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Abstract: Mental stress has been associated with cardiovascular events and stroke, and has also been
linked with poorer brain function, likely due to its impact on cerebral vasculature. During periods of
stress, individuals often increase their consumption of unhealthy foods, especially high-fat foods.
Both high-fat intake and mental stress are known to impair endothelial function, yet few studies have
investigated the effects of fat consumption on cerebrovascular outcomes during periods of mental
stress. Therefore, this study examined whether a high-fat breakfast prior to a mental stress task
would alter cortical oxygenation and carotid blood flow in young healthy adults. In a randomised,
counterbalanced, cross-over, postprandial intervention study, 21 healthy males and females ingested
a high-fat (56.5 g fat) or a low-fat (11.4 g fat) breakfast 1.5 h before an 8-min mental stress task.
Common carotid artery (CCA) diameter and blood flow were assessed at pre-meal baseline, 1 h
15 min post-meal at rest, and 10, 30, and 90 min following stress. Pre-frontal cortex (PFC) tissue
oxygenation (near-infrared spectroscopy, NIRS) and cardiovascular activity were assessed post-meal
at rest and during stress. Mental stress increased heart rate, systolic and diastolic blood pressure,
and PFC tissue oxygenation. Importantly, the high-fat breakfast reduced the stress-induced increase
in PFC tissue oxygenation, despite no differences in cardiovascular responses between high- and
low-fat meals. Fat and stress had no effect on resting CCA blood flow, whilst CCA diameter increased
following consumption of both meals. This is the first study to show that fat consumption may impair
PFC perfusion during episodes of stress in young healthy adults. Given the prevalence of consuming
high-fat foods during stressful periods, these findings have important implications for future research
to explore the relationship between food choices and cerebral haemodynamics during mental stress.

Keywords: high-fat; mental stress; cortical oxygenation; near-infrared spectroscopy

1. Introduction

Episodes of acute stress have been shown to trigger cardiovascular events [1–3], as
well as stroke [4], potentially via stress-induced impairments in vascular function [5]. Car-
diovascular health can also directly impact brain health, with well-established associations
between lower cardiovascular diseases (CVD) risk and reduced rates of dementia and
cognitive decline in older age [6,7]. Similarly, chronic stress affects brain function and
cerebrovascular responsiveness, with stress altering the functional connectivity of the pre-
frontal cortex (PFC) and impairing attention control in healthy adults [8], both known to be
modulated by vascular health [9].

Acute laboratory mental stress has been evidenced to increase cerebral blood veloc-
ity [10], as well as increase oxyhaemoglobin and decrease deoxyhaemoglobin concentration
in the PFC [11,12], both outcome measures indicative of elevated cerebral blood flow (CBF).
Increased nitric oxide (NO) bioavailability and systemic increases in blood pressure and
cardiac output have all been implicated as potential mechanisms for the increased cerebral
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perfusion induced during stress [12–14]. Importantly, CBF during mental stress is impaired
in populations at risk of CVD, such as people with hypertension [15]. Therefore, it is likely
that vascular dysfunction attenuates the cerebrovascular response to stress, which may
have clinically significant consequences, such as increased CVD risk [16].

The impact of acute stress on vascular function is often measured in the fasted state,
yet during periods of stress, individuals are more likely to overeat and consume unhealthy
foods, i.e., fat [17]. Interestingly, fat consumption has been shown to impair endothelial
function [18], and endothelial dysfunction has been associated with poorer peripheral
vascular responses during stress [19].

However, few studies have investigated how fat consumption can influence cere-
brovascular function. Initial rodent-based research presented cognitive impairments follow-
ing a chronic high-fat diet [20]. Furthermore, a two-year population-based study showed
that increased total fat consumption associated with a greater incidence of dementia in
older adults [21]. As far as we are aware, only two studies to date have investigated the
acute ingestion of fat on cerebrovascular outcomes in humans. One reported no change
in cerebral perfusion or conductance [22], whereas the other presented decreased CBF to
the hypothalamus following fat consumption [23]. Although the mechanisms underlying
fat-induced changes in cerebrovascular function are unknown, post-fat impairments in
endothelial function [24] as well as increases in inflammation and oxidative stress have been
well-documented [25]. These markers are also suggested to play a role in stress-induced
changes in vascular function [26].

