
 
 

University of Birmingham

How to construct CSIDH on Edwards curves
Moriya, Tomoki; Onuki, Hiroshi; Takagi, Tsuyoshi

DOI:
10.1016/j.ffa.2023.102310

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Moriya, T, Onuki, H & Takagi, T 2023, 'How to construct CSIDH on Edwards curves', Finite Fields and Their
Applications, vol. 92, 102310. https://doi.org/10.1016/j.ffa.2023.102310

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 15. May. 2024

https://doi.org/10.1016/j.ffa.2023.102310
https://doi.org/10.1016/j.ffa.2023.102310
https://birmingham.elsevierpure.com/en/publications/4dfb57bb-3d4e-4c19-8a38-0e2408570899


Finite Fields and Their Applications 92 (2023) 102310
Contents lists available at ScienceDirect

Finite Fields and Their Applications

journal homepage: www.elsevier.com/locate/ffa

How to construct CSIDH on Edwards curves

Tomoki Moriya a,∗, Hiroshi Onuki b, Tsuyoshi Takagi b

a Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, 
United Kingdom
b Department of Mathematical Informatics, The University of Tokyo, 7-3-1 Hongo, 
Bunkyo-ku, Tokyo 113-8656, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 January 2021
Received in revised form 28 June 
2023
Accepted 22 September 2023
Available online xxxx
Communicated by Gary L. Mullen

MSC:
14G50
94A60
68P25

Keywords:
Isogeny-based cryptography
Montgomery curves
Edwards curves
CSIDH
Post-quantum cryptography

CSIDH is an isogeny-based key exchange protocol proposed 
by Castryck et al. in 2018. It is based on the ideal class group 
action on Fp-isomorphism classes of Montgomery curves. The 
original CSIDH algorithm requires a calculation over Fp by 
representing points as x-coordinate over Montgomery curves. 
There is a special coordinate on Edwards curves (the w-
coordinate) to calculate group operations and isogenies. If 
we try to calculate the class group action on Edwards curves 
by using the w-coordinate in a similar way on Montgomery 
curves, we have to consider points defined over Fp4 . Therefore, 
calculating the class group action on Edwards curves with w-
coordinates over only Fp is not a trivial task.
In this paper, we prove some theorems about the properties 
of Edwards curves. We construct the new CSIDH algorithm 
using these theorems on Edwards curves with w-coordinates 
over Fp. This algorithm is as fast as (or a little bit faster than) 
the algorithm proposed by Meyer and Reith.
This paper is an extended version of [29]. We added the 
construction of a technique similar to Elligator on Edwards 
curves. This technique contributes to the efficiency of the 
constant-time CSIDH algorithm. We also added the construc-
tion of new formulas to compute isogenies in Õ(

√
�) time 

on Edwards curves. It is based on formulas on Montgomery 
curves proposed by Bernstein et al. (

√
élu’s formulas). In our 

* Corresponding author.
E-mail addresses: t.moriya@bham.ac.uk (T. Moriya), onuki@mist.i.u-tokyo.ac.jp (H. Onuki), 

takagi@mist.i.u-tokyo.ac.jp (T. Takagi).
https://doi.org/10.1016/j.ffa.2023.102310
1071-5797/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.ffa.2023.102310
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ffa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ffa.2023.102310&domain=pdf
mailto:t.moriya@bham.ac.uk
mailto:onuki@mist.i.u-tokyo.ac.jp
mailto:takagi@mist.i.u-tokyo.ac.jp
https://doi.org/10.1016/j.ffa.2023.102310
http://creativecommons.org/licenses/by/4.0/


2 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
analysis, these formulas on Edwards curves are a little bit 
faster than those on Montgomery curves.
We finally implemented CSIDH, 

√
élu’s formulas, and CTIDH 

[3] (faster constant-time CSIDH) on Edwards curves. Each 
result shows the efficiency of algorithms on Edwards curves.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

This paper is an extended version of [29]. The first additional content is the construc-
tion of Elligator [7] on Edwards curves. Using Elligator makes the constant-time CSIDH 
algorithm faster. The second additional content is the construction of 

√
élu’s formulas 

on Edwards curves. In both results, our proposal is as fast as (or a little faster than) 
those on Montgomery curves.

Currently, there are two popular public-key cryptosystems: RSA [32], whose secu-
rity is based on the computational complexity of the Prime Factorization Problem, and 
Elliptic Curve Cryptography [26,22], whose security is based on the computational com-
plexity of the Discrete Logarithm Problem. However, Shor pointed out 1994 that both 
the Prime Factorization Problem and the Discrete Logarithm Problem can be solved in 
polynomial time using a quantum computer [34,35]. This means we should develop new 
cryptosystems which cannot be broken by quantum computers. The design and analysis 
of such cryptosystems are called post-quantum cryptography (PQC).

Isogeny-based cryptography is a branch of public-key cryptography based on the 
computational complexity of the Isogeny Problem, which is a problem arising when we 
calculate isogenies between given two elliptic curves. It is considered to be a candidate 
for PQC. Jao and De Feo proposed a Diffie-Hellman type isogeny-based key exchange 
protocol, called SIDH (Supersingular Isogeny Diffie-Hellman), in 2011 [20]. SIKE (Su-
persingular Isogeny Key Encapsulation) [19], which is derived from SIDH, is a 4th round 
alternate candidate in the NIST PQC standardization competition [30]. However, SIDH 
is broken in 2022 by some research [9,23,33]. Castryck, Lange, Martindale, Panny, and 
Renes proposed another Diffie-Hellman type of isogeny-based key exchange protocol, 
called CSIDH (Commutative Supersingular Isogeny Diffie-Hellman), in 2018 [10]. Its 
calculation uses supersingular elliptic curves over Fp.

CSIDH is based on a commutative group action on Fp-isomorphism classes of super-
singular Montgomery curves defined over Fp. In order to calculate this group action, we 
need to generate a point in ker (πp − 1) or in ker (πp + 1) and determine which set the 
point belongs to, where πp is the p-Frobenius map. Castryck, Lange, Martindale, Panny, 
and Renes showed that if we take a random element from Fp as an x-coordinate of a point 
in a Montgomery curve and determine whether the y-coordinate of the point belongs to 
Fp or not, then we can get a point in ker (πp − 1) or in ker (πp + 1) and determine which 
set the point belongs to [10]. They also showed that a Montgomery coefficient is unique 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 3
Table 1
Comparing CSIDH algorithms on Montgomery curves and Edwards curves.

group operations calculation of isogenies kernel points

Montgomery � � �
Edwards (y-coordinate) � � �
Edwards (w-coordinate) � � not trivial

up to Fp-isomorphism [10]. Since it is known that a group operation of a Montgomery 
curve can be calculated using only the x-coordinates of the points [27] and that isoge-
nies between Montgomery curves can be also calculated by using only the x-coordinates 
of the points of the kernel [12,25], we can compute a CSIDH group action using only 
Fp-arithmetic.

Meyer and Reith proposed a faster CSIDH algorithm in 2018 [25]. This algorithm 
calculates isogenies over Edwards curves instead of Montgomery curves, by using a bira-
tional map between a Montgomery curve and an Edwards curve. In this algorithm, the 
method for generating a point in ker (πp − 1) or in ker (πp + 1) and determining which 
set the point belongs to is the same as in the original CSIDH algorithm [10]. Hence, a 
question arises: How do we calculate the CSIDH algorithm on purely Edwards curves 
over Fp?

There are two special coordinates (the y-coordinate and the w-coordinate) on Edwards 
curves for efficiently calculating the group operation [11,16] and isogenies [28,11,21] re-
spectively. For a point P in an Edwards curve, if the y-coordinate of P is in Fp, then P
always belongs to ker (πp − 1) or ker (πp + 1). Therefore, it is not difficult to construct 
the CSIDH algorithm on Edwards curves with y-coordinates. We detail this algorithm 
in Appendix B. However, if we take a random element from Fp as the w-coordinate of a 
point on an Edwards curve, the point is sometimes defined outside of Fp2 (defined over 
Fp4). Since the points in ker (πp − 1) and those in ker (πp + 1) are defined over Fp2 , it is 
not a trivial task to run the CSIDH algorithm using only Edwards curves over Fp with 
w-coordinates. We summarize the above discussion in Table 1.

The computational costs of the CSIDH group action depend on its secret key. There-
fore, CSIDH is vulnerable to side-channel attacks. There are some proposals for constant-
time CSIDH algorithms [24,31,11,3]. They use a special map named Elligator [7]. El-
ligator makes these algorithms more efficient. Elligator can be used for x-coordinates 
of Montgomery curves; however, there are no techniques similar to Elligator for w-
coordinates of Edwards curves.

In 2020, Bernstein, De Feo, Leroux, and Smith proposed new formulas for computing 
�-isogenies in Õ(

√
�) time [6]. Moreover, Adj, Chi-Domínguez, and Rodríguez-Henríquez 

improved these formulas in [1]. We call these formulas 
√

élu’s formulas. Bernstein et al.
showed that by using these formulas, the CSIDH algorithm gets more efficient. These 
formulas are constructed by using the x-coordinates of Montgomery curves. There is no 
result about 

√
élu’s formulas on Edwards curves.



4 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
1.1. Our results

In this paper, we prove four important theorems about the w-coordinate on Edwards 
curves and use them to construct a new implementation of the CSIDH key exchange. 
First, we show that if we take a random element from the set of square elements in Fp as 
the w-coordinate of a point P and determine whether the w-coordinate of 2P is square in 
Fp or not, then we can generate a point in ker (πp − 1) or in ker (πp + 1) and determine 
which set the point belongs to. Specifically, if the w-coordinate of 2P is square, then this 
coordinate represents a point in ker (πp + 1), and if the w-coordinate of 2P is not square, 
then the inverse of this coordinate represents a point in ker (πp − 1). Second, we show 
that there is no difference between the probability of generating a point in ker (πp − 1)
and the probability of generating a point in ker (πp + 1) in a previous way. Third, we 
prove the probability that we get a point of order �i is 1 − 1/�i, like Montgomery curves. 
Finally, we show that an Edwards coefficient is unique up to an Fp-isomorphism, like a 
Montgomery coefficient.

From these theorems, we construct a non-trivial new implementation of the CSIDH 
key exchange that uses w-coordinates on Edwards curves non-trivially (Algorithm 3). We 
show that our algorithm is as fast as (or a little bit faster than) the algorithm proposed 
by Meyer and Reith [25].

