UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

How to construct CSIDH on Edwards curves

Moriya, Tomoki; Onuki, Hiroshi; Takagi, Tsuyoshi

DOI:
10.1016/j.ffa.2023.102310

License:
Creative Commons: Attribution (CC BY)

Document Version

Publisher's PDF, also known as Version of record
Citation for published version (Harvard):
Moriya, T, Onuki, H \& Takagi, T 2023, 'How to construct CSIDH on Edwards curves', Finite Fields and Their Applications, vol. 92, 102310. https://doi.org/10.1016/j.ffa.2023.102310

Link to publication on Research at Birmingham portal

[^0]
How to construct CSIDH on Edwards curves

Tomoki Moriya ${ }^{\text {a,* }}$, Hiroshi Onuki ${ }^{\text {b }}$, Tsuyoshi Takagi ${ }^{\text {b }}$
${ }^{\text {a }}$ Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
${ }^{\text {b }}$ Department of Mathematical Informatics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

A R T I C L E I N F O

Article history:

Received 24 January 2021
Received in revised form 28 June
2023
Accepted 22 September 2023
Available online xxxx
Communicated by Gary L. Mullen

MSC:

14G50
94A60
68 P 25
Keywords:
Isogeny-based cryptography
Montgomery curves
Edwards curves
CSIDH
Post-quantum cryptography

A B S T R A C T

CSIDH is an isogeny-based key exchange protocol proposed by Castryck et al. in 2018. It is based on the ideal class group action on \mathbb{F}_{p}-isomorphism classes of Montgomery curves. The original CSIDH algorithm requires a calculation over \mathbb{F}_{p} by representing points as x-coordinate over Montgomery curves. There is a special coordinate on Edwards curves (the w coordinate) to calculate group operations and isogenies. If we try to calculate the class group action on Edwards curves by using the w-coordinate in a similar way on Montgomery curves, we have to consider points defined over $\mathbb{F}_{p^{4}}$. Therefore, calculating the class group action on Edwards curves with w coordinates over only \mathbb{F}_{p} is not a trivial task.
In this paper, we prove some theorems about the properties of Edwards curves. We construct the new CSIDH algorithm using these theorems on Edwards curves with w-coordinates over \mathbb{F}_{p}. This algorithm is as fast as (or a little bit faster than) the algorithm proposed by Meyer and Reith.
This paper is an extended version of [29]. We added the construction of a technique similar to Elligator on Edwards curves. This technique contributes to the efficiency of the constant-time CSIDH algorithm. We also added the construction of new formulas to compute isogenies in $\tilde{O}(\sqrt{\ell})$ time on Edwards curves. It is based on formulas on Montgomery curves proposed by Bernstein et al. ($\sqrt{ }$ élu's formulas). In our

[^1]analysis, these formulas on Edwards curves are a little bit faster than those on Montgomery curves.
We finally implemented CSIDH, Vélu's formulas, and CTIDH [3] (faster constant-time CSIDH) on Edwards curves. Each result shows the efficiency of algorithms on Edwards curves.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper is an extended version of [29]. The first additional content is the construction of Elligator [7] on Edwards curves. Using Elligator makes the constant-time CSIDH algorithm faster. The second additional content is the construction of $\sqrt{ }$ élu's formulas on Edwards curves. In both results, our proposal is as fast as (or a little faster than) those on Montgomery curves.

Currently, there are two popular public-key cryptosystems: RSA [32], whose security is based on the computational complexity of the Prime Factorization Problem, and Elliptic Curve Cryptography [26,22], whose security is based on the computational complexity of the Discrete Logarithm Problem. However, Shor pointed out 1994 that both the Prime Factorization Problem and the Discrete Logarithm Problem can be solved in polynomial time using a quantum computer $[34,35]$. This means we should develop new cryptosystems which cannot be broken by quantum computers. The design and analysis of such cryptosystems are called post-quantum cryptography (PQC).

Isogeny-based cryptography is a branch of public-key cryptography based on the computational complexity of the Isogeny Problem, which is a problem arising when we calculate isogenies between given two elliptic curves. It is considered to be a candidate for PQC. Jao and De Feo proposed a Diffie-Hellman type isogeny-based key exchange protocol, called SIDH (Supersingular Isogeny Diffie-Hellman), in 2011 [20]. SIKE (Supersingular Isogeny Key Encapsulation) [19], which is derived from SIDH, is a 4th round alternate candidate in the NIST PQC standardization competition [30]. However, SIDH is broken in 2022 by some research [9,23,33]. Castryck, Lange, Martindale, Panny, and Renes proposed another Diffie-Hellman type of isogeny-based key exchange protocol, called CSIDH (Commutative Supersingular Isogeny Diffie-Hellman), in 2018 [10]. Its calculation uses supersingular elliptic curves over \mathbb{F}_{p}.

CSIDH is based on a commutative group action on \mathbb{F}_{p}-isomorphism classes of supersingular Montgomery curves defined over \mathbb{F}_{p}. In order to calculate this group action, we need to generate a point in $\operatorname{ker}\left(\pi_{p}-1\right)$ or in $\operatorname{ker}\left(\pi_{p}+1\right)$ and determine which set the point belongs to, where π_{p} is the p-Frobenius map. Castryck, Lange, Martindale, Panny, and Renes showed that if we take a random element from \mathbb{F}_{p} as an x-coordinate of a point in a Montgomery curve and determine whether the y-coordinate of the point belongs to \mathbb{F}_{p} or not, then we can get a point in $\operatorname{ker}\left(\pi_{p}-1\right)$ or in $\operatorname{ker}\left(\pi_{p}+1\right)$ and determine which set the point belongs to [10]. They also showed that a Montgomery coefficient is unique

Table 1
Comparing CSIDH algorithms on Montgomery curves and Edwards curves.

	group operations	calculation of isogenies	kernel points
Montgomery	\checkmark	\checkmark	\checkmark
Edwards (y-coordinate)	\checkmark	\checkmark	\checkmark
Edwards $(w$-coordinate)	\checkmark	\checkmark	not trivial

up to \mathbb{F}_{p}-isomorphism [10]. Since it is known that a group operation of a Montgomery curve can be calculated using only the x-coordinates of the points [27] and that isogenies between Montgomery curves can be also calculated by using only the x-coordinates of the points of the kernel [12,25], we can compute a CSIDH group action using only \mathbb{F}_{p}-arithmetic.

Meyer and Reith proposed a faster CSIDH algorithm in 2018 [25]. This algorithm calculates isogenies over Edwards curves instead of Montgomery curves, by using a birational map between a Montgomery curve and an Edwards curve. In this algorithm, the method for generating a point in $\operatorname{ker}\left(\pi_{p}-1\right)$ or in $\operatorname{ker}\left(\pi_{p}+1\right)$ and determining which set the point belongs to is the same as in the original CSIDH algorithm [10]. Hence, a question arises: How do we calculate the CSIDH algorithm on purely Edwards curves over \mathbb{F}_{p} ?

There are two special coordinates (the y-coordinate and the w-coordinate) on Edwards curves for efficiently calculating the group operation [11,16] and isogenies [28,11,21] respectively. For a point P in an Edwards curve, if the y-coordinate of P is in \mathbb{F}_{p}, then P always belongs to $\operatorname{ker}\left(\pi_{p}-1\right)$ or $\operatorname{ker}\left(\pi_{p}+1\right)$. Therefore, it is not difficult to construct the CSIDH algorithm on Edwards curves with y-coordinates. We detail this algorithm in Appendix B. However, if we take a random element from \mathbb{F}_{p} as the w-coordinate of a point on an Edwards curve, the point is sometimes defined outside of $\mathbb{F}_{p^{2}}$ (defined over $\left.\mathbb{F}_{p^{4}}\right)$. Since the points in $\operatorname{ker}\left(\pi_{p}-1\right)$ and those in $\operatorname{ker}\left(\pi_{p}+1\right)$ are defined over $\mathbb{F}_{p^{2}}$, it is not a trivial task to run the CSIDH algorithm using only Edwards curves over \mathbb{F}_{p} with w-coordinates. We summarize the above discussion in Table 1.

The computational costs of the CSIDH group action depend on its secret key. Therefore, CSIDH is vulnerable to side-channel attacks. There are some proposals for constanttime CSIDH algorithms [24,31,11,3]. They use a special map named Elligator [7]. Elligator makes these algorithms more efficient. Elligator can be used for x-coordinates of Montgomery curves; however, there are no techniques similar to Elligator for wcoordinates of Edwards curves.

In 2020, Bernstein, De Feo, Leroux, and Smith proposed new formulas for computing ℓ-isogenies in $\tilde{O}(\sqrt{\ell})$ time [6]. Moreover, Adj, Chi-Domínguez, and Rodríguez-Henríquez improved these formulas in [1]. We call these formulas $\sqrt{ }$ élu's formulas. Bernstein et al. showed that by using these formulas, the CSIDH algorithm gets more efficient. These formulas are constructed by using the x-coordinates of Montgomery curves. There is no result about $\sqrt{ }$ élu's formulas on Edwards curves.

1.1. Our results

In this paper, we prove four important theorems about the w-coordinate on Edwards curves and use them to construct a new implementation of the CSIDH key exchange. First, we show that if we take a random element from the set of square elements in \mathbb{F}_{p} as the w-coordinate of a point P and determine whether the w-coordinate of $2 P$ is square in \mathbb{F}_{p} or not, then we can generate a point in $\operatorname{ker}\left(\pi_{p}-1\right)$ or in $\operatorname{ker}\left(\pi_{p}+1\right)$ and determine which set the point belongs to. Specifically, if the w-coordinate of $2 P$ is square, then this coordinate represents a point in ker $\left(\pi_{p}+1\right)$, and if the w-coordinate of $2 P$ is not square, then the inverse of this coordinate represents a point in $\operatorname{ker}\left(\pi_{p}-1\right)$. Second, we show that there is no difference between the probability of generating a point in ker $\left(\pi_{p}-1\right)$ and the probability of generating a point in $\operatorname{ker}\left(\pi_{p}+1\right)$ in a previous way. Third, we prove the probability that we get a point of order ℓ_{i} is $1-1 / \ell_{i}$, like Montgomery curves. Finally, we show that an Edwards coefficient is unique up to an \mathbb{F}_{p}-isomorphism, like a Montgomery coefficient.

From these theorems, we construct a non-trivial new implementation of the CSIDH key exchange that uses w-coordinates on Edwards curves non-trivially (Algorithm 3). We show that our algorithm is as fast as (or a little bit faster than) the algorithm proposed by Meyer and Reith [25].

Moreover, we realize the technique similar to Elligator on Edwards curves with using w-coordinates. This technique is as efficient as or more efficient than that on Montgomery curves. Therefore, the constant-time CSIDH algorithm on Edwards curves is as efficient as (or a little bit faster than) that on Montgomery curves.

Furthermore, we propose the new $\sqrt{ }$ élu's formulas on Edwards curves. These formulas are constructed by the w-coordinates on Edwards curves. In our analysis, those on Edwards curves are a little bit faster than those on Montgomery curves.

Finally, we implement CSIDH, ل élu's formulas, and CTIDH [3] (faster constant-time CSIDH) on Edwards curves and measure their computational costs. These results are shown in Table 2, Fig. 1, and Table 3. From these implementations, we experimetally confirm the efficiency using Edwards curves.

2. Preliminaries

2.1. Basic mathematical concepts

Here, we explain basic mathematical concepts behind isogeny-based cryptography.
Let \mathbb{L} be a field, and \mathbb{L}^{\prime} be an algebraic extension field of \mathbb{L}. An elliptic curve E defined over \mathbb{L} is a non-singular algebraic curve defined over \mathbb{L} of genus one, together with an \mathbb{L}-rational base point. Denote by $E\left(\mathbb{L}^{\prime}\right)$ the \mathbb{L}^{\prime}-rational points of the elliptic curve $E . E\left(\mathbb{L}^{\prime}\right)$ is an abelian group [36, III. 2]. A supersingular elliptic curve E over a finite field \mathbb{L} of characteristic p is defined as an elliptic curve which satisfies $\# E(\mathbb{L}) \equiv 1$ $(\bmod p)$, where $\# E(\mathbb{L})$ is the cardinality of $E(\mathbb{L})$.

Let E, E^{\prime} be elliptic curves defined over \mathbb{L}. Define an isogeny $\phi: E \rightarrow E^{\prime}$ over \mathbb{L}^{\prime} to be a rational map over \mathbb{L}^{\prime} which is a non-zero group homomorphism from $E(\overline{\mathbb{L}})$ to $E^{\prime}(\overline{\mathbb{L}})$, where $\overline{\mathbb{L}}$ is the algebraic closure of \mathbb{L}. A separable isogeny with $\# \operatorname{ker} \phi=\ell$ is called an ℓ-isogeny. Denote by $\operatorname{End}_{\mathbb{L}^{\prime}}(E)$ the endomorphism ring of E over \mathbb{L}^{\prime}. It is represented as $\operatorname{End}_{p}(E)$ when \mathbb{L}^{\prime} is a prime field \mathbb{F}_{p}. An isogeny $\phi: E \rightarrow E^{\prime}$ defined over \mathbb{L}^{\prime} is called an isomorphism over \mathbb{L}^{\prime} if ϕ has an inverse isogeny over \mathbb{L}^{\prime}.

If G is a finite subgroup of $E(\overline{\mathbb{L}})$, then there exists a separable isogeny $\phi: E \rightarrow E^{\prime}$ whose kernel is G, and E^{\prime} is unique up to an $\overline{\mathbb{L}}$-isomorphism [36, Proposition III.4.12]. This isogeny can be efficiently calculated by using Vélu's formulas [37]. We denote a representative of E^{\prime} by E / G.
$E[k]\left(k \in \mathbb{Z}_{>0}\right)$ is defined as the k-torsion subgroup of $E(\overline{\mathbb{L}})$. For an endomorphism ϕ of E, we sometimes denote $\operatorname{ker} \phi$ by $E[\phi]$.

Let \mathbb{L} be a number field, and \mathcal{O} be an order in \mathbb{L}. A fractional ideal \mathfrak{a} of \mathcal{O} is a finitely generated \mathcal{O}-submodule of \mathbb{L} which satisfies $\alpha \mathfrak{a} \subset \mathcal{O}$ for some $\alpha \in \mathcal{O} \backslash\{0\}$. An invertible fractional ideal \mathfrak{a} of \mathcal{O} is defined as a fractional ideal of \mathcal{O} which satisfies $\mathfrak{a b}=\mathcal{O}$ for some fractional ideal \mathfrak{b} of \mathcal{O}. The fractional ideal \mathfrak{b} is represented as \mathfrak{a}^{-1}. If a fractional ideal \mathfrak{a} is contained in \mathcal{O}, then \mathfrak{a} is called an integral ideal of \mathcal{O}.

Let $I(\mathcal{O})$ be the set of invertible fractional ideals of $\mathcal{O} . I(\mathcal{O})$ is an abelian group derived from multiplication of ideals with the identity \mathcal{O}. Let $P(\mathcal{O})$ be a subgroup of $I(\mathcal{O})$ defined by $P(\mathcal{O})=\left\{\mathfrak{a} \mid \mathfrak{a}=\alpha \mathcal{O}\right.$ (for some $\left.\left.\alpha \in \mathbb{L}^{\times}\right)\right\}$. We call the abelian group $\operatorname{cl}(\mathcal{O})$ defined by $I(\mathcal{O}) / P(\mathcal{O})$ the ideal class group of \mathcal{O}.

The \mathbb{F}_{p}-endomorphism ring $\operatorname{End}_{p}(E)$ of a supersingular elliptic curve E defined over \mathbb{F}_{p} is isomorphic to an order in an imaginary quadratic field [14]. Denote by $\mathcal{E} \ell \ell_{p}(\mathcal{O})$ the set of \mathbb{F}_{p}-isomorphism classes of elliptic curves E whose \mathbb{F}_{p}-endomorphism ring $\operatorname{End}_{p}(E)$ is isomorphic to \mathcal{O}.

2.2. Montgomery curves

Let \mathbb{L} be a field whose characteristic is odd. An elliptic curve E defined by the following equation is called a Montgomery curve:

$$
E: b Y^{2} Z=X^{3}+a X^{2} Z+X Z^{2} \quad\left(a, b \in \mathbb{L} \text { and } b\left(a^{2}-4\right) \neq 0\right)
$$

In this paper, we denote the Montgomery curve $Y^{2} Z=X^{3}+a X^{2} Z+X Z^{2}$ by $E_{\mathcal{M}, a}$. The identity of E is $(0: 1: 0)$, and the inverse of $(X: Y: Z)$ is $(X:-Y: Z)$.

Montgomery showed that the group operations on Montgomery curves can be efficiently computed by using x-coordinates [27]. Define a function x as

$$
x(X: Y: Z)=\frac{X}{Z}
$$

The function x is not defined at the point ($0: 1: 0$). If P and Q satisfy $x(P)=x(Q)$, then $P=Q$ or $P=-Q$. Next define a function \mathbf{x} as $\mathbf{x}(X: Y: Z)=(X: Z)$. We call $\mathbf{x}(P)$ the projective x-coordinates of P.

Let P be a point on E. Let $A / C=a$ and $B / C=b$. Let $(X: Z)=\mathbf{x}(P)$. The projective x-coordinates $\left(X^{\prime}: Z^{\prime}\right)$ of $2 P$ are calculated as follows [27]:

$$
\begin{equation*}
X^{\prime}=4 C(X+Z)^{2}(X-Z)^{2}, \quad Z^{\prime}=4 X Z\left(4 C(X-Z)^{2}+(A+2 C) 4 X Z\right) \tag{1}
\end{equation*}
$$

The computational cost is $4 \mathbf{M}+2 \mathbf{S}+4 \mathbf{a}$. If $Z=1$, the computational cost is $4 \mathbf{M}+$ $1 \mathbf{S}+5 \mathbf{a}$. (We denote field multiplications by \mathbf{M}, field squarings by \mathbf{S}, and field additions, subtractions, or doublings by a.)

Let P_{1} and P_{2} be points on E, and $\left(X_{1}: Z_{1}\right)=\mathbf{x}\left(P_{1}\right),\left(X_{2}: Z_{2}\right)=\mathbf{x}\left(P_{2}\right)$. Let $\left(X_{0}: Z_{0}\right)=\mathbf{x}\left(P_{1}-P_{2}\right)$. The projective x-coordinates $\left(X_{3}: Z_{3}\right)$ of $P_{1}+P_{2}$ are calculated as follows [27]:

$$
\begin{equation*}
X_{3}=Z_{0}\left(X_{1} X_{2}-Z_{1} Z_{2}\right)^{2}, \quad Z_{3}=X_{0}\left(X_{1} Z_{2}-X_{2} Z_{1}\right)^{2} \tag{2}
\end{equation*}
$$

The computational cost is $4 \mathbf{M}+2 \mathbf{S}+6 \mathbf{a}$. If $Z_{0}=1$, the computational cost is $3 \mathbf{M}+2 \mathbf{S}+6 \mathbf{a}$.
Costello and Hisil proposed efficient calculations for odd-degree isogenies by using x coordinates [12], and Meyer and Reith improved them [25]. Let ℓ be an odd integer and s be the integer that satisfies that $\ell=2 s+1$. Let P be a point on E, and $(X: Z)=\mathbf{x}(P)$. Let Q be an order- ℓ point on E, and $\left(X_{1}: Z_{1}\right)=\mathbf{x}(Q)$. Let $\left(X_{k}: Z_{k}\right)=\mathbf{x}(k Q)$. Let $E^{\prime}=E /\langle Q\rangle$ and ϕ be an isogeny $\phi: E \rightarrow E^{\prime}$ with $\operatorname{ker} \phi=\langle Q\rangle$. The projective x-coordinates ($X^{\prime}: Z^{\prime}$) of $\phi(P)$ are calculated as follows [12]:

$$
\begin{equation*}
X^{\prime}=X \cdot \prod_{i=1}^{s}\left(X X_{i}-Z Z_{i}\right)^{2}, \quad Z^{\prime}=Z \cdot \prod_{i=1}^{s}\left(X Z_{i}-Z X_{i}\right)^{2} \tag{3}
\end{equation*}
$$

The computational cost is $(4 s) \mathbf{M}+2 \mathbf{S}+(4 s+2) \mathbf{a}$. Let $A / C=a$. The curve coefficient $a^{\prime}=A^{\prime} / C^{\prime}$ of E^{\prime} is calculated as follows [25]:

$$
\begin{gather*}
\tilde{a}=A+2 C, \quad \tilde{d}=A-2 C, \quad \tilde{a}^{\prime}=\tilde{a}^{\ell} \cdot \prod_{i=1}^{s}\left(X_{i}+Z_{i}\right)^{8}, \tag{4}\\
\tilde{d}^{\prime}=\tilde{d}^{\ell} \cdot \prod_{i=1}^{s}\left(X_{i}-Z_{i}\right)^{8}, \quad A^{\prime}=2\left(\tilde{a}^{\prime}+\tilde{d}^{\prime}\right), \quad C^{\prime}=\tilde{a}^{\prime}-\tilde{d}^{\prime}
\end{gather*}
$$

The computational cost is $(2 s+2) \mathbf{M}+6 \mathbf{S}+(2 s+6) \mathbf{a}$ and that of the two ℓ-th powers. Since $X_{i}+Z_{i}$ and $X_{i}-Z_{i}$ are also used for calculating $\phi(P)$, the computational cost of calculating $\phi(P)$ and E^{\prime} is $(6 s+2) \mathbf{M}+8 \mathbf{S}+(4 s+8) \mathbf{a}$ and that of the two ℓ-th powers. Appendix A. 1 describes why the computational costs are as above.

