ (σ̄m)F into P2pk (λ), so the proof
of part (a) is concluded since σλ = �(σ̄ (m − 1)) + ī∗.

(b) By part (a) and since T (σλ) has only composition factors with highest weights in
I

(k)
0 , we may identify T (σλ) with a submodule of t (Pλ), since G = ⊕

μ∈I0
P(μ) by

Lemma 5.1. Let μ ∈ I0. We will show that

[T (σλ) : L(μ)] = [P(λ) : L(μ)]. (12)

Assuming Eq. 12, it follows that the factor module P(λ)/T (σλ) has only composition
factors with highest weight in I

(k)
1 . Therefore Be(P (λ)/T (σλ)) = 0, that is, t (Pλ) =

BeP (λ) is contained in BeT (σλ) ⊆ T (σλ), and so T (σλ) = t (Pλ) as claimed.
To show that Eq. 12 holds, we note that σ : I

(k)
1 → I

(k)
0 is a bijection, and so

[T (σλ) : L(μ)] =
∑

ρ∈I1

[T (σλ) : �(σρ)] · [�(σρ) : L(μ)]

=
∑

ρ∈I1

[�(ρ) : L(λ)] · [�(ρ) : L(μ)]

=
∑

ρ∈I1

[P(λ) : �(ρ)] · [�(ρ) : L(μ)] = [P(λ) : L(μ)],

where the second equality follows from Proposition 4.5 and the third by reciprocity.
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5.1 Ringel Self-Duality

From now on, we focus on blocks B of Schur algebras containing 2pk simple modules.
We choose an orthogonal primitive idempotent decomposition of the identity in B, and for
each λ ∈ B, we take from this a primitive idempotent eλ such that P(λ) = Beλ. Then let
G = Be where e = ∑

μ∈I0
eμ. In preparation for applying Theorem 2.4 with our choice of

e and t , we have the following result.

Lemma 5.3 Let a = 2 and λ ∈ B. Then Be socP(λ) = socP(λ).

Proof If λ ∈ I0 then P(λ) is a tilting module by Corollary 4.4. Hence P(λ) is a self-
dual module with socle L(λ). The claim follows since BeL(λ) = L(λ). Now suppose
λ ∈ I1 and λ is not maximal in I1. By Lemma 3.4 and the factorisation in Proposition 4.11,
socP(λ) is simple, and so socP(λ) = soc T (σλ) by Proposition 5.2 (a). But all composi-
tion factors of T (σλ) have highest weight in I0, so Be socP(λ) = socP(λ). Finally if λ

is the largest weight in I1, then socP(λ) = soc�(λ) = L(σλ). The claim follows since
σλ ∈ I0.

Lemma 5.3 shows that blocks B with |B| = 2pk satisfy the conditions of Theorem 2.4,
and so we have an injective algebra homomorphism

t : EndB(P ) −→ EndB(t (P )) (13)

where P = ⊕

λ∈B P (λ). Observe that EndB(P ) is the basic algebra of B, which in
particular is Morita equivalent to B, and moreover as quasi-hereditary algebras by [2].

Theorem 5.4 If a = 2, then t (P ) = ⊕

λ∈B T (λ). Moreover, the map t in Eq. 13 is an
isomorphism, and B is Ringel self-dual.

Proof Let λm denote the largest weight in B. By Lemma 5.1 (c), we have that t (P (λm)) =
T (i) where i is the smallest weight in B. For λ ∈ I1 and λ �= λm, we have that
t (P (λ)) ∼= T (σλ), by Proposition 5.2. These give all of the indecomposable tilting modules
with highest weights in I0, and Corollary 4.4 shows that t (Pλ) for λ ∈ I0 give the remain-
ing indecomposable tilting B–modules, namely those with highest weights in I1. Hence
t (P ) = ⊕

λ∈B T (λ).
A Ringel dual of B is thus given by EndB(t (P )), so to complete the proof it suf-

fices by Eq. 13 to show for all λ, μ ∈ B that we have dimHomB(Pλ, Pμ) =
dimHomB(t (Pλ), t (Pμ)), since each component tλμ is injective (see Eq. 2).

This is clear if λ, μ ∈ I
(k)
0 since then Pλ = t (Pλ) and Pμ = t (Pμ), as G =

⊕

γ∈I0
P(γ ). If λ ∈ I0 and μ ∈ I1, then P(λ) = t (Pλ) and t (Pμ) = T (σμ) (by

Proposition 5.2 if μ is not maximal in I1, or by Lemma 5.1 if μ is maximal). Since
σμ ∈ I0, T (σμ) has only composition factors with highest weight in I0. Using that P(λ)

is projective with top L(λ), we see that dimHomB(Pλ, T (σμ)) = [T (σμ) : L(λ)], and
dimHomB(Pλ, Pμ) = [P(μ) : L(λ)]. By Eq. 12 (with λ and μ interchanged), these two
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multiplicities are equal. Using duality we get for free the case when λ ∈ I1 and μ ∈ I0.
Finally, suppose λ,μ ∈ I1. Recalling that σ : I1 → I0 is a bijection, we have

dimHomB(T (σλ), T (σμ)) =
∑

ρ∈I1

[T (σλ) : �(σρ)] · [T (σμ) : �(σρ)]

=
∑

ρ∈I1

[�ρ : Lλ] · [�ρ : Lμ]

=
∑

ρ∈I1

[Pλ : �ρ] · [�ρ : Lμ]

= [Pλ : Lμ] = dimHomB(Pλ, Pμ)

by Proposition 4.5 and reciprocity.
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