Moreover, we realize the technique similar to Elligator on Edwards curves with using 
w-coordinates. This technique is as efficient as or more efficient than that on Montgomery 
curves. Therefore, the constant-time CSIDH algorithm on Edwards curves is as efficient 
as (or a little bit faster than) that on Montgomery curves.

Furthermore, we propose the new 
√

élu’s formulas on Edwards curves. These formu-
las are constructed by the w-coordinates on Edwards curves. In our analysis, those on 
Edwards curves are a little bit faster than those on Montgomery curves.

Finally, we implement CSIDH, 
√

élu’s formulas, and CTIDH [3] (faster constant-time 
CSIDH) on Edwards curves and measure their computational costs. These results are 
shown in Table 2, Fig. 1, and Table 3. From these implementations, we experimetally 
confirm the efficiency using Edwards curves.

2. Preliminaries

2.1. Basic mathematical concepts

Here, we explain basic mathematical concepts behind isogeny-based cryptography.
Let L be a field, and L′ be an algebraic extension field of L. An elliptic curve E

defined over L is a non-singular algebraic curve defined over L of genus one, together 
with an L-rational base point. Denote by E(L′) the L′-rational points of the elliptic 
curve E. E(L′) is an abelian group [36, III. 2]. A supersingular elliptic curve E over a 
finite field L of characteristic p is defined as an elliptic curve which satisfies #E(L) ≡ 1
(mod p), where #E(L) is the cardinality of E(L).



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 5
Let E, E′ be elliptic curves defined over L. Define an isogeny φ : E → E′ over L′ to be 
a rational map over L′ which is a non-zero group homomorphism from E(L) to E′(L), 
where L is the algebraic closure of L. A separable isogeny with # kerφ = � is called an 
�-isogeny. Denote by EndL′(E) the endomorphism ring of E over L′. It is represented as 
Endp(E) when L′ is a prime field Fp. An isogeny φ : E → E′ defined over L′ is called an 
isomorphism over L′ if φ has an inverse isogeny over L′.

If G is a finite subgroup of E(L), then there exists a separable isogeny φ : E → E′

whose kernel is G, and E′ is unique up to an L-isomorphism [36, Proposition III.4.12]. 
This isogeny can be efficiently calculated by using Vélu’s formulas [37]. We denote a 
representative of E′ by E/G.

E[k] (k ∈ Z>0) is defined as the k-torsion subgroup of E(L). For an endomorphism 
φ of E, we sometimes denote kerφ by E[φ].

Let L be a number field, and O be an order in L. A fractional ideal a of O is a finitely 
generated O-submodule of L which satisfies αa ⊂ O for some α ∈ O \ {0}. An invertible 
fractional ideal a of O is defined as a fractional ideal of O which satisfies ab = O for 
some fractional ideal b of O. The fractional ideal b is represented as a−1. If a fractional 
ideal a is contained in O, then a is called an integral ideal of O.

Let I(O) be the set of invertible fractional ideals of O. I(O) is an abelian group 
derived from multiplication of ideals with the identity O. Let P (O) be a subgroup of 
I(O) defined by P (O) = {a | a = αO (for some α ∈ L×)}. We call the abelian group 
cl(O) defined by I(O)/P (O) the ideal class group of O.

The Fp-endomorphism ring Endp(E) of a supersingular elliptic curve E defined over 
Fp is isomorphic to an order in an imaginary quadratic field [14]. Denote by E� �p(O) the 
set of Fp-isomorphism classes of elliptic curves E whose Fp-endomorphism ring Endp(E)
is isomorphic to O.

2.2. Montgomery curves

Let L be a field whose characteristic is odd. An elliptic curve E defined by the following 
equation is called a Montgomery curve:

E : bY 2Z = X3 + aX2Z + XZ2 (a, b ∈ L and b(a2 − 4) �= 0).

In this paper, we denote the Montgomery curve Y 2Z = X3 + aX2Z + XZ2 by EM,a. 
The identity of E is (0 : 1 : 0), and the inverse of (X : Y : Z) is (X : −Y : Z).

Montgomery showed that the group operations on Montgomery curves can be effi-
ciently computed by using x-coordinates [27]. Define a function x as

x(X : Y : Z) = X
.

Z



6 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
The function x is not defined at the point (0 : 1 : 0). If P and Q satisfy x(P ) = x(Q), 
then P = Q or P = −Q. Next define a function x as x(X : Y : Z) = (X : Z). We call 
x(P ) the projective x-coordinates of P .

Let P be a point on E. Let A/C = a and B/C = b. Let (X : Z) = x(P ). The 
projective x-coordinates (X ′ : Z ′) of 2P are calculated as follows [27]:

X ′ = 4C(X + Z)2(X − Z)2, Z ′ = 4XZ(4C(X − Z)2 + (A + 2C)4XZ). (1)

The computational cost is 4M + 2S + 4a. If Z = 1, the computational cost is 4M +
1S +5a. (We denote field multiplications by M, field squarings by S, and field additions, 
subtractions, or doublings by a.)

Let P1 and P2 be points on E, and (X1 : Z1) = x(P1), (X2 : Z2) = x(P2). Let 
(X0 : Z0) = x(P1−P2). The projective x-coordinates (X3 : Z3) of P1 +P2 are calculated 
as follows [27]:

X3 = Z0(X1X2 − Z1Z2)2, Z3 = X0(X1Z2 −X2Z1)2. (2)

The computational cost is 4M +2S +6a. If Z0 = 1, the computational cost is 3M +2S +6a.
Costello and Hisil proposed efficient calculations for odd-degree isogenies by using x-

coordinates [12], and Meyer and Reith improved them [25]. Let � be an odd integer and s
be the integer that satisfies that � = 2s +1. Let P be a point on E, and (X : Z) = x(P ). 
Let Q be an order-� point on E, and (X1 : Z1) = x(Q). Let (Xk : Zk) = x(kQ). 
Let E′ = E/〈Q〉 and φ be an isogeny φ : E → E′ with kerφ = 〈Q〉. The projective 
x-coordinates (X ′ : Z ′) of φ(P ) are calculated as follows [12]:

X ′ = X ·
s∏

i=1
(XXi − ZZi)2, Z ′ = Z ·

s∏
i=1

(XZi − ZXi)2. (3)

The computational cost is (4s)M + 2S + (4s + 2)a. Let A/C = a. The curve coefficient 
a′ = A′/C ′ of E′ is calculated as follows [25]:

ã = A + 2C, d̃ = A− 2C, ã′ = ã� ·
s∏

i=1
(Xi + Zi)8,

d̃′ = d̃� ·
s∏

i=1
(Xi − Zi)8, A′ = 2(ã′ + d̃′), C ′ = ã′ − d̃′.

(4)

The computational cost is (2s + 2)M + 6S + (2s + 6)a and that of the two �-th powers. 
Since Xi +Zi and Xi −Zi are also used for calculating φ(P ), the computational cost of 
calculating φ(P ) and E′ is (6s + 2)M + 8S + (4s + 8)a and that of the two �-th powers. 
Appendix A.1 describes why the computational costs are as above.

Furthermore, for a high-degree isogeny φ, there are more efficient methods to compute 
φ(P ) and (A′, C ′) on Montgomery curves [6,1]. These formulas can be computed in Õ(

√
�)

time. We call them 
√

élu’s formulas. The equations (3) and (4) can be rewritten as follows:



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 7
X ′ = X · (hS(Z,X))2, Z ′ = Z · (hS(X,Z))2. (5)

ã = A + 2C, d̃ = A− 2C, ã′ = ã� · (hS(−1, 1))8,
d̃′ = d̃� · (hS(1, 1))8, A′ = 2(ã′ + d̃′), C ′ = ã′ − d̃′.

(6)

Here, hS is the polynomial in Fp[T1, T2] defined as hS(T1, T2) :=
∏

i∈S(ZiT1 − XiT2), 
and S is the set {1, 3, . . . , � − 2}. By using resultants, we can compute hS(α, β) for some 
α, β. Appendix A.3 describes more details about the above method.

2.3. Edwards curves

In 2007, Edwards introduced a new form of an elliptic curve [15]. Bernstein and 
Lange extended these curves to another form in 2007, called Edwards curves [8]. For 
representing points at infinity, Hisil, Wong, Carter, and Dawson proposed projective 
closures of Edwards curves in P 3 in 2018 [18].

Let L be a field. If an elliptic curve E is defined by the following equations, E is called 
an Edwards curve [18]:

E : X2 + Y 2 = Z2 + dT 2, XY = ZT (d ∈ L and d �= 0, 1).

In this paper, we denote the Edwards curve X2 + Y 2 = Z2 + dT 2, XY = ZT by Ed. 
The identity of Ed is (0 : 1 : 1 : 0), which we will denote by 0d for simplicity, while the 
inverse of (X : Y : Z : T ) is (−X : Y : Z : −T ). We obtain the group addition formulas 
as follows [18]:

(X1 : Y1 : Z1 : T1) + (X2 : Y2 : Z2 : T2)
= ((X1Y2 + Y1X2)(Z1Z2 − dT1T2) : (Y1Y2 −X1X2)(Z1Z2 + dT1T2)
: (Z1Z2 − dT1T2)(Z1Z2 + dT1T2) : (Y1Y2 −X1X2)(X1Y2 + Y1X2)).

(7)

For simplicity, we will sometimes consider an Edwards curve to be an affine curve defined 
by the following equation:

E : x2 + y2 = 1 + dx2y2 (d ∈ L and d �= 0, 1),

where x = X/Z and y = Y/Z. In this equation, only (±
√
d : 0 : 0 : 1) and (0 : ±

√
d : 0 : 1)

are points at infinity. (±
√
d : 0 : 0 : 1) are points of order 2, and (0 : ±

√
d : 0 : 1) are 

points of order 4. Hence, if the order of a point P on Ed is neither 2 nor 4, P can be 
represented in affine coordinates (x, y).

In [28,11] it was shown that the group calculations of Edwards curves can be efficiently 
performed by using the y-coordinate. Define a function y as

y(X : Y : Z : T ) =
{

Y
Z (if Z �= 0)
∞ (if Z = 0 (points at infinity))

.



8 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
We call y(P ) the y-coordinate of P . If P and Q satisfy that y(P ) = y(Q), then P = Q or 
P = −Q. Define a function y as y(X : Y : Z : T ) = (Y : Z). We call y(P ) the projective 
y-coordinates of P .