Given the high prevalence of consumption of high-fat foods during stressful peri-
ods [27] and the clinical significance of a healthy cerebrovascular response during stress,
in the present study we investigated the impact of fat consumption on cerebrovascular
responses during mental stress in healthy young adults. More specifically, we assessed
changes in PFC cerebral haemodynamics during a laboratory-based mental stress task
following a high- and low-fat meal. We also assessed upstream macrovasculature, by
measuring common carotid artery (CCA) vasodilation and blood flow up to 90 min fol-
lowing stress, which is in line with previously evidenced stress-induced and fat-induced
impairments in endothelial function. We further quantified changes in mood following
high- and low-fat meals and following stress. We hypothesised that a high-fat meal would
impair cerebrovascular responses to stress.

2. Materials and Methods
2.1. Participants

Healthy, young (age range inclusion: 18–45 years) participants (n = 21, 11 male,
10 female), were recruited through email and poster advertisements, and all gave written
informed consent prior to participation in the study. Females were tested during the
early-follicular phase of the menstrual cycle to control for the effect of menstrual hormones.
Inclusion criteria were non-smokers, no history of disease, no allergies or intolerances, and
no use of dietary supplements or long-term medication. This study was approved by the
University of Birmingham Ethics Committee (ERN17_1755D).

2.2. Procedure

The present study was a cross-over intervention study, with two laboratory visits at
least a week apart for males, and approximately a month apart for females. The order
of dietary conditions was randomised and counterbalanced. Participants visited the lab
at 08:00 h and were asked to refrain from food 12 h before, and from alcohol, vigorous
exercise, and caffeine 24 h before each testing session. We also requested that participants
followed a similar diet for 24 h prior to each visit. Pre-intervention peripheral vascular
measurements were assessed (data reported elsewhere: [28]) as well as common carotid
artery (CCA) diameter and blood flow, prior to consumption of a high-fat or low-fat meal.
After 1 h 15 min, prefrontal cortical haemodynamics were assessed using near-infrared
spectroscopy (NIRS) during an 8-min rest (Rest) and during an 8-min mental stress task
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(Stress) (Figure 1). Cardiovascular activity was also recorded throughout rest and stress.
Immediately following stress, CCA diameter and blood flow were assessed (Post-10).
CCA diameter and blood flow were also measured 30 min (Post-30) and 90 min (Post-
90) following stress. Each session lasted 5 h, and participants were debriefed following
completion of both visits.
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2.3. Meal Interventions

Both meals were prepared just before consumption, and fresh ingredients were bought
within 24 h of each session. The calorie-matched meals consisted of a high-fat meal (HFM,
56.5 g fat) and a low-fat meal (LFM, 11.4 g fat). Nutrients were closely matched, apart
from carbohydrate quantity (Table 1). Each meal was consumed within 20 min (excluding
7 participants who consumed approx. 90% of the meals), and no adverse side effects
were reported.

Table 1. Nutrient composition of the high-fat and low-fat meals.

Meal Type High-Fat Meal 1 Low-Fat Meal 2

Energy (Kcal) 891.00 886.00
Fat (g) 56.50 11.40
Saturated fat (g) 35.10 5.55
Carbohydrate (g) 65.00 160.10
Sugars (g) 20.2 19.40
Fibre (g) 2.40 5.90
Protein (g) 29.85 33.30
Salt (g) 2.00 2.53

1 This meal consists of 2 butter croissants with 10 g salted butter, 1.5 slices of cheese, and 250 mL whole milk.
2 This meal consists of 4 slices of white bread with 30 g Philadelphia light spread, 90 g SO organic cornflakes, and
250 mL semi-skimmed milk.

2.4. Mental Stress Task

The 8-min paced-auditory-serial-addition-task (PASAT) was used to induce mental
stress, shown to have good test–retest reliability and to perturb the cardiovascular sys-
tem [29]. The task requires participants to add two sequentially presented, single-digit
numbers, adding the number presented to the previous number they heard. The time
interval between numbers was reduced throughout the task. Elements of social evaluation,
punishment, time pressure, and competition (detailed in [28]) were included, shown to
enhance the provocativeness of the task [30]. Immediately following the task, participants
were asked to verbally rate how difficult, stressful, competitive, and enjoyable they found
the task, and to what extent they were trying to perform well, scored on a 7-point scale
ranging from 0 ‘not at all’ to 6 ‘extremely’. Following both visits, participants were informed
about the deception of the task.

2.5. Cardiovascular Activity

Systolic (SBP) and diastolic (DBP) blood pressure were measured using a Finometer
(Finapres Medical Systems, Amsterdam, The Netherlands). A small cuff was placed around
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the intermediate phalanx of the middle finger, and continuous data were recorded via a
Power1401 (CED) connected to a computer programmed in Spike2.

