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An introduction 
to the statistical 
modelling of 
climate change: 
1850-2020

Marco G. Ercolani

This article is a beginner’s guide to modelling climate change by 
statistical methods. We will see how data spanning 1850-2020 can be 
used to model global warming.1 

In the first part of this article, we comment on graphs of climate data. 
These data include global temperatures, atmospheric carbon dioxide, 
solar activity and particulates in the stratosphere. These variables 
have been chosen because they are of interest to both climate change 
doubters and believers.

In the second part of this article, we fit statistical models to these data 
to estimate the amount by which each variable has affected global 
temperatures during 1850-2020. The models indicate that increased 
atmospheric carbon dioxide can explain 1.26 to 1.33 degrees Celsius  
of the temperature increase while cyclical solar activity can explain 
about 0.12 to 0.40 degrees of the temperature increase.

The third part of this article includes instructions on how  
to estimate two statistical models of climate change using  
an Excel spreadsheet. 

A final section summarises and is followed by data  
and a technical appendix.

It is worth noting that statistical models (see http://www.
climateeconometrics.org) are rarely used in climate modelling. 

Instead, experimental and physical models are more often used, such as 
the simulations run by meteorologists. In these models, the parameters 
are decided upon by the researcher based on various sources, such 
as laboratory experiments, meteorological readings or the results of 
statistical models. These physical models are then used to run simulations 
to verify whether the simulations closely match the observed world. In 
contrast, statistical models are fitted directly to the observable data to 
determine their parameters. Both approaches are equally valid and both 
produce mathematical models that can be used to forecast  
climate change.

The data
In this first section, we look at graphs of the climate data as a 
preliminary step before estimating the statistical models in section two. 
The Data Sources Appendix includes details of the data sources. 
Figure 1 shows an overall temperature increase of about 1.5 degrees 
Celsius since 1850. The period 1850-1940 seems one of gradual 
temperature increase. The Second World War was a period of relatively 
high temperatures but followed by a period between 1945-1964 when 
temperatures did not increase substantially. The period since 1965 has 
been one of rapid temperature increase. There are smaller year-on-
year fluctuations but it is difficult to determine which of these are 
real fluctuations and which are measurement errors. Smoothing the 
year-on-year fluctuations is a bad idea because it would erase some 
important variations. For example, 1877 and 1878 have remarkably high 

1   Though the term global warming has fallen out of favour and been replaced by climate change, this article 
focuses on the observed increase in global temperatures and therefore directly on the warming climate.
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temperatures during a major El Niño episode in what was dubbed ‘the 
year without a Winter’. Conversely, there are some years with sudden 
temperature dips and these coincide with major volcanic ejecta into  
the stratosphere.
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Figure 1: Average global annual temperatures and atmospheric carbon 
dioxide, 1850-2020

Figure 1 also illustrates the levels of atmospheric carbon dioxide,  
a major greenhouse gas.2 Greenhouse gasses work by allowing high-
frequency sunlight energy into the troposphere but blocking much of 
the lower-frequency heat energy from escaping. The scientific consent 
is that increased temperatures are mainly due to increased greenhouse 
gasses. Atmospheric carbon dioxide has increased by just over a third 
since 1850. 

Figure 2 illustrates sunlight energy reaching Earth, measured as Total 
Solar Irradiance (TSI) in kilowatts per square metre (kW/m2). TSI has 
a short cycle of about 11 years that coincides with planetary alignments. 
Solar TSI is included in our models but this is unlikely to explain much 
of the temperature increase because the overall fluctuation in TSI is a 
relatively small 0.18% with just a 0.0025 kilowatt increase relative to a 
level of about 1.36 kilowatts. We have overlaid a ‘smoothed TSI’ variable 
on the original one that suggests a two-century cycle but this is hard to 
confirm with less than two centuries of data. We have also illustrated  
the ‘Solar (TSI) cycle’ which is the difference between TSI and  
‘smoothed TSI’.