Furthermore, for a high-degree isogeny ϕ, there are more efficient methods to compute $\phi(P)$ and $\left(A^{\prime}, C^{\prime}\right)$ on Montgomery curves [6,1]. These formulas can be computed in $\tilde{O}(\sqrt{\ell})$ time. We call them $\sqrt{ }$ élu's formulas. The equations (3) and (4) can be rewritten as follows:

$$
\begin{gather*}
X^{\prime}=X \cdot\left(h_{S}(Z, X)\right)^{2}, \quad Z^{\prime}=Z \cdot\left(h_{S}(X, Z)\right)^{2} . \tag{5}\\
\tilde{a}=A+2 C, \quad \tilde{d}=A-2 C, \quad \tilde{a}^{\prime}=\tilde{a}^{\ell} \cdot\left(h_{S}(-1,1)\right)^{8}, \\
\tilde{d}^{\prime}=\tilde{d}^{\ell} \cdot\left(h_{S}(1,1)\right)^{8}, \quad A^{\prime}=2\left(\tilde{a}^{\prime}+\tilde{d}^{\prime}\right), \quad C^{\prime}=\tilde{a}^{\prime}-\tilde{d}^{\prime} . \tag{6}
\end{gather*}
$$

Here, h_{S} is the polynomial in $\mathbb{F}_{p}\left[T_{1}, T_{2}\right]$ defined as $h_{S}\left(T_{1}, T_{2}\right):=\prod_{i \in S}\left(Z_{i} T_{1}-X_{i} T_{2}\right)$, and S is the set $\{1,3, \ldots, \ell-2\}$. By using resultants, we can compute $h_{S}(\alpha, \beta)$ for some α, β. Appendix A. 3 describes more details about the above method.

2.3. Edwards curves

In 2007, Edwards introduced a new form of an elliptic curve [15]. Bernstein and Lange extended these curves to another form in 2007, called Edwards curves [8]. For representing points at infinity, Hisil, Wong, Carter, and Dawson proposed projective closures of Edwards curves in \mathbb{P}^{3} in 2018 [18].

Let \mathbb{L} be a field. If an elliptic curve E is defined by the following equations, E is called an Edwards curve [18]:

$$
E: X^{2}+Y^{2}=Z^{2}+d T^{2}, \quad X Y=Z T \quad(d \in \mathbb{L} \text { and } d \neq 0,1)
$$

In this paper, we denote the Edwards curve $X^{2}+Y^{2}=Z^{2}+d T^{2}, X Y=Z T$ by E_{d}. The identity of E_{d} is $(0: 1: 1: 0)$, which we will denote by 0_{d} for simplicity, while the inverse of $(X: Y: Z: T)$ is $(-X: Y: Z:-T)$. We obtain the group addition formulas as follows [18]:

$$
\begin{gather*}
\left(X_{1}: Y_{1}: Z_{1}: T_{1}\right)+\left(X_{2}: Y_{2}: Z_{2}: T_{2}\right) \\
=\left(\left(X_{1} Y_{2}+Y_{1} X_{2}\right)\left(Z_{1} Z_{2}-d T_{1} T_{2}\right):\left(Y_{1} Y_{2}-X_{1} X_{2}\right)\left(Z_{1} Z_{2}+d T_{1} T_{2}\right)\right. \tag{7}\\
\left.:\left(Z_{1} Z_{2}-d T_{1} T_{2}\right)\left(Z_{1} Z_{2}+d T_{1} T_{2}\right):\left(Y_{1} Y_{2}-X_{1} X_{2}\right)\left(X_{1} Y_{2}+Y_{1} X_{2}\right)\right) .
\end{gather*}
$$

For simplicity, we will sometimes consider an Edwards curve to be an affine curve defined by the following equation:

$$
E: x^{2}+y^{2}=1+d x^{2} y^{2} \quad(d \in \mathbb{L} \text { and } d \neq 0,1)
$$

where $x=X / Z$ and $y=Y / Z$. In this equation, only $(\pm \sqrt{d}: 0: 0: 1)$ and $(0: \pm \sqrt{d}: 0: 1)$ are points at infinity. $(\pm \sqrt{d}: 0: 0: 1)$ are points of order 2 , and $(0: \pm \sqrt{d}: 0: 1)$ are points of order 4 . Hence, if the order of a point P on E_{d} is neither 2 nor $4, P$ can be represented in affine coordinates (x, y).

In $[28,11]$ it was shown that the group calculations of Edwards curves can be efficiently performed by using the y-coordinate. Define a function y as

$$
y(X: Y: Z: T)= \begin{cases}\frac{Y}{Z} & (\text { if } Z \neq 0) \\ \infty & (\text { if } Z=0(\text { points at infinity }))\end{cases}
$$

We call $y(P)$ the y-coordinate of P. If P and Q satisfy that $y(P)=y(Q)$, then $P=Q$ or $P=-Q$. Define a function \mathbf{y} as $\mathbf{y}(X: Y: Z: T)=(Y: Z)$. We call $\mathbf{y}(P)$ the projective y-coordinates of P.

Let P be a point on E_{d}, and $(Y: Z)=\mathbf{y}(P)$. Let $D / C=d$. The projective y coordinates $\left(Y^{\prime}: Z^{\prime}\right)$ of $2 P$ are calculated as follows [11]:

$$
\begin{align*}
& Y^{\prime}=(C-D) Y^{2} Z^{2}-\left(Z^{2}-Y^{2}\right) \cdot\left((C-D) Y^{2}+C\left(Z^{2}-Y^{2}\right)\right), \\
& Z^{\prime}=(C-D) Y^{2} Z^{2}+\left(Z^{2}-Y^{2}\right) \cdot\left((C-D) Y^{2}+C\left(Z^{2}-Y^{2}\right)\right) \tag{8}
\end{align*}
$$

The computational cost is $4 \mathbf{M}+2 \mathbf{S}+5 \mathbf{a}$. If $Z=1$, the computational cost is $3 \mathbf{M}+1 \mathbf{S}+5 \mathbf{a}$.
Let P_{1} and P_{2} be points on E_{d}, and $\left(Y_{1}: Z_{1}\right)=\mathbf{y}\left(P_{1}\right),\left(Y_{2}: Z_{2}\right)=\mathbf{y}\left(P_{2}\right)$. Let $\left(Y_{0}: Z_{0}\right)=\mathbf{y}\left(P_{1}-P_{2}\right)$. The projective y-coordinates $\left(Y_{3}: Z_{3}\right)$ of $P_{1}+P_{2}$ are calculated as follows [11]:

$$
\begin{align*}
& Y_{3}=\left(Z_{0}-Y_{0}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)^{2}-\left(Z_{0}+Y_{0}\right)\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right)^{2} \\
& Z_{3}=\left(Z_{0}-Y_{0}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)^{2}+\left(Z_{0}+Y_{0}\right)\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right)^{2} \tag{9}
\end{align*}
$$

The computational cost is $4 \mathbf{M}+2 \mathbf{S}+6 \mathbf{a}$. In the case that $Z_{0}=1$, the computational cost is also $4 \mathbf{M}+2 \mathbf{S}+6 \mathbf{a}$.

In [11] efficient calculations were proposed for odd-degree isogenies by using projective y-coordinates. Let ℓ be an odd integer and s be the integer that satisfies $\ell=2 s+1$. Let P be a point on E_{d}, and $(Y: Z)=\mathbf{y}(P)$. Let Q be an order- ℓ point on E_{d}, and $\left(Y_{1}: Z_{1}\right)=\mathbf{y}(Q)$. Let $\left(Y_{k}: Z_{k}\right)=\mathbf{y}(k Q)$. Let $E_{d^{\prime}}=E_{d} /\langle Q\rangle$, and ϕ be an isogeny $\phi: E_{d} \rightarrow E_{d^{\prime}}$ with ker $\phi=\langle Q\rangle$. The projective y-coordinates $\left(Y^{\prime}: Z^{\prime}\right)$ of $\phi(P)$ are calculated as follows [11]:

$$
\begin{align*}
Y^{\prime} & =(Z+Y) \cdot \prod_{i=1}^{s}\left(Z Y_{i}+Z_{i} Y\right)^{2}-(Z-Y) \cdot \prod_{i=1}^{s}\left(Z Y_{i}-Z_{i} Y\right)^{2} \\
Z^{\prime} & =(Z+Y) \cdot \prod_{i=1}^{s}\left(Z Y_{i}+Z_{i} Y\right)^{2}+(Z-Y) \cdot \prod_{i=1}^{s}\left(Z Y_{i}-Z_{i} Y\right)^{2} \tag{10}
\end{align*}
$$

The computational cost is $(4 s) \mathbf{M}+2 \mathbf{S}+(2 s+4) \mathbf{a}$. The projective curve coefficient $d^{\prime}=D^{\prime} / C^{\prime}$ is calculated as follows [28]:

$$
\begin{equation*}
D^{\prime}=D^{\ell} \cdot \prod_{i=1}^{s}\left(Y_{i}\right)^{8}, \quad C^{\prime}=C^{\ell} \cdot \prod_{i=1}^{s}\left(Z_{i}\right)^{8} \tag{11}
\end{equation*}
$$

The computational cost is $(2 s+2) \mathbf{M}+6 \mathbf{S}$ and that of the two ℓ-th powers. The computational cost of calculating $\phi(P)$ and $E_{d^{\prime}}$ is $(6 s+2) \mathbf{M}+8 \mathbf{S}+(2 s+4) \mathbf{a}$ and that of the two ℓ-th powers.

Farashahi and Hosseini showed that the group calculations of Edwards curves can be efficiently performed by using the w-coordinate [16]. Define a function w as

$$
w(X: Y: Z: T)=\left\{\begin{array}{ll}
\frac{d T^{2}}{Z^{2}} & (\text { if } Z \neq 0) \\
\infty & (\text { if } Z=0(\text { points at infinity }))
\end{array} .\right.
$$

In affine coordinates, $w(x, y)=d x^{2} y^{2}$. We call $w(P)$ the w-coordinate of P. If P and Q satisfy that $w(P)=w(Q)$, then, from [16, Formula (6)], $P+Q$ or $P-Q$ is an element of

$$
\left\{0_{d},(0:-1: 1: 0),(1: 0: 1: 0),(-1: 0: 1: 0)\right\} .
$$

In this paper, we will denote $\left\{0_{d},(0:-1: 1: 0),(1: 0: 1: 0),(-1: 0: 1: 0)\right\}$ by \mathcal{G}_{4} for simplicity. Note that \mathcal{G}_{4} is a cyclic group of order 4 . Define a function \mathbf{w} as $\mathbf{w}(X: Y: Z: T)=\left(d T^{2}: Z^{2}\right)$. We call $\mathbf{w}(P)$ the projective w-coordinates of P.

Let P be a point on E_{d}, and $(W: Z)=\mathbf{w}(P)$. Let $D / C=d$. The projective w coordinates $\left(W^{\prime}: Z^{\prime}\right)$ of $2 P$ are calculated as follows [16]:

$$
\begin{equation*}
W^{\prime}=4 W Z\left(D(W+Z)^{2}-4 C W Z\right), \quad Z^{\prime}=D(W+Z)^{2}(W-Z)^{2} . \tag{12}
\end{equation*}
$$

The computational cost is $4 \mathbf{M}+2 \mathbf{S}+4 \mathbf{a}$. If $Z=1$, the computational cost is $4 \mathbf{M}+1 \mathbf{S}+5 \mathbf{a}$.
Let P_{1} and P_{2} be points on E_{d}, and $\left(W_{1}: Z_{1}\right)=\mathbf{w}\left(P_{1}\right),\left(W_{2}: Z_{2}\right)=\mathbf{w}\left(P_{2}\right)$. Let $\left(W_{0}: Z_{0}\right)=\mathbf{w}\left(P_{1}-P_{2}\right)$. The projective w-coordinates $\left(W_{3}: Z_{3}\right)$ of $P_{1}+P_{2}$ are calculated as follows [16]:

$$
\begin{equation*}
W_{3}=Z_{0}\left(W_{1} Z_{2}-W_{2} Z_{1}\right)^{2}, \quad Z_{3}=W_{0}\left(W_{1} W_{2}-Z_{1} Z_{2}\right)^{2} \tag{13}
\end{equation*}
$$

The computational cost is $4 \mathbf{M}+2 \mathbf{S}+6 \mathbf{a}$. If $Z_{0}=1$, the computational cost is $3 \mathbf{M}+2 \mathbf{S}+6 \mathbf{a}$.
Kim, Yoon, Park, and Hong proposed efficient calculations for odd-degree isogenies by using projective w-coordinates [21]. Let ℓ be an odd integer and s be the integer that satisfies $\ell=2 s+1$. Let P be a point on E_{d}, and $(W: Z)=\mathbf{w}(P)$. Let Q be an order- ℓ point on E_{d}, and $\left(W_{1}: Z_{1}\right)=\mathbf{w}(Q)$. Let $\left(W_{k}: Z_{k}\right)=\mathbf{w}(k Q)$. Let $E_{d^{\prime}}=E_{d} /\langle Q\rangle$, and ϕ be an isogeny $\phi: E_{d} \rightarrow E_{d^{\prime}}$ with $\operatorname{ker} \phi=\langle Q\rangle$. The projective w-coordinates $\left(W^{\prime}: Z^{\prime}\right)$ of $\phi(P)$ are calculated as follows [21]:

$$
\begin{equation*}
W^{\prime}=W \cdot \prod_{i=1}^{s}\left(Z W_{i}-Z_{i} W\right)^{2}, \quad Z^{\prime}=Z \cdot \prod_{i=1}^{s}\left(W W_{i}-Z Z_{i}\right)^{2} \tag{14}
\end{equation*}
$$

The computational cost is $(4 s) \mathbf{M}+2 \mathbf{S}+(4 s+2) \mathbf{a}$. The projective curve coefficient $d^{\prime}=D^{\prime} / C^{\prime}$ is calculated as follows [21]:

$$
\begin{equation*}
D^{\prime}=D^{\ell} \cdot \prod_{i=1}^{s}\left(W_{i}+Z_{i}\right)^{8}, \quad C^{\prime}=C^{\ell} \cdot \prod_{i=1}^{s}\left(2 Z_{i}\right)^{8} \tag{15}
\end{equation*}
$$

The computational cost is $(2 s+2) \mathbf{M}+6 \mathbf{S}+(s+4) \mathbf{a}$ and that of the two ℓ-th powers. Since $W_{i}+Z_{i}$ is also used for calculating $\phi(P)$, the computational cost of calculating
$\phi(P)$ and $E_{d^{\prime}}$ is $(6 s+2) \mathbf{M}+8 \mathbf{S}+(4 s+6) \mathbf{a}$ and that of the two ℓ-th powers. Appendix A. 2 describes why the computational costs are as above.

Furthermore, we found the method to compute ℓ-isogenies on Edwards curves in $\tilde{O}(\sqrt{\ell})$ time as on Montgomery curves. We explain these formulas in section 7.

An Edwards curve has a following property.

Theorem 1. Let p be a prime and $p \geq 3$. The Edwards curve E_{d} defined over \mathbb{F}_{p} is \mathbb{F}_{p}-isomorphic to the Montgomery curve,

$$
E_{\mathcal{M}}: \frac{4}{1-d} Y^{2} Z=X^{3}+\frac{2(1+d)}{1-d} X^{2} Z+X Z^{2}
$$

Proof. Bernstein, Birkner, Joye, Lange, and Peters show that there is a birational map between E_{d} and $E_{\mathcal{M}}$ [5]. This birational map becomes an isomorphism because E_{d} and $E_{\mathcal{M}}$ are non-singular.

It is known that there is a birational map between a Montgomery curve and an Edwards curve [5]. However, we need an isomorphism for constructing the CSIDH algorithm using only Edwards curves.

Corollary 1. Let p be a prime, $p \geq 3$, and $p \equiv 3(\bmod 4)$. An Edwards curve E_{d} defined over \mathbb{F}_{p} is \mathbb{F}_{p}-isomorphic to the Montgomery curve,

$$
E_{\mathcal{M}}: Y^{2} Z=X^{3}+\chi(1-d) \cdot \frac{2(1+d)}{1-d} X^{2} Z+X Z^{2}
$$

where the map $\chi: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ is defined as $\chi(a):=a^{(p-1) / 2}$.
Corollary 1 is easily proven from Theorem 1.

Corollary 2. Let p be a prime, $p \geq 3$, and $p \equiv 3(\bmod 8)$. Let $E_{\mathcal{M}, a}$ be a supersingular Montgomery curve $Y^{2} Z=X^{3}+a X^{2} Z+X Z^{2}$ defined over \mathbb{F}_{p}. If $a-2$ is square, then $E_{\mathcal{M}, a}$ is \mathbb{F}_{p}-isomorphic to the Edwards curve,

$$
E_{\frac{a+2}{a-2}}: X^{2}+Y^{2}=Z^{2}+\frac{a+2}{a-2} T^{2}, \quad X Y=Z T
$$

and if $a-2$ is not square, then $E_{\mathcal{M}, a}$ is \mathbb{F}_{p}-isomorphic to the Edwards curve,

$$
E_{\frac{a-2}{a+2}}: X^{2}+Y^{2}=Z^{2}+\frac{a-2}{a+2} T^{2}, \quad X Y=Z T
$$

Proof. As $E_{\mathcal{M}, a}$ is supersingular, $\# E_{\mathcal{M}, a}\left(\mathbb{F}_{p}\right)=\# \tilde{E}_{\mathcal{M}, a}\left(\mathbb{F}_{p}\right)=p+1 \equiv 4(\bmod 8)$, where $\tilde{E}_{\mathcal{M}, a}$ is a quadratic twist of $E_{\mathcal{M}}$. From Table 1 of [13], $(a-2)(a+2)$ is not square.

If $a-2$ is square, the Edwards curve $E_{\frac{a+2}{a-2}}$ is \mathbb{F}_{p}-isomorphic to $E_{\mathcal{M}, a}$ by Corollary 1. If $a-2$ is not square, since $a+2$ is square, the Edwards curve $E_{\frac{a-2}{a+2}}$ is \mathbb{F}_{p}-isomorphic to $E_{\mathcal{M}, a}$ by Corollary 1.

This completes the proof of Corollary 2.
By using Corollary 1 and Corollary 2, it is easy to convert an Edwards curve into a Montgomery curve and convert a Montgomery curve into an Edwards curve.

3. CSIDH [10]

CSIDH (Commutative Supersingular Isogeny Diffie-Hellman) was proposed by Castryck, Lange, Martindale, Panny, and Renes in 2018 [10].

CSIDH is based on the action of $\operatorname{cl}\left(\mathbb{Z}\left[\pi_{p}\right]\right)$ on $\mathcal{E} \ell_{p}\left(\mathbb{Z}\left[\pi_{p}\right]\right)$. Let the prime p be 4 . $\ell_{1} \cdots \ell_{n}-1$, where the $\ell_{1}, \ldots, \ell_{n}$ are small distinct odd primes, for Alice and Bob to calculate the action efficiently. Alice and Bob let random elements of $\operatorname{cl}\left(\mathbb{Z}\left[\pi_{p}\right]\right)$ be secret keys and calculate the actions on $E_{\mathcal{M}, 0}: Y^{2} Z=X^{3}+X Z^{2}$. They publish the obtained elliptic curves as public keys. Finally, they calculate the actions on the public keys, respectively. The obtained elliptic curves are identical up to \mathbb{F}_{p}-isomorphism by the commutativity of $\operatorname{cl}\left(\mathbb{Z}\left[\pi_{p}\right]\right)$; therefore, the values of the Montgomery coefficients are the same from Theorem 3. Let their values be $\mathrm{SK}_{\text {shared }}$.

3.1. CSIDH protocol

Before explaining the protocol of CSIDH, we should state the following important theorems.

Theorem 2 ([38, Theorem 4.5]). Let \mathcal{O} be an order of an imaginary quadratic field and E be an elliptic curve defined over \mathbb{F}_{p}. If $\mathcal{E} \ell_{p}(\mathcal{O})$ contains the \mathbb{F}_{p}-isomorphism class of supersingular elliptic curves, then the action of the ideal class group $\operatorname{cl}(\mathcal{O})$ on $\mathcal{E} \ell_{p}(\mathcal{O})$,

$$
\begin{aligned}
\mathrm{cl}(\mathcal{O}) \times \mathcal{E \ell \ell}_{p}(\mathcal{O}) & \longrightarrow \mathcal{E \ell \ell}_{p}(\mathcal{O}) \\
([\mathfrak{a}], E) & \longmapsto E / E[\mathfrak{a}]
\end{aligned}
$$

is free and transitive, where \mathfrak{a} is an integral ideal of \mathcal{O}, and $E[\mathfrak{a}]$ is the intersection of the kernels of elements in the ideal \mathfrak{a}.

Denote a representative of $E / E[\mathfrak{a}]$ by $[\mathfrak{a}] E$.
Theorem 3 ([10, Proposition 8]). Let p be a prime satisfying $p \equiv 3(\bmod 8)$ larger than 3. Let E be a supersingular elliptic curve defined over \mathbb{F}_{p}. Then, $\operatorname{End}_{p}(E)=\mathbb{Z}\left[\pi_{p}\right]$ holds if and only if there uniquely exists $a \in \mathbb{F}_{p}$ such that E is \mathbb{F}_{p}-isomorphic to a Montgomery curve $E_{\mathcal{M}, a}$, where π_{p} is the p-Frobenius map.

The exact protocol is as follows. Suppose that Alice and Bob want to share a secret key denoted by $\mathrm{SK}_{\text {shared }}$.

Setup. Let p be a prime which satisfies $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$, where $\ell_{1}, \ldots, \ell_{n}$ are small distinct odd primes. Let the public parameters be p and $E_{\mathcal{M}, 0}$.
Key generation. One randomly chooses an integer vector $\left(e_{1}, \ldots, e_{n}\right)$ from $\{-m, \ldots, m\}^{n}$. Define $[\mathfrak{a}]=\left[\mathfrak{l}_{1}^{e_{1}} \cdots \mathfrak{l}_{n}^{e_{n}}\right] \in \operatorname{cl}\left(\mathbb{Z}\left[\pi_{p}\right]\right)$, where $\mathfrak{l}_{i}=\left(\ell_{i}, \pi_{p}-1\right), \mathfrak{l}_{i}^{-1}=\left(\ell_{i}, \pi_{p}+1\right)$, and m is the smallest integer which satisfies $2 m+1 \geq \sqrt[n]{\# \operatorname{cl}\left(\mathbb{Z}\left[\pi_{p}\right]\right)} \approx p^{1 / 2 n}$. One calculates the action of $[\mathfrak{a}]$ on $E_{\mathcal{M}, 0}$ and the Montgomery coefficient $a \in \mathbb{F}_{p}$ of $[\mathfrak{a}] E_{\mathcal{M}, 0}: Y^{2} Z=X^{3}+a X^{2} Z+X Z^{2}$.
Let the integer vector $\left(e_{1}, \ldots, e_{n}\right)$ be the secret key, and $a \in \mathbb{F}_{p}$ be the public key.
Key exchange. Alice and Bob have pairs of keys, $([\mathfrak{a}], a)$ and $([\mathfrak{b}], b)$, respectively. Alice calculates the action $[\mathfrak{a}] E_{\mathcal{M}, b}=[\mathfrak{a}][\mathfrak{b}] E_{\mathcal{M}, 0}$. Bob calculates the action $[\mathfrak{b}] E_{\mathcal{M}, a}=$ $[\mathfrak{b}][\mathfrak{a}] E_{\mathcal{M}, 0}$. Denote the Montgomery coefficient of $[\mathfrak{a}][\mathfrak{b}] E_{\mathcal{M}, 0}$ by $\mathrm{SK}_{\text {Alice }}$ and the Montgomery coefficient of $[\mathfrak{b}][\mathfrak{a}] E_{\mathcal{M}, 0}$ by $\mathrm{SK}_{\text {Bob }}$.