An ambulatory monitor (VU-AMS) and 7 Ag/AgCl spot electrodes (Invisatrace, Con-
Med Corporation; Largo, FL, USA) recorded electrocardiographic and impedance cardio-
graphic signals continuously, in accordance with published guidelines [31,32]. Sixty-second
ensemble averages were used to determine heart rate (HR, bpm), heart rate variability
(HRV, ms), pre-ejection period (PEP, ms), and stroke volume (SV, mL) as measures of
sympathetic and parasympathetic activity. Cardiac output (CO, L/min) was calculated as
(HR × SV)/1000.

2.6. Prefrontal Cortical Haemodynamics

Near-infrared spectroscopy (NIRS, NIRO-200NX, Hamamatsu Photonics KK, Shizuoka,
Japan) was used to assess prefrontal cortical haemodynamics. The NIRS device measures
changes in chromophore concentrations of oxyhaemoglobin (O2Hb) and deoxyhaemoglobin
(HHb), providing depth-resolved measures of tissue oxygen saturation (total oxygenation
index, TOI) and tissue haemoglobin content (relative value of total haemoglobin normalised
to the initial value, nTHI). Probes were positioned over the left pre-frontal site and secured
to the head with a black headband. Probes were enclosed in light-shielding rubber housing
that maintained emitter-to-detector optode spacing (4 cm), and signals were acquired at a
sample interval of 0.2 s (5 Hz). NIRS was assessed during 8 min of rest and 8 min of stress.
Measures of TOI, nTHI, O2Hb, and HHb were averaged to provide 1 value for each minute
of rest and stress.

2.7. Common Carotid Artery Diameter and Blood Flow

Duplex ultrasound was used to assess common carotid artery (CCA) diameter and
blood flow. A 15–4 Mhz (15L4 Smart MarKTM; Terason, Burlington, MA, USA) transducer
was attached to a Terason Duplex Ultrasound System (Usmart 3300 NexGen Ultrasound;
Terason). This was combined with wall-tracking and automatic edge-detection software
(Cardiovascular Suite, Quipu; Via Moruzzi, Pisa, Italy), which allows for continuous mea-
surement of diameter and blood velocity. Following 10 min of supine rest, the participant
was asked to turn their head and neck slightly to the left side. Then, a 2-min recording of the
right CCA was obtained. All file images were analysed by a trained researcher, blinded to
condition and measurement details. Analysis allows estimation of resting arterial diameter
and calculation of arterial blood flow based on a time-average across 2 min of the recording.

2.8. Mood Questionnaire

Mood was assessed with a short form of the Profile of Mood States (POMS) ques-
tionnaire [33], calculating 6 constructs: tension–anxiety, anger–hostility, vigour–activity,
fatigue–inertia, confusion–bewilderment, and depression–dejection. Participants were
asked to rate on a 5-point scale (1 = not at all, 5 = extremely), how they felt at that precise
moment. Total mood disturbance (TMD) was calculated by summing all negative items
(tension, anger, fatigue, confusion, and depression) and subtracting the positive (vigour)
score [34]. POMS questionnaires were completed at pre-intervention baseline (Baseline),
post-intervention rest (Rest), immediately following stress (Stress), and 30 and 90 min
post-stress (Post-30 and Post-90).

2.9. Data Reduction and Statistical Analysis

NIRS and cardiovascular measures were averaged per minute of assessment for the
Rest and Stress periods. For the NIRS variables, the eight rest values were then averaged
to one resting baseline value, and reactivity scores during stress were calculated as Stress
minus Rest, for minutes 2, 4, 6, and 8 of stress (corresponding to Stress 1, Stress 2, Stress 3,
and Stress 4, respectively).

All data were statistically analysed using IBM SPSS software (version 25). Task percep-
tions and PASAT scores were compared between visits using a one-way repeated measures
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ANOVA. Cardiovascular variables were analysed using a two-way repeated measures
ANOVA with condition (HFM, LFM) and time (Rest, Stress 1, Stress 2, Stress 3, Stress 4) as
within-subject factors. NIRS variables at rest and during stress (8 min averaged) were com-
pared using separate one-sample t-tests for both conditions. This was the most appropriate
statistical approach given that the resting values were 0, so there is no variability around
the mean. We then further analysed the NIRS variables using a two-way repeated measures
ANOVA with condition (HFM, LFM) and time (Stress 1, Stress 2, Stress 3, Stress 4) as within-
subject factors. CCA diameter and blood flow were analysed using a 2-condition (HFM,
LFM) by 5-time (Baseline, Rest, Post-10, Post-30, Post-90) repeated measures ANOVA. TMD
was similarly analysed using a 2-condition (HFM, LFM) by 5-time (Baseline, Rest, Stress,
Post-30, Post-90) repeated measures ANOVA. Where appropriate, pairwise comparisons
using Bonferroni correction were conducted as post-hoc analyses. All values reported
in text, tables, and graphs are mean ± standard deviation. Occasional missing data are
reflected in the reported ‘n’ values, and include n − 1 due to VU-AMS malfunction, n − 2
due to finapress malfunction, and n − 2 due to NIRS malfunction. All statistical tests were
also carried out excluding 7 participants who did not complete both meals; however, as the
results were similar to the analyses with the full sample, all participants were included to
maximise power. For all analyses, significance was set at p < 0.05.