Figure 3 illustrates data on solar dimming caused by particulates high 
in the stratosphere. This is known as Stratospheric Aerosol Optical 
Dimming (SAOD). SAOD data are measured at the 550nm (nanometre) 
electromagnetic wavelength. Greater dimming leads to cooling by 
reducing the sunlight reaching Earth’s surface. These dimming 
data have several peaks that coincide with major volcanic eruptions. 
Eruptions with a Volcanic Explosivity Index of 6 have been illustrated3  
(see https://en.wikipedia.org/wiki/Volcanic_Explosivity_Index for a 
definition of the VEI.)
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Figure 2: Total Solar Irradiation (TSI) reaching Earth in kilowatts per 
square metre
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Figure 3: Total Solar Irradiation (TSI) reaching Earth in kilowatts per 
square metre 

2   Foote (1856, American Journal of Arts and Science) is now credited with discovering the Greenhouse Gas 
effect, based on experimental models using glass cylinders and sunlight. Her work remained largely 
unacknowledged until it was rediscovered by Sorenson (2011, Search and Discovery). 

3 Unfortunately, these data do not go back to the 1815 Tambora eruption (VEI=7). This had a major climatic  
impact (https://en.wikipedia.org/wiki/Year_Without_a_Summer) and 1816 is sometimes referred to as ‘the  
year without a Summer’.
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The statistical model
In this section we will look at the results of fitting two statistical models to 
the data using the method of least squares4. In particular we use ordinary 
least squares (OLS), which is the simplest of these methods. OLS 
involves selecting the model parameters that generate the smallest 
(squared5) difference between the observed temperatures and 
temperatures fitted by the model. At the end of this section, we will see 
how to carry out these model estimates using the Excel software.
The first statistical model we fit to our data is on temperatures, carbon 
dioxide, total solar irradiance (TSI) and stratospheric dimming. The 
resulting model is:

Celsius = 0.0104 Carbon dioxide + 48.63 Solar (TSI) 
– 1.79 Dimming + 0.42 El Niño 1877-1878 – 55.4 + e

(1)

where we have also included a variable for the major El Niño event, set 
equal to one on 1877 and 1878, and zero elsewhere.

The parameter numbers in model (1) indicate how much each unit 
of each variable contributed to temperatures. For example, each part 
per million of carbon dioxide contributes an estimated 0.0104 increase 
in Celsius temperatures. Since 1850, carbon dioxide has increased by 
128.3 parts per million, contributing to an estimated 1.33 (= 0.0104 x 
128.3) degrees to the temperature increase. Solar irradiation also makes 
a positive contribution of 48.63 degrees per kilowatt. Increased Solar 
irradiance therefore contributed approximately 0.12 (= 48.63 x 0.0025) 
of a degree to increased temperatures. The upward dimming spikes 
illustrated in Figure 3 correspond with temperature falls based on the 
parameter –1.79. The El Niño 1877-1878 event has a large positive effect 
on temperatures raising them by 0.42 of a degree over this two-year 
period. The final parameter –55.4 is a constant that captures all that is 
missing in the model, such as the temperature effects of atmospheric 
water vapour or atmospheric methane, ozone and nitrous oxide. In a 
near-complete model we would have expected this constant term to 
be close to -273.15, which is absolute zero. Given no model is perfect, 
the residual errors e in model (1) represent differences between the 
observed and model-fitted temperatures.

Figure 4 illustrates the temperatures already seen in Figure 1, overlaid 
with the temperature values fitted from model (1). We can see how 
good the overall fit in this model is. Figure 4 also reports the squares of 
the residual errors e in model (1) that were minimised to fit the model. 
These represent the smallest squared residual errors that could be 
achieved when fitting the model using the method of ordinary  
least squares.
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Figure 4: Actual and model (1) fitted Celsius temperatures, and squared 

residual errors

In our second model we split the Solar (TSI) into its smoothed 
component and its cyclical component already illustrated in Figure 2. 
The resulting OLS model is:

Celsius = 0.0098 Carbon dioxide + 161.2 Solar Smooth + 11.31 Solar Cycle      
(2)                                – 1.87 Dimming +0.425 El Niño 1877-1878 – 208.4 + e 

Model (2) is very similar to model (1) with carbon dioxide explaining an 
estimated 1.26 (= 0.0098 x 128.3) degrees of the temperature increase. 
The main difference is the separate parameters on the two solar activity 
variables. The parameter on ‘Solar Smooth’ is 161.2, suggesting a 
stronger influence than in model (1). Model (2) suggests increased 
Solar irradiance has contributed approximately 0.40 (=161.2 x 0.0025) of 
a degree to increased temperatures. The paramete on the 11-year Solar 
Cycle is much smaller at 11.31, suggesting a very small effect.