From the commutativity of $\mathrm{cl}\left(\mathbb{Z}\left[\pi_{p}\right]\right)$ and Theorem 3, $\mathrm{SK}_{\text {Alice }}=\mathrm{SK}_{\text {Bob }}$ holds. Let these values be the shared key $\mathrm{SK}_{\text {shared }}$.

3.2. Evaluating the class group action on Montgomery curves

In this subsection, we explain how to evaluate the class group action on Montgomery curves [10]. Algorithm 1 is an algorithm for evaluating the class group action.

Let p be a prime satisfying $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$, where $\ell_{1}, \ldots, \ell_{n}$ are small distinct odd primes. The inputs of the algorithm are a Montgomery coefficient $a \in \mathbb{F}_{p}$ and a list of integers $\left(e_{1}, \ldots, e_{n}\right)$. The output is a Montgomery coefficient $a^{\prime} \in \mathbb{F}_{p}$ that satisfies $E_{\mathcal{M}, a^{\prime}}=\left[\mathfrak{l}_{1}^{e_{1}} \ldots \mathfrak{l}_{n}^{e_{n}}\right] E_{\mathcal{M}, a}$.

We calculate a^{\prime} by repeating the calculations of the actions of $\left[\mathfrak{l}_{i}\right]$ or $\left[\mathfrak{l}_{i}\right]^{-1}$ (i.e., repeating the calculations of ℓ_{i}-isogenies).

Sampling points (line 2-8 in Algorithm 1) For calculating the class group action, we first sample a point that belongs to $\operatorname{ker}\left(\pi_{p}-1\right)$ or $\operatorname{ker}\left(\pi_{p}+1\right)$. We take a uniformly random element of \mathbb{F}_{p}. Let the element be x, and P be a point in $E_{\mathcal{M}, a}$ such that $x(P)=x$. We calculate $x^{3}+a x^{2}+x$, which is a square of $y(P)$, where $y(P)$ is the y-coordinate of P. If $x^{3}+a x^{2}+x$ is square in \mathbb{F}_{p}, then $P \in \operatorname{ker}\left(\pi_{p}-1\right)$, and if $x^{3}+a x^{2}+x$ is not square in \mathbb{F}_{p}, then $P \in \operatorname{ker}\left(\pi_{p}+1\right)$. If $x^{3}+a x^{2}+x$ is square, we define S to be the set of i such that the sign of e_{i} is +1 , and if $x^{3}+a x^{2}+x$ is not square, we define S to be the set of i such that the sign of e_{i} is -1 . If $S=\emptyset$, we repeat this procedure with another sample point.

Scalar multiplication (line 9 in Algorithm 1) Next, we calculate $P_{1}=\frac{p+1}{k} P$, where $k=\prod_{i \in S} \ell_{i}$. The calculation uses the Montgomery ladder algorithm [27].

Calculation of isogenies (line 10-16 in Algorithm 1) We calculate $P_{2}=\frac{k}{\ell_{i}} P_{1}$. The order of P_{2} is 1 or ℓ_{i}. The probability that P_{2} is not the identity is $1-\frac{1}{\ell_{i}}$ [10]. Therefore, with high probability, we get a point of order ℓ_{i}. Then, we calculate an ℓ_{i}-isogeny,

$$
\phi: E_{\mathcal{M}, a} \longrightarrow E_{\mathcal{M}, a} /\left\langle P_{2}\right\rangle,
$$

by using the formulas in $[12,25]$. Denote the Montgomery coefficient of $E_{\mathcal{M}, a} /\left\langle P_{2}\right\rangle$ by $a^{\prime} \in \mathbb{F}_{p}$. From Theorem 3, a^{\prime} is unique. We redefine e_{i} as $e_{i}-1$ (if $e_{i}>0$) or $e_{i}+1$ (if $\left.e_{i}<0\right), k$ as $k / \ell_{i}, P_{1}$ as $\phi\left(P_{1}\right)$, and a as a^{\prime}.

We repeat this calculation for all $i \in S$. After that, if the list of integers $\left(e_{1}, \ldots, e_{n}\right)$ is not the zero vector, we return to the Sampling points part.

Output (line 18 in Algorithm 1) If the list of integers $\left(e_{1}, \ldots, e_{n}\right)$ is the zero vector, we output the Montgomery coefficient $a^{\prime} \in \mathbb{F}_{p}$.

```
Algorithm 1 Evaluating the class group action on Montgomery curves [10].
Input: \(a \in \mathbb{F}_{p}\) such that \(E_{\mathcal{M}, a}\) is supersingular and a list of integers \(\left(e_{1}, \ldots, e_{n}\right)\)
Output: \(a^{\prime}\) such that \(\left[\mathfrak{e}_{1}^{e_{1}} \cdots \mathfrak{l}_{n}^{e_{n}}\right] E_{\mathcal{M}, a}=E_{\mathcal{M}, a^{\prime}}\)
    while some \(e_{i} \neq 0\) do
        Sample a random \(x \in \mathbb{F}_{p}\)
        \(\mathbf{x}(P) \leftarrow(x: 1)\)
        Set \(s \leftarrow+1\) if \(x^{3}+a x^{2}+x\) is a square in \(\mathbb{F}_{p}\), else \(s \leftarrow-1\)
        Let \(S=\left\{i \mid \operatorname{sign}\left(e_{i}\right)=s\right\}\)
        if \(S=\emptyset\) then
            Go to line 2
        end if
        \(k \leftarrow \prod_{i \in S} \ell_{i}, \mathbf{x}(P) \leftarrow \mathbf{x}(((p+1) / k) P)\)
        for all \(i \in S\) do
            \(\mathbf{x}(Q) \leftarrow \mathbf{x}\left(\left(k / \ell_{i}\right) P\right)\)
            if \(Q \neq(0: 1: 0)\) then
                Compute an \(\ell_{i}\)-isogeny \(\phi: E_{\mathcal{M}, a} \rightarrow E_{\mathcal{M}, a^{\prime}}\) with ker \(\phi=\langle Q\rangle\)
                    \(a \leftarrow a^{\prime}, \mathbf{x}(P) \leftarrow \mathbf{x}(\phi(P)), k \leftarrow k / \ell_{i}, e_{i} \leftarrow e_{i}-s\)
            end if
        end for
    end while
    return \(a\)
```


3.3. Elligator on Montgomery curves

In this subsection, we explain Elligator in detail. Elligator (specifically Elligator 2 in [7]) is used as a technique mapping some points in $\operatorname{ker}\left(\pi_{p} \pm 1\right)$ to points in $\operatorname{ker}\left(\pi_{p} \mp 1\right)$ over Montgomery curves. Meyer, Campos, and Reith used this technique for implementations of constant-time CSIDH algorithms for efficiency [24]. By using Elligator, we can sample a pair of points in $\operatorname{ker}\left(\pi_{p}-1\right)$ and points in $\operatorname{ker}\left(\pi_{p}+1\right)$ efficiently. Elligator reduces the number of Legendre symbol computations in the constant-time CSIDH algorithm and makes the algorithm more efficient.

First, we take a random value u from $\{2,3, \ldots,(p-1) / 2\}$. We compute $v:=a /\left(u^{2}-1\right)$, and output $(v,-v-a)$. If $v^{3}+a v^{2}+v$ is square, then v is the x-coordinate of a point
in $\operatorname{ker}\left(\pi_{p}-1\right)$, and $-v-a$ is the x-coordinate of a point in $\operatorname{ker}\left(\pi_{p}+1\right)$. If not square, then v is the x-coordinate of a point in $\operatorname{ker}\left(\pi_{p}+1\right)$, and $-v-a$ is the x-coordinate of a point in ker $\left(\pi_{p}-1\right)$. These facts can be easily checked.

Moreover, Cervantes-Vázquez et al. proposed the constant-time projective Elligator for the constant-time CSIDH algorithm [11]. We show this algorithm in Algorithm 2.

```
Algorithm 2 Constant-time projective Elligator on Montgomery curves [11].
Input: \(A, C \in \mathbb{F}_{p}\) such that \(E_{\mathcal{M}, A / C}\) is supersingular and a random element \(u\) from \(\{2,3, \ldots,(p-1) / 2\}\)
Output: The projective \(x\)-coordinate of \(P \in \operatorname{ker}\left(\pi_{p}-1\right)\) and the projective \(x\)-coordinate of \(Q \in \operatorname{ker}\left(\pi_{p}+1\right)\)
    \(t \leftarrow A\left(\left(u^{2}-1\right) u^{2} A^{2} C+\left(\left(u^{2}-1\right) C\right)^{3}\right)\)
    \(\epsilon \leftarrow\) isequal \((t, 0)\)
    \(\alpha, \beta \leftarrow 0, u\)
    \(\operatorname{cswap}(\alpha, \beta, \epsilon)\)
    \(t^{\prime} \leftarrow t+\alpha\left(u^{2}+1\right)\)
    \(\zeta \leftarrow\) Legendre_symbol \(\left(t^{\prime}, p\right)\)
    \(\epsilon^{\prime} \leftarrow\) isequal \((\bar{\zeta},-1)\)
    \((X: Z) \leftarrow\left(A+\alpha C\left(u^{2}-1\right): C\left(u^{2}-1\right)\right)\)
    \(\left(X^{\prime}: Z^{\prime}\right) \leftarrow\left(-A u^{2}-\alpha C\left(u^{2}-1\right): C\left(u^{2}-1\right)\right)\)
    \(\operatorname{cswap}\left((X: Z),\left(X^{\prime}: Z^{\prime}\right), \epsilon^{\prime}\right)\)
    return \((X: Z),\left(X^{\prime}: Z^{\prime}\right)\)
```


4. Main theorems used for our algorithm

Here, we state and prove four theorems needed to construct the algorithm for evaluating the class group action based on Edwards curves.

First, we prove important lemmas in order to prove four main theorems.
Let E_{d} be a supersingular Edwards curve defined over \mathbb{F}_{p}, and p be a prime.
Lemma 1. Let $p \equiv 3(\bmod 8)$ and $p>3$. If E_{d} satisfies $\operatorname{End}_{p}\left(E_{d}\right) \cong \mathbb{Z}\left[\pi_{p}\right]$, then d is not square.

Proof. There exists a Montgomery curve $E_{\mathcal{M}}$ which is \mathbb{F}_{p}-isomorphic to E_{d}, by Corollary 1. If $E_{\mathcal{M}}[2] \subset E_{\mathcal{M}}\left(\mathbb{F}_{p}\right)$, Table 1 of [13] shows that the order of $E_{\mathcal{M}}$ or its quadratic twist can be divided by 8 ; however, both orders are $p+1 \equiv 4(\bmod 8) . E_{\mathcal{M}}$ has the only one point of order 2 over \mathbb{F}_{p}. Therefore, E_{d} also has only one point of order 2 over \mathbb{F}_{p}.

Points of order 2 in E_{d} are $(0:-1: 1: 0)$ and $(\pm \sqrt{d}: 0: 0: 1)$. Since $(0:-1: 1: 0)$ is a \mathbb{F}_{p}-rational point, d is not square.

Lemma 2. Let $p \equiv 3(\bmod 8)$ and $p>3$. If E_{d} satisfies $\operatorname{End}_{p}\left(E_{d}\right) \cong \mathbb{Z}\left[\pi_{p}\right]$, then $1-d$ is not square.

Proof. As $p \equiv 3(\bmod 8)$ and $p>3, \# E_{d}\left(\mathbb{F}_{p}\right)=p+1 \equiv 4(\bmod 8)$.
By Lemma 1, there are no points at infinity on $E_{d}\left(\mathbb{F}_{p}\right)$. Hence, in this proof, we consider E_{d} to be an affine curve.

If a point (x, y) belongs to $E_{d}\left(\mathbb{F}_{p}\right)$, the points,

$$
(-x, y),(x,-y),(-x,-y),(y, x),(-y, x),(y,-x),(-y,-x)
$$

also belong to $E_{d}\left(\mathbb{F}_{p}\right)$. If $x \neq 0, y \neq 0, x \neq y$, and $x \neq-y$ hold, these eight points are different. If $x=0$ or $y=0$, the four points,

$$
(0,1),(0,-1),(1,0),(-1,0),
$$

are different. If $x=y$ or $x=-y, x$ is a root of the equation,

$$
2 x^{2}=1+d x^{4}
$$

Therefore,

$$
x^{2}=\frac{1 \pm \sqrt{1-d}}{d}
$$

Assume that $1-d$ is square. Note that

$$
\frac{1+\sqrt{1-d}}{d} \cdot \frac{1-\sqrt{1-d}}{d}=\frac{1-(1-d)}{d^{2}}=\frac{1}{d} .
$$

By Lemma $1, d$ is not square. Hence, one of $\frac{1+\sqrt{1-d}}{d}$ or $\frac{1-\sqrt{1-d}}{d}$ is square, and the other one is not square. Therefore, if $x=y$ or $x=-y$, the four points,

$$
(x, x),(x,-x),(-x, x),(-x,-x)
$$

are different, where x is $\sqrt{\frac{1+\sqrt{1-d}}{d}}$ or $\sqrt{\frac{1-\sqrt{1-d}}{d}}$.
From the above, $\# E_{d}\left(\mathbb{F}_{p}\right) \equiv 4+4 \equiv 0(\bmod 8)$ holds. This is a contradiction. Therefore, $1-d$ is not square.

Lemma 3. If P is a point of E_{d} such that $w(P) \in \mathbb{F}_{p}$, then $\left(\pi_{p}+1\right)(P) \in \mathcal{G}_{4}$ or $\left(\pi_{p}-\right.$ 1) $(P) \in \mathcal{G}_{4}$.

Proof. Since $\pi_{p}(w(P))=w\left(\pi_{p}(P)\right), w\left(\pi_{p}(P)\right)=w(P)$. Therefore, $\left(\pi_{p}+1\right)(P) \in \mathcal{G}_{4}$ or $\left(\pi_{p}-1\right)(P) \in \mathcal{G}_{4}$.

Lemma 4 describes the relationship between points in $E_{d}\left[\pi_{p} \pm 1\right]$ and their w coordinates.

Lemma 4. Let $p \equiv 3(\bmod 8)$ and $p>3$. Let $P \in E_{d}\left[\pi_{p}-1\right]$ or $E_{d}\left[\pi_{p}+1\right]$, not a point at infinity, and $w(P) \neq 0$. Then $w(P) \in \mathbb{F}_{p}$. Moreover, the point P belongs to $E_{d}\left[\pi_{p}-1\right]$ if and only if $w(P)$ is square in \mathbb{F}_{p}, and the point P belongs to $E_{d}\left[\pi_{p}+1\right]$ if and only if $w(P)$ is not square in \mathbb{F}_{p}.

Proof. Denote the coordinates of P by (x, y) (affine coordinates). As $w(P) \neq 0, x \neq 0$ and $y \neq 0$. If $P \in E_{d}\left[\pi_{p}+1\right]$, then $\left(x^{p}, y^{p}\right)=(-x, y)$. Therefore, $x^{p}=-x$ and $y \in \mathbb{F}_{p}$.

As $\left(x^{2}\right)^{p}=x^{2}$ and $x \notin \mathbb{F}_{p}, x^{2} y^{2} \in \mathbb{F}_{p}$ and $x^{2} y^{2}$ is not square. If $P \in E_{d}\left[\pi_{p}-1\right]$, then $\left(x^{p}, y^{p}\right)=(x, y)$. Therefore, $x, y \in \mathbb{F}_{p}$. Thus, $x^{2} y^{2} \in \mathbb{F}_{p}$ and $x^{2} y^{2}$ is square. Since d is not square by Lemma 1 , the half part of Lemma 4 holds. Converse obviously holds.

Lemma 5. Let P be a point of E_{d}. Then, points $P_{o d d}$ and $P_{2 p o w e r ~}$ uniquely exist such that $P=P_{\text {odd }}+P_{2 \text { power }}$, the order of $P_{\text {odd }}$ is odd, and the order of $P_{2 \text { power }}$ is a power of 2 .

Proof. Note that $P \in E_{d}\left(\mathbb{F}_{q}\right)$, where q is a power of p. Therefore, P has finite order. By the fundamental theorem of finite abelian groups, there exist points $P_{o d d}$ and $P_{2 p o w e r}$ such that $P=P_{\text {odd }}+P_{2 \text { power }}$, the order of $P_{\text {odd }}$ is odd, and the order of $P_{2 \text { power }}$ is a power of 2 .

Assume that $P_{o d d}+P_{2 \text { power }}=P_{o d d}^{\prime}+P_{2 \text { power }}^{\prime}$, where the orders of $P_{o d d}$ and $P_{o d d}^{\prime}$ are odd, and the orders of $P_{2 \text { power }}$ and $P_{2 \text { power }}^{\prime}$ are powers of 2. As $P_{\text {odd }}-P_{o d d}^{\prime}=$ $-P_{2 \text { power }}+P_{2 \text { power }}^{\prime}$,

$$
P_{o d d}-P_{o d d}^{\prime}=0_{d} \text { and } P_{2 \text { power }}-P_{2 \text { power }}^{\prime}=0_{d}
$$

Therefore, uniqueness holds.
The statement of Lemma 6 involves the points $P_{o d d}$ and $P_{2 p o w e r ~ f r o m ~ L e m m a ~ 5 . ~ I n ~}^{\text {f }}$ particular, it is argued that $P_{o d d}$ belongs to $E_{d}\left[\pi_{p} \pm 1\right]$ if $w(P) \in \mathbb{F}_{p}$.

Lemma 6. Let P be a point of E_{d} such that $w(P) \in \mathbb{F}_{p}$. Let $P_{o d d}$ and $P_{2 \text { power }}$ be points of E_{d} such that $P=P_{\text {odd }}+P_{2 \text { power }}$, the order of $P_{\text {odd }}$ is odd, and the order of $P_{2 \text { power }}$ is a power of 2. Then, one of the following holds.

$$
\begin{aligned}
& -P_{o d d} \in E_{d}\left[\pi_{p}-1\right] \text { and }\left(\pi_{p}-1\right)\left(P_{2 \text { power }}\right) \in \mathcal{G}_{4} \\
& -P_{\text {odd }} \in E_{d}\left[\pi_{p}+1\right] \text { and }\left(\pi_{p}+1\right)\left(P_{2 \text { power }}\right) \in \mathcal{G}_{4}
\end{aligned}
$$

Proof. By Lemma 3, $\left(\pi_{p} \pm 1\right)(P) \in \mathcal{G}_{4}$. In the case that $\left(\pi_{p}-1\right)(P) \in \mathcal{G}_{4},\left(\pi_{p}-\right.$ 1) $\left(P_{o d d}\right)=0_{d}$, since the order of $P_{o d d}$ is odd and \mathcal{G}_{4} is a cyclic group of order 4. Then, $\left(\pi_{p}-1\right)\left(P_{2 \text { power }}\right)=\left(\pi_{p}-1\right)(P) \in \mathcal{G}_{4}$.

Similarly, in the case that $\left(\pi_{p}+1\right)(P) \in \mathcal{G}_{4}, P_{\text {odd }} \in E_{d}\left[\pi_{p}+1\right]$ and $\left(\pi_{p}+1\right)\left(P_{2 \text { power }}\right) \in$ \mathcal{G}_{4} hold.

Lemma 7. Let P be a point in E_{d} whose order is not a power of 2. Then, the number of points Q which satisfy $w(Q)=w(P)$ is 8 .

Proof. Assume that the number of points Q which satisfy $w(Q)=w(P)$ is not 8 . Since the set $\pm P+\mathcal{G}_{4}$ does not have 8 elements, there are points $G_{1}, G_{2} \in \mathcal{G}_{4}$ which satisfy $P+G_{1}=-P+G_{2}$. However, the order of $-G_{1}+G_{2}$ is a power of 2 , and the order of $2 P$ is not a power of 2 . This is a contradiction.

This completes the proof of Lemma 7.

Lemma 8. Let $p \equiv 3(\bmod 8)$ and $p>3$. There exists a bijection,

$$
f: E_{d}\left[\pi_{p}+1\right] \cap E_{d}[(p+1) / 4] \longrightarrow E_{d}\left[\pi_{p}-1\right] \cap E_{d}[(p+1) / 4]
$$

such that $f\left(0_{d}\right)=0_{d}$.
Proof. We will prove that the cardinality of $E_{d}\left[\pi_{p}+1\right] \cap E_{d}[(p+1) / 4]$ and the cardinality of $E_{d}\left[\pi_{p}-1\right] \cap E_{d}[(p+1) / 4]$ are finite and equal and that 0_{d} belongs to both sets.

Since E_{d} is supersingular and $\pi_{p}-1$ and $\pi_{p}^{2}-1$ are separable,

$$
\begin{gathered}
\operatorname{deg}\left(\pi_{p}^{2}-1\right)=\# E_{d}\left(\mathbb{F}_{p^{2}}\right)=(p+1)^{2} \\
\operatorname{deg}\left(\pi_{p}-1\right)=\# E_{d}\left(\mathbb{F}_{p}\right)=p+1
\end{gathered}
$$

Therefore, $\operatorname{deg}\left(\pi_{p}+1\right)=p+1$. As $\pi_{p}-1$ and $\pi_{p}+1$ are separable, we have $\# E_{d}\left[\pi_{p}-1\right]=$ $p+1$ and $\# E_{d}\left[\pi_{p}+1\right]=p+1$. As the set $E_{d}\left[\pi_{p}-1\right] \cap E_{d}[(p+1) / 4]$ is the set of all points of order odd in $E_{d}\left[\pi_{p}-1\right]$,

$$
\#\left(E_{d}\left[\pi_{p}-1\right] \cap E_{d}[(p+1) / 4]\right)=\frac{p+1}{4} .
$$

Similarly,

$$
\#\left(E_{d}\left[\pi_{p}+1\right] \cap E_{d}[(p+1) / 4]\right)=\frac{p+1}{4}
$$

We have proven that $\#\left(E_{d}\left[\pi_{p}+1\right] \cap E_{d}[(p+1) / 4]\right)$ and $\#\left(E_{d}\left[\pi_{p}-1\right] \cap E_{d}[(p+1) / 4]\right)$ are finite and equal.