Let P be a point on Ed, and (Y : Z) = y(P ). Let D/C = d. The projective y-
coordinates (Y ′ : Z ′) of 2P are calculated as follows [11]:

Y ′ = (C −D)Y 2Z2 − (Z2 − Y 2) · ((C −D)Y 2 + C(Z2 − Y 2)),
Z ′ = (C −D)Y 2Z2 + (Z2 − Y 2) · ((C −D)Y 2 + C(Z2 − Y 2)).

(8)

The computational cost is 4M +2S +5a. If Z = 1, the computational cost is 3M +1S +5a.
Let P1 and P2 be points on Ed, and (Y1 : Z1) = y(P1), (Y2 : Z2) = y(P2). Let 

(Y0 : Z0) = y(P1 − P2). The projective y-coordinates (Y3 : Z3) of P1 + P2 are calculated 
as follows [11]:

Y3 = (Z0 − Y0)(Y1Z2 + Y2Z1)2 − (Z0 + Y0)(Y1Z2 − Y2Z1)2,
Z3 = (Z0 − Y0)(Y1Z2 + Y2Z1)2 + (Z0 + Y0)(Y1Z2 − Y2Z1)2.

(9)

The computational cost is 4M + 2S + 6a. In the case that Z0 = 1, the computational 
cost is also 4M + 2S + 6a.

In [11] efficient calculations were proposed for odd-degree isogenies by using projective 
y-coordinates. Let � be an odd integer and s be the integer that satisfies � = 2s + 1. 
Let P be a point on Ed, and (Y : Z) = y(P ). Let Q be an order-� point on Ed, and 
(Y1 : Z1) = y(Q). Let (Yk : Zk) = y(kQ). Let Ed′ = Ed/〈Q〉, and φ be an isogeny 
φ : Ed → Ed′ with kerφ = 〈Q〉. The projective y-coordinates (Y ′ : Z ′) of φ(P ) are 
calculated as follows [11]:

Y ′ =(Z + Y ) ·
s∏

i=1
(ZYi + ZiY )2 − (Z − Y ) ·

s∏
i=1

(ZYi − ZiY )2,

Z ′ =(Z + Y ) ·
s∏

i=1
(ZYi + ZiY )2 + (Z − Y ) ·

s∏
i=1

(ZYi − ZiY )2.
(10)

The computational cost is (4s)M + 2S + (2s + 4)a. The projective curve coefficient 
d′ = D′/C ′ is calculated as follows [28]:

D′ = D� ·
s∏

i=1
(Yi)8, C ′ = C� ·

s∏
i=1

(Zi)8. (11)

The computational cost is (2s + 2)M + 6S and that of the two �-th powers. The compu-
tational cost of calculating φ(P ) and Ed′ is (6s + 2)M + 8S + (2s + 4)a and that of the 
two �-th powers.

Farashahi and Hosseini showed that the group calculations of Edwards curves can be 
efficiently performed by using the w-coordinate [16]. Define a function w as



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 9
w(X : Y : Z : T ) =
{

dT 2

Z2 (if Z �= 0)
∞ (if Z = 0 (points at infinity))

.

In affine coordinates, w(x, y) = dx2y2. We call w(P ) the w-coordinate of P . If P and Q
satisfy that w(P ) = w(Q), then, from [16, Formula (6)], P +Q or P −Q is an element of

{0d, (0 : −1 : 1 : 0), (1 : 0 : 1 : 0), (−1 : 0 : 1 : 0)}.

In this paper, we will denote {0d, (0 : −1 : 1 : 0), (1 : 0 : 1 : 0), (−1 : 0 : 1 : 0)}
by G4 for simplicity. Note that G4 is a cyclic group of order 4. Define a function w as 
w(X : Y : Z : T ) = (dT 2 : Z2). We call w(P ) the projective w-coordinates of P .

Let P be a point on Ed, and (W : Z) = w(P ). Let D/C = d. The projective w-
coordinates (W ′ : Z ′) of 2P are calculated as follows [16]:

W ′ = 4WZ(D(W + Z)2 − 4CWZ), Z ′ = D(W + Z)2(W − Z)2. (12)

The computational cost is 4M +2S +4a. If Z = 1, the computational cost is 4M +1S +5a.
Let P1 and P2 be points on Ed, and (W1 : Z1) = w(P1), (W2 : Z2) = w(P2). Let 

(W0 : Z0) = w(P1−P2). The projective w-coordinates (W3 : Z3) of P1+P2 are calculated 
as follows [16]:

W3 = Z0(W1Z2 −W2Z1)2, Z3 = W0(W1W2 − Z1Z2)2. (13)

The computational cost is 4M +2S +6a. If Z0 = 1, the computational cost is 3M +2S +6a.
Kim, Yoon, Park, and Hong proposed efficient calculations for odd-degree isogenies 

by using projective w-coordinates [21]. Let � be an odd integer and s be the integer that 
satisfies � = 2s + 1. Let P be a point on Ed, and (W : Z) = w(P ). Let Q be an order-�
point on Ed, and (W1 : Z1) = w(Q). Let (Wk : Zk) = w(kQ). Let Ed′ = Ed/〈Q〉, and φ
be an isogeny φ : Ed → Ed′ with kerφ = 〈Q〉. The projective w-coordinates (W ′ : Z ′) of 
φ(P ) are calculated as follows [21]:

W ′ = W ·
s∏

i=1
(ZWi − ZiW )2, Z ′ = Z ·

s∏
i=1

(WWi − ZZi)2. (14)

The computational cost is (4s)M + 2S + (4s + 2)a. The projective curve coefficient 
d′ = D′/C ′ is calculated as follows [21]:

D′ = D� ·
s∏

i=1
(Wi + Zi)8, C ′ = C� ·

s∏
i=1

(2Zi)8. (15)

The computational cost is (2s + 2)M + 6S + (s + 4)a and that of the two �-th powers. 
Since Wi + Zi is also used for calculating φ(P ), the computational cost of calculating 



10 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
φ(P ) and Ed′ is (6s +2)M +8S +(4s +6)a and that of the two �-th powers. Appendix A.2
describes why the computational costs are as above.

Furthermore, we found the method to compute �-isogenies on Edwards curves in 
Õ(

√
�) time as on Montgomery curves. We explain these formulas in section 7.

An Edwards curve has a following property.

Theorem 1. Let p be a prime and p ≥ 3. The Edwards curve Ed defined over Fp is 
Fp-isomorphic to the Montgomery curve,

EM : 4
1 − d

Y 2Z = X3 + 2(1 + d)
1 − d

X2Z + XZ2.

Proof. Bernstein, Birkner, Joye, Lange, and Peters show that there is a birational map 
between Ed and EM [5]. This birational map becomes an isomorphism because Ed and 
EM are non-singular. �

It is known that there is a birational map between a Montgomery curve and an Ed-
wards curve [5]. However, we need an isomorphism for constructing the CSIDH algorithm 
using only Edwards curves.

Corollary 1. Let p be a prime, p ≥ 3, and p ≡ 3 (mod 4). An Edwards curve Ed defined 
over Fp is Fp-isomorphic to the Montgomery curve,

EM : Y 2Z = X3 + χ(1 − d) · 2(1 + d)
1 − d

X2Z + XZ2,

where the map χ : Fp → Fp is defined as χ(a) := a(p−1)/2.

Corollary 1 is easily proven from Theorem 1.

Corollary 2. Let p be a prime, p ≥ 3, and p ≡ 3 (mod 8). Let EM,a be a supersingular 
Montgomery curve Y 2Z = X3 + aX2Z + XZ2 defined over Fp. If a − 2 is square, then 
EM,a is Fp-isomorphic to the Edwards curve,

E a+2
a−2

: X2 + Y 2 = Z2 + a + 2
a− 2T

2, XY = ZT,

and if a − 2 is not square, then EM,a is Fp-isomorphic to the Edwards curve,

E a−2
a+2

: X2 + Y 2 = Z2 + a− 2
a + 2T

2, XY = ZT.

Proof. As EM,a is supersingular, #EM,a(Fp) = #ẼM,a(Fp) = p +1 ≡ 4 (mod 8), where 
ẼM,a is a quadratic twist of EM. From Table 1 of [13], (a − 2)(a + 2) is not square.



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 11
If a − 2 is square, the Edwards curve E a+2
a−2

is Fp-isomorphic to EM,a by Corollary 1. 
If a − 2 is not square, since a + 2 is square, the Edwards curve E a−2

a+2
is Fp-isomorphic to 

EM,a by Corollary 1.
This completes the proof of Corollary 2. �
By using Corollary 1 and Corollary 2, it is easy to convert an Edwards curve into a 

Montgomery curve and convert a Montgomery curve into an Edwards curve.

3. CSIDH [10]

CSIDH (Commutative Supersingular Isogeny Diffie-Hellman) was proposed by Cas-
tryck, Lange, Martindale, Panny, and Renes in 2018 [10].

CSIDH is based on the action of cl(Z[πp]) on E� �p(Z[πp]). Let the prime p be 4 ·
�1 · · · �n − 1, where the �1, . . . , �n are small distinct odd primes, for Alice and Bob to 
calculate the action efficiently. Alice and Bob let random elements of cl(Z[πp]) be secret 
keys and calculate the actions on EM,0 : Y 2Z = X3 + XZ2. They publish the obtained 
elliptic curves as public keys. Finally, they calculate the actions on the public keys, 
respectively. The obtained elliptic curves are identical up to Fp-isomorphism by the 
commutativity of cl(Z[πp]); therefore, the values of the Montgomery coefficients are the 
same from Theorem 3. Let their values be SKshared.

3.1. CSIDH protocol

Before explaining the protocol of CSIDH, we should state the following important 
theorems.

Theorem 2 ([38, Theorem 4.5]). Let O be an order of an imaginary quadratic field and 
E be an elliptic curve defined over Fp. If E� �p(O) contains the Fp-isomorphism class of 
supersingular elliptic curves, then the action of the ideal class group cl(O) on E� �p(O),

cl(O) × E��p(O) −→ E��p(O)

([a], E) �−→ E/E[a]

is free and transitive, where a is an integral ideal of O, and E[a] is the intersection of 
the kernels of elements in the ideal a.

Denote a representative of E/E[a] by [a]E.

Theorem 3 ([10, Proposition 8]). Let p be a prime satisfying p ≡ 3 (mod 8) larger than 
3. Let E be a supersingular elliptic curve defined over Fp. Then, Endp(E) = Z[πp] holds 
if and only if there uniquely exists a ∈ Fp such that E is Fp-isomorphic to a Montgomery 
curve EM,a, where πp is the p-Frobenius map.