How to fit a statistical model using Excel
Models such as (1) and (2) can be estimated using any statistical software 
(such as R, SPSS or Stata) and can even be carried out using spreadsheet 
programs such as Excel. Your estimated results are likely to differ very 
slightly from those in this article because the data are being continually 
fine-tuned and your dataset might not span the same years. Most people 
will probably have access to Excel and wish to use it to estimate their 
models. First make sure that the Excel ‘statistical add-ins’ are activated by 
selecting: File, Options, Add-ins, Go; and then make sure the ‘Analysis 
ToolPak’ and ‘Analysis ToolPak (VBA)’ options are ticked. To estimate 
equation (1) select: Data, Data Analysis, Regression and OK to launch 
the ‘Regression’ box illustrated in Figure 5. In the 

4   The method of least squares was first developed by astronomers such as Gauss (1777-1855,  
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss) and Legendre (1752-1833, https://en.wikipedia.org/
wiki/Adrien-Marie_Legendre) to forecast the trajectory of comets. 

5 The reason for minimising the squares of the residual errors is both a matter of mathematical convenience 
but also because it confers useful statistical properties in the model. This is something that was discovered by 
the early astronomers.
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“Input Y Range” box insert the column with Celsius. In the “Input X 
range” box, insert the columns for Carbon dioxide, Dimming and 
Solar. If you included the variable labels when selecting the data ranges, 
tick the box for “Labels”. Then click OK and this should place a new 
estimated model into a new worksheet in the same Excel workbook.  
You can repeat a similar process to estimate model (2) but might  
need to reposition some data columns to achieve this.

Figure 5: Excel ‘Regression’ box used to estimate statistical models.

Summary
This article has shown us how to estimate a statistical model of climate 
change. In the first section we have seen various climate variables and 
gained an initial insight into how they might be interrelated. In the 
second section we have seen how to use Ordinary Least Squares model-
fitting to estimate two models of climate change. All of the proposed 
climate variables have some impact on the temperature increase 
experienced since 1850 but by far the greatest contribution comes from 
increased atmospheric carbon dioxide. The article appendices touch on 
data sources some advanced topics when it comes to statistical models  
of time-series data.

Data sources appendix
Temperature data in Figure 1 are from Berkeley Earth  
(http://BerkeleyEarth.org) Land and Ocean temperatures at sea level, 
developed by Rohde and Hausfather (2020, https://doi.org/10.5194/
essd-12-3469-2020). Berkley Earth describes itself as “Independent, non-
governmental, and open-source” and was originally established to look 
into the “merit[s] in some of the concerns of climate skeptics”.

Post 1959 carbon dioxide data in Figure 1 are based on atmospheric 
air readings at the Mauna Loa Observatory in Hawaii, made available 
by the Global Monitoring Laboratory (https://www.esrl.noaa.gov/
gmd/). Historical carbon dioxide data are based on numerous polar 
deep ice-core readings (https://www.ncdc.noaa.gov/data-access/
paleoclimatology-data/datasets/ice-core) by MacFarling Meure et al. 
(2006, https://doi.org/10.1029/2006GL026152). 

In Figure 2, recent TSI data spanning 1978-2020 by Coddington 
et al. (2015, https://doi.org/10.7289/V55B00C1) are based on 
satellite readings and were retrieved from www.ncdc.noaa.gov/cdr/
atmospheric/total-solar-irradiance. Two historical TSI datasets by Marvel 
et al. (2015, https://doi.org/10.1038/nclimate2888) and Miller et al. 
(2014, https://doi.org/10.1002/2013MS000266) were retrieved from 
https://data.giss.nasa.gov/modelforce/solar.irradiance. Where the TSI 
data overlap, we use an average of the readings. 