It is obvious that 0_{d} belongs to $E_{d}\left[\pi_{p}+1\right] \cap E_{d}[(p+1) / 4]$ and $E_{d}\left[\pi_{p}-1\right] \cap E_{d}[(p+1) / 4]$. This completes the proof of Lemma 8.

We now prove four main theorems.
Roughly speaking, Theorem 4 claims that by examining a value $w(2 P)$, we can get the w-coordinate of a point in $E_{d}\left[\pi_{p} \pm 1\right]$. This theorem leads to a sampling method.

Theorem 4. Let $p \equiv 3(\bmod 8)$ and $p>3$. Let P be a point on a supersingular Edwards curve E_{d} such that the w-coordinate $w(P) \in \mathbb{F}_{p}$, the order of P is not a power of 2 , and $w(P)$ is square. If $w(2 P)$ is square, there exists P^{\prime} such that $P^{\prime} \in E_{d}\left[\pi_{p}+1\right]$, $w(2 P)=w\left(P^{\prime}\right)$, and $\frac{p+1}{4} P^{\prime}=0_{d}$. If $w(2 P)$ is not square, there exists P^{\prime} such that $P^{\prime} \in E_{d}\left[\pi_{p}-1\right], 1 / w(2 P)=w\left(P^{\prime}\right)$, and $\frac{p+1}{4} P^{\prime}=0_{d}$.

Proof. Let (x, y) be the coordinates of P. Let $P_{\text {odd }}$ and $P_{2 \text { power }}$ be points of E_{d} such that $P=P_{\text {odd }}+P_{2 \text { power }}$, the order of $P_{\text {odd }}$ is odd, and the order of $P_{2 \text { power }}$ is a power
of 2 . The existence of $P_{\text {odd }}$ and $P_{2 \text { power }}$ is guaranteed by Lemma 5. By Lemma 6, one of the following holds.
$-\left(\pi_{p}-1\right)\left(P_{2 \text { power }}\right) \in \mathcal{G}_{4}$ and $P_{\text {odd }} \in E\left[\pi_{p}-1\right]$.
$-\left(\pi_{p}+1\right)\left(P_{2 \text { power }}\right) \in \mathcal{G}_{4}$ and $P_{\text {odd }} \in E\left[\pi_{p}+1\right]$.

It is easy to check that $\left(\pi_{p}+1\right) \mathcal{G}_{4}=\left\{0_{d},(0,-1)\right\}$ and $\left(\pi_{p}-1\right) \mathcal{G}_{4}=\left\{0_{d}\right\}$. Therefore,

$$
\left(\pi_{p}^{2}-1\right)\left(P_{2 \text { power }}\right)= \begin{cases}0_{d} & \left(\text { if } P_{o d d} \in E\left[\pi_{p}+1\right]\right) \\ 0_{d} \text { or }(0,-1) & \left(\text { if } P_{o d d} \in E\left[\pi_{p}-1\right]\right)\end{cases}
$$

As $\pi_{p}^{2}+p=0, \pi_{p}^{2}-1=-p-1$. Since $P_{2 p o w e r}$ is a point whose order is a power of 2 ,

$$
4 P_{2 \text { power }}= \begin{cases}0_{d} & \left(\text { if } P_{o d d} \in E\left[\pi_{p}+1\right]\right) \\ 0_{d} \text { or }(0,-1) & \left(\text { if } P_{\text {odd }} \in E\left[\pi_{p}-1\right]\right)\end{cases}
$$

Hence, if $P_{o d d} \in E\left[\pi_{p}+1\right]$, then

$$
2 P_{2 \text { power }}=0_{d},(0,-1),(\pm \sqrt{d}: 0: 0: 1)
$$

and if $P_{o d d} \in E\left[\pi_{p}-1\right]$, then

$$
2 P_{2 \text { power }}=0_{d},(0,-1),(\pm \sqrt{d}: 0: 0: 1),(1,0),(-1,0),(0: \pm \sqrt{d}: 0: 1)
$$

It is easy to check that if $w\left(2 P_{2 \text { power }}\right)=0$, then $w(2 P)=w\left(2 P_{\text {odd }}\right)$, and if $w\left(2 P_{2 \text { power }}\right)=$ ∞, then $w(2 P)=1 / w\left(2 P_{o d d}\right)$. Therefore, if $w(2 P)$ is square, then $w\left(2 P_{o d d}\right)$ is square, and if $w(2 P)$ is not square, then $w\left(2 P_{o d d}\right)$ is not square. By Lemma 4 , if $w(2 P)$ is square, then $2 P_{o d d} \in E_{d}\left[\pi_{p}+1\right]$, and if $w(2 P)$ is not square, then $2 P_{o d d} \in E_{d}\left[\pi_{p}-1\right]$.

Denote $w(P)$ by w. By the Edwards addition formula (7), we have

$$
w(2 P)=\frac{4 d x^{2} y^{2}\left(y^{2}-x^{2}\right)^{2}}{\left(1-d x^{2} y^{2}\right)^{2}\left(1+d x^{2} y^{2}\right)^{2}}=\frac{4 w\left(y^{2}-x^{2}\right)^{2}}{(1-w)^{2}(1+w)^{2}}
$$

Since w is square, if $w(2 P)$ is square, then $y^{2}-x^{2} \in \mathbb{F}_{p}$, and if $w(2 P)$ is not square, then $y^{2}-x^{2} \notin \mathbb{F}_{p}$. As

$$
2 P=\left(\frac{2 x y}{1+d x^{2} y^{2}}, \frac{y^{2}-x^{2}}{1-d x^{2} y^{2}}\right)
$$

if $w(2 P)$ is square, then the y-coordinate of $2 P$ is an element of \mathbb{F}_{p}, and if $w(2 P)$ is not square, then the y-coordinate of $2 P$ is not an element of \mathbb{F}_{p}.

In the case that $w(2 P)$ is square, $y(2 P) \in \mathbb{F}_{p}$ and $2 P_{o d d} \in E_{d}\left[\pi_{p}+1\right]$. Therefore, $y\left(2 P_{\text {odd }}\right) \in \mathbb{F}_{p}$. Assume that $2 P_{2 \text { power }}=(\sqrt{d}: 0: 0: 1)$ or $(-\sqrt{d}: 0: 0: 1)$. It is easy to check that

$$
y(2 P)= \pm \frac{1}{\sqrt{d} \cdot y\left(2 P_{\text {odd }}\right)}
$$

As $y\left(2 P_{\text {odd }}\right) \in \mathbb{F}_{p}, y(2 P) \notin \mathbb{F}_{p}$ by Lemma 1 . This is a contradiction. We conclude that $2 P_{2 \text { power }}$ is 0_{d} or $(0,-1)$. Therefore, $w(2 P)=w\left(2 P_{\text {odd }}\right)$. As $\left(\pi_{p}^{2}-1\right)\left(2 P_{\text {odd }}\right)=0_{d}$,

$$
\frac{p+1}{4}\left(2 P_{o d d}\right)=0_{d} .
$$

In the case that $w(2 P)$ is not square, $y(2 P) \notin \mathbb{F}_{p}$ and $2 P_{\text {odd }} \in E_{d}\left[\pi_{p}-1\right]$. Therefore, $y\left(2 P_{\text {odd }}\right) \in \mathbb{F}_{p}$. Assume that

$$
2 P_{2 \text { power }}=0_{d},(0,-1),(1,0),(-1,0)
$$

It is easy to check that $y(2 P)= \pm y\left(2 P_{\text {odd }}\right)$. As $y\left(2 P_{\text {odd }}\right) \in \mathbb{F}_{p}, y(2 P) \in \mathbb{F}_{p}$. This is a contradiction. We conclude that $2 P_{2 \text { power }}$ is $(\pm \sqrt{d}: 0: 0: 1)$ or $(0: \pm \sqrt{d}: 0: 1)$. From this, it follows that $w(2 P)=1 / w\left(2 P_{o d d}\right)$. As $\left(\pi_{p}^{2}-1\right)\left(2 P_{o d d}\right)=0_{d}$,

$$
\frac{p+1}{4}\left(2 P_{o d d}\right)=0_{d}
$$

Let P^{\prime} be $2 P_{\text {odd }}$. This completes the proof of Theorem 4 .
Theorem 5 shows that there is no bias in the points generated by the sampling method derived from Theorem 4.

Theorem 5. Let $p \equiv 3(\bmod 8)$ and $p>3$. Let P be a point on a supersingular Edwards curve E_{d} such that the w-coordinate $w(P) \in \mathbb{F}_{p}$, the order of P is not a power of 2 , and $w(P)$ is square. The number of $w(P)$ such that $w(2 P)$ is square is the same as the number of $w(P)$ such that $w(2 P)$ is not square.

Proof. Let the coordinates of P be (x, y). Let $P_{o d d}$ and $P_{2 \text { power }}$ be points of E_{d} such that $P=P_{\text {odd }}+P_{2 \text { power }}$, the order of $P_{\text {odd }}$ is odd, and the order of $P_{2 \text { power }}$ is a power of 2. The existence of $P_{\text {odd }}$ and $P_{2 \text { power }}$ is guaranteed by Lemma 5. As shown in the proof of Theorem 4, we have

$$
2 P_{2 \text { power }}=0_{d},(0,-1),(\pm \sqrt{d}: 0: 0: 1),(0: \pm \sqrt{d}: 0: 1)
$$

If $2 P_{2 \text { power }}$ is 0_{d} or $(0,-1), w\left(P_{2 \text { power }}\right)$ is 0 or ∞, since it is easy to check that

$$
P_{2 \text { power }}=0_{d},(0,-1),(\pm 1,0),(\pm \sqrt{d}: 0: 0: 1),(0: \pm \sqrt{d}: 0: 1)
$$

If $2 P_{2 \text { power }}$ is $(\pm \sqrt{d}: 0: 0: 1)$ or $(0: \pm \sqrt{d}: 0: 1), w\left(P_{2 \text { power }}\right)$ is ± 1 since

$$
w\left(2 P_{2 \text { power }}\right)=\frac{4 w\left(P_{2 \text { power }}\right)\left(\left(1+w\left(P_{2 \text { power }}\right)\right)^{2}-4 w\left(P_{2 \text { power }}\right) / d\right)}{\left(1-w\left(P_{2 \text { power }}\right)\right)^{2}\left(1+w\left(P_{2 \text { power }}\right)\right)^{2}}
$$

Assume that $w\left(P_{2 \text { power }}\right)$ is -1 . In this case, we have $w\left(2 P_{2 \text { power }}\right)=\infty$. From Lemma 6, it holds that $\left(\pi_{p}-1\right)\left(P_{o d d}\right)=0_{d}$ or $\left(\pi_{p}+1\right)\left(P_{o d d}\right)=0_{d}$. Let the coordinates of $P_{o d d}$ be $\left(x_{o}, y_{o}\right)$, where $x_{o} \in \mathbb{F}_{p}$ and $y_{o} \in \mathbb{F}_{p}$ or $y_{o} \in \sqrt{-1} \mathbb{F}_{p}$. It is easy to check that

$$
P_{2 \text { power }}=\left(\sqrt{\sqrt{\frac{1}{d}}}, \sqrt{-\sqrt{\frac{1}{d}}}\right)+Q^{\prime}
$$

where Q^{\prime} is a point of E_{d} such that $w\left(Q^{\prime}\right)=0$ or $w\left(Q^{\prime}\right)=\infty$. From the addition formula of Edward curves,

$$
P=P_{o d d}+P_{2 \text { power }}=\left(\frac{x_{o} \sqrt{-\sqrt{\frac{1}{d}}}+y_{o} \sqrt{\sqrt{\frac{1}{d}}}}{1+d x_{o} y_{o} \sqrt{\frac{-1}{d}}}, \frac{y_{o} \sqrt{-\sqrt{\frac{1}{d}}}-x_{o} \sqrt{\sqrt{\frac{1}{d}}}}{1-d x_{o} y_{o} \sqrt{\frac{-1}{d}}}\right)+Q^{\prime}
$$

Therefore,

$$
w(P)=\frac{\left(2 x_{o} y_{o}+\left(y_{o}^{2}-x_{o}^{2}\right) \sqrt{-1}\right)^{2}}{\left(1+d x_{o}^{2} y_{o}^{2}\right)^{2}} \text { or } \frac{\left(1+d x_{o}^{2} y_{o}^{2}\right)^{2}}{\left(2 x_{o} y_{o}+\left(y_{o}^{2}-x_{o}^{2}\right) \sqrt{-1}\right)^{2}}
$$

As $p \equiv 3(\bmod 4)$, it holds that -1 is not square. Since $P_{o d d}$ is not 0_{d}, we have $x_{o} \neq 0$ and $y_{o} \neq 0$. If we assume that $x_{o}^{2}=y_{o}^{2}$, then it is easy to check that $2 x_{o}^{2}=1+d x_{o}^{4}$, and

$$
x_{o}^{2}=\frac{1 \pm \sqrt{1-d}}{d} \notin \mathbb{F}_{p} \quad(\text { from Lemma } 2) .
$$

Since $x_{o}^{2} \in \mathbb{F}_{p}$, it holds that $x_{o}^{2} \neq y_{o}^{2}$. Therefore, if $y_{o} \in \mathbb{F}_{p}$, then it holds that $\left(2 x_{o} y_{o}+\right.$ $\left.\left(y_{o}^{2}-x_{o}^{2}\right) \sqrt{-1}\right)^{2} \notin \mathbb{F}_{p}$ and if $y_{o} \in \sqrt{-1} \mathbb{F}_{p}$, then $\left(2 x_{o} y_{o}+\left(y_{o}^{2}-x_{o}^{2}\right) \sqrt{-1}\right)^{2}$ is not square. Hence, $w(P) \notin \mathbb{F}_{p}$ or $w(P)$ is not square. This is a contradiction. We conclude $w\left(P_{2 \text { power }}\right)$ is 0 or ∞ or 1 .

If $w(2 P)$ is square, as shown in the proof of Theorem $4, w\left(P_{o d d}\right)$ is square and $2 P_{2 \text { power }}=0_{d}$ or $(0,-1)$. Therefore, $w\left(P_{2 \text { power }}\right)$ is 0 or ∞. If $w(2 P)$ is not square, as shown in the proof of Theorem $4, w\left(P_{o d d}\right)$ is not square and $2 P_{2 \text { power }}=(\pm \sqrt{d}: 0: 0: 1)$ or $(0: \pm \sqrt{d}: 0: 1)$. Therefore, $w\left(P_{2 \text { power }}\right)$ is 1 .

We prove that if $P_{o d d} \in E_{d}\left[\pi_{p}-1\right]$, then $w\left(P_{o d d}+Q\right)$ is square for all points Q at which $w(Q)$ is 1 . It is easy to check that

$$
Q=(\sqrt{1+\sqrt{-1} r}, \sqrt{1-\sqrt{-1} r})+Q^{\prime}
$$

where $r=\sqrt{\frac{1-d}{d}}$, and Q^{\prime} is a point such that $w\left(Q^{\prime}\right)=0$ or $w\left(Q^{\prime}\right)=\infty$. From Lemma 1 and Lemma 2, we have $r \in \mathbb{F}_{p}$. Let the coordinates of $P_{\text {odd }}$ be $\left(x_{o}, y_{o}\right)$. Denote $(\sqrt{1+\sqrt{-1} r}, \sqrt{1-\sqrt{-1} r})$ by R. Note that

$$
P_{o d d}+R=\left(\frac{x_{o} \sqrt{1-\sqrt{-1} r}+y_{o} \sqrt{1+\sqrt{-1} r}}{1+\sqrt{d} x_{o} y_{o}}, \frac{y_{o} \sqrt{1-\sqrt{-1} r}-x_{o} \sqrt{1+\sqrt{-1} r}}{1-\sqrt{d} x_{o} y_{o}}\right) .
$$

Therefore,

$$
\begin{aligned}
w\left(P_{o d d}+R\right) & =\frac{d\left(-2 x_{o} y_{o} \sqrt{-1} r+\left(y_{o}^{2}-x_{o}^{2}\right) \sqrt{1+r^{2}}\right)^{2}}{\left(1-d x_{o}^{2} y_{o}^{2}\right)^{2}} \\
& =\frac{\left(-2 x_{o} y_{o} \sqrt{-d} r+\left(y_{o}^{2}-x_{o}^{2}\right)\right)^{2}}{\left(1-d x_{o}^{2} y_{o}^{2}\right)^{2}}
\end{aligned}
$$

From Lemma 1, it holds that $\sqrt{-d} \in \mathbb{F}_{p}$. As $P_{o d d} \in E_{d}\left[\pi_{p}-1\right], x_{o}, y_{o} \in \mathbb{F}_{p}$. Therefore, $w\left(P_{o d d}+R\right)$ belongs to \mathbb{F}_{p} and is square. Since $w\left(P_{o d d}+Q\right)=w\left(P_{o d d}+R\right)$ or $1 / w\left(P_{o d d}+\right.$ R), we have $w\left(P_{o d d}+Q\right)$ belongs to \mathbb{F}_{p} and is square.

Let S_{+}be the set of points P of E_{d} such that both $w(P)$ and $w(2 P)$ are square and the order of P is not a power of 2 , and let S_{-}be the set of points P of E_{d} such that $w(P)$ is square, $w(2 P)$ is not square, and the order of P is not a power of 2. From Lemma 7, it suffices to prove that there is a bijection $\phi: S_{+} \rightarrow S_{-}$. Define $\phi: S_{+} \rightarrow S_{-}$as follows.

$$
\phi(P):=f\left(P_{\text {odd }}\right)+P_{2 \text { power }}+R,
$$

where $P_{o d d}$ and $P_{2 \text { power }}$ are points of E_{d} such that $P=P_{o d d}+P_{2 \text { power }}$, the order of $P_{\text {odd }}$ is odd, the order of $P_{2 \text { power }}$ is a power of $2, R$ is defined as above, and f is the bijection in Lemma 8. As has already been shown, if $P \in S_{+}$, then $w\left(P_{2 \text { power }}\right)$ is 0 or ∞. As $f\left(P_{\text {odd }}\right) \in E_{d}\left[\pi_{p}-1\right]$ and $w\left(P_{2 \text { power }}+R\right)=1, w(\phi(P))$ is square. Since $w(2 \phi(P))=1 / w\left(2 f\left(P_{o d d}\right)\right)$ and $2 f\left(P_{o d d}\right) \in E_{d}\left[\pi_{p}-1\right], w(2 \phi(P))$ is not square. As $f\left(P_{o d d}\right)$ is not 0_{d}, the order of $\phi(P)$ is not a power of 2 . From Lemma 5 and the above, ϕ is well-defined. Define $\psi: S_{-} \rightarrow S_{+}$as follows.

$$
\psi(P):=f^{-1}\left(P_{\text {odd }}\right)+P_{2 \text { power }}-R,
$$

where $P_{\text {odd }}$ and $P_{2 \text { power }}$ are points of E_{d} such that $P=P_{\text {odd }}+P_{2 \text { power }}$, the order of $P_{\text {odd }}$ is odd, and the order of $P_{2 \text { power }}$ is a power of 2 . As has already een shown, if $P \in S_{-}$, then $w\left(P_{2 \text { power }}\right)=1$. As $w\left(P_{2 \text { power }}-R\right)$ is 0 or $\infty, w(\psi(P))=w\left(f^{-1}\left(P_{\text {odd }}\right)\right)$ or $1 / w\left(f^{-1}\left(P_{o d d}\right)\right)$. Since $f^{-1}\left(P_{o d d}\right) \in E_{d}\left[\pi_{p}+1\right], w\left(f^{-1}\left(P_{o d d}\right)\right)$ is square by Lemma 4. Hence, $w(\psi(P))$ and $w(2 \psi(P))$ are square. As $f^{-1}\left(P_{o d d}\right)$ is not 0_{d}, the order of $\psi(P)$ is not a power of 2 . From Lemma 5 and the above, ψ is well-defined. It is easy to check that $\psi=\phi^{-1}$.

This completes the proof of Theorem 5.

We also provide another proof of Theorem 5 . This proof is provided by a reviewer and is very interesting.

Another proof of Theorem 5. From Lemma 9, a point P with $w(P) \in \mathbb{F}_{p}$ is of order a power of 2 if and only if $w(P)=0, \pm 1$. Since the doubling formula of w-coordinates is

$$
w(2 P)=\frac{(w(P)+1)^{2}-4 w(P) / d}{(w(P)+1)^{2}(w(P)-1)^{2}},
$$

the statement of Theorem 5 is equivalent to the following statement:

The value

$$
f(\omega):=\left(\omega^{2}+1\right)^{2}-4 \omega^{2} / d
$$

is equally often a square as a non-square as ω runs over $\mathbb{F}_{p} \backslash\{0, \pm 1\}$.

We now consider an elliptic curve $E: \kappa^{2}=f(\omega)$. This is the affine form of

$$
Y^{2}=(T+Z)^{2}-4 X^{2} / d, \quad X^{2}=Z T
$$

where $\kappa=Y / Z$ and $\omega=X / Z$. Therefore, it has two points at infinity and these points are over \mathbb{F}_{p}. From Lemma 1 , there is no $\omega \in \mathbb{F}_{p}$ satisfying $1 / d=\left(\omega^{2}+1\right)^{2} / 4 \omega^{2}$. Therefore, we have $f(\omega) \neq 0$ for $\omega \in \mathbb{F}_{p}$. Hence, if $f\left(\omega_{0}\right)$ is square, then two points whose ω-coordinates are ω_{0} are on $E\left(\mathbb{F}_{p}\right)$. From direct calculations, we have $f(0)$ is square and $f(\pm 1)$ are not square from Lemma 1 and Lemma 2. Therefore, it holds that

$$
\begin{aligned}
E\left(\mathbb{F}_{p}\right)= & \left\{(\omega, \kappa) \mid \omega \in \mathbb{F}_{p} \backslash\{0, \pm 1\}, \kappa^{2}=f(\omega), f(\omega) \text { is square }\right\} \\
& \cup\left\{(0, \kappa) \mid \kappa^{2}=f(0)\right\} \cup\{\text { points at infinity }\}
\end{aligned}
$$

Hence, the number of elements in $E\left(\mathbb{F}_{p}\right)$ is $2 r+2+2=2 r+4$, where r is the number of $\omega \in \mathbb{F}_{p} \backslash\{0, \pm 1\}$ such that $f(\omega)$ is square.