12 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
The exact protocol is as follows. Suppose that Alice and Bob want to share a secret 
key denoted by SKshared.

Setup. Let p be a prime which satisfies p = 4 · �1 · · · �n − 1, where �1, . . . , �n are small 
distinct odd primes. Let the public parameters be p and EM,0.

Key generation. One randomly chooses an integer vector (e1, . . . , en) from{−m, . . . , m}n. 
Define [a] = [le11 · · · lenn ] ∈ cl(Z[πp]), where li = (�i, πp − 1), l−1

i = (�i, πp + 1), and 
m is the smallest integer which satisfies 2m + 1 ≥ n

√
#cl(Z[πp]) ≈ p1/2n. One 

calculates the action of [a] on EM,0 and the Montgomery coefficient a ∈ Fp of 
[a]EM,0 : Y 2Z = X3 + aX2Z + XZ2.
Let the integer vector (e1, . . . , en) be the secret key, and a ∈ Fp be the public key.

Key exchange. Alice and Bob have pairs of keys, ([a], a) and ([b], b), respectively. Alice 
calculates the action [a]EM,b = [a][b]EM,0. Bob calculates the action [b]EM,a =
[b][a]EM,0. Denote the Montgomery coefficient of [a][b]EM,0 by SKAlice and the 
Montgomery coefficient of [b][a]EM,0 by SKBob.

From the commutativity of cl(Z[πp]) and Theorem 3, SKAlice = SKBob holds. Let these 
values be the shared key SKshared.

3.2. Evaluating the class group action on Montgomery curves

In this subsection, we explain how to evaluate the class group action on Montgomery 
curves [10]. Algorithm 1 is an algorithm for evaluating the class group action.

Let p be a prime satisfying p = 4 · �1 · · · �n − 1, where �1, . . . , �n are small distinct 
odd primes. The inputs of the algorithm are a Montgomery coefficient a ∈ Fp and a list 
of integers (e1, . . . , en). The output is a Montgomery coefficient a′ ∈ Fp that satisfies 
EM,a′ = [le11 · · · lenn ]EM,a.

We calculate a′ by repeating the calculations of the actions of [li] or [li]−1 (i.e., re-
peating the calculations of �i-isogenies).

Sampling points (line 2-8 in Algorithm 1) For calculating the class group action, we first 
sample a point that belongs to ker (πp − 1) or ker (πp + 1). We take a uniformly random 
element of Fp. Let the element be x, and P be a point in EM,a such that x(P ) = x. We 
calculate x3 +ax2 +x, which is a square of y(P ), where y(P ) is the y-coordinate of P . If 
x3 + ax2 + x is square in Fp, then P ∈ ker (πp − 1), and if x3 + ax2 + x is not square in 
Fp, then P ∈ ker (πp + 1). If x3 + ax2 + x is square, we define S to be the set of i such 
that the sign of ei is +1, and if x3 + ax2 + x is not square, we define S to be the set of 
i such that the sign of ei is −1. If S = ∅, we repeat this procedure with another sample 
point.

Scalar multiplication (line 9 in Algorithm 1) Next, we calculate P1 = p+1
k P , where 

k =
∏

i∈S �i. The calculation uses the Montgomery ladder algorithm [27].



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 13
Calculation of isogenies (line 10-16 in Algorithm 1) We calculate P2 = k
�i
P1. The order 

of P2 is 1 or �i. The probability that P2 is not the identity is 1 − 1
�i

[10]. Therefore, with 
high probability, we get a point of order �i. Then, we calculate an �i-isogeny,

φ : EM,a −→ EM,a/〈P2〉,

by using the formulas in [12,25]. Denote the Montgomery coefficient of EM,a/〈P2〉 by 
a′ ∈ Fp. From Theorem 3, a′ is unique. We redefine ei as ei − 1 (if ei > 0) or ei + 1 (if 
ei < 0), k as k/�i, P1 as φ(P1), and a as a′.

We repeat this calculation for all i ∈ S. After that, if the list of integers (e1, . . . , en)
is not the zero vector, we return to the Sampling points part.

Output (line 18 in Algorithm 1) If the list of integers (e1, . . . , en) is the zero vector, we 
output the Montgomery coefficient a′ ∈ Fp.

Algorithm 1 Evaluating the class group action on Montgomery curves [10].
Input: a ∈ Fp such that EM,a is supersingular and a list of integers (e1, . . . , en)
Output: a′ such that [le1

1 · · · len
n ]EM,a = EM,a′

1: while some ei �= 0 do
2: Sample a random x ∈ Fp

3: x(P ) ← (x : 1)
4: Set s ← +1 if x3 + ax2 + x is a square in Fp, else s ← −1
5: Let S = {i | sign(ei) = s}
6: if S = ∅ then
7: Go to line 2
8: end if
9: k ←

∏
i∈S �i, x(P ) ← x(((p + 1)/k)P )

10: for all i ∈ S do
11: x(Q) ← x((k/�i)P )
12: if Q �= (0 : 1 : 0) then
13: Compute an �i-isogeny φ : EM,a → EM,a′ with kerφ = 〈Q〉
14: a ← a′, x(P ) ← x(φ(P )), k ← k/�i, ei ← ei − s
15: end if
16: end for
17: end while
18: return a

3.3. Elligator on Montgomery curves

In this subsection, we explain Elligator in detail. Elligator (specifically Elligator 2 in 
[7]) is used as a technique mapping some points in ker (πp ± 1) to points in ker (πp ∓ 1)
over Montgomery curves. Meyer, Campos, and Reith used this technique for implemen-
tations of constant-time CSIDH algorithms for efficiency [24]. By using Elligator, we 
can sample a pair of points in ker (πp − 1) and points in ker (πp + 1) efficiently. Elliga-
tor reduces the number of Legendre symbol computations in the constant-time CSIDH 
algorithm and makes the algorithm more efficient.

First, we take a random value u from {2, 3, . . . , (p −1)/2}. We compute v := a/(u2−1), 
and output (v, −v − a). If v3 + av2 + v is square, then v is the x-coordinate of a point 



14 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
in ker (πp − 1), and −v − a is the x-coordinate of a point in ker (πp + 1). If not square, 
then v is the x-coordinate of a point in ker (πp + 1), and −v− a is the x-coordinate of a 
point in ker (πp − 1). These facts can be easily checked.

Moreover, Cervantes-Vázquez et al. proposed the constant-time projective Elligator 
for the constant-time CSIDH algorithm [11]. We show this algorithm in Algorithm 2.

Algorithm 2 Constant-time projective Elligator on Montgomery curves [11].
Input: A, C ∈ Fp such that EM,A/C is supersingular and a random element u from {2, 3, . . . , (p − 1)/2}
Output: The projective x-coordinate of P ∈ ker (πp − 1) and the projective x-coordinate of Q ∈ ker (πp + 1)
1: t ← A((u2 − 1)u2A2C + ((u2 − 1)C)3)
2: ε ← isequal(t, 0)
3: α, β ← 0, u
4: cswap(α, β, ε)
5: t′ ← t + α(u2 + 1)
6: ζ ← Legendre_symbol(t′, p)
7: ε′ ← isequal(ζ, −1)
8: (X : Z) ← (A + αC(u2 − 1) : C(u2 − 1))
9: (X′ : Z′) ← (−Au2 − αC(u2 − 1) : C(u2 − 1))

10: cswap((X : Z), (X′ : Z′), ε′)
11: return (X : Z), (X′ : Z′)

4. Main theorems used for our algorithm

Here, we state and prove four theorems needed to construct the algorithm for evalu-
ating the class group action based on Edwards curves.

First, we prove important lemmas in order to prove four main theorems.
Let Ed be a supersingular Edwards curve defined over Fp, and p be a prime.

Lemma 1. Let p ≡ 3 (mod 8) and p > 3. If Ed satisfies Endp(Ed) ∼= Z[πp], then d is not 
square.

Proof. There exists a Montgomery curve EM which is Fp-isomorphic to Ed, by Corol-
lary 1. If EM[2] ⊂ EM(Fp), Table 1 of [13] shows that the order of EM or its quadratic 
twist can be divided by 8; however, both orders are p +1 ≡ 4 (mod 8). EM has the only 
one point of order 2 over Fp. Therefore, Ed also has only one point of order 2 over Fp.

Points of order 2 in Ed are (0 : −1 : 1 : 0) and (±
√
d : 0 : 0 : 1). Since (0 : −1 : 1 : 0)

is a Fp-rational point, d is not square. �
Lemma 2. Let p ≡ 3 (mod 8) and p > 3. If Ed satisfies Endp(Ed) ∼= Z[πp], then 1 − d is 
not square.

Proof. As p ≡ 3 (mod 8) and p > 3, #Ed(Fp) = p + 1 ≡ 4 (mod 8).
By Lemma 1, there are no points at infinity on Ed(Fp). Hence, in this proof, we 

consider Ed to be an affine curve.
If a point (x, y) belongs to Ed(Fp), the points,

(−x, y), (x,−y), (−x,−y), (y, x), (−y, x), (y,−x), (−y,−x),



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 15
also belong to Ed(Fp). If x �= 0, y �= 0, x �= y, and x �= −y hold, these eight points are 
different. If x = 0 or y = 0, the four points,

(0, 1), (0,−1), (1, 0), (−1, 0),

are different. If x = y or x = −y, x is a root of the equation,

2x2 = 1 + dx4.

Therefore,

x2 = 1 ±
√

1 − d

d
.

Assume that 1 − d is square. Note that

1 +
√

1 − d

d
· 1 −

√
1 − d

d
= 1 − (1 − d)

d2 = 1
d
.

By Lemma 1, d is not square. Hence, one of 1+
√

1−d
d or 1−

√
1−d
d is square, and the other 

one is not square. Therefore, if x = y or x = −y, the four points,

(x, x), (x,−x), (−x, x), (−x,−x),

are different, where x is 
√

1+
√

1−d
d or 

√
1−

√
1−d
d .

From the above, #Ed(Fp) ≡ 4 + 4 ≡ 0 (mod 8) holds. This is a contradiction. There-
fore, 1 − d is not square. �
Lemma 3. If P is a point of Ed such that w(P ) ∈ Fp, then (πp + 1)(P ) ∈ G4 or (πp −
1)(P ) ∈ G4.

Proof. Since πp(w(P )) = w(πp(P )), w(πp(P )) = w(P ). Therefore, (πp + 1)(P ) ∈ G4 or 
(πp − 1)(P ) ∈ G4. �

Lemma 4 describes the relationship between points in Ed[πp ± 1] and their w-
coordinates.