3. Results
3.1. Participant Characteristics

Participants (n = 21) ranged from 20 to 30 years old (22.1 ± 2.7 years old), had a
healthy BMI (23.6 ± 3.1 kg/m2), and identified as either white European ethnicity (n = 19)
or Asian ethnicity (n = 2). Participants self-reported to be physically active and have a
healthy habitual diet (daily energy: 1576.5 ± 418.9 Kcal, fat: 59.4 ± 18.9 g, saturated fat:
21.3 ± 6.5 g, carbohydrate: 185.5 ± 57.5 g, sugars: 87.3 ± 42.5 g, fibre: 14.1 ± 5.7 g, protein:
74.3 ± 25.1 g, fruit & vegetables: 5.7 ± 3.3 portions [28]). Resting cardiovascular activity
is displayed in Table 2. There were no significant differences in BP, HRV, PEP, and CO
between conditions at rest (all p > 0.261), although there was a significant difference in
post-intervention/pre-stress resting HR between conditions (p = 0.027). However, there was
no significant difference HR between conditions at the previous pre-intervention timepoint
(data shown in [28]).

Table 2. Mean ± SD resting participant characteristics in the high-fat and low-fat conditions.

High-Fat Meal Low-Fat Meal

SBP (mmHg) 127 ± 18 123 ± 14
DBP (mmHg) 52 ± 11 50 ± 8
HR (bpm) 67 ± 9 64 ± 8 *
HRV (ms) 75 ± 50 77 ± 41
PEP (ms) 99 ± 23 99 ± 18
CO (L/min) 7 ± 2 6 ± 2

n = 19 (BP)/20 (HR, HRV, PEP, CO). * p < 0.05. SBP: systolic blood pressure, DBP: diastolic blood pressure,
HR: heart rate, HRV: heart rate variability, PEP: pre-ejection period, CO: cardiac output.

3.2. Mental Stress Task Ratings

Two-condition (HFM, LFM) ANOVAs revealed no significant difference in PASAT
score between conditions (n = 21, p = 0.544), and participants perceived the task as equally
difficult, stressful, competitive, and enjoyable, and tried to perform well to the same extent
(all p > 0.576) after both high-fat and low-fat meals (Table 3).
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Table 3. Mean ± SD task performance and ratings in each meal condition.

Task Ratings High-Fat Meal Low-Fat Meal

PASAT Score 141 ± 34 138 ± 35
Perceived difficulty 4.8 ± 0.6 4.7 ± 0.7
Perceived stressfulness 4.9 ± 0.9 4.7 ± 0.7
Perceived competitiveness 4.3 ± 1.2 3.9 ± 1.4
Perceived enjoyment 2.0 ± 1.2 1.5 ± 1.1
Perception of trying to perform well 5.0 ± 0.9 5.1 ± 1.0

Note: Task ratings scored from 0–6 and PASAT score/228. n = 21.

3.3. Cardiovascular Responses during Mental Stress

Separate 2-condition (HFM, LFM) × 5-time (Rest, Stress 1, Stress 2, Stress 3, Stress 4)
ANOVAs revealed an overall time effect for HR (n = 20, p < 0.001), HRV (n = 20, p < 0.001),
PEP (n = 20, p < 0.001), CO (n = 20, p < 0.001), SBP (n = 19, p < 0.001), and DBP (n = 19,
p < 0.001) (Figure 2). Post-hoc analyses are displayed on Figure 2 (data reported as the
change during mental stress relative to rest). There were no significant condition or
condition × time interaction effects for HR, HRV, PEP, CO, SBP, and DBP (all p > 0.207).

3.4. Prefrontal Cortical Haemodynamics during Mental Stress

One sample t-tests revealed that TOI was significantly greater during stress compared
to rest in the LFM condition (p = 0.005) but not the HFM condition (Figure 3). There were
no significant differences in nTHI during stress compared to rest in both conditions.