The above statement is equivalent that $r=(p-3) / 2$. Therefore, from the previous paragraph, the above statement is equivalent that $E\left(\mathbb{F}_{p}\right)$ has $p+1$ points (i.e., E is supersingular). There is a birational map defined as

$$
\begin{aligned}
E & \left.\longrightarrow \begin{array}{c}
E^{\prime}: y^{2}=x(x-1)(x-d) \\
(\omega, \kappa)
\end{array}\right)\left(\frac{\sqrt{d}(\sqrt{1-d}+1) \omega-d}{\sqrt{d} \omega-(\sqrt{1-d}+1)}, \frac{-d \sqrt{1-d}(1+\sqrt{1-d}) \kappa}{(\sqrt{d} \omega-(\sqrt{1-d}+1))^{2}}\right) .
\end{aligned}
$$

It follows from [2, Theorem 3.1] that E^{\prime} is 2-isogeneous to E_{d}. Since E_{d} is supersingular, E is also a supersingular curve. This completes the proof of Theorem 5.

Theorem 6 claims that the probability of success of the sampling method derived from Theorem 4 is sufficiently large (same probability as that on Montgomery curves).

Theorem 6. Let p be $4 \cdot \ell_{1} \cdots \ell_{n}-1$, where the $\ell_{1}, \ldots, \ell_{n}$ are small distinct odd primes. Let P be a point on a supersingular Edwards curve E_{d} such that the w-coordinate $w(P) \in \mathbb{F}_{p}$, the order of P is not a power of 2 , and $w(P)$ is square. The probability that $\frac{p+1}{4 \ell_{i}} P^{\prime}$ is a point of order ℓ_{i} is $\frac{\left(\ell_{i}-1\right) \frac{N}{\ell_{i}}}{N-1} \approx 1-\frac{1}{\ell_{i}}$, where P^{\prime} is a point in Theorem 4, and $N=\ell_{1} \cdot \ell_{2} \cdots \ell_{n}$.

Proof. Let $P_{o d d}$ and $P_{2 \text { power }}$ be points of E_{d} such that $P=P_{\text {odd }}+P_{2 \text { power }}$, the order of $P_{\text {odd }}$ is odd, and the order of $P_{2 \text { power }}$ is a power of 2 . As shown in the proof of Theorem $4, P^{\prime}=2 P_{\text {odd }}$. As shown in the proof of Theorem 5 , for each point $Q \neq 0_{d}$ in $E_{d}\left[\pi_{p}+1\right] \cap E_{d}[(p+1) / 4]$ or $E_{d}\left[\pi_{p}-1\right] \cap E_{d}[(p+1) / 4]$, there is a point \tilde{Q} that satisfies $w(\tilde{Q}) \in \mathbb{F}_{p}, w(\tilde{Q})$ is square, and $2 \tilde{Q}_{o d d}=Q$. It is easy to check that if $Q_{1} \neq Q_{2}$, then $w\left(\tilde{Q}_{1}\right) \neq w\left(\tilde{Q}_{2}\right)$. Therefore, if we uniformly randomly take P that satisfies $w(P)$ is square, then P^{\prime} is a uniformly random point of $E_{d}\left[\pi_{p}+1\right] \cap E_{d}[(p+1) / 4] \backslash\left\{0_{d}\right\}$ or $E_{d}\left[\pi_{p}-1\right] \cap E_{d}[(p+1) / 4] \backslash\left\{0_{d}\right\}$. Since

$$
\begin{aligned}
& E_{d}\left[\pi_{p}+1\right] \cap E_{d}[(p+1) / 4] \cong \mathbb{Z} /((p+1) / 4) \mathbb{Z} \cong \mathbb{Z} / \ell_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / \ell_{n} \mathbb{Z}, \\
& E_{d}\left[\pi_{p}-1\right] \cap E_{d}[(p+1) / 4] \cong \mathbb{Z} /((p+1) / 4) \mathbb{Z} \cong \mathbb{Z} / \ell_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / \ell_{n} \mathbb{Z}
\end{aligned}
$$

Theorem 6 holds.

Theorem 7 shows that an Edwards coefficient d is unique. Therefore, we can use these coefficients as shared keys.

Theorem 7. Let $p \equiv 3(\bmod 8)$ and $p>3$, and E be a supersingular elliptic curve defined over \mathbb{F}_{p}. Then $\operatorname{End}_{p}(E) \cong \mathbb{Z}\left[\pi_{p}\right]$ holds if and only if there exists $d \in \mathbb{F}_{p}$ such that E is \mathbb{F}_{p}-isomorphic to an Edwards curve E_{d}. Moreover, if such ad exists, then it is unique.

Proof. The first half of this theorem follows from Corollary 1, Corollary 2, and Theorem 3.

Let us prove the uniqueness of d. Let $d_{1}, d_{2} \in \mathbb{F}_{p}$ such that $E_{d_{1}}$ and $E_{d_{2}}$ are supersingular Edwards curves, $\operatorname{End}_{p}\left(E_{d_{1}}\right) \cong \mathbb{Z}\left[\pi_{p}\right], \operatorname{End}_{p}\left(E_{d_{2}}\right) \cong \mathbb{Z}\left[\pi_{p}\right]$, and $E_{d_{1}} \cong E_{d_{2}}$ over \mathbb{F}_{p}.

As $1-d_{1}$ and $1-d_{2}$ are not square by Lemma 2,

$$
E_{d_{i}} \cong Y^{2} Z=X^{3}-\frac{2\left(1+d_{i}\right)}{1-d_{i}} X^{2} Z+X Z^{2} \quad(i=1,2)
$$

holds by Corollary 1. Therefore,

$$
\frac{2\left(1+d_{1}\right)}{1-d_{1}}=\frac{2\left(1+d_{2}\right)}{1-d_{2}}
$$

holds by the uniqueness of coefficients in Theorem 3. This equation reduces to $d_{1}=d_{2}$. This completes the proof of Theorem 7.

Now we proved all the main theorems. Though the following lemma is not important essentially, we use it for constructing the CSIDH algorithm. We use Lemma 9 for rejecting points whose order is a power of 2 in the Sampling points calculation of Algorithm 3.

Lemma 9. Let $p \equiv 3(\bmod 8)$ and $p>3$. Let P be a point on E_{d} such that $w(P) \in \mathbb{F}_{p}$. It holds that $w(P)$ is 0 or ± 1 if and only if the order of P is a power of 2 .

Proof. Suppose that the order of P is a power of 2. By Lemma 6, it holds that ($\pi_{p}-$ 1) $(P) \in \mathcal{G}_{4}$ or $\left(\pi_{p}+1\right)(P) \in \mathcal{G}_{4}$. Since it holds that

$$
\left(\pi_{p}-1\right) \mathcal{G}_{4}=\left\{0_{d}\right\}, \quad\left(\pi_{p}+1\right) \mathcal{G}_{4}=\left\{0_{d},(0,-1)\right\}, \quad \pi_{p}^{2}-1=-p-1
$$

we have

$$
4 P=0_{d},(0,-1)
$$

Therefore, it is easy to check that

$$
2 P=0_{d},(0,-1),(\pm 1,0),(\pm \sqrt{d}: 0: 0: 1),(0: \pm \sqrt{d}: 0: 1)
$$

Hence, $w(2 P)=0$ or $w(2 P)=\infty$. Since

$$
w(2 P)=\frac{4 w(P)\left((1+w(P))^{2}-4 w(P) / d\right)}{(1-w(P))^{2}(1+w(P))^{2}}
$$

we have $w(P)=0, \frac{d-2 \pm 2 \sqrt{1-d}}{d}, 1,-1$. From Lemma 2, $1-d$ is not square. Therefore, $w(P)=0, \pm 1$.

Suppose that $w(P)=0, \pm 1$. Using the doubling formula in the above paragraph twice, we have $w(4 P)=0$. Therefore, it holds that $4 P \in \mathcal{G}_{4}$. As \mathcal{G}_{4} is a cyclic group of order 4 , the order of the point P is a power of 2 .

5. Evaluating the class group action on Edwards curves

In this section, we propose the method for evaluating the class group action based on Edwards curves. The theorems proved in the previous section will be used to construct the method. The algorithm is described in Algorithm 3. All of its calculations are done over \mathbb{F}_{p}.

The inputs of the algorithm are an Edwards coefficient $d \in \mathbb{F}_{p}$ and a list of integers $\left(e_{1}, \ldots, e_{n}\right)$. The output of this algorithm is an Edwards coefficient $d^{\prime} \in \mathbb{F}_{p}$ such that $E_{d^{\prime}}=\left[\mathfrak{l}_{1}^{e_{1}} \cdots \mathfrak{l}_{n}^{e_{n}}\right] E_{d}$.

```
Algorithm 3 Evaluating the class group action on Edwards curves.
Input: \(d \in \mathbb{F}_{p}\) such that Edwards curve \(E_{d}\) is supersingular and a list of integers \(\left(e_{1}, \ldots, e_{n}\right)\)
Output: \(d^{\prime}\) such that \(\left[\mathfrak{l}_{1}^{e_{1}} \cdots \mathfrak{l}_{n}^{e_{n}}\right] E_{d}=E_{d^{\prime}}\)
    while some \(e_{i} \neq 0\) do
        \(w \leftarrow 0\)
        while \(w=0\) or \(w=1\) or \(w=-1\) do
            Sample a random \(w \in \mathbb{F}_{p}\)
        end while
        \(w \leftarrow w^{2} \quad\) (Theorem 4, 5)
        \(\mathbf{w}(P) \leftarrow(w: 1)\)
        Compute \(\mathbf{w}(2 P) \quad\) (Theorem 4)
        \((W: Z) \leftarrow \mathbf{w}(2 P)\)
        Set \(s \leftarrow+1\) if \(W\) is a square in \(\mathbb{F}_{p}\), else \(s \leftarrow-1\)
        Let \(S=\left\{i \mid \operatorname{sign}\left(e_{i}\right)=s\right\}\)
        if \(S=\emptyset\) then
            Go to line 2
        end if
        \(\mathbf{w}(P) \leftarrow(W: Z), k \leftarrow \prod_{i \in S} \ell_{i}\)
        \(\mathbf{w}(P)=(W: Z) \leftarrow \mathbf{w}(((p+1) / 4 k) P) \quad(\) Theorem 4,6\()\)
        if \(s=1\) then
            \(\mathbf{w}(P) \leftarrow(Z: W) \quad(\) Theorem 4)
        end if
        for all \(i \in S\) do
            \(\mathbf{w}(Q) \leftarrow \mathbf{w}\left(\left(k / \ell_{i}\right) P\right)\)
            if \(Q \neq 0_{d}\) then
                    Compute an \(\ell_{i}\)-isogeny \(\phi: E_{d} \rightarrow E_{d^{\prime}}\) with \(\operatorname{ker} \phi=\langle Q\rangle\)
                    \(d \leftarrow d^{\prime}, \mathbf{w}(P) \leftarrow \mathbf{w}(\phi(P)), k \leftarrow k / \ell_{i}, e_{i} \leftarrow e_{i}-s\)
            end if
        end for
    end while
    return \(d\) (Theorem 7)
```

Sampling points (line 2-14 in Algorithm 3) To sample a point that belongs to $E_{d}\left[\pi_{p}-1\right]$ or $E_{d}\left[\pi_{p}+1\right]$, we take a uniformly random element of \mathbb{F}_{p}. Denote this element by w. If w is 0 or ± 1, we take a random element again. (We reject any point whose order is a power of 2 by Lemma 9.) Then, we calculate w^{2}. Let P be a point in E_{d} such that $w(P)=w^{2}$. By Theorem 4, if $w(2 P)$ is square in \mathbb{F}_{p}, then there exists a point P^{\prime} such that $w\left(P^{\prime}\right)=w(2 P), \frac{p+1}{4} P^{\prime}=0_{d}$, and $P^{\prime} \in E_{d}\left[\pi_{p}+1\right]$. If $w(2 P)$ is not square in \mathbb{F}_{p}, then there exists a point P^{\prime} such that $w\left(P^{\prime}\right)=1 / w(2 P), \frac{p+1}{4} P^{\prime}=0_{d}$, and $P^{\prime} \in E_{d}\left[\pi_{p}-1\right]$. Thus, we calculate $w(2 P)$ by using the doubling formulas on Edwards curves and determine whether $w(2 P)$ is square or not. If $w(2 P)$ is square, we can use $w(2 P)$ as the w-coordinate of an element of $E_{d}\left[\pi_{p}+1\right]$. If $w(2 P)$ is not square, we can use $1 / w(2 P)$ as the w-coordinate of an element of $E_{d}\left[\pi_{p}-1\right]$. If $w(2 P)$ is square, we define S as a set of i such that the sign of e_{i} is -1 . If $w(2 P)$ is not square, we define S as a set of i such that the sign of e_{i} is +1 . If $S=\emptyset$, we go back to the Sampling points calculation.

From Theorem 5, the probability of getting points in $E_{d}\left[\pi_{p}-1\right]$ is equal to the probability of getting points in $E_{d}\left[\pi_{p}+1\right]$.

Scalar multiplication (line 15-19 in Algorithm 3) From Theorem 4, it suffices to calculate $w\left(\frac{p+1}{4 k}\left(P^{\prime}\right)\right)$ instead of $w\left(\frac{p+1}{k}(P)\right)$, where $k=\prod_{i \in S} \ell_{i}$. To calculate $w\left(\frac{p+1}{4 k}\left(P^{\prime}\right)\right)$ efficiently, we use Algorithm 4.

```
Algorithm 4 The Edwards ladder using \(P\) and \(2 P\).
Input: \(E_{d}, k=\sum_{i=0}^{\ell-1} k_{i} 2^{i}\) with \(k_{\ell-1}=1,\left(W_{0}: 1\right)=\mathbf{w}(P)\), and \((W: Z)=\mathbf{w}(2 P)\) s.t. \(P \in E_{d}\)
Output: \(\left(W^{\prime}: Z^{\prime}\right)=\mathbf{w}(k P)\)
    \(\left(W_{1}: Z_{1}\right) \leftarrow\left(W_{0}: 1\right)\) and \(\left(W_{2}: Z_{2}\right) \leftarrow(W: Z)\)
    for \(i=\ell-2\) down to 0 do
        if \(k_{i}=0\) then
            \(\left(W_{1}: Z_{1}\right) \leftarrow 2\left(W_{1}: Z_{1}\right)\) (doubling on \(E_{d}\) )
            \(\left(W_{2}: Z_{2}\right) \leftarrow\left(W_{1}: Z_{1}\right)+\left(W_{2}: Z_{2}\right)\) (addition on \(E_{d}\) with \(\left.Z_{0}=1\right)\)
        else
            \(\left(W_{2}: Z_{2}\right) \leftarrow 2\left(W_{1}: Z_{1}\right)\) (doubling on \(E_{d}\) )
            \(\left(W_{1}: Z_{1}\right) \leftarrow\left(W_{1}: Z_{1}\right)+\left(W_{2}: Z_{2}\right)\) (addition on \(E_{d}\) with \(\left.Z_{0}=1\right)\)
        end if
    end for
    return \(\left(W_{1}: Z_{1}\right)\)
```

If $w(2 P)$ is not square, the proof of Theorem 4 indicates that $P^{\prime}=2 P+Q$, where Q is a point at infinity. Since $\frac{p+1}{4 k}$ is odd and an odd multiple of Q is also a point at infinity, $w\left(\frac{p+1}{4 k}\left(P^{\prime}\right)\right)=1 / w\left(\frac{p+1}{4 k}(2 P)\right)$.

Calculation of isogenies (line 20-26 in Algorithm 3) By Theorem 6 and 7, we can calculate isogenies by using the same strategy as the original CSIDH algorithm. To do so, we can use the formulas on Edwards curves [21].

Output (line 28 in Algorithm 3) If the list of integers $\left(e_{1}, \ldots, e_{n}\right)$ is the zero vector, we output the Edwards coefficient $d^{\prime} \in \mathbb{F}_{p}$.

Remark 1. To determine whether $w(2 P)$ is square or not, we only need to consider W, where $(W: Z)=\mathbf{w}(2 P)$. We explain the reason below.

Recall the isogeny formulas on Edwards curves (15):

$$
D^{\prime}=D^{\ell} \cdot \prod_{i=1}^{s}\left(W_{i}+Z_{i}\right)^{8}, \quad C^{\prime}=C^{\ell} \cdot \prod_{i=1}^{s}\left(2 Z_{i}\right)^{8}
$$

As ℓ is odd, if D is not square, then D^{\prime} is also not square. At the beginning of the algorithm, we let $(D: C)=(d: 1)$. Hence, we can assume that D is not square. Let the projective w-coordinates of P be $\left(W^{\prime}: Z^{\prime}\right)$, the projective w-coordinates of $2 P$ be $(W: Z)$, and the projective coordinates of d be $(D: C) . Z$ is not square, since

$$
\mathbf{w}(2 P)=\left(4 W^{\prime} Z^{\prime}\left(D\left(W^{\prime}+Z^{\prime}\right)^{2}-4 C W^{\prime} Z^{\prime}\right): D\left(W^{\prime}+Z^{\prime}\right)^{2}\left(W^{\prime}-Z^{\prime}\right)^{2}\right)
$$

Therefore, if W is square, then $w(2 P)$ is not square. Moreover, if W is not square, then $w(2 P)$ is square.

5.1. Comparing computational costs theoretically

Our proposed CSIDH algorithm using only w-coordinates on Edwards curves is as fast as (or a little bit faster than) the algorithm proposed by Meyer and Reith [25]. In
this subsection, we explain the computational savings of our algorithm relative to the algorithm of Meyer and Reith.

On Edwards curves, the Sampling points calculation costs 1S for taking a uniformly random element of $\left(\mathbb{F}_{p}\right)^{2}$ and requires one doubling on Edwards curves with $Z=1$ (the cost of $4 \mathbf{M}+1 \mathbf{S}+5 \mathbf{a}$) for determining the set which the point belongs to. On the other hand, on Montgomery curves, Sampling points calculation entails calculating $C x^{3}+A x^{2}+C x$ (the cost of $3 \mathbf{M}+1 \mathbf{S}+2 \mathbf{a}$) for determining the set which the point belongs to, where $(A: C)$ are projective coordinates of a. Therefore, our algorithm saves a cost of $-\mathbf{M}-\mathbf{S}-3$ a per Sampling points calculation.

The Scalar multiplication part entails multiplication by $\frac{p+1}{4 k}$ on Edwards curves and multiplication by $\frac{p+1}{k}$ on Montgomery curves. Therefore, per Scalar multiplication, the proposed algorithm saves the cost of a doubling on Edwards curves with $Z=1$ and the cost of doubling on Edwards curves with $Z \neq 1$ (i.e., $8 \mathbf{M}+3 \mathbf{S}+9 \mathbf{a}$).

The probability that $S=\emptyset$ after performing the Sampling points calculation is at most $\frac{1}{2}$, by Theorem 5 . Hence, we expect the proposed algorithm to save at least

$$
\frac{1}{2}(-\mathbf{M}-\mathbf{S}-3 \mathbf{a})+\frac{1}{2}(8 \mathbf{M}+3 \mathbf{S}+9 \mathbf{a}-\mathbf{M}-\mathbf{S}-3 \mathbf{a})=3 \mathbf{M}+\frac{1}{2} \mathbf{S}+\frac{3}{2} \mathbf{a}
$$

per Sampling points and Scalar multiplication calculation.
The difference between Calculation of isogenies on Edwards curves and on Montgomery curves is only in calculating the isogenies. The computational cost of calculating $(2 s+1)$-degree isogenies on Edwards curves is $(6 s+2) \mathbf{M}+8 \mathbf{S}+(4 s+6) \mathbf{a}$ and that of the two ℓ-th powers, while the computational cost on Montgomery curves is $(6 s+2) \mathbf{M}+8 \mathbf{S}+(4 s+8) \mathbf{a}$ and that of the two ℓ-th powers. Therefore, the proposed algorithm saves $2 \mathbf{a}$ per isogeny calculation.

From the above, we conclude that our proposed CSIDH algorithm using only Edwards curves is as fast as or a little bit faster than the algorithm proposed by Meyer and Reith [25].

6. Elligator like technique on Edwards curves

In this section, we propose an Elligator like technique on Edwards curves using wcoordinates. As far as we know, proposed constant-time algorithms can be migrated to those on Edwards curves except for the part of Elligator. See [7] and [11] for the detail of Elligator and the technique used in constant-time algorithms of CSIDH.

6.1. Construction

We introduce the following theorem.
Theorem 8. Let $p \equiv 3(\bmod 8)$. Let P be a point on a supersingular Edwards curve E_{d} such that the w-coordinate $w(P) \in \mathbb{F}_{p}$ and the order of P is not a power of 2 . If $w(2 P)$
is square, there exists P^{\prime} such that $P^{\prime} \in E_{d}\left[\pi_{p}+1\right], w\left(P^{\prime}\right)=w(4 P)$, and $\frac{p+1}{4} P^{\prime}=0_{d}$. If $w(2 P)$ is not square, there exists P^{\prime} such that $P^{\prime} \in E_{d}\left[\pi_{p}-1\right], w\left(P^{\prime}\right)=w(4 P)$, and $\frac{p+1}{4} P^{\prime}=0_{d}$.

Proof. From Lemma 6, we have $P_{o d d} \in E_{d}\left[\pi_{p} \pm 1\right]$. From the proof of Theorem 4, we have $w(2 P)=w\left(2 P_{\text {odd }}\right)^{ \pm 1}$. Hence, from Lemma 4, if $w(2 P)$ is square, then $2 P_{\text {odd }}$ and $4 P_{\text {odd }}$ belong to $E_{d}\left[\pi_{p}+1\right]$, and if $w(2 P)$ is not square, then $2 P_{\text {odd }}$ and $4 P_{\text {odd }}$ belong to $E_{d}\left[\pi_{p}-1\right]$. From the proof of Theorem 4, we have $4 P_{\text {2power }}=0_{d},(0,-1)$. Therefore, it holds that $w(4 P)=w\left(4 P_{\text {odd }}\right)$.

This completes the proof of Theorem 8.
From this theorem, it is sufficient to output a point Q such that $\chi(w(2 Q))=$ $-\chi(w(2 P))$ from an input P, where the map $\chi: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ is defined as $\chi(a):=a^{(p-1) / 2}$.