Lemma 4. Let p ≡ 3 (mod 8) and p > 3. Let P ∈ Ed[πp − 1] or Ed[πp + 1], not a point 
at infinity, and w(P ) �= 0. Then w(P ) ∈ Fp. Moreover, the point P belongs to Ed[πp− 1]
if and only if w(P ) is square in Fp, and the point P belongs to Ed[πp + 1] if and only if 
w(P ) is not square in Fp.

Proof. Denote the coordinates of P by (x, y) (affine coordinates). As w(P ) �= 0, x �= 0
and y �= 0. If P ∈ Ed[πp + 1], then (xp, yp) = (−x, y). Therefore, xp = −x and y ∈ Fp. 



16 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
As (x2)p = x2 and x /∈ Fp, x2y2 ∈ Fp and x2y2 is not square. If P ∈ Ed[πp − 1], then 
(xp, yp) = (x, y). Therefore, x, y ∈ Fp. Thus, x2y2 ∈ Fp and x2y2 is square. Since d is 
not square by Lemma 1, the half part of Lemma 4 holds. Converse obviously holds. �
Lemma 5. Let P be a point of Ed. Then, points Podd and P2power uniquely exist such 
that P = Podd + P2power, the order of Podd is odd, and the order of P2power is a power 
of 2.

Proof. Note that P ∈ Ed(Fq), where q is a power of p. Therefore, P has finite order. By 
the fundamental theorem of finite abelian groups, there exist points Podd and P2power

such that P = Podd + P2power, the order of Podd is odd, and the order of P2power is a 
power of 2.

Assume that Podd + P2power = P ′
odd + P ′

2power, where the orders of Podd and P ′
odd

are odd, and the orders of P2power and P ′
2power are powers of 2. As Podd − P ′

odd =
−P2power + P ′

2power,

Podd − P ′
odd = 0d and P2power − P ′

2power = 0d.

Therefore, uniqueness holds. �
The statement of Lemma 6 involves the points Podd and P2power from Lemma 5. In 

particular, it is argued that Podd belongs to Ed[πp ± 1] if w(P ) ∈ Fp.

Lemma 6. Let P be a point of Ed such that w(P ) ∈ Fp. Let Podd and P2power be points 
of Ed such that P = Podd + P2power, the order of Podd is odd, and the order of P2power

is a power of 2. Then, one of the following holds.

– Podd ∈ Ed[πp − 1] and (πp − 1)(P2power) ∈ G4.
– Podd ∈ Ed[πp + 1] and (πp + 1)(P2power) ∈ G4.

Proof. By Lemma 3, (πp ± 1)(P ) ∈ G4. In the case that (πp − 1)(P ) ∈ G4, (πp −
1)(Podd) = 0d, since the order of Podd is odd and G4 is a cyclic group of order 4. Then, 
(πp − 1)(P2power) = (πp − 1)(P ) ∈ G4.

Similarly, in the case that (πp+1)(P ) ∈ G4, Podd ∈ Ed[πp +1] and (πp +1)(P2power) ∈
G4 hold. �
Lemma 7. Let P be a point in Ed whose order is not a power of 2. Then, the number of 
points Q which satisfy w(Q) = w(P ) is 8.

Proof. Assume that the number of points Q which satisfy w(Q) = w(P ) is not 8. Since 
the set ±P + G4 does not have 8 elements, there are points G1, G2 ∈ G4 which satisfy 
P + G1 = −P + G2. However, the order of −G1 + G2 is a power of 2, and the order of 
2P is not a power of 2. This is a contradiction.



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 17
This completes the proof of Lemma 7. �
Lemma 8. Let p ≡ 3 (mod 8) and p > 3. There exists a bijection,

f : Ed[πp + 1] ∩ Ed[(p + 1)/4] −→ Ed[πp − 1] ∩ Ed[(p + 1)/4],

such that f(0d) = 0d.

Proof. We will prove that the cardinality of Ed[πp+1] ∩Ed[(p +1)/4] and the cardinality 
of Ed[πp − 1] ∩ Ed[(p + 1)/4] are finite and equal and that 0d belongs to both sets.

Since Ed is supersingular and πp − 1 and π2
p − 1 are separable,

deg (π2
p − 1) = #Ed(Fp2) = (p + 1)2,

deg (πp − 1) = #Ed(Fp) = p + 1.

Therefore, deg (πp + 1) = p +1. As πp−1 and πp+1 are separable, we have #Ed[πp−1] =
p + 1 and #Ed[πp + 1] = p + 1. As the set Ed[πp − 1] ∩ Ed[(p + 1)/4] is the set of all 
points of order odd in Ed[πp − 1],

#(Ed[πp − 1] ∩ Ed[(p + 1)/4]) = p + 1
4 .

Similarly,

#(Ed[πp + 1] ∩ Ed[(p + 1)/4]) = p + 1
4 .

We have proven that #(Ed[πp + 1] ∩ Ed[(p + 1)/4]) and #(Ed[πp − 1] ∩ Ed[(p + 1)/4])
are finite and equal.

It is obvious that 0d belongs to Ed[πp+1] ∩Ed[(p +1)/4] and Ed[πp−1] ∩Ed[(p +1)/4].
This completes the proof of Lemma 8. �
We now prove four main theorems.
Roughly speaking, Theorem 4 claims that by examining a value w(2P ), we can get 

the w-coordinate of a point in Ed[πp ± 1]. This theorem leads to a sampling method.

Theorem 4. Let p ≡ 3 (mod 8) and p > 3. Let P be a point on a supersingular Edwards 
curve Ed such that the w-coordinate w(P ) ∈ Fp, the order of P is not a power of 2, 
and w(P ) is square. If w(2P ) is square, there exists P ′ such that P ′ ∈ Ed[πp + 1], 
w(2P ) = w(P ′), and p+1

4 P ′ = 0d. If w(2P ) is not square, there exists P ′ such that 
P ′ ∈ Ed[πp − 1], 1/w(2P ) = w(P ′), and p+1

4 P ′ = 0d.

Proof. Let (x, y) be the coordinates of P . Let Podd and P2power be points of Ed such 
that P = Podd + P2power, the order of Podd is odd, and the order of P2power is a power 



18 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
of 2. The existence of Podd and P2power is guaranteed by Lemma 5. By Lemma 6, one of 
the following holds.

– (πp − 1)(P2power) ∈ G4 and Podd ∈ E[πp − 1].
– (πp + 1)(P2power) ∈ G4 and Podd ∈ E[πp + 1].

It is easy to check that (πp + 1)G4 = {0d, (0, −1)} and (πp − 1)G4 = {0d}. Therefore,

(π2
p − 1)(P2power) =

{
0d (if Podd ∈ E[πp + 1]),
0d or (0,−1) (if Podd ∈ E[πp − 1]).

As π2
p + p = 0, π2

p − 1 = −p − 1. Since P2power is a point whose order is a power of 2,

4P2power =
{

0d (if Podd ∈ E[πp + 1]),
0d or (0,−1) (if Podd ∈ E[πp − 1]).

Hence, if Podd ∈ E[πp + 1], then

2P2power = 0d, (0,−1), (±
√
d : 0 : 0 : 1),

and if Podd ∈ E[πp − 1], then

2P2power = 0d, (0,−1), (±
√
d : 0 : 0 : 1), (1, 0), (−1, 0), (0 : ±

√
d : 0 : 1).

It is easy to check that if w(2P2power) = 0, then w(2P ) = w(2Podd), and if w(2P2power) =
∞, then w(2P ) = 1/w(2Podd). Therefore, if w(2P ) is square, then w(2Podd) is square, 
and if w(2P ) is not square, then w(2Podd) is not square. By Lemma 4, if w(2P ) is square, 
then 2Podd ∈ Ed[πp + 1], and if w(2P ) is not square, then 2Podd ∈ Ed[πp − 1].

Denote w(P ) by w. By the Edwards addition formula (7), we have

w(2P ) = 4dx2y2(y2 − x2)2

(1 − dx2y2)2(1 + dx2y2)2 = 4w(y2 − x2)2

(1 − w)2(1 + w)2 .

Since w is square, if w(2P ) is square, then y2−x2 ∈ Fp, and if w(2P ) is not square, then 
y2 − x2 /∈ Fp. As

2P =
(

2xy
1 + dx2y2 ,

y2 − x2

1 − dx2y2

)
,

if w(2P ) is square, then the y-coordinate of 2P is an element of Fp, and if w(2P ) is not 
square, then the y-coordinate of 2P is not an element of Fp.

In the case that w(2P ) is square, y(2P ) ∈ Fp and 2Podd ∈ Ed[πp + 1]. Therefore, 
y(2Podd) ∈ Fp. Assume that 2P2power = (

√
d : 0 : 0 : 1) or (−

√
d : 0 : 0 : 1). It is easy to 

check that



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 19
y(2P ) = ± 1√
d · y(2Podd)

.

As y(2Podd) ∈ Fp, y(2P ) /∈ Fp by Lemma 1. This is a contradiction. We conclude that 
2P2power is 0d or (0, −1). Therefore, w(2P ) = w(2Podd). As (π2

p − 1)(2Podd) = 0d,

p + 1
4 (2Podd) = 0d.

In the case that w(2P ) is not square, y(2P ) /∈ Fp and 2Podd ∈ Ed[πp − 1]. Therefore, 
y(2Podd) ∈ Fp. Assume that

2P2power = 0d, (0,−1), (1, 0), (−1, 0).

It is easy to check that y(2P ) = ±y(2Podd). As y(2Podd) ∈ Fp, y(2P ) ∈ Fp. This is a 
contradiction. We conclude that 2P2power is (±

√
d : 0 : 0 : 1) or (0 : ±

√
d : 0 : 1). From 

this, it follows that w(2P ) = 1/w(2Podd). As (π2
p − 1)(2Podd) = 0d,

p + 1
4 (2Podd) = 0d.

Let P ′ be 2Podd. This completes the proof of Theorem 4. �
Theorem 5 shows that there is no bias in the points generated by the sampling method 

derived from Theorem 4.

Theorem 5. Let p ≡ 3 (mod 8) and p > 3. Let P be a point on a supersingular Edwards 
curve Ed such that the w-coordinate w(P ) ∈ Fp, the order of P is not a power of 2, 
and w(P ) is square. The number of w(P ) such that w(2P ) is square is the same as the 
number of w(P ) such that w(2P ) is not square.