Separate 2-condition (HFM, LFM) × 4-time (Stress 1, Stress 2, Stress 3, Stress 4)
ANOVAs revealed an overall condition effect (n = 19, p = 0.019) for TOI (Figure 3). Post-
hoc analyses revealed that TOI was higher in the LFM condition compared to the HFM
condition. However, there were no significant time or condition × time interaction effects
for TOI (both p > 0.099). There were no significant time, condition, or condition × time
interaction effects for nTHI (all p > 0.061).

One sample t-tests revealed that O2Hb and HHb were significantly different during
stress compared to rest in both conditions (both p < 0.001) (Figure 4).

A 2 × 4 ANOVA revealed an overall condition effect (n = 19, p = 0.048) for O2Hb
(Figure 4). Post-hoc analyses revealed that O2Hb was higher in the LFM condition compared
to the HFM condition. There were no significant time nor time × condition interaction
effects for O2Hb (all p > 0.088). A time 2 × 4 ANOVA revealed an overall time effect (n = 19,
p = 0.002) for HHb. Post-hoc analyses revealed that HHb was lower during Stress 2 and
Stress 3 compared to Stress 1. There were no condition nor time × condition interaction
effects for HHb (all p > 0.217).

3.5. Common Carotid Arterial Diameter and Blood Flow Following Mental Stress

CCA diameter and blood flow are reported in Table 4. There were no significant
differences in CCA diameter (p = 0.561), anterograde blood flow (p = 0.698), and retrograde
blood flow (p = 0.370) between conditions at pre-intervention baseline. A 2-condition
(HFM, LFM) × 5-time (Baseline, Rest, Post-10, Post-30, Post-90) ANOVA revealed a sig-
nificant time effect for CCA diameter (p < 0.001). Post-hoc analyses showed that CCA
diameter was significantly lower at baseline compared to post-meal rest (p = 0.047), 10 min
(p = 0.047), 30 min (p = 0.002), and 90 min post-stress (p < 0.001), and CCA diameter at
90 min post-stress was significantly higher than post-meal rest (p = 0.026). Furthermore,
there was a significant condition × time interaction effect for CCA diameter (p = 0.033).
Further exploration of this interaction effect revealed that CCA diameter was significantly
higher 90 min post-stress in the high-fat condition compared to the low-fat condition
(p = 0.026). There was no significant condition (p = 0.333) effect for CCA diameter. Separate
2-condition × 5-time ANOVAs also revealed no significant time (p = 0.535), condition
(p = 0.357), or condition × time interaction (p = 0.924) effect for anterograde blood flow, nor
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time (p = 0.096), condition (p = 0.809), or condition × time interaction (p = 0.457) effect for
retrograde blood flow (Table 4).
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Figure 2. Time course of cardiovascular responses (HR (A), HRV (B), PEP (C), CO (D), SBP (E),
DBP (F)), during rest and stress following either an HFM or LFM. Data are presented as reactivity
mean ± standard deviation. n = 20 (A–D)/19 (E,F). * Significantly different compared to Stress 1, 2, 3,
and 4, $ significantly different compared to Stress 1, & significantly different compared to Stress 4.
HR: heart rate, HRV: heart rate variability, PEP: pre-ejection period, CO: cardiac output, SBP: systolic
blood pressure, DBP: diastolic blood pressure, HFM: high-fat meal, LFM: low-fat meal.
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Figure 3. Time course of prefrontal cortical haemodynamics (TOI (A) & nTHI (B)) during rest and
stress following either an HFM or LFM. Data are presented as reactivity mean ± standard deviation.
n = 19. * Significantly different compared to stress in the LFM condition (t-test), £ significantly higher
following LFM compared to HFM. TOI: tissue oxygenation index, nTHI: normalised haemoglobin
index, HFM: high-fat meal, LFM: low-fat meal.
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Figure 4. Time course of prefrontal cortical haemodynamics (O2Hb (A) & HHb (B)) during rest and
stress following either an HFM or LFM. Data are presented as reactivity mean ± standard deviation.
n = 19. * Significantly different compared to stress (t-test), £ significantly higher following LFM
compared to HFM, $ significantly different compared to Stress 1. O2Hb: oxygenated haemoglobin
change, HHb: deoxygenated haemoglobin change, HFM: high-fat meal, LFM: low-fat meal.