We recall the doubling formulas on an Edwards curve E_{d} :

$$
w(2 P)=\frac{4 w(P)\left(d(w(P)+1)^{2}-4 w(P)\right)}{d(w(P)-1)^{2}(w(P)+1)^{2}}=\frac{4 w(P)\left(w(P)^{2}+\frac{2 d-4}{d} w(P)+1\right)}{(w(P)-1)^{2}(w(P)+1)^{2}}
$$

We see the polynomial $w\left(w^{2}+\frac{2 d-4}{d} w+1\right)$ is similar to the right-hand side of the defining equation of a Montgomery curve. Therefore, we get the required map by considering Elligator on $y^{2}=x^{3}+\frac{2 d-4}{d} x^{2}+x$.

The outline of the construction is as follows. First, we take a random element u from $\{2,3, \ldots,(p-1) / 2\}$. Take the point P such that

$$
w(P)=\left\{\begin{array}{ll}
\frac{2 d-4}{d\left(u^{2}-1\right)} & \left(\text { if }(2 d-4)\left(u^{2}-1\right) d\left((2 d-4)^{2} d+\left(\left(u^{2}-1\right) d\right)^{2}\right) \neq 0\right) \\
u & \left(\text { if }(2 d-4)\left(u^{2}-1\right) d\left((2 d-4)^{2} d+\left(\left(u^{2}-1\right) d\right)^{2}\right)=0\right)
\end{array} .\right.
$$

Note that $(2 d-4)\left(u^{2}-1\right) d\left((2 d-4)^{2} d+\left(\left(u^{2}-1\right) d\right)^{2}\right)=0$ if and only if it holds that $2 d-4=0$ in the CSIDH setting because the roots of the equation are

$$
u= \pm \sqrt{-1} \cdot \frac{d-2 \pm 4 \sqrt{1-d}}{d}, \pm 1
$$

and these do not belong to $\{2,3, \ldots,(p-1) / 2\}$. Compute $w(2 P)$, and determine whether $w(2 P)$ is square or not. Let Q be a point such that

$$
w(Q)= \begin{cases}-\frac{2 d-4}{d\left(u^{2}-1\right)} u^{2} & (\text { if } 2 d-4 \neq 0) \\ -u & (\text { if } 2 d-4=0)\end{cases}
$$

Then, it holds that $\chi(w(2 Q))=-\chi(w(2 P))$.
From the above construction, we have a constant-time projective Elligator on Edwards curves (Algorithm 5). This algorithm is almost the same as Algorithm 2 that was
proposed in [11]. Although this technique is not Elligator, we often call this technique "Elligator on Edwards curves" for simplicity.

```
Algorithm 5 Constant-time projective Elligator on Edwards curves.
Input: \(D, C \in \mathbb{F}_{p}\) such that \(E_{D / C}\) is supersingular and a random element \(u\) from \(\{2,3, \ldots,(p-1) / 2\}\)
Output: The projective \(w\)-coordinate of \(P \in E_{D / C}\left[\pi_{p}-1\right]+E_{D / C}[4]\) and the projective \(w\)-coordinate of
    \(Q \in E_{D / C}\left[\pi_{p}+1\right]+E_{D / C}[4]\)
    \(\epsilon \leftarrow\) isequal \((2 D-4 C, 0)\)
    \(\alpha, \beta \leftarrow u, 0\)
    cswap \((\alpha, \beta, \epsilon)\)
    \(\left(W_{1}: Z_{1}\right) \leftarrow\left((2 D-4 C)+\alpha D\left(u^{2}-1\right): D\left(u^{2}-1\right)\right)\)
    \(\left(W_{1}^{\prime}: Z_{1}^{\prime}\right) \leftarrow\left(-(2 D-4 C) u^{2}-\alpha D\left(u^{2}-1\right): D\left(u^{2}-1\right)\right)\)
    \(t \leftarrow(2 D-4 C)\left(\left(u^{2}-1\right) u^{2}(2 D-4 C)^{2} D+\left(\left(u^{2}-1\right) D\right)^{3}\right)+\alpha\left(u^{2}+1\right)\)
    \(\zeta \leftarrow\) Legendre_symbol \((t, p)\)
    \(\epsilon^{\prime} \leftarrow\) isequal \((\zeta, 1)\)
    \(\operatorname{cswap}\left(\left(W_{1}: Z_{1}\right),\left(W_{1}^{\prime}: Z_{1}^{\prime}\right), \epsilon^{\prime}\right)\)
    return \(\left(W_{1}: Z_{1}\right),\left(W_{1}^{\prime}: Z_{1}^{\prime}\right)\)
```

If we use both points output by Elligator to compute group actions (e.g., constant-time CSIDH in [31] and [11]), we can improve Algorithm 5 to be more efficient. It is because we can judge whether $w(P) \in E_{D / C}\left[\pi_{p}-1\right]+E_{D / C}[4]$ or $w(P) \in E_{D / C}\left[\pi_{p}+1\right]+E_{D / C}[4]$ by computing $w(2 P)$ that is needed for group actions. The improved version of Elligator on Edwards curves is in Algorithm 6. CTIDH [3] does not use both points for computing group actions; therefore Algorithm 6 contains needless doublings on $E_{D / C}$ and is not efficient to be adapted to CTIDH.

```
Algorithm 6 Improved version of constant-time projective Elligator on Edwards curves.
Input: \(D, C \in \mathbb{F}_{p}\) such that \(E_{D / C}\) is supersingular and a random element \(u\) from \(\{2,3, \ldots,(p-1) / 2\}\)
Output: The projective \(w\)-coordinate of \(P \in E_{D / C}\left[\pi_{p}-1\right]\) and the projective \(w\)-coordinate of \(Q \in E_{D / C}\left[\pi_{p}+\right.\)
    1]
    \(\epsilon \leftarrow\) isequal \((2 D-4 C, 0)\)
    \(\alpha, \beta \leftarrow u, 0\)
    \(\operatorname{cswap}(\alpha, \beta, \epsilon)\)
    \(\left(W_{1}: Z_{1}\right) \leftarrow\left((2 D-4 C)+\alpha D\left(u^{2}-1\right): D\left(u^{2}-1\right)\right)\)
    \(\left(W_{1}^{\prime}: Z_{1}^{\prime}\right) \leftarrow\left(-(2 D-4 C) u^{2}-\alpha D\left(u^{2}-1\right): D\left(u^{2}-1\right)\right)\)
    \(\left(W_{2}: Z_{2}\right) \leftarrow 2\left(W_{1}: Z_{1}\right)\) (doubling on \(E_{D / C}\) )
    \(t \leftarrow W_{2} \cdot Z_{2}\)
    \(\left(W_{2}^{\prime}: Z_{2}^{\prime}\right) \leftarrow 2\left(W_{1}^{\prime}: Z_{1}^{\prime}\right)\) (doubling on \(E_{D / C}\) )
    \(\left(W_{3}: Z_{3}\right) \leftarrow 2\left(W_{2}: Z_{2}\right)\) (doubling on \(E_{D / C}\) )
    \(\left(W_{3}^{\prime}: Z_{3}^{\prime}\right) \leftarrow 2\left(W_{2}^{\prime}: Z_{2}^{\prime}\right)\) (doubling on \(E_{D / C}\) )
    \(\zeta \leftarrow\) Legendre_symbol \((t, p)\)
    \(\epsilon^{\prime} \leftarrow\) isequal \((\zeta, 1)\)
    \(\operatorname{cswap}\left(\left(W_{3}: Z_{3}\right),\left(W_{3}^{\prime}: Z_{3}^{\prime}\right), \epsilon^{\prime}\right)\)
    return \(\left(W_{3}: Z_{3}\right),\left(W_{3}^{\prime}: Z_{3}^{\prime}\right)\)
```


6.2. Computational costs of Elligator on Edwards curves

In this subsection, we discuss the difference of the computational costs of newly proposed technique (Algorithm 5 and 6) and Elligator on Montgomery curves (Algorithm 2 [7]). In particular, we consider Algorithm 6 because Algorithm 5 is almost the same as

Algorithm 2. Here, we consider Elligator used in constant-time CSIDH algorithms that use the two torsion method [31,11].

The most conspicuous difference between these algorithms is to compute $w(4 P)$ and $w(4 Q)$. These computations do not appear in the previous method. Therefore, this part makes Elligator more costly. However, even on Montgomery curves, we need to do these computations before computing odd-degree isogenies. Hence, this part does not affect the whole algorithm of CSIDH.

The other difference appears when computing t and t^{\prime}. Our proposal requires one multiplication. This cost is smaller than that of the previous one.

Consequently, our proposed algorithm saves costs. Therefore, our proposal is more efficient than Elligator on Montgomery curves. Since the impact of Elligator on the whole CSIDH algorithm is small, the constant-time CSIDH algorithm on Edwards curves is as fast as (or a little bit faster than) that on Montgomery curves.

7. Vélu's formulas on Edwards curves

In this section, we give the $\sqrt{ }$ élu's formulas on Edwards curves. The rough computing process of these formulas is in Appendix A.4. This method is similar to that on Montgomery curves (in Appendix A.3).

In our analysis, we can use lower degree polynomials for computing $\sqrt{ }$ élu's formulas on Edwards curves than those on Montgomery curves. Hence, the computational cost of computing those on Edwards curves is a little bit smaller than those on Montgomery curves.

7.1. Formulas

Let P be a point of E_{d}, and let $(W: Z)=\mathbf{w}(P)$. Let $D / C=d$. Let Q be an order- ℓ point of E_{d}, and $\left(W_{1}: Z_{1}\right)=\mathbf{w}(Q)$. Let $\left(W_{k}: Z_{k}\right)=\mathbf{w}(k Q)$. Let $E_{d^{\prime}}=E_{d} /\langle Q\rangle$, and let ϕ be an isogeny $\phi: E_{d} \rightarrow E_{d^{\prime}}$ with $\operatorname{ker} \phi=\langle Q\rangle$. If we let ($W^{\prime}: Z^{\prime}$) be the projective w-coordinate of $\phi(P)$, and let $D^{\prime} / C^{\prime}=d^{\prime}$, then the following equations hold (equations (14) and (15)).

$$
\begin{gathered}
W^{\prime}=W \cdot \prod_{i=1}^{s}\left(Z W_{i}-Z_{i} W\right)^{2}, \quad Z^{\prime}=Z \cdot \prod_{i=1}^{s}\left(W W_{i}-Z Z_{i}\right)^{2} \\
D^{\prime}=D^{\ell} \cdot \prod_{i=1}^{s}\left(W_{i}+Z_{i}\right)^{8}, \quad C^{\prime}=C^{\ell} \cdot \prod_{i=1}^{s}\left(2 Z_{i}\right)^{8}
\end{gathered}
$$

Define the polynomial $h_{S} \in \mathbb{F}_{p}\left[T_{1}, T_{2}\right]$ as $h_{S}\left(T_{1}, T_{2}\right):=\prod_{i \in S}\left(Z_{i} T_{1}-W_{i} T_{2}\right)$. Then, these equations can be rewritten as follows:

$$
\begin{equation*}
W^{\prime}=W \cdot\left(h_{S}(W, Z)\right)^{2}, \quad Z^{\prime}=Z \cdot\left(h_{S}(Z, W)\right)^{2} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
D^{\prime}=D^{\ell} \cdot\left(h_{S}(-1,1)\right)^{8}, \quad C^{\prime}=C^{\ell} \cdot\left(2^{s} h_{S}(1,0)\right)^{8} \tag{17}
\end{equation*}
$$

Here, S is the set $\{1,3, \ldots, \ell-2\}$. By using resultants, we can compute $h_{S}(\alpha, \beta)$ for some α, β in $\tilde{O}(\sqrt{\ell})$ time.

Now, we explain the method to compute h_{S} on Edwards curves using resultants.
As in [6], let $I=\left\{2 b(2 i+1) \mid 0 \leq i<b^{\prime}\right\}$, let $J=\{1,3, \ldots, 2 b-1\}$, and let $K=S \backslash(I \pm J)$, where $b=\lfloor\sqrt{\ell-1} / 2\rfloor$, and $b^{\prime}=\lfloor(\ell-1) / 4 b\rfloor$ (for $b>0$). Define polynomials F_{0}, F_{1}, and F_{2} in $\mathbb{F}_{p}\left[T_{1}, T_{2}, T_{3}, T_{4}\right]$ such that

$$
(T-w(P+Q))(T-w(P-Q))=T^{2}+\frac{F_{1}(\mathbf{w}(P), \mathbf{w}(Q))}{F_{0}(\mathbf{w}(P), \mathbf{w}(Q))} T+\frac{F_{2}(\mathbf{w}(P), \mathbf{w}(Q))}{F_{0}(\mathbf{w}(P), \mathbf{w}(Q))} .
$$

In other words,

$$
\begin{aligned}
& F_{0}\left(T_{1}, T_{2}, T_{3}, T_{4}\right)=D\left(T_{1} T_{3}-T_{2} T_{4}\right)^{2} \\
& F_{1}\left(T_{1}, T_{2}, T_{3}, T_{4}\right)=-2\left(D\left(T_{1} T_{3}+T_{2} T_{4}\right)\left(T_{1} T_{4}+T_{2} T_{3}\right)+(4 D-8 C) T_{1} T_{2} T_{3} T_{4}\right) \\
& F_{2}\left(T_{1}, T_{2}, T_{3}, T_{4}\right)=D\left(T_{1} T_{4}-T_{2} T_{3}\right)^{2}
\end{aligned}
$$

Then, it holds that,

$$
h_{S}(\alpha, \beta)=\left(\prod_{i \in(I \pm J)} Z_{i}\right) \cdot \frac{h_{K}(\alpha, \beta)}{\Delta_{I, J}} \cdot \operatorname{Res}_{T}\left(h_{I}(T, 1), E_{J}(\alpha, \beta, T)\right)
$$

where $\operatorname{Res}_{T}(\cdot, \cdot)$ is the resultant of two polynomials in T,

$$
\Delta_{I, J}=\operatorname{Res}_{T}\left(h_{I}(T, 1), \prod_{j \in J} F_{0}\left(T, 1, W_{j}, Z_{j}\right)\right)
$$

and

$$
\begin{aligned}
& E_{J}\left(T_{1}, T_{2}, T\right) \\
:= & \prod_{j \in J}\left(F_{0}\left(T, 1, W_{j}, Z_{j}\right) T_{1}^{2}+F_{1}\left(T, 1, W_{j}, Z_{j}\right) T_{1} T_{2}+F_{2}\left(T, 1, W_{j}, Z_{j}\right) T_{2}^{2}\right) \\
= & \prod_{j \in J}\left(F_{0}\left(T_{1}, T_{2}, W_{j}, Z_{j}\right) T^{2}+F_{1}\left(T_{1}, T_{2}, W_{j}, Z_{j}\right) T+F_{2}\left(T_{1}, T_{2}, W_{j}, Z_{j}\right)\right) .
\end{aligned}
$$

Therefore, by using resultants, we can compute the equations (16) and (17). Denote $h_{K}(\alpha, \beta) \cdot \operatorname{Res}_{T}\left(h_{I}(T, 1), E_{J}(\alpha, \beta, T)\right)$ by $\tilde{h}_{S}(\alpha, \beta)$. Since $\left(\prod_{i \in(I \pm J)} Z_{i}\right)$ and $\Delta_{I, J}$ do not depend on α and β, it is enough to consider $\tilde{h}_{S}(\alpha, \beta)$ instead of $h_{S}(\alpha, \beta)$ to compute these equations. Furthermore, it holds that

$$
\begin{aligned}
\tilde{h}_{S}(1,0) & =h_{K}(1,0) \cdot \operatorname{Res}_{T}\left(h_{I}(T, 1), \prod_{j \in J} F_{0}\left(T, 1, W_{j}, Z_{j}\right)\right) \\
& =h_{K}(1,0) \cdot \operatorname{Res}_{T}\left(h_{I}(T, 1), \prod_{j \in J} D\left(W_{j} T-Z_{j}\right)^{2}\right) \\
& =h_{K}(1,0) \cdot D^{\# I \# J} \cdot\left(\operatorname{Res}_{T}\left(h_{I}(T, 1), h_{J}(1, T)\right)\right)^{2} .
\end{aligned}
$$

Denote $h_{K}(1,0) \cdot\left(\operatorname{Res}_{T}\left(h_{I}(T, 1), h_{J}(1, T)\right)\right)^{2}$ by $\tilde{\tilde{h}}_{S}(1,0)$.
From the above discussions, we get the new formulas for computing isogenies on Edwards curves as follows:

$$
\begin{gathered}
W^{\prime}=W \cdot\left(h_{K}(W, Z) \cdot \operatorname{Res}_{T}\left(h_{I}(T, 1), E_{J}(W, Z, T)\right)^{2},\right. \\
Z^{\prime}=Z \cdot\left(h_{K}(Z, W) \cdot \operatorname{Res}_{T}\left(h_{I}(T, 1), E_{J}(Z, W, T)\right)^{2},\right. \\
D^{\prime}=D^{2 \# K+1} \cdot\left(h_{K}(-1,1) \cdot \operatorname{Res}_{T}\left(h_{I}(T, 1), E_{J}(-1,1, T)\right)^{8},\right. \\
C^{\prime}=C^{\ell} \cdot D^{4 \# I \# J} \cdot\left(2^{s} h_{K}(1,0) \cdot\left(\operatorname{Res}_{T}\left(h_{I}(T, 1), h_{J}(1, T)\right)^{2}\right)^{8} .\right.
\end{gathered}
$$

Remark 2. There are some methods to compute resultants. Since h_{I} is not a monic polynomial, some methods give the value of a resultant multiplied by a constant value determined by the degree of $E_{J}(\alpha, \beta, T)$ (e.g., the remainder-tree algorithm $[17, \S 2$. Method C] with using pseudo division, the scaled remainder-tree algorithm [4] with using pseudo reciprocal). The following problems may occur when using such a method. Although we compute projective coordinates, the constant value affects the final computational result of Edwards coefficients. It is because the degree of $h_{J}(1, T)$ is different from that of $E_{J}(-1,1, T)$, and the constant value multiplied by D^{\prime} is not the same as the constant value multiplied by C^{\prime}.

If we know these constant values, this problem is easily solved. This is the case if we use the scaled remainder-tree algorithm. If we do not know, we can avoid this situation by doing the following. First, we divide $E_{J}(-1,1, T)$ into degree $2\lfloor \# J / 2\rfloor$ and degree $2\lceil \# J / 2\rceil$ polynomials. Next, by adding terms with zero coefficients to these polynomials and $h_{J}(1, T)$, we set the degrees of these two polynomials to $2\lceil \# J / 2\rceil$. Finally, we compute resultants, respectively. In this way, we can cancel out the effect of the constant values.

7.2. Analysis of the formulas

In this subsection, we explain the difference between two $\sqrt{ }$ élu's formulas and analyze the efficiency of our proposed formulas. Here, we use the techniques proposed in [1] for Montgomery curves.

In [6], they use the scaled remainder-tree algorithm [4] to compute resultants. It is the improved version of the remainder-tree algorithm [17]. Therefore, we choose the scaled remainder-tree algorithm for our analysis.

The outlines of these formulas are the same; however, there are small differences that affect their efficiency. In particular, the following difference is important in efficiency.

The main significant difference is whether we compute $\tilde{\tilde{h}}_{S}(1,0)$ (on Edwards curves) or $\tilde{h}_{S}(1,1)$ (on Montgomery curves). In order to compute $\tilde{h}_{S}(1,1)$, it needs to compute the product of $\# J$ polynomials of degree 2 , and use the scaled remainder-tree algorithm for the resulting polynomial of degree $2 \# J$. On the other hand, to compute $\tilde{\tilde{h}}_{S}(1,0)$, it needs to compute the product of $\# J$ polynomials of degree 1 , and use the scaled remainder-tree algorithm for the resulting polynomial of degree almost $\# J$. Therefore, for computing $\tilde{\tilde{h}}_{S}(1,0)$, we use lower degree polynomials than those for computing $\tilde{h}_{S}(1,1)$. It shows that the computational cost of computing $\tilde{\tilde{h}}_{S}(1,0)$ is a little bit smaller than that of computing $\tilde{h}_{S}(1,1)$.

Moreover, as we use the scaled remainder-tree algorithm, we need to care about the problem in Remark 2. We denote $\prod_{i \in I} Z_{i}$ by \tilde{Z}. First, we compute the Laurent series of $1 / h_{I}$ in the variable T^{-1}. In the natural method, we need to compute a division of \tilde{Z}. To avoid this division, we consider a pseudo-reciprocal. By this computation, we get Ω / h_{I} instead of $1 / h_{I}$, where Ω is a constant value determined by h_{I} and the degree of the other polynomial of input. The value Ω can be easily computed by considering the Laurent series of Ω / h_{I} and \tilde{Z}. Next, we compute $\# I$ values. By multiplying all these $\# I$ values together, we get (pseudo) resultants. Here, the i-th value is the value multiplied by the conventional value and $1 / Z_{i}$ (and Ω). Therefore, the constant value in Remark 2 is $\Omega^{\# I} / \tilde{Z}$. Thus, we get constant values that come up when computing $\operatorname{Res}_{T}\left(h_{I}(T, 1), E_{J}(-1,1, T)\right)$ and $\operatorname{Res}_{T}\left(h_{I}(T, 1), h_{J}(1, T)\right)$, respectively. Multiplying these values properly yields the correct result. This calculation does not occur in the case of Montgomery curves; however, the impact of this computation is smaller than that of the calculations in the above paragraphs.

Since the other differences have a small impact on their efficiency, we conclude $\sqrt{ }$ élu's formulas on Edwards curves are more efficient than those on Montgomery curves.

8. Implementations

In this section, we provide some implementation results of the paper. First, we show the result of the plain (non-constant-time and without using $\sqrt{ }$ élu's formulas) CSIDH on Edwards curves. This result is shown in Table 2. Second, we show the result of $\sqrt{ }$ élu's formulas on Edwards curves. This result is summarized in Fig. 1. Finally, we measured the computational costs of CTIDH. CTIDH [3] is one of the benchmarks of constant-time CSIDH implementations. This result is shown in Table 3.

8.1. Plain CSIDH implementation

In this subsection, we show our implementation results on three different plain CSIDH algorithms: the algorithm on Montgomery curves proposed by Meyer and Reith [25] (Algorithm 1), that on Edwards curves with y-coordinates (Algorithm 7 in Appendix B),

Table 2
Computational costs on each plain CSIDH algorithm.