Proof. Let the coordinates of P be (x, y). Let Podd and P2power be points of Ed such 
that P = Podd +P2power, the order of Podd is odd, and the order of P2power is a power of 
2. The existence of Podd and P2power is guaranteed by Lemma 5. As shown in the proof 
of Theorem 4, we have

2P2power = 0d, (0,−1), (±
√
d : 0 : 0 : 1), (0 : ±

√
d : 0 : 1).

If 2P2power is 0d or (0, −1), w(P2power) is 0 or ∞, since it is easy to check that

P2power = 0d, (0,−1), (±1, 0), (±
√
d : 0 : 0 : 1), (0 : ±

√
d : 0 : 1).

If 2P2power is (±
√
d : 0 : 0 : 1) or (0 : ±

√
d : 0 : 1), w(P2power) is ±1 since

w(2P2power) = 4w(P2power)((1 + w(P2power))2 − 4w(P2power)/d)
2 2 .
(1 − w(P2power)) (1 + w(P2power))



20 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
Assume that w(P2power) is −1. In this case, we have w(2P2power) = ∞. From Lemma 6, 
it holds that (πp − 1)(Podd) = 0d or (πp + 1)(Podd) = 0d. Let the coordinates of Podd be 
(xo, yo), where xo ∈ Fp and yo ∈ Fp or yo ∈

√
−1Fp. It is easy to check that

P2power =

⎛
⎝
√√

1
d
,

√
−
√

1
d

⎞
⎠ + Q′,

where Q′ is a point of Ed such that w(Q′) = 0 or w(Q′) = ∞. From the addition formula 
of Edward curves,

P = Podd + P2power =

⎛
⎜⎜⎝
xo

√
−
√

1
d + yo

√√
1
d

1 + dxoyo

√
−1
d

,
yo

√
−
√

1
d − xo

√√
1
d

1 − dxoyo

√
−1
d

⎞
⎟⎟⎠ + Q′.

Therefore,

w(P ) = (2xoyo + (y2
o − x2

o)
√
−1)2

(1 + dx2
oy

2
o)2

or (1 + dx2
oy

2
o)2

(2xoyo + (y2
o − x2

o)
√
−1)2

.

As p ≡ 3 (mod 4), it holds that −1 is not square. Since Podd is not 0d, we have xo �= 0
and yo �= 0. If we assume that x2

o = y2
o , then it is easy to check that 2x2

o = 1 + dx4
o, and

x2
o = 1 ±

√
1 − d

d
/∈ Fp (from Lemma 2).

Since x2
o ∈ Fp, it holds that x2

o �= y2
o . Therefore, if yo ∈ Fp, then it holds that (2xoyo +

(y2
o − x2

o)
√
−1)2 /∈ Fp and if yo ∈

√
−1Fp, then (2xoyo + (y2

o − x2
o)
√
−1)2 is not square. 

Hence, w(P ) /∈ Fp or w(P ) is not square. This is a contradiction. We conclude w(P2power)
is 0 or ∞ or 1.

If w(2P ) is square, as shown in the proof of Theorem 4, w(Podd) is square and 
2P2power = 0d or (0, −1). Therefore, w(P2power) is 0 or ∞. If w(2P ) is not square, as 
shown in the proof of Theorem 4, w(Podd) is not square and 2P2power = (±

√
d : 0 : 0 : 1)

or (0 : ±
√
d : 0 : 1). Therefore, w(P2power) is 1.

We prove that if Podd ∈ Ed[πp − 1], then w(Podd + Q) is square for all points Q at 
which w(Q) is 1. It is easy to check that

Q =
(√

1 +
√
−1r,

√
1 −

√
−1r

)
+ Q′,

where r =
√

1−d
d , and Q′ is a point such that w(Q′) = 0 or w(Q′) = ∞. From 

Lemma 1 and Lemma 2, we have r ∈ Fp. Let the coordinates of Podd be (xo, yo). Denote (√
1 +

√
−1r,

√
1 −

√
−1r

)
by R. Note that



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 21
Podd + R =
(
xo

√
1 −

√
−1r + yo

√
1 +

√
−1r

1 +
√
dxoyo

,
yo
√

1 −
√
−1r − xo

√
1 +

√
−1r

1 −
√
dxoyo

)
.

Therefore,

w (Podd + R) =d(−2xoyo
√
−1r + (y2

o − x2
o)
√

1 + r2)2

(1 − dx2
oy

2
o)2

=(−2xoyo
√
−dr + (y2

o − x2
o))2

(1 − dx2
oy

2
o)2

.

From Lemma 1, it holds that 
√
−d ∈ Fp. As Podd ∈ Ed[πp − 1], xo, yo ∈ Fp. Therefore, 

w (Podd + R) belongs to Fp and is square. Since w(Podd+Q) = w(Podd+R) or 1/w(Podd+
R), we have w(Podd + Q) belongs to Fp and is square.

Let S+ be the set of points P of Ed such that both w(P ) and w(2P ) are square and 
the order of P is not a power of 2, and let S− be the set of points P of Ed such that w(P )
is square, w(2P ) is not square, and the order of P is not a power of 2. From Lemma 7, 
it suffices to prove that there is a bijection φ : S+ → S−. Define φ : S+ → S− as follows.

φ(P ) := f(Podd) + P2power + R,

where Podd and P2power are points of Ed such that P = Podd + P2power, the order of 
Podd is odd, the order of P2power is a power of 2, R is defined as above, and f is the 
bijection in Lemma 8. As has already been shown, if P ∈ S+, then w(P2power) is 0
or ∞. As f(Podd) ∈ Ed[πp − 1] and w(P2power + R) = 1, w(φ(P )) is square. Since 
w(2φ(P )) = 1/w(2f(Podd)) and 2f(Podd) ∈ Ed[πp − 1], w(2φ(P )) is not square. As 
f(Podd) is not 0d, the order of φ(P ) is not a power of 2. From Lemma 5 and the above, 
φ is well-defined. Define ψ : S− → S+ as follows.

ψ(P ) := f−1(Podd) + P2power −R,

where Podd and P2power are points of Ed such that P = Podd + P2power, the order of 
Podd is odd, and the order of P2power is a power of 2. As has already een shown, if 
P ∈ S−, then w(P2power) = 1. As w(P2power − R) is 0 or ∞, w(ψ(P )) = w(f−1(Podd))
or 1/w(f−1(Podd)). Since f−1(Podd) ∈ Ed[πp + 1], w(f−1(Podd)) is square by Lemma 4. 
Hence, w(ψ(P )) and w(2ψ(P )) are square. As f−1(Podd) is not 0d, the order of ψ(P ) is 
not a power of 2. From Lemma 5 and the above, ψ is well-defined. It is easy to check 
that ψ = φ−1.

This completes the proof of Theorem 5. �
We also provide another proof of Theorem 5. This proof is provided by a reviewer and 

is very interesting.



22 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
Another proof of Theorem 5. From Lemma 9, a point P with w(P ) ∈ Fp is of order a 
power of 2 if and only if w(P ) = 0, ±1. Since the doubling formula of w-coordinates is

w(2P ) = (w(P ) + 1)2 − 4w(P )/d
(w(P ) + 1)2(w(P ) − 1)2 ,

the statement of Theorem 5 is equivalent to the following statement:

The value

f(ω) := (ω2 + 1)2 − 4ω2/d

is equally often a square as a non-square as ω runs over Fp � {0, ±1}.

We now consider an elliptic curve E : κ2 = f(ω). This is the affine form of

Y 2 = (T + Z)2 − 4X2/d, X2 = ZT,

where κ = Y/Z and ω = X/Z. Therefore, it has two points at infinity and these points are 
over Fp. From Lemma 1, there is no ω ∈ Fp satisfying 1/d = (ω2+1)2/4ω2. Therefore, we 
have f(ω) �= 0 for ω ∈ Fp. Hence, if f(ω0) is square, then two points whose ω-coordinates 
are ω0 are on E(Fp). From direct calculations, we have f(0) is square and f(±1) are not 
square from Lemma 1 and Lemma 2. Therefore, it holds that

E(Fp) ={(ω, κ) | ω ∈ Fp � {0,±1}, κ2 = f(ω), f(ω) is square}

∪ {(0, κ) | κ2 = f(0)} ∪ {points at infinity}.

Hence, the number of elements in E(Fp) is 2r + 2 + 2 = 2r + 4, where r is the number 
of ω ∈ Fp � {0, ±1} such that f(ω) is square.

The above statement is equivalent that r = (p − 3)/2. Therefore, from the previous 
paragraph, the above statement is equivalent that E(Fp) has p + 1 points (i.e., E is 
supersingular). There is a birational map defined as

E −→ E′ : y2 = x(x− 1)(x− d)

(ω, κ) �−→
(√

d(
√

1 − d + 1)ω − d√
dω − (

√
1 − d + 1)

,
−d

√
1 − d(1 +

√
1 − d)κ

(
√
dω − (

√
1 − d + 1))2

)
.

It follows from [2, Theorem 3.1] that E′ is 2-isogeneous to Ed. Since Ed is supersin-
gular, E is also a supersingular curve. This completes the proof of Theorem 5. �

Theorem 6 claims that the probability of success of the sampling method derived from 
Theorem 4 is sufficiently large (same probability as that on Montgomery curves).



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 23
Theorem 6. Let p be 4 ·�1 · · · �n−1, where the �1, . . . , �n are small distinct odd primes. Let 
P be a point on a supersingular Edwards curve Ed such that the w-coordinate w(P ) ∈ Fp, 
the order of P is not a power of 2, and w(P ) is square. The probability that p+1

4�i P
′

is a point of order �i is 
(�i−1) N

�i

N−1 ≈ 1 − 1
�i

, where P ′ is a point in Theorem 4, and 
N = �1 · �2 · · · �n.

Proof. Let Podd and P2power be points of Ed such that P = Podd + P2power, the order 
of Podd is odd, and the order of P2power is a power of 2. As shown in the proof of 
Theorem 4, P ′ = 2Podd. As shown in the proof of Theorem 5, for each point Q �= 0d
in Ed[πp + 1] ∩ Ed[(p + 1)/4] or Ed[πp − 1] ∩ Ed[(p + 1)/4], there is a point Q̃ that 
satisfies w(Q̃) ∈ Fp, w(Q̃) is square, and 2Q̃odd = Q. It is easy to check that if Q1 �= Q2, 
then w(Q̃1) �= w(Q̃2). Therefore, if we uniformly randomly take P that satisfies w(P )
is square, then P ′ is a uniformly random point of Ed[πp + 1] ∩ Ed[(p + 1)/4] � {0d} or 
Ed[πp − 1] ∩Ed[(p + 1)/4] � {0d}. Since

Ed[πp + 1] ∩ Ed[(p + 1)/4] ∼= Z/((p + 1)/4)Z ∼= Z/�1Z× · · · × Z/�nZ,

Ed[πp − 1] ∩ Ed[(p + 1)/4] ∼= Z/((p + 1)/4)Z ∼= Z/�1Z× · · · × Z/�nZ,

Theorem 6 holds. �
Theorem 7 shows that an Edwards coefficient d is unique. Therefore, we can use these 

coefficients as shared keys.