3.6. Mood Following High and Low-Fat Meal Consumption and Mental Stress

Total mood disturbance (TMD) is presented in Figure 5. There was a significant
condition (p = 0.013), time (p = 0.004), and condition × time interaction effect (p = 0.011)
for TMD. The time effect revealed that TMD was significantly lower at 90 min post-stress
compared to rest (p = 0.014) and stress (p = 0.030). Furthermore, the condition effect revealed
that TMD was overall greater in the high-fat condition compared to the low-fat condition
(p = 0.013). Finally, as shown in Figure 5, the condition × time interaction effect revealed a
significantly higher TMD in the high-fat condition compared to the low-fat condition at
post-intervention rest (p = 0.003) and immediately following stress (p = 0.041).
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Table 4. Mean ± SD common carotid arterial diameter and blood flow following mental stress.

High-Fat Meal Low-Fat Meal

Timepoint Baseline Rest Post-10 Post-30 Post-90 Baseline Rest Post-10 Post-30 Post-90

Diameter (mm) 6.69 ± 0.58 6.76 ± 0.56 & 6.75 ± 0.59 & 6.79 ± 0.58 * 6.87 ± 0.56 *£ 6.67 ± 0.56 6.75 ± 0.55 * 6.76 ± 0.51 * 6.76 ± 0.51 * 6.76 ± 0.53 *£

Anterograde
blood flow
(cm3/min)

695.34 ± 205.10 717.03 ± 195.22 707.69 ± 193.96 709.37 ± 199.11 699.49 ± 140.94 683.40 ± 142.39 712.70 ± 165.50 680.56 ± 182.32 699.44 ± 186.51 668.28 ± 149.80

Retrograde
blood flow
(cm3/min)

−0.72 ± 0.94 −1.83 ± 1.97 −1.06 ± 1.77 −2.28 ± 3.42 −2.63 ± 3.27 −1.53 ± 4.36 −1.18 ± 1.52 −1.06 ± 1.40 −2.64 ± 5.45 −1.51 ± 2.16

* Significantly different compared to baseline, & significantly different compared to post-90, £ significantly different
between conditions. n = 21.
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Figure 5. Time course of total mood disturbance at baseline, rest, immediately post-stress, and 30 and
90 min post-stress, following either an HFM or LFM. Data are presented as mean ± standard deviation.
TMD = (Tension + Anger + Fatigue + Depression + Confusion) − Vigour. n = 18. @ Significant
difference between HFM and LFM at these time points. TMD: total mood disturbance, HFM: high-fat
meal, LFM: low-fat meal.

4. Discussion

The current study showed that mental stress induced increases in HR, CO, SBP, and
DBP, decreases in HRV and PEP, and increases in PFC tissue oxygenation (as indexed via
changes in TOI and O2Hb volume). Following fat consumption (HFM condition), stress-
induced increases in PFC tissue oxygenation were attenuated, yet there were no differences
in the cardiovascular responses to stress. These cardio/cerebrovascular changes were ob-
served despite no significant differences in stress task perceptions or performance between
conditions, indicating a consistent stress experience between visits. We further observed
no effect of fat consumption or stress on resting CCAblood flow, whilst CCA diameter
increased following consumption of both meals. Consumption of fat influenced mood
(TMD) at rest and immediately post-stress, suggesting that fat consumption may negatively
affect mood. Taken together, these findings indicate that fat consumption alters cerebral
haemodynamic activity while completing a mentally stressful task, potentially via impaired
cerebral perfusion to the PFC as a result of fat-induced alterations in CBF regulation.

Our observation that mental stress increases PFC tissue perfusion (by virtue of in-
creased TOI and O2Hb, and decreased HHb) is in line with previous findings that have
reported elevated CBF during such stress [10,12]. The increase in CBF is likely to be
mediated in part by the systemic increase in CO shown during mental stress, driven by
stress-induced elevations in HR (Figure 2). CO is a key independent factor influencing
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CBF [35], with changes in CO shown to be correlated with CBF at rest and during exer-
cise [36]. In addition, the observed stress-induced increases in BP (SBP and DBP increased
by ~20 mmHg) would also contribute to elevated CBF, as even with BP-induced adjust-
ments to cerebrovascular resistance via cerebral autoregulation, CBF will be affected by the
large magnitude of observed BP changes [37]. Moreover, our findings are consistent with
those of Brindle et al. (2018) [38], where the same stress task resulted in similar changes in
BP and increased the TCD-based measures of CBF (i.e., increased middle cerebral blood
velocity). Another mechanism by which cerebral perfusion could increase during this stress
task is via neurovascular coupling, due to the increased neural activation related to the cog-
nitive demand of the mental arithmetic task. Indeed, Shoemaker and colleagues (2019) [10]
showed increased CBF (TCD-based measures of middle cerebral blood velocity) during
the cognitive tasks they used, and this occurred independently of other key regulators
of CBF (i.e., BP and arterial carbon dioxide content). Similarly, a positive correlation has
been evidenced between stress perception and CBF (MRI—arterial spin labelling, ASL) [39],
which may contribute to the increase in perfusion via neurovascular coupling, given that
both physiological and self-reported data showed the task to be very stressful and difficult,
and participants reported to be fully engaged with the task in this study.