	Montgomery [25]	Edwards (y-coordinate)	Edwards (w-coordinate)
\mathbf{M}	328,195	332,707	328,055
\mathbf{S}	116,915	116,893	116,857
\mathbf{a}	332,822	355,533	331,844
total	438,368	443,999	438,133

and that on Edwards curves with w-coordinates (Algorithm 3). The results are summarized in Table 2. In this table, "total" means total numbers of multiplications on \mathbb{F}_{p}, where we assume $1 \mathbf{S}=0.8 \mathbf{M}$, and $1 \mathbf{a}=0.05 \mathrm{M}$.

We measured the average computational costs of one group action over 50000 runs. The results are summarized in Table 2. Here, p was chosen as $4 \cdot \ell_{1} \cdots \ell_{74}-1$, where ℓ_{1} through ℓ_{73} were the smallest 73 odd primes and $\ell_{74}=587$, and m was chosen as 5 . These are parameters proposed in [10]. Secret keys were randomly taken 50000 times.

As shown in Table 2, there is no big difference in computational costs among the three different algorithms. The algorithm on Edwards curves with w-coordinates is the fastest one, by a little margin in our implementation.

Remark 3. Our implementation of the algorithm on Montgomery curves is based on the algorithm proposed by Meyer and Reith [25]. There are some techniques to make the CSIDH algorithm faster [24,11]. We did not implement these techniques. However, as far as we know, these techniques affect only a little or can be also adapted to our proposed algorithms. Therefore, even if we consider these techniques, we can conclude that there is no big difference in computational costs among the above three different algorithms.

8.2. $\sqrt{ }$ élu's formulas implementation

In this subsection, we provide the implementation result of $\sqrt{ }$ élu's formulas on Edwards curves. This implementation is based on the original paper of $\sqrt{ }$ élu's formulas [6]. We used the C+assembly code provided in https://velusqrt.isogeny.org/, and measured the number of multiplications on \mathbb{F}_{p} to compute isogenies using $\sqrt{ }$ 'élu's formulas on Edwards curve. The results are summarized in Fig. 1. Here, we assume $1 \mathbf{S}=1 \mathbf{M}$ and $1 \mathbf{a}=0 \mathbf{M}$ due to the convenience of the code that we used.

Fig. 1 shows numbers of multiplications on \mathbb{F}_{p} to compute isogenies of some different degrees via $\sqrt{ }$ élu's formulas on Edwards curves and Montgomery curves. The horizontal axis shows degrees of isogenies and the vertical axis shows numbers of multiplications. We measured costs of $\ell_{1}, \ldots, \ell_{130}$-isogenies, where $\ell_{1}, \ldots, \ell_{129}$ are the smallest distinct odd primes (i.e., primes from 3 to 733) and $\ell_{130}=983$. As shown in Fig. 1, Vélu's formulas on Edwards curves are more efficient than that on Montgomery curves for computing isogenies of high degree.

Refer to Table 3 to see the effect of $\sqrt{ }$ 'élu's formulas on Edwards curves to the whole CSIDH algorithm.

Fig. 1. Numbers of multiplications to compute $\sqrt{ }$ élu's formulas.

Table 3
Computational costs on CTIDH algorithms.

	Without $\sqrt{ }$ élu's formulas			With \sqrt{l} élu's formulas	
	Montgomery [3]	Edwards		Montgomery [3]	Edwards
\mathbf{M}	237,880	237,846		228,782	226,446
\mathbf{S}	93,850	93,826		82,167	83,071
\mathbf{a}	279,303	279,032	346,802	338,643	
total	326,925	326,859	311,856	309,835	

8.3. CTIDH implementation

CTIDH is one benchmark of a constant-time CSIDH implementation [3]. Precisely speaking, CTIDH is not a constant-time implementation; however, the computing time does not leak information about secret keys. We implemented CTIDH on Edwards curves based on the source code in https://ctidh.isogeny.org/, and measured the computational costs of one group action.

The result of our implementation is in Table 3. We used the CTIDH-511 parameter that uses the same prime as in Subsection 8.1 (see [3, Section 8.3] for more detail of the CTIDH-511 parameter). We measured the average of the computational costs of group actions over 50000 runs in four cases; CTIDH without $\sqrt{ }$ élu's formulas on Montgomery curves and on Edwards curves, and CTIDH with $\sqrt{ }$ élu's formulas on Montgomery curves
and on Edwards curves. In this table, "total" means total numbers of multiplications on \mathbb{F}_{p}, where we assume $1 \mathbf{S}=0.8 \mathbf{M}$, and $1 \mathbf{a}=0.05 \mathbf{M}$.

As shown in Table 3, CTIDH on Edwards curves without $\sqrt{ }$ élu's formulas is as efficient as (or a little bit more efficient than) that on Montgomery curves. In the case of using $\sqrt{ }$ élu's formulas, CTIDH on Edwwards curves is more efficient than that on Montgomery curves.

9. Conclusion and future work

9.1. Conclusion

We proved four important theorems (Theorem 4, Theorem 5, Theorem 6, and Theorem 7) on Edwards curves and used them to construct a CSIDH algorithm on Edwards curves with w-coordinates. Theorem 4 shows that if $w(P)$ and $w(2 P)$ are square, then $w(2 P)$ can be treated as a point in $E_{d}\left[\pi_{p}+1\right]$, and if $w(P)$ is square and $w(2 P)$ is not square, then $1 / w(2 P)$ can be treated as a point in $E_{d}\left[\pi_{p}-1\right]$. Theorem 5 claims that the number of $w(P)$ such that $w(P)$ and $w(2 P)$ are square is equal to the number of $w(P)$ such that $w(P)$ is square and $w(2 P)$ is not square. Theorem 6 shows the probability that $w\left(\frac{p+1}{4 \ell_{i}} 2 P\right)$ represents a point of order ℓ_{i} is almost $1-\frac{1}{\ell_{i}}$. Theorem 7 proves that an Edwards coefficient d is unique up to \mathbb{F}_{p}-isomorphism. From these four theorems, we extended the CSIDH algorithm to that on Edwards curves with w-coordinates over \mathbb{F}_{p}.

We compared the complexities of our proposed algorithm and the algorithm proposed by Meyer and Reith. We showed that our proposed algorithm is as fast as (or a little bit faster than) the one of Meyer and Reith.

Moreover, we construct Elligator on Edwards curves, which contributes to the efficiency of the constant-time CSIDH algorithm on Edwards curves. Theoretically, our proposed constant-time CSIDH algorithm is as efficient as (or a little bit more efficient than) that on Montgomery curves.

Furthermore, we proposed the new $\sqrt{ }$ élu's formulas on Edwards curves. Those on Edwards curves were a little bit faster than those on Montgomery curves.

Finally, we implemented three algorithms on Edwards curves related to this study; CSIDH on Edwards curves, Vélu's formulas on Edwards curves, and CTIDH (that is one benchmark of constant-time CSIDH algorithms) on Edwards curves. Our implementation results showed that each algorithm on Edwards curves is more efficient than that on Montgomery curves.

Data availability

The data that has been used is confidential.

Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work the authors used Grammarly in order to fix errors in grammar. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Acknowledgments

This research was conducted under a contract of "Research and development on new generation cryptography for secure wireless communication services" among "Research and Development for Expansion of Radio Wave Resources (JPJ000254)", which was supported by the Ministry of Internal Affairs and Communications, Japan.

Appendix A. How to compute the calculations and isogenies

Here, we explain how to compute the calculations and isogenies on Montgomery curves and Edwards curves.

A.1. Montgomery curves

The doublings formula (1) can be computed as

$$
\begin{gathered}
t_{1} \leftarrow X+Z, \quad t_{2} \leftarrow X-Z, \quad t_{1} \leftarrow t_{1}^{2}, \quad t_{2} \leftarrow t_{2}^{2}, \quad s \leftarrow t_{1}-t_{2}, \quad t_{2} \leftarrow t_{2} \cdot(4 C), \\
X^{\prime} \leftarrow t_{1} \cdot t_{2}, \quad t_{1} \leftarrow(A+2 C) \cdot s, \quad t_{1} \leftarrow t_{1}+t_{2}, \quad Z^{\prime} \leftarrow s \cdot t_{1} .
\end{gathered}
$$

If $Z=1$, the doublings formula (1) can be computed as

$$
\begin{gathered}
t_{1} \leftarrow X+1, \quad t_{1} \leftarrow t_{1}^{2}, \quad s \leftarrow 2 \cdot X, \quad s \leftarrow 2 \cdot s, \quad t_{2} \leftarrow t_{1}-s, \quad t_{2} \leftarrow t_{2} \cdot(4 C), \\
X^{\prime} \leftarrow t_{1} \cdot t_{2}, \quad t_{1} \leftarrow(A+2 C) \cdot s, \quad t_{1} \leftarrow t_{1}+t_{2}, \quad Z^{\prime} \leftarrow s \cdot t_{1} .
\end{gathered}
$$

The addition formula (2) can be computed as

$$
\begin{aligned}
& t_{1} \leftarrow X_{1}+Z_{1}, \quad s_{1} \leftarrow X_{2}+Z_{2}, \quad t_{2} \leftarrow X_{1}-Z_{1}, \quad s_{2} \leftarrow X_{2}-Z_{2}, \quad t \leftarrow t_{1} \cdot s_{2}, \\
& \quad s \leftarrow t_{2} \cdot s_{1}, \quad X_{3} \leftarrow t+s, \quad Z_{3} \leftarrow t-s, \quad X_{3} \leftarrow X_{3}^{2} \cdot Z_{0}, \quad Z_{3} \leftarrow Z_{3}^{2} \cdot X_{0} .
\end{aligned}
$$

The formula for calculating $\phi(P)$ (3) can be computed as

$$
\begin{aligned}
t_{i} & \leftarrow X_{i}+Z_{i}, \quad s_{i} \leftarrow X_{i}-Z_{i}, \quad t_{i} \leftarrow t_{i} \cdot(X-Z), \quad s_{i} \leftarrow s_{i} \cdot(X+Z), \\
X^{\prime} & \leftarrow \prod_{i=1}^{s}\left(t_{i}-s_{i}\right), \quad Z^{\prime} \leftarrow \prod_{i=1}^{s}\left(t_{i}+s_{i}\right), \quad X^{\prime} \leftarrow X \cdot\left(X^{\prime}\right)^{2}, \quad Z^{\prime} \leftarrow Z \cdot\left(Z^{\prime}\right)^{2} .
\end{aligned}
$$

The formula for calculating E^{\prime} (4) can be computed as

$$
\begin{gathered}
c \leftarrow 2 \cdot C, \quad a \leftarrow A+c, \quad d \leftarrow A-c, \quad a^{\prime} \leftarrow \prod_{i=1}^{s}\left(X_{i}+Z_{i}\right), \\
d^{\prime} \leftarrow \prod_{i=1}^{s}\left(X_{i}-Z_{i}\right), \quad a^{\prime} \leftarrow\left(a^{\prime}\right)^{4}, \quad d^{\prime} \leftarrow\left(d^{\prime}\right)^{4}, \quad a^{\prime} \leftarrow a^{s} \cdot a^{\prime}, \quad d^{\prime} \leftarrow d^{s} \cdot d^{\prime}, \\
a^{\prime} \leftarrow a \cdot\left(a^{\prime}\right)^{2}, \quad d^{\prime} \leftarrow d \cdot\left(d^{\prime}\right)^{2}, \quad A^{\prime} \leftarrow 2 \cdot\left(a^{\prime}+d^{\prime}\right), \quad C^{\prime} \leftarrow a^{\prime}-d^{\prime} .
\end{gathered}
$$

A.2. Edwards curves

The doublings formula (8) can be computed as

$$
\begin{aligned}
& t_{1} \leftarrow Y^{2}, \quad t_{2} \leftarrow Z^{2}, \quad t_{3} \leftarrow C-D, \quad t_{4} \leftarrow t_{2}-t_{1}, \quad t_{1} \leftarrow t_{3} \cdot t_{1}, \quad t_{5} \leftarrow C \cdot t_{4}, \\
& \quad t_{6} \leftarrow t_{1}+t_{5}, \quad t_{6} \leftarrow t_{4} \cdot t_{6}, \quad t_{1} \leftarrow t_{1} \cdot t_{2}, \quad Y^{\prime} \leftarrow t_{1}-t_{6}, \quad Z^{\prime} \leftarrow t_{1}+t_{6} .
\end{aligned}
$$

If $Z=1$, the doublings formula (8) can be computed as

$$
\begin{gathered}
t_{1} \leftarrow Y^{2}, \quad t_{3} \leftarrow C-D, \quad t_{4} \leftarrow 1-t_{1}, \quad t_{1} \leftarrow t_{3} \cdot t_{1}, \quad t_{5} \leftarrow C \cdot t_{4} \\
t_{6} \leftarrow t_{1}+t_{5}, \quad t_{6} \leftarrow t_{4} \cdot t_{6}, \quad Y^{\prime} \leftarrow t_{1}-t_{6}, \quad Z^{\prime} \leftarrow t_{1}+t_{6}
\end{gathered}
$$

The addition formula (9) can be computed as

$$
\begin{gathered}
t_{1} \leftarrow Y_{1} \cdot Z_{2}, \quad t_{2} \leftarrow Y_{2} \cdot Z_{1}, \quad s_{1} \leftarrow t_{1}+t_{2}, \quad s_{2} \leftarrow t_{1}-t_{2}, \quad s_{1} \leftarrow s_{1}^{2}, \quad s_{2} \leftarrow s_{2}^{2} \\
\quad s_{1} \leftarrow\left(Z_{0}-Y_{0}\right) \cdot s_{1}, \quad s_{2} \leftarrow\left(Z_{0}+Y_{0}\right) \cdot s_{2}, \quad Y_{3} \leftarrow s_{1}-s_{2}, \quad Z_{3} \leftarrow s_{1}+s_{2} .
\end{gathered}
$$

The formula for calculating $\phi(P)(10)$ can be computed as

$$
\begin{gathered}
t_{i} \leftarrow Z \cdot Y_{i}, \quad t_{i}^{\prime} \leftarrow Z_{i} \cdot Y, \quad s_{1} \leftarrow \prod_{i=1}^{s}\left(t_{i}+t_{i}^{\prime}\right), \quad s_{2} \leftarrow \prod_{i=1}^{s}\left(t_{i}-t_{i}^{\prime}\right), \quad s_{1} \leftarrow s_{1}^{2}, \\
s_{2} \leftarrow s_{2}^{2}, \quad s_{1} \leftarrow(Z+Y) \cdot s_{1}, \quad s_{2} \leftarrow(Z-Y) \cdot s_{2}, \quad Y^{\prime} \leftarrow s_{1}-s_{2}, \quad Z^{\prime} \leftarrow s_{1}+s_{2} .
\end{gathered}
$$

The formula for calculating E^{\prime} (11) can be computed as

$$
\begin{gathered}
D^{\prime} \leftarrow \prod_{i=1}^{s} Y_{i}, \quad C^{\prime} \leftarrow \prod_{i=1}^{s} Z_{i}, \quad D^{\prime} \leftarrow\left(D^{\prime}\right)^{4}, \quad C^{\prime} \leftarrow\left(C^{\prime}\right)^{4}, \\
D^{\prime} \leftarrow D^{s} \cdot D^{\prime}, \quad C^{\prime} \leftarrow C^{s} \cdot C^{\prime}, \quad D^{\prime} \leftarrow D \cdot\left(D^{\prime}\right)^{2}, \quad C^{\prime} \leftarrow C \cdot\left(C^{\prime}\right)^{2} .
\end{gathered}
$$

The doublings formula (12), addition formula (13), and formula for calculating $\phi(P)$ (14) can be computed similarly as the formulas on Montgomery curves.

The formula for calculating E^{\prime} (15) can be computed as

$$
\begin{gathered}
D^{\prime} \leftarrow \prod_{i=1}^{s}\left(W_{i}+Z_{i}\right), \quad C^{\prime} \leftarrow \prod_{i=1}^{s} Z_{i}, \quad D^{\prime} \leftarrow\left(D^{\prime}\right)^{4}, \quad C^{\prime} \leftarrow\left(C^{\prime}\right)^{4}, \\
D^{\prime} \leftarrow D^{s} \cdot D^{\prime}, \quad C^{\prime} \leftarrow(2 \cdot 2 \cdot 2 \cdot 2 \cdot C)^{s} \cdot C^{\prime}, \quad D^{\prime} \leftarrow D \cdot\left(D^{\prime}\right)^{2}, \quad C^{\prime} \leftarrow C \cdot\left(C^{\prime}\right)^{2} .
\end{gathered}
$$

A.3. Calculations of $\sqrt{ }$ élu's formulas on Montgomery curves

In this subsection, we explain the method to compute ℓ-isogenies proposed in [6]. Although in [6], they wrote down the formulas using affine coordinates, we consider the formulas using projective coordinates to estimate their computational costs.

Let E be a Montgomery curve $y^{2}=x^{3}+a x^{2}+x$, and let $A / C=a$. Let $G=$ $\left\{P_{i} \mid i=1, \ldots, \ell\right\}$ be a finite subgroup of E, and let $\phi: E \rightarrow E /\langle G\rangle$ be an isogeny satisfying ker $\phi=G$. Denote $\mathbf{x}\left(P_{i}\right)$ by $\left(X_{i}, Z_{i}\right)$. Let $h_{\text {Set }}\left(T_{1}, T_{2}\right)$ be a polynomial defined by $h_{\text {Set }}\left(T_{1}, T_{2}\right):=\prod_{i \in \text { Set }}\left(Z_{i} T_{1}-X_{i} T_{2}\right)$. Let $S=\{1,3, \ldots, \ell-2\}$, let $I=\{2 b(2 i+1) \mid$ $\left.0 \leq i<b^{\prime}\right\}$, let $J=\{1,3, \ldots, 2 b-1\}$, and let $K=S \backslash(I \pm J)$, where $b=\lfloor\sqrt{\ell-1} / 2\rfloor$, and $b^{\prime}=\lfloor(\ell-1) / 4 b\rfloor$ (for $b>0$). Define polynomials F_{0}, F_{1}, and F_{2} in $\mathbb{F}_{p}\left[T_{1}, T_{2}, T_{3}, T_{4}\right]$ such that

$$
(T-x(P+Q))(T-x(P-Q))=T^{2}+\frac{F_{1}(\mathbf{x}(P), \mathbf{x}(Q))}{F_{0}(\mathbf{x}(P), \mathbf{x}(Q))} T+\frac{F_{2}(\mathbf{x}(P), \mathbf{x}(Q))}{F_{0}(\mathbf{x}(P), \mathbf{x}(Q))}
$$

In other words,

$$
\begin{aligned}
& F_{0}\left(T_{1}, T_{2}, T_{3}, T_{4}\right)=C\left(T_{1} T_{4}-T_{2} T_{3}\right)^{2} \\
& F_{1}\left(T_{1}, T_{2}, T_{3}, T_{4}\right)=-2\left(C\left(T_{1} T_{3}+T_{2} T_{4}\right)\left(T_{1} T_{4}+T_{2} T_{3}\right)+2 A T_{1} T_{2} T_{3} T_{4}\right) \\
& F_{2}\left(T_{1}, T_{2}, T_{3}, T_{4}\right)=C\left(T_{1} T_{3}-T_{2} T_{4}\right)^{2}
\end{aligned}
$$

Note that $\# S=2 \# I \# J+\# K$. From [6, Theorem 4.11], it holds that,

$$
h_{S}(\alpha, \beta)=\left(\prod_{i \in(I \pm J)} Z_{i}\right) \cdot \frac{h_{K}(\alpha, \beta)}{\Delta_{I, J}} \cdot \operatorname{Res}_{T}\left(h_{I}(T, 1), E_{J}(\alpha, \beta, T)\right)
$$

where $\operatorname{Res}_{T}(f, g)$ is the resultant of polynomials f and g in $\mathbb{F}_{p}[T], \Delta_{I, J}$ is $\operatorname{Res}_{T}\left(h_{I}(T, 1)\right.$, $\left.\prod_{j \in J} F_{0}\left(T, 1, X_{j}, Z_{j}\right)\right)$, and

$$
\begin{aligned}
& E_{J}\left(T_{1}, T_{2}, T\right) \\
:= & \prod_{j \in J}\left(F_{0}\left(T, 1, X_{j}, Z_{j}\right) T_{1}^{2}+F_{1}\left(T, 1, X_{j}, Z_{j}\right) T_{1} T_{2}+F_{2}\left(T, 1, X_{j}, Z_{j}\right) T_{2}^{2}\right) \\
= & \prod_{j \in J}\left(F_{0}\left(T_{1}, T_{2}, X_{j}, Z_{j}\right) T^{2}+F_{1}\left(T_{1}, T_{2}, X_{j}, Z_{j}\right) T+F_{2}\left(T_{1}, T_{2}, X_{j}, Z_{j}\right)\right) .
\end{aligned}
$$

Therefore, by using resultants, we can compute the equations (5) and (6). Denote $h_{K}(\alpha, \beta) \cdot \operatorname{Res}_{T}\left(h_{I}(T, 1), E_{J}(\alpha, \beta, T)\right)$ by $\tilde{h}_{S}(\alpha, \beta)$. Since $\left(\prod_{i \in(I \pm J)} Z_{i}\right)$ and $\Delta_{I, J}$ do not depend on α and β, it is enough to consider $\tilde{h}_{S}(\alpha, \beta)$ instead of $h_{S}(\alpha, \beta)$ to compute these formulas.

We use the scaled remainder-tree algorithm to compute resultants. First, we generate a product tree of polynomials $\left\{Z_{i} T-X_{i} \mid i \in I\right\}$. Next, by using the scaled remainder-tree algorithm for $E_{J}(\alpha, \beta, T)$, we compute $\left\{E_{J}\left(\alpha, \beta, X_{i} / Z_{i}\right) \mid i \in I\right\}$. Finally, we multiply all these values together to get the result.