Theorem 7. Let p ≡ 3 (mod 8) and p > 3, and E be a supersingular elliptic curve defined 
over Fp. Then Endp(E) ∼= Z[πp] holds if and only if there exists d ∈ Fp such that E is 
Fp-isomorphic to an Edwards curve Ed. Moreover, if such a d exists, then it is unique.

Proof. The first half of this theorem follows from Corollary 1, Corollary 2, and Theo-
rem 3.

Let us prove the uniqueness of d. Let d1, d2 ∈ Fp such that Ed1 and Ed2 are super-
singular Edwards curves, Endp(Ed1) ∼= Z[πp], Endp(Ed2) ∼= Z[πp], and Ed1

∼= Ed2 over 
Fp.

As 1 − d1 and 1 − d2 are not square by Lemma 2,

Edi
∼= Y 2Z = X3 − 2(1 + di)

1 − di
X2Z + XZ2 (i = 1, 2)

holds by Corollary 1. Therefore,

2(1 + d1)
1 − d1

= 2(1 + d2)
1 − d2

holds by the uniqueness of coefficients in Theorem 3. This equation reduces to d1 = d2.
This completes the proof of Theorem 7. �



24 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
Now we proved all the main theorems. Though the following lemma is not important 
essentially, we use it for constructing the CSIDH algorithm. We use Lemma 9 for rejecting 
points whose order is a power of 2 in the Sampling points calculation of Algorithm 3.

Lemma 9. Let p ≡ 3 (mod 8) and p > 3. Let P be a point on Ed such that w(P ) ∈ Fp. 
It holds that w(P ) is 0 or ±1 if and only if the order of P is a power of 2.

Proof. Suppose that the order of P is a power of 2. By Lemma 6, it holds that (πp −
1)(P ) ∈ G4 or (πp + 1)(P ) ∈ G4. Since it holds that

(πp − 1)G4 = {0d}, (πp + 1)G4 = {0d, (0,−1)}, π2
p − 1 = −p− 1,

we have

4P = 0d, (0,−1).

Therefore, it is easy to check that

2P = 0d, (0,−1), (±1, 0), (±
√
d : 0 : 0 : 1), (0 : ±

√
d : 0 : 1).

Hence, w(2P ) = 0 or w(2P ) = ∞. Since

w(2P ) = 4w(P )((1 + w(P ))2 − 4w(P )/d)
(1 − w(P ))2(1 + w(P ))2 ,

we have w(P ) = 0, d−2±2
√

1−d
d , 1, −1. From Lemma 2, 1 − d is not square. Therefore, 

w(P ) = 0, ±1.
Suppose that w(P ) = 0, ±1. Using the doubling formula in the above paragraph twice, 

we have w(4P ) = 0. Therefore, it holds that 4P ∈ G4. As G4 is a cyclic group of order 4, 
the order of the point P is a power of 2. �
5. Evaluating the class group action on Edwards curves

In this section, we propose the method for evaluating the class group action based on 
Edwards curves. The theorems proved in the previous section will be used to construct 
the method. The algorithm is described in Algorithm 3. All of its calculations are done 
over Fp.

The inputs of the algorithm are an Edwards coefficient d ∈ Fp and a list of integers 
(e1, . . . , en). The output of this algorithm is an Edwards coefficient d′ ∈ Fp such that 
Ed′ = [le11 · · · lenn ]Ed.



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 25
Algorithm 3 Evaluating the class group action on Edwards curves.
Input: d ∈ Fp such that Edwards curve Ed is supersingular and a list of integers (e1, . . . , en)
Output: d′ such that [le1

1 · · · len
n ]Ed = Ed′

1: while some ei �= 0 do
2: w ← 0
3: while w = 0 or w = 1 or w = −1 do
4: Sample a random w ∈ Fp

5: end while
6: w ← w2 (Theorem 4, 5)
7: w(P ) ← (w : 1)
8: Compute w(2P ) (Theorem 4)
9: (W : Z) ← w(2P )

10: Set s ← +1 if W is a square in Fp, else s ← −1
11: Let S = {i | sign(ei) = s}
12: if S = ∅ then
13: Go to line 2
14: end if
15: w(P ) ← (W : Z), k ←

∏
i∈S �i

16: w(P ) = (W : Z) ← w(((p + 1)/4k)P ) (Theorem 4, 6)
17: if s = 1 then
18: w(P ) ← (Z : W ) (Theorem 4)
19: end if
20: for all i ∈ S do
21: w(Q) ← w((k/�i)P )
22: if Q �= 0d then
23: Compute an �i-isogeny φ : Ed → Ed′ with kerφ = 〈Q〉
24: d ← d′, w(P ) ← w(φ(P )), k ← k/�i, ei ← ei − s
25: end if
26: end for
27: end while
28: return d (Theorem 7)

Sampling points (line 2-14 in Algorithm 3) To sample a point that belongs to Ed[πp−1]
or Ed[πp + 1], we take a uniformly random element of Fp. Denote this element by w. 
If w is 0 or ±1, we take a random element again. (We reject any point whose order 
is a power of 2 by Lemma 9.) Then, we calculate w2. Let P be a point in Ed such 
that w(P ) = w2. By Theorem 4, if w(2P ) is square in Fp, then there exists a point P ′

such that w(P ′) = w(2P ), p+1
4 P ′ = 0d, and P ′ ∈ Ed[πp + 1]. If w(2P ) is not square 

in Fp, then there exists a point P ′ such that w(P ′) = 1/w(2P ), p+1
4 P ′ = 0d, and 

P ′ ∈ Ed[πp − 1]. Thus, we calculate w(2P ) by using the doubling formulas on Edwards 
curves and determine whether w(2P ) is square or not. If w(2P ) is square, we can use 
w(2P ) as the w-coordinate of an element of Ed[πp + 1]. If w(2P ) is not square, we can 
use 1/w(2P ) as the w-coordinate of an element of Ed[πp − 1]. If w(2P ) is square, we 
define S as a set of i such that the sign of ei is −1. If w(2P ) is not square, we define S
as a set of i such that the sign of ei is +1. If S = ∅, we go back to the Sampling points
calculation.

From Theorem 5, the probability of getting points in Ed[πp − 1] is equal to the prob-
ability of getting points in Ed[πp + 1].

Scalar multiplication (line 15-19 in Algorithm 3) From Theorem 4, it suffices to cal-
culate w(p+1

4k (P ′)) instead of w(p+1
k (P )), where k =

∏
i∈S �i. To calculate w(p+1

4k (P ′))
efficiently, we use Algorithm 4.



26 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
Algorithm 4 The Edwards ladder using P and 2P .
Input: Ed, k =

∑�−1
i=0 ki2i with k�−1 = 1, (W0 : 1) = w(P ), and (W : Z) = w(2P ) s.t. P ∈ Ed

Output: (W ′ : Z′) = w(kP )
1: (W1 : Z1) ← (W0 : 1) and (W2 : Z2) ← (W : Z)
2: for i = � − 2 down to 0 do
3: if ki = 0 then
4: (W1 : Z1) ← 2(W1 : Z1) (doubling on Ed)
5: (W2 : Z2) ← (W1 : Z1) + (W2 : Z2) (addition on Ed with Z0 = 1)
6: else
7: (W2 : Z2) ← 2(W1 : Z1) (doubling on Ed)
8: (W1 : Z1) ← (W1 : Z1) + (W2 : Z2) (addition on Ed with Z0 = 1)
9: end if

10: end for
11: return (W1 : Z1)

If w(2P ) is not square, the proof of Theorem 4 indicates that P ′ = 2P + Q, where 
Q is a point at infinity. Since p+1

4k is odd and an odd multiple of Q is also a point at 
infinity, w(p+1

4k (P ′)) = 1/w(p+1
4k (2P )).

Calculation of isogenies (line 20-26 in Algorithm 3) By Theorem 6 and 7, we can 
calculate isogenies by using the same strategy as the original CSIDH algorithm. To do 
so, we can use the formulas on Edwards curves [21].

Output (line 28 in Algorithm 3) If the list of integers (e1, . . . , en) is the zero vector, we 
output the Edwards coefficient d′ ∈ Fp.

Remark 1. To determine whether w(2P ) is square or not, we only need to consider W , 
where (W : Z) = w(2P ). We explain the reason below.

Recall the isogeny formulas on Edwards curves (15):

D′ = D� ·
s∏

i=1
(Wi + Zi)8, C ′ = C� ·

s∏
i=1

(2Zi)8.

As � is odd, if D is not square, then D′ is also not square. At the beginning of the 
algorithm, we let (D : C) = (d : 1). Hence, we can assume that D is not square. Let 
the projective w-coordinates of P be (W ′ : Z ′), the projective w-coordinates of 2P be 
(W : Z), and the projective coordinates of d be (D : C). Z is not square, since

w(2P ) = (4W ′Z ′(D(W ′ + Z ′)2 − 4CW ′Z ′) : D(W ′ + Z ′)2(W ′ − Z ′)2).

Therefore, if W is square, then w(2P ) is not square. Moreover, if W is not square, then 
w(2P ) is square.

5.1. Comparing computational costs theoretically

Our proposed CSIDH algorithm using only w-coordinates on Edwards curves is as 
fast as (or a little bit faster than) the algorithm proposed by Meyer and Reith [25]. In 



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 27
this subsection, we explain the computational savings of our algorithm relative to the 
algorithm of Meyer and Reith.

On Edwards curves, the Sampling points calculation costs 1S for taking a uniformly 
random element of (Fp)2 and requires one doubling on Edwards curves with Z = 1
(the cost of 4M + 1S + 5a) for determining the set which the point belongs to. On 
the other hand, on Montgomery curves, Sampling points calculation entails calculating 
Cx3 + Ax2 + Cx (the cost of 3M + 1S + 2a) for determining the set which the point 
belongs to, where (A : C) are projective coordinates of a. Therefore, our algorithm saves 
a cost of −M − S − 3a per Sampling points calculation.