Figure 3 solar dimming data spanning 1850-2012, with updates to Sato 
et al. (1993, https://doi.org/10.1029/93JD02553), were retrieved from 
http://data.giss.nasa.gov/modelforce/strataer/ using the last available 
dataset tau.line_2012.12.txt. These are constructed from volcanic ejecta, 
terrestrial readings and satellite readings. We constructed the missing 
2013-2020 data by using detailed monthly data on volcanic eruptions 
retrieved from the Smithsonian Institution Global Volcanism Program 
using their data retrieval tool: https://volcano.si.edu/search_eruption.
cfm and supplemented with data by Siebert et al. (2010, Volcanoes 
of the World) from www.allcountries.org/ranks/volcano_explocivity_
index_ranks.html.

Advanced statistical appendix
In this appendix we touch on some important but advanced issues 
related to statistical model estimation. The first issue is related to 
ensuring the estimated models are not spurious regressions and the 
second issue is to construct valid significance test statistics on the 
estimated parameters.

The first issue is that it is easy to fit statistical models to data that are 
non-stationary, such as ever-increasing temperatures. To demonstrate 
that the statistical model is not a spurious regression we need to 
demonstrate that its residual errors are mean-reverting. This is typically 
done using unit root tests of non-stationarity. Applying the most 
commonly used one of these, the “Augmented” Dickey and Fuller 
(1981, https://doi.org/10.2307/1912517) (ADF) test to the residual 
errors of models (1) and (2) produces the following test statistics. These 
indicate the two models are super-consistent, cointegrated and not 
spurious because the residual errors are mean-reverting:

ADF test on model (1) residual errors, t-statistic = -7.4455, p-value = 0.000007
ADF test on model (2) residual errors, t-statistic = -7.5684, p-value = 0.000024

The p-values, based on MacKinnon (2010, https://www.econ.queensu.
ca/research/working-papers/1227), indicate strong rejection of  
non-stationarity of the error-residuals.
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Dependent variable: Celsius temperatures
in Engle-Yoo (1987) models

Model 1 Model 2

Regressors:

(1.i)

Param. t-stat

(1.iii)

Param. t-stat

(2.i)

Param. t-stat

(2.iii)

Param. t-stat

Carbon 
dioxide

0.0104 35.77***  0.0107 15.95***  0.0098 24.43***  0.0093 10.46***

Dimming -1.790 -4.16*** -4.78 -4.87*** -1.872 -4.38*** -4.831 -5.16***

El Nino 
1877-1878

 0.420  5.20***  0.970  5.29***  0.425  5.32***  0.956 -5.04***

Solar (TSI) 48.63  1.75 69.30  1.10

Solar 
Smooth

161.2  2.76**  329.7  2.59**

Solar Cycle 11.31  0.35 -18.32 -0.26

Constant -55.40 -1.47 -65.97 -2.05** -208.4 -2.63** -298.4 -4.38***

R2 91.5%

Probability of having erroneously included this parameter * p < 0.05, ** p < 0.01, *** p < 0.001.

The second issue is that we typically wish to test whether each model 
parameter is equal to zero and this is based on standard t-statistics. 
However standard t-statistics are not valid because some of the variabl
are non-stationary. Various corrections are possible and we apply the 
Engle and Yoo (1987, https://doi.org/10.1016/0304-4076(87)90085-
three-stage estimation correction. The first stage includes the models
already reported in models (1) and (2) but the t-statistics are not vali
The second stage (not reported) includes error-correction models wi
three-year lags of first-differenced temperatures and carbon dioxide 
among the regressors. The third stage involves adjusting the first stag
results based on second-stage correction results. The first-stage (i) an
third stage (iii) results for models (1) and (2) are reported in Table 1

The Table 1 results confirm that most of the variables are statistically 
significant in explaining global Celsius temperatures. Only the Solar 
activity variable is not significant in models (1.i) and (1.iii) but this 
might be because the short 11-year cycles are masking the effect of 
the long fluctuation. When Solar activity is split into its smoothed 
fluctuations and its short Solar Cycles, we see that the smoothed 
component is significant in explaining temperature changes. In all 
the models, carbon dioxide remains the most significant variable in 
explaining global warming.

91.7%
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