The formula for calculating $\phi(P)$ (5) can be computed as

$$
\begin{gathered}
t_{1, j} \leftarrow X_{j} X, \quad t_{2, j} \leftarrow X_{j} Z, \quad t_{3, j} \leftarrow Z_{j} X, \quad t_{4, j} \leftarrow Z_{j} Z, \\
t_{5, j} \leftarrow 2 A t_{1, j} t_{4, j}, \quad t_{6, j} \leftarrow\left(t_{1, j}+t_{4, j}\right)\left(t_{2, j}+t_{3, j}\right), \\
h_{1, j} \leftarrow(-2)\left(t_{6, j} \cdot C+t_{5, j}\right), \quad h_{0, j} \leftarrow C\left(t_{1, j}-t_{4, j}\right)^{2}, \quad h_{2, j} \leftarrow C\left(t_{2, j}-t_{3, j}\right)^{2}, \\
E_{J}(X, Z, T) \leftarrow \prod_{j \in J}\left(h_{2, j} T^{2}+h_{1, j} T+h_{0, j}\right), \\
\operatorname{Set}_{(X, Z)} \leftarrow \operatorname{Resultant}_{T}\left(E_{J}(X, Z, T),\left\{Z_{i} T-X_{i} \mid i \in I\right\}\right), \\
\tilde{h}_{S}(X, Z) \leftarrow\left(\prod_{v \in \operatorname{Set}_{(X, Z)}} v\right) \cdot\left(\prod_{k \in K}\left(Z_{k} X-X_{k} Z\right)\right), \\
E_{J}(Z, X, T) \leftarrow \prod_{j \in J}\left(h_{0, j} T^{2}+h_{1, j} T+h_{2, j}\right)=\operatorname{Reverse}\left(E_{J}(X, Z, T)\right), \\
\operatorname{Set}_{(Z, X)} \leftarrow \operatorname{Resultant}_{T}\left(E_{J}(Z, X, T),\left\{Z_{i} T-X_{i} \mid i \in I\right\}\right), \\
\tilde{h}_{S}(Z, X) \leftarrow\left(\prod_{v \in \operatorname{Set}_{(Z, X)}} v\right) \cdot\left(\prod_{k \in K}\left(Z_{k} Z-X_{k} X\right)\right), \\
X^{\prime} \leftarrow \tilde{h}_{S}(Z, X), \quad Z^{\prime} \leftarrow \tilde{h}_{S}(X, Z), \quad X^{\prime} \leftarrow X \cdot\left(X^{\prime}\right)^{2}, \quad Z^{\prime} \leftarrow Z \cdot\left(Z^{\prime}\right)^{2} .
\end{gathered}
$$

The formula for calculating E^{\prime} (6) can be computed as

$$
\begin{gathered}
t_{1, j} \leftarrow\left(X_{j}+Z_{j}\right)^{2}, \quad t_{2, j} \leftarrow\left(X_{j}-Z_{j}\right)^{2}, \quad t_{3, j} \leftarrow C \cdot t_{1, j}, \quad t_{4, j} \leftarrow C \cdot t_{2, j}, \\
t_{5, j} \leftarrow A\left(t_{2, j}-t_{1, j}\right), \quad h_{+, j} \leftarrow t_{4, j}, \quad h_{-, j} \leftarrow t_{3, j}, \\
h_{+, 1, j} \leftarrow t_{5, j}-2 h_{-, j}, \quad h_{-, 1, j} \leftarrow 2 h_{+, j}-t_{5, j}, \\
E_{J}(1,1, T) \leftarrow \prod_{j \in J}\left(h_{+, j} T^{2}+h_{+, 1, j} T+h_{+, j}\right), \\
E_{J}(-1,1, T) \leftarrow \prod_{j \in J}\left(h_{-, j} T^{2}+h_{-, 1, j} T+h_{-, j}\right), \\
\operatorname{Set}_{+} \leftarrow \operatorname{Resultant}_{T}\left(E_{J}(1,1, T),\left\{Z_{i} T-X_{i} \mid i \in I\right\}\right), \\
\operatorname{Set}_{-} \leftarrow \operatorname{Resultant}_{T}\left(E_{J}(-1,1, T),\left\{Z_{i} T-X_{i} \mid i \in I\right\}\right),
\end{gathered}
$$

$$
\begin{gathered}
\tilde{h}_{S}(1,1) \leftarrow\left(\prod_{v \in \text { Set }_{+}} v\right) \cdot\left(\prod_{k \in K}\left(Z_{k}-X_{k}\right)\right), \\
\tilde{h}_{S}(-1,1) \leftarrow\left(\prod_{v \in \text { Set }_{-}} v\right) \cdot\left(\prod_{k \in K}\left(-Z_{k}-X_{k}\right)\right), \\
c \leftarrow 2 \cdot C, \quad a \leftarrow A+c, \quad d \leftarrow A-c, \quad a^{\prime} \leftarrow \tilde{h}_{S}(-1,1)^{2}, \quad d^{\prime} \leftarrow \tilde{h}_{S}(1,1)^{2}, \\
a^{\prime} \leftarrow a^{\# I \# J} \cdot a^{\prime}, \quad d^{\prime} \leftarrow d^{\# I \# J} \cdot d^{\prime}, \quad a^{\prime} \leftarrow\left(a^{\prime}\right)^{2}, \quad d^{\prime} \leftarrow\left(d^{\prime}\right)^{2}, \\
a^{\prime} \leftarrow a^{\# K} \cdot a^{\prime}, \quad d^{\prime} \leftarrow d^{\# K} \cdot d^{\prime}, \quad a^{\prime} \leftarrow a \cdot\left(a^{\prime}\right)^{2}, \quad d^{\prime} \leftarrow d \cdot\left(d^{\prime}\right)^{2}, \\
A^{\prime} \leftarrow 2 \cdot\left(a^{\prime}+d^{\prime}\right), \quad C^{\prime} \leftarrow a^{\prime}-d^{\prime} .
\end{gathered}
$$

A.4. Calculations of $\sqrt{ }$ élu's formulas on Edwards curves

The formula for calculating $\phi(P)$ (16) can be computed as

$$
\begin{gathered}
t_{D C} \leftarrow 2(D-2 C), \quad t_{1, j} \leftarrow W_{j} W, \quad t_{2, j} \leftarrow W_{j} Z, \quad t_{3, j} \leftarrow Z_{j} W, \\
t_{4, j} \leftarrow Z_{j} Z, \quad t_{5, j} \leftarrow 2 t_{D C} t_{1, j} t_{4, j}, \quad t_{6, j} \leftarrow\left(t_{1, j}+t_{4, j}\right)\left(t_{2, j}+t_{3, j}\right), \\
h_{1, j} \leftarrow(-2)\left(t_{6, j} \cdot D+t_{5, j}\right), \quad h_{0, j} \leftarrow D\left(t_{2, j}-t_{3, j}\right)^{2}, \quad h_{2, j} \leftarrow D\left(t_{1, j}-t_{4, j}\right)^{2}, \\
E_{J}(W, Z, T) \leftarrow \prod_{j \in J}\left(h_{2, j} T^{2}+h_{1, j} T+h_{0, j}\right), \\
\operatorname{Set}_{(W, Z)} \leftarrow \operatorname{Resultant}_{T}\left(E_{J}(W, Z, T),\left\{Z_{i} T-W_{i} \mid i \in I\right\}\right), \\
\tilde{h}_{S}(W, Z) \leftarrow\left(\prod_{v \in \operatorname{Set}_{(W, Z)}} v\right) \cdot\left(\prod_{k \in K}\left(Z_{k} W-W_{k} Z\right)\right), \\
E_{J}(Z, W, T) \leftarrow \prod_{j \in J}\left(h_{0, j} T^{2}+h_{1, j} T+h_{2, j}\right)=\operatorname{Reverse}\left(E_{J}(W, Z, T)\right), \\
\operatorname{Set}_{(Z, W)} \leftarrow \operatorname{Resultant}_{T}\left(E E_{J}(Z, W, T),\left\{Z_{i} T-W_{i} \mid i \in I\right\}\right), \\
\tilde{h}_{S}(Z, W) \leftarrow\left(\prod_{v \in \operatorname{Set}_{(Z, W)}} v\right) \cdot\left(\prod_{k \in K}\left(Z_{k} Z-W_{k} W\right)\right), \\
W^{\prime} \leftarrow \tilde{h}_{S}(W, Z), \quad Z^{\prime} \leftarrow \tilde{h}_{S}(Z, W), \quad W^{\prime} \leftarrow W \cdot\left(W^{\prime}\right)^{2}, \quad Z^{\prime} \leftarrow Z \cdot\left(Z^{\prime}\right)^{2} .
\end{gathered}
$$

The formula for calculating E^{\prime} (17) can be computed as

$$
\begin{gathered}
t_{1, j} \leftarrow\left(W_{j}+Z_{j}\right)^{2}, \quad t_{2, j} \leftarrow\left(W_{j}-Z_{j}\right)^{2}, \quad t_{3, j} \leftarrow D \cdot t_{1, j}, \quad t_{4, j} \leftarrow D \cdot t_{2, j}, \\
t_{5, j} \leftarrow t_{1, j}-t_{2, j}, \quad h_{0, j} \leftarrow t_{3, j}, \quad h_{1, j} \leftarrow t_{D C} \cdot t_{5, j}+2 t_{4, j}, \\
E_{J}(-1,1, T) \leftarrow \prod_{j \in J}\left(h_{0, j} T^{2}+h_{1, j} T+h_{0, j}\right),
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{Set}_{(-1,1)} \leftarrow \operatorname{Resultant}_{T}\left(E_{J}(-1,1, T),\left\{Z_{i} T-W_{i} \mid i \in I\right\}\right), \\
\tilde{h}_{S}(-1,1) \leftarrow\left(\prod_{v \in \operatorname{Set}_{(-1,1)}} v\right) \cdot\left(\prod_{k \in K}\left(-Z_{k}-W_{k}\right)\right), \\
\operatorname{Set}_{(1,0)} \leftarrow \operatorname{Resultant}_{T}\left(\prod_{j \in J}\left(W_{j} T-Z_{j}\right),\left\{Z_{i} T-W_{i} \mid i \in I\right\}\right), \\
\tilde{\tilde{h}}_{S}(1,0) \leftarrow\left(\prod_{v \in \operatorname{Set}_{(1,0)}} v\right)^{2} \cdot\left(\prod_{k \in K} Z_{k}\right), \\
D^{\prime} \leftarrow \tilde{h}_{S}(-1,1), \quad C^{\prime} \leftarrow \tilde{\tilde{h}}_{S}(1,0), \quad D^{\prime} \leftarrow\left(D^{\prime}\right)^{4}, \quad C^{\prime} \leftarrow\left(C^{\prime}\right)^{2}, \\
C^{\prime \prime} \leftarrow 2 \cdot 2 \cdot 2 \cdot 2 \cdot C, \quad C^{\prime} \leftarrow\left(D \cdot C^{\prime \prime}\right)^{\# I \# J} \cdot C^{\prime}, \quad C^{\prime} \leftarrow\left(C^{\prime}\right)^{2}, \\
D^{\prime} \leftarrow D^{\# K} \cdot D^{\prime}, \quad C^{\prime} \leftarrow\left(C^{\prime \prime}\right)^{\# K} \cdot C^{\prime}, \quad D^{\prime} \leftarrow D \cdot\left(D^{\prime}\right)^{2}, \quad C^{\prime} \leftarrow C \cdot\left(C^{\prime}\right)^{2} .
\end{gathered}
$$

Remark 4. The above formulas do not care about the problem explained in Remark 2. If we want to do the actual calculation, we need to do some additional calculations about the constant values in Remark 2.

Appendix B. CSIDH on Edwards curves with \boldsymbol{y}-coordinates

In this section, we explain the CSIDH algorithm on Edwards curves with y coordinates. There is no difference essentially between this algorithm and the original CSIDH algorithm [10]. The precise algorithm is as follows.

```
Algorithm 7 Evaluating the class group action on Edwards curves with \(y\)-coordinates.
Input: \(d \in \mathbb{F}_{p}\) such that \(E_{d}\) is supersingular and a list of integers \(\left(e_{1}, \ldots, e_{n}\right)\)
Output: \(d^{\prime}\) such that \(\left[\mathfrak{l}_{1}^{e_{1}} \cdots \mathfrak{l}_{n}^{e_{n}}\right] E_{d}=E_{d^{\prime}}\)
    while some \(e_{i} \neq 0\) do
        Sample a random \(y \in \mathbb{F}_{p}\)
        \(\mathbf{y}(P) \leftarrow(y: 1)\)
        Set \(s \leftarrow+1\) if \(\left(1-y^{2}\right)\left(1-d y^{2}\right)\) is a square in \(\mathbb{F}_{p}\), else \(s \leftarrow-1\)
        Let \(S=\left\{i \mid \operatorname{sign}\left(e_{i}\right)=s\right\}\)
        if \(S=\emptyset\) then
            Go to line 2
        end if
        \(k \leftarrow \prod_{i \in S} \ell_{i}, \mathbf{y}(P) \leftarrow \mathbf{y}(((p+1) / k) P)\)
        for all \(i \in S\) do
            \(\mathbf{y}(Q) \leftarrow \mathbf{y}\left(\left(k / \ell_{i}\right) P\right)\)
            if \(Q \neq 0_{d} \quad(\mathbf{y}(Q) \neq(1: 1))\) then
                        Compute an \(\ell_{i}\)-isogeny \(\phi: E_{d} \rightarrow E_{d^{\prime}}\) with \(\operatorname{ker} \phi=\langle Q\rangle\)
            \(d \leftarrow d^{\prime}, \mathbf{y}(P) \leftarrow \mathbf{y}(\phi(P)), k \leftarrow k / \ell_{i}, e_{i} \leftarrow e_{i}-s\)
            end if
        end for
    end while
    return \(d\) (Theorem 7)
```

Sampling points (line 2-8 in Algorithm 7) We take a uniformly random element of \mathbb{F}_{p}. Let the element be y, and P be a point in E_{d} such that $y(P)=y$. We calculate $\left(1-y^{2}\right)\left(1-d y^{2}\right)$. Here, $\frac{1-y^{2}}{1-d y^{2}}$ is a square of $x(P)$, where $x(P)$ is the x-coordinate of P. If $\left(1-y^{2}\right)\left(1-d y^{2}\right)$ is square in \mathbb{F}_{p}, then $P \in \operatorname{ker}\left(\pi_{p}-1\right)$, and if $\left(1-y^{2}\right)\left(1-d y^{2}\right)$ is not square in \mathbb{F}_{p}, then $P \in \operatorname{ker}\left(\pi_{p}+1\right)$.

Scalar multiplication (line 9 in Algorithm 7) Next, we calculate $P_{1}=\frac{p+1}{k}(P)$, where $k=\prod_{i \in S} \ell_{i}$. The calculation uses the ladder algorithm which is constructed in the same way as Montgomery curves [27].

Calculation of isogenies (line 10-16 in Algorithm 7) We calculate $P_{2}=\frac{k}{\ell_{i}} P_{1}$. The order of P_{2} is 1 or ℓ_{i}. The probability that P_{2} is not the identity is almost $1-\frac{1}{\ell_{i}}$. This fact can be proven in the similar way in [10]. Therefore, with highly probability, we get a point of order ℓ_{i}. Then, by Theorem 7, we can calculate isogenies by using the same strategy as the original CSIDH algorithm. To do so, we can use the formulas on Edwards curves [28,11].

Output (line 18 in Algorithm 7) If the list of integers $\left(e_{1}, \ldots, e_{n}\right)$ is the zero vector, we output the Edwards coefficient $d^{\prime} \in \mathbb{F}_{p}$.

References

[1] Gora Adj, Jesús-Javier Chi-Domínguez, Francisco Rodríguez-Henríquez, Karatsuba-based squareroot Vélu's formulas applied to two isogeny-based protocols, J. Cryptogr. Eng. 13 (1) (2023) 89-106, https://doi.org/10.1007/s13389-022-00293-y.
[2] Omran Ahmadi, Robert Granger, On isogeny classes of Edwards curves over finite fields, J. Number Theory 132 (6) (2012) 1337-1358, https://doi.org/10.1016/j.jnt.2011.12.013.
[3] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange, Michael Meyer, Benjamin Smith, Jana Sotáková, CTIDH: faster constant-time CSIDH, Cryptology ePrint Archive, Paper 2021/633, https://eprint.iacr.org/2021/633, 2021.
[4] Daniel J. Bernstein, Scaled remainder trees, https://cr.yp.to/papers.html\#scaledmod, August 2004.
[5] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, Christiane Peters, Twisted Edwards curves, in: Progress in Cryptology - AFRICACRYPT 2008, Springer, 2008, pp. 389-405.
[6] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, Benjamin Smith, Faster computation of isogenies of large prime degree, in: Proceedings of the Fourteenth Algorithmic Number Theory Symposium - ANTS 2020, vol. 4, Mathematical Sciences Publishers, 2020, pp. 39-55.
[7] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, Tanja Lange, Elligator: elliptic-curve points indistinguishable from uniform random strings, in: Proceedings of the 2013 ACM SIGSAC Conference on Computer \& Communications Security, 2013, pp. 967-980.
[8] Daniel J. Bernstein, Tanja Lange, Faster addition and doubling on elliptic curves, in: Advances in Cryptology - ASIACRYPT 2007, Springer, 2007, pp. 29-50.
[9] Wouter Castryck, Thomas Decru, An efficient key recovery attack on SIDH, in: Advances in Cryptology - EUROCRYPT 2023, Springer, 2023, pp. 423-447.
[10] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, Joost Renes, CSIDH: an efficient post-quantum commutative group action, in: Advances in Cryptology - ASIACRYPT 2018, Springer, 2018, pp. 395-427.
[11] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez, Luca De Feo, Francisco Rodríguez-Henríquez, Benjamin Smith, Stronger and faster side-channel protections for CSIDH, in: Progress in Cryptology - LATINCRYPT 2019, Springer, 2019, pp. 173-193.
[12] Craig Costello, Huseyin Hisil, A simple and compact algorithm for SIDH with arbitrary degree isogenies, in: Advances in Cryptology - ASIACRYPT 2017, Springer, 2017, pp. 303-329.
[13] Craig Costello, Benjamin Smith, Montgomery curves and their arithmetic: the case of large characteristic fields, J. Cryptogr. Eng. 8 (2018) 227-240, https://doi.org/10.1007/s13389-017-0157-6.
[14] Christina Delfs, Steven D. Galbraith, Computing isogenies between supersingular elliptic curves over \mathbb{F}_{p}, Des. Codes Cryptogr. (2016) 425-440, https://doi.org/10.1007/s10623-014-0010-1.
[15] Harold Edwards, A normal form for elliptic curves, Bull. Am. Math. Soc. (2007) 393-422, https:// doi.org/10.1090/S0273-0979-07-01153-6.
[16] Reza Rezaeian Farashahi, Seyed Gholamhossein Hosseini, Differential addition on twisted Edwards curves, in: Information Security and Privacy - ACISP 2017, Springer, 2017, pp. 366-378.
[17] Charles M. Fiduccia, Polynomial evaluation via the division algorithm the fast Fourier transform revisited, in: Proceedings of the Fourth Annual ACM Symposium on Theory of Computing, 1972, pp. 88-93.
[18] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, Ed Dawson, Twisted Edwards curves revisited, in: Advances in Cryptology - ASIACRYPT 2008, Springer, 2008, pp. 326-343.
[19] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Aaron Hutchinson, Amir Jalali, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, David Urbanik, Supersingular isogeny key encapsulation. Submission to the NIST Post-Quantum Standardization project, 2017.
[20] David Jao, Luca De Feo, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies, in: Post-Quantum Cryptography - PQCrypto 2011, Springer, 2011, pp. 19-34.
[21] Suhri Kim, Kisoon Yoon, Young-Ho Park, Seokhie Hong, Optimized method for computing odddegree isogenies on Edwards curves, in: Advances in Cryptology - ASIACRYPT 2019, Springer, 2019, pp. 273-292.
[22] Neal Koblitz, Elliptic curve cryptosystems, Math. Comput. (1987) 203-209, https://doi.org/10. 1090/S0025-5718-1987-0866109-5.
[23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, Benjamin Wesolowski, A direct key recovery attack on SIDH, in: Advances in Cryptology - EUROCRYPT 2023, Springer, 2023, pp. 448-471.
[24] Michael Meyer, Fabio Campos, Steffen Reith, On lions and elligators: an efficient constant-time implementation of CSIDH, in: Post-Quantum Cryptography - PQCrypto 2018, Springer, 2019, pp. 307-325.
[25] Michael Meyer, Steffen Reith, A faster way to the CSIDH, in: Progress in Cryptology - INDOCRYPT 2018, Springer, 2018, pp. 137-152.
[26] Victor S. Miller, Use of elliptic curves in cryptography, in: Advances in Cryptology - CRYPTO '85, Springer, 1985, pp. 417-426.
[27] Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math. Comput. (1987) 243-264, https://doi.org/10.1090/S0025-5718-1987-0866113-7.
[28] Dustin Moody, Daniel Shumow, Analogues of Vélu's formulas for isogenies on alternate models of elliptic curves, Math. Comput. (2016) 1929-1951, https://doi.org/10.1090/mcom/3036.
[29] Tomoki Moriya, Hiroshi Onuki, Tsuyoshi Takagi, How to construct CSIDH on Edwards curves, in: Topics in Cryptology - CT-RSA 2020, Springer, 2020, pp. 512-537.
[30] National Institute of Standards and Technology. Post-quantum cryptography standardization, https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions.
[31] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, Tsuyoshi Takagi, A constant-time algorithm of CSIDH keeping two points, vol. 103, The Institute of Electronics, Information and Communication Engineers, 2020, pp. 1174-1182.
[32] Ronald L. Rivest, Adi Shamir, Leonard Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM (1978) 120-126, https://doi.org/10.1145/359340.359342.
[33] Robert Damien, Breaking SIDH in polynomial time, in: Advances in Cryptology - EUROCRYPT 2023, Springer, 2023, pp. 472-503.
[34] Peter W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science - FOCS '94, IEEE, 1994, pp. 124-134.
[35] Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. (1999) 303-332, https://doi.org/10.1137/S0036144598347011.
[36] Joseph H. Silverman, The Arithmetic of Elliptic Curves, vol. 106, Springer Science \& Business Media, 2009.
[37] Jacques Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris, Sér. A (1971) 305-347.
[38] William C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. Éc. Norm. Supér. (1969) 521-560.

[^0]: General rights
 Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

 - Users may freely distribute the URL that is used to identify this publication.
 - Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
 - User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
 - Users may not further distribute the material nor use it for the purposes of commercial gain.

 Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
 When citing, please reference the published version.

 ## Take down policy

 While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
 If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

[^1]: * Corresponding author.

 E-mail addresses: t.moriya@bham.ac.uk (T. Moriya), onuki@mist.i.u-tokyo.ac.jp (H. Onuki), takagi@mist.i.u-tokyo.ac.jp (T. Takagi).