Little is known about how fatty acids affect cerebral oxygenation. To our knowledge,
this is the first study to show that fat consumption attenuated the increase in PFC tissue
oxygenation during stress, indicating that CBF was relatively lower and therefore more
oxygen was extracted from the haemoglobin to meet the metabolic demand of the tissue
during the task (assuming brain metabolism was similar for the diet conditions). A previous
study has also presented a decreased CBF to the hypothalamus following fat consumption
at rest [23]. Given the association between reduced cerebral oxygenation and impaired
cognitive performance [40], the lower tissue oxygenation we observed here (2 ± 4%;
Figure 3A) may have significant implications for brain function. In the present study, there
were no differences in CCA resting blood flow (velocity and diameter) approximately 1 h
following fat consumption, but it is possible that more subtle regional changes downstream
in the cerebrovasculature could have occurred which we did not assess. Furthermore,
another study, with comparable fat quantity to the present study, found no change in
CBF during rebreathing-induced hypercapnia following fat consumption [22], potentially
suggesting some specificity of the fat effect in the context of mental stress. However,
differences in methodology for CBF assessments, brain area investigated (i.e., TCD-based
cerebral blood velocity [22] vs. fMRI of hypothalamic and insular cortex using ASL [23]),
and differences in fat source might also contribute to some of the differences reported. The
mechanisms underlying the fat-induced attenuation of cortical blood perfusion during
stress are not known. One possibility is that fat consumption affects cerebral metabolism
(exchange of primary molecules of oxygen, glucose, and lactate across arterial and venous
circulations in the brain) during stress [41]. As neural activity increases, e.g., at the onset of
mental stress [42], dendrites rapidly consume oxygen, reducing PO2 and oxyhaemoglobin
concentration [43]. The resulting shifts in brain metabolism enhance glycolysis in astrocytes
and induce a release of lactate, which subsequently causes vasodilation to increase oxygen
delivery [41,43]. Therefore, whilst speculative, fat consumption may reduce the metabolic
efficiency of the brain by attenuating this shift in metabolism and hence, reducing perfusion
during stress. Whilst evidence is limited to support this idea, evidence that obesity and a
high-fat diet can alter metabolic-related cerebral signalling and induce neuroinflammation,
thus disrupting cognitive function, has been reviewed [44]. Further research is needed to
explore this mechanism, for example using broadband NIRS measurements of cytochrome-
c-oxidase (CCO) to investigate brain metabolism following fat consumption. Another
possible mechanism is that fat intake, and specifically hyperlipidaemia, influences cerebral
autoregulation [45]. However, if fat consumption did impair cerebral autoregulation, it
would be expected that CBF would increase more to the same stress-induced increase in BP;
however, we observed the opposite effect with respect to changes in PFC tissue oxygenation.
nTHI responses seem to be attenuated during mental stress following the high-fat meal,
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albeit non-significantly. Given that nTHI is an index of tissue blood flow (via measures of
total haemoglobin volume), these data suggest that CBF responses to stress are reduced
under high-fat conditions and that cerebral autoregulation impairment does not play a
significant role in the observed responses. Whilst the mechanisms by which fatty acids affect
cerebral oxygenation are unclear, the literature on muscle physiology clearly shows that
acute fatty acid intake can blunt leg blood flow responses to NG-monomethyl-L-arginine
(L-NMMA), an NO synthase inhibitor [46], providing evidence that fatty acid elevation
impairs NO-mediated vasodilation in the leg microvasculature. Furthermore, animal
models show that acute fat intake induces insulin resistance and subsequent impairments
in capillary recruitment and muscle glucose uptake [47,48]. The extent to which some of
these mechanisms translate into the brain microvasculature is unclear and needs to be
investigated further.

Interestingly, although fat consumption alters cerebral haemodynamics during mental
stress, from 10 to 90 min following stress, no differences in resting carotid arterial blood
flow between diets were detectable. It should be noted that stress-induced and fat-induced
declines in peripheral vascular function have been well established during the period
of 30–90 min post stress [26,49], and was the reason we targeted this timeframe for our
post-stress assessments. Given that elevated BP and CO are shown to influence CBF [36],
perhaps once these have returned to baseline (~10 min following stress), there is no longer
a detectable effect on CBF. Furthermore, we are assessing the upstream macrovasculature
(common carotid artery), which supplies the whole brain (as well as some extracranial
tissue via the external carotid artery that originates from the CCA), and not specifically the
PFC, so more subtle and specific changes might have been missed.

Finally, we observed that CCA diameter significantly increased following consumption
of both meals and was significantly greater after the high-fat meal compared to the low-fat
meal only at 90 min post stress. This is possibly driven by cholecystokinin (CCK), a peptide
hormone that increases postprandially to stimulate digestion, and has been shown to induce
cerebral vasodilation [50]. More specifically, the release of CCK in response to a meal has
been shown to trigger local postprandial hyperaemia in the gut and evoke vasodilation
in the cerebral vasculature [51]. CCK has also been shown to stimulate neuronal NO
synthase and NO release, via intracellular calcium [52], which may also induce vasodilation.
Furthermore, there is some evidence that CCK levels are higher following a high-fat meal
compared to a high-carbohydrate meal [53], which may explain the increase in CCA
diameter in the high-fat meal condition in the present study. However, as there was no
change in CCA blood flow, future research should continue this investigation, utilising
assessments of the internal carotid artery, to assess the impact of fat consumption on
resting CBF.

Fat consumption had a significant impact on mood in the present study, shown
by a greater mood disturbance at rest and immediately following stress in the high-fat
condition compared to the low-fat condition. When exploring the individual constructs
that are used to calculate total mood disturbance, it was particularly fatigue which was
significantly higher following the high-fat meal compared to the low-fat meal, which is in
line with previous research [54]. Whilst the relationship between fat consumption and mood
outcomes is currently unclear [55], previous evidence suggests that high-fat feeding leads
to negative emotional states and even increased stress sensitivity in rodent models [56].
Furthermore, it is widely recognised that the PFC plays a central role in emotion regulation
via efferent projections to limbic areas (responsible for emotional responses) [57]. As
such, there might be a link between the observed decline in PFC oxygenation during
stress and the decline in mood that follows, although this needs to be further addressed
in future studies. Therefore, whilst individuals may seek comfort through consumption
of high-fat foods when stressed, such food choices may further worsen mood, increase
fatigue, and affect an individual’s ability to cope with stress, possibly via disturbances in
PFC oxygenation.
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Limitations

One of the potential limitations of the current study was that the meals were not
tailored to individual metabolic rate. Yet, previous studies have shown that a similar fat
content (50 g) is sufficient to impact vascular function, and the current study was in line
with a similar study showing fat consumption impairs endothelial function [58]. Secondly,
our study has a moderate sample size; nevertheless, a crossover design was employed, and
effect sizes for non-significant findings were found to be small, suggesting that a lack of
power is not likely to drive these results. Furthermore, as these analyses are secondary, no
a priori power calculations were undertaken. Yet, based on the effect size of the condition
effect revealed in TOI (0.27), with a sample of 21 participants and alpha set at 0.05, we
were able to detect a power of 82%. Importantly, this is the first study to investigate the
impact of fat consumption on cerebrovascular responses in a sample that includes females,
which is more ecologically valid. Finally, it would have been ideal to assess changes in
blood flow in the upstream carotid artery during stress to have a more complete picture
of cerebral regulation, but this would be unreliable due to significant movement and
positioning of the participant. We also noted that it could significantly interfere with the
completion of the stress task itself. Future studies should use combined approaches to
assess macro- and microvasculature significantly, as well as explore regional differences
across the brain [59], for example, by using techniques such as transcranial doppler and
arterial spin labelling (ASL) magnetic resonance imaging (MRI), in addition to NIRS and
ultrasound. Importantly, using specific technical approaches such as broadband NIRS
and functional MRI would allow for a simultaneous assessment of vascular and neuronal
metabolic responses during stress, which may shed light on the mechanisms by which fat
reduces cortical blood perfusion during stress.

5. Conclusions

This is the first study to explore the relationship between fat consumption and cerebral
dynamics during mental stress, providing, for the first time, evidence that fat consumption
impairs PFC perfusion during stress. Experiencing stress is tightly associated with con-
suming high-fat foods [17]. This, combined with the high prevalence of stress and obesity
in our societies, and further associations with cognitive decline later in life, makes it an
important area of research to inform our dietary choices during periods of enhanced stress.
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