The Scalar multiplication part entails multiplication by p+1
4k on Edwards curves and 

multiplication by p+1
k on Montgomery curves. Therefore, per Scalar multiplication, the 

proposed algorithm saves the cost of a doubling on Edwards curves with Z = 1 and the 
cost of doubling on Edwards curves with Z �= 1 (i.e., 8M + 3S + 9a).

The probability that S = ∅ after performing the Sampling points calculation is at 
most 1

2 , by Theorem 5. Hence, we expect the proposed algorithm to save at least

1
2(−M − S − 3a) + 1

2(8M + 3S + 9a − M − S − 3a) = 3M + 1
2S + 3

2a,

per Sampling points and Scalar multiplication calculation.
The difference between Calculation of isogenies on Edwards curves and on Mont-

gomery curves is only in calculating the isogenies. The computational cost of calculat-
ing (2s + 1)-degree isogenies on Edwards curves is (6s + 2)M + 8S + (4s + 6)a and 
that of the two �-th powers, while the computational cost on Montgomery curves is 
(6s + 2)M + 8S + (4s + 8)a and that of the two �-th powers. Therefore, the proposed 
algorithm saves 2a per isogeny calculation.

From the above, we conclude that our proposed CSIDH algorithm using only Edwards 
curves is as fast as or a little bit faster than the algorithm proposed by Meyer and Reith 
[25].

6. Elligator like technique on Edwards curves

In this section, we propose an Elligator like technique on Edwards curves using w-
coordinates. As far as we know, proposed constant-time algorithms can be migrated to 
those on Edwards curves except for the part of Elligator. See [7] and [11] for the detail 
of Elligator and the technique used in constant-time algorithms of CSIDH.

6.1. Construction

We introduce the following theorem.

Theorem 8. Let p ≡ 3 (mod 8). Let P be a point on a supersingular Edwards curve Ed

such that the w-coordinate w(P ) ∈ Fp and the order of P is not a power of 2. If w(2P )



28 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
is square, there exists P ′ such that P ′ ∈ Ed[πp + 1], w(P ′) = w(4P ), and p+1
4 P ′ = 0d. 

If w(2P ) is not square, there exists P ′ such that P ′ ∈ Ed[πp − 1], w(P ′) = w(4P ), and 
p+1
4 P ′ = 0d.

Proof. From Lemma 6, we have Podd ∈ Ed[πp ± 1]. From the proof of Theorem 4, we 
have w(2P ) = w(2Podd)±1. Hence, from Lemma 4, if w(2P ) is square, then 2Podd and 
4Podd belong to Ed[πp + 1], and if w(2P ) is not square, then 2Podd and 4Podd belong to 
Ed[πp − 1]. From the proof of Theorem 4, we have 4P2power = 0d, (0, −1). Therefore, it 
holds that w(4P ) = w(4Podd).

This completes the proof of Theorem 8. �
From this theorem, it is sufficient to output a point Q such that χ(w(2Q)) =

−χ(w(2P )) from an input P , where the map χ : Fp → Fp is defined as χ(a) := a(p−1)/2.
We recall the doubling formulas on an Edwards curve Ed:

w(2P ) = 4w(P )(d(w(P ) + 1)2 − 4w(P ))
d(w(P ) − 1)2(w(P ) + 1)2 =

4w(P )
(
w(P )2 + 2d−4

d w(P ) + 1
)

(w(P ) − 1)2(w(P ) + 1)2 .

We see the polynomial w
(
w2 + 2d−4

d w + 1
)

is similar to the right-hand side of the defin-
ing equation of a Montgomery curve. Therefore, we get the required map by considering 
Elligator on y2 = x3 + 2d−4

d x2 + x.
The outline of the construction is as follows. First, we take a random element u from 

{2, 3, . . . , (p − 1)/2}. Take the point P such that

w(P ) =

⎧⎨
⎩

2d− 4
d(u2 − 1) (if (2d− 4)(u2 − 1)d((2d− 4)2d + ((u2 − 1)d)2) �= 0)

u (if (2d− 4)(u2 − 1)d((2d− 4)2d + ((u2 − 1)d)2) = 0)
.

Note that (2d − 4)(u2 − 1)d((2d − 4)2d + ((u2 − 1)d)2) = 0 if and only if it holds that 
2d − 4 = 0 in the CSIDH setting because the roots of the equation are

u = ±
√
−1 · d− 2 ± 4

√
1 − d

d
, ±1,

and these do not belong to {2, 3, . . . , (p −1)/2}. Compute w(2P ), and determine whether 
w(2P ) is square or not. Let Q be a point such that

w(Q) =

⎧⎨
⎩− 2d− 4

d(u2 − 1)u
2 (if 2d− 4 �= 0)

−u (if 2d− 4 = 0)
.

Then, it holds that χ(w(2Q)) = −χ(w(2P )).
From the above construction, we have a constant-time projective Elligator on Ed-

wards curves (Algorithm 5). This algorithm is almost the same as Algorithm 2 that was 



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 29
proposed in [11]. Although this technique is not Elligator, we often call this technique 
“Elligator on Edwards curves” for simplicity.

Algorithm 5 Constant-time projective Elligator on Edwards curves.
Input: D, C ∈ Fp such that ED/C is supersingular and a random element u from {2, 3, . . . , (p − 1)/2}
Output: The projective w-coordinate of P ∈ ED/C [πp − 1] + ED/C [4] and the projective w-coordinate of 

Q ∈ ED/C [πp + 1] + ED/C [4]
1: ε ← isequal(2D − 4C, 0)
2: α, β ← u, 0
3: cswap(α, β, ε)
4: (W1 : Z1) ← ((2D − 4C) + αD(u2 − 1) : D(u2 − 1))
5: (W ′

1 : Z′
1) ← (−(2D − 4C)u2 − αD(u2 − 1) : D(u2 − 1))

6: t ← (2D − 4C)((u2 − 1)u2(2D − 4C)2D + ((u2 − 1)D)3) + α(u2 + 1)
7: ζ ← Legendre_symbol(t, p)
8: ε′ ← isequal(ζ, 1)
9: cswap((W1 : Z1), (W ′

1 : Z′
1), ε′)

10: return (W1 : Z1), (W ′
1 : Z′

1)

If we use both points output by Elligator to compute group actions (e.g., constant-time 
CSIDH in [31] and [11]), we can improve Algorithm 5 to be more efficient. It is because 
we can judge whether w(P ) ∈ ED/C [πp−1] +ED/C [4] or w(P ) ∈ ED/C [πp+1] +ED/C [4]
by computing w(2P ) that is needed for group actions. The improved version of Elligator 
on Edwards curves is in Algorithm 6. CTIDH [3] does not use both points for computing 
group actions; therefore Algorithm 6 contains needless doublings on ED/C and is not 
efficient to be adapted to CTIDH.

Algorithm 6 Improved version of constant-time projective Elligator on Edwards curves.
Input: D, C ∈ Fp such that ED/C is supersingular and a random element u from {2, 3, . . . , (p − 1)/2}
Output: The projective w-coordinate of P ∈ ED/C [πp−1] and the projective w-coordinate of Q ∈ ED/C [πp+

1]
1: ε ← isequal(2D − 4C, 0)
2: α, β ← u, 0
3: cswap(α, β, ε)
4: (W1 : Z1) ← ((2D − 4C) + αD(u2 − 1) : D(u2 − 1))
5: (W ′

1 : Z′
1) ← (−(2D − 4C)u2 − αD(u2 − 1) : D(u2 − 1))

6: (W2 : Z2) ← 2(W1 : Z1) (doubling on ED/C)
7: t ← W2 · Z2
8: (W ′

2 : Z′
2) ← 2(W ′

1 : Z′
1) (doubling on ED/C)

9: (W3 : Z3) ← 2(W2 : Z2) (doubling on ED/C)
10: (W ′

3 : Z′
3) ← 2(W ′

2 : Z′
2) (doubling on ED/C)

11: ζ ← Legendre_symbol(t, p)
12: ε′ ← isequal(ζ, 1)
13: cswap((W3 : Z3), (W ′

3 : Z′
3), ε′)

14: return (W3 : Z3), (W ′
3 : Z′

3)

6.2. Computational costs of Elligator on Edwards curves

In this subsection, we discuss the difference of the computational costs of newly pro-
posed technique (Algorithm 5 and 6) and Elligator on Montgomery curves (Algorithm 2
[7]). In particular, we consider Algorithm 6 because Algorithm 5 is almost the same as 



30 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
Algorithm 2. Here, we consider Elligator used in constant-time CSIDH algorithms that 
use the two torsion method [31,11].

The most conspicuous difference between these algorithms is to compute w(4P ) and 
w(4Q). These computations do not appear in the previous method. Therefore, this part 
makes Elligator more costly. However, even on Montgomery curves, we need to do these 
computations before computing odd-degree isogenies. Hence, this part does not affect 
the whole algorithm of CSIDH.

The other difference appears when computing t and t′. Our proposal requires one 
multiplication. This cost is smaller than that of the previous one.

Consequently, our proposed algorithm saves costs. Therefore, our proposal is more 
efficient than Elligator on Montgomery curves. Since the impact of Elligator on the whole 
CSIDH algorithm is small, the constant-time CSIDH algorithm on Edwards curves is as 
fast as (or a little bit faster than) that on Montgomery curves.

7. 
√

élu’s formulas on Edwards curves

In this section, we give the 
√

élu’s formulas on Edwards curves. The rough comput-
ing process of these formulas is in Appendix A.4. This method is similar to that on 
Montgomery curves (in Appendix A.3).

In our analysis, we can use lower degree polynomials for computing 
√

élu’s formulas 
on Edwards curves than those on Montgomery curves. Hence, the computational cost 
of computing those on Edwards curves is a little bit smaller than those on Montgomery 
curves.

7.1. Formulas

Let P be a point of Ed, and let (W : Z) = w(P ). Let D/C = d. Let Q be an order-�
point of Ed, and (W1 : Z1) = w(Q). Let (Wk : Zk) = w(kQ). Let Ed′ = Ed/〈Q〉, and 
let φ be an isogeny φ : Ed → Ed′ with kerφ = 〈Q〉. If we let (W ′ : Z ′) be the projective 
w-coordinate of φ(P ), and let D′/C ′ = d′, then the following equations hold (equations 
(14) and (15)).

W ′ = W ·
s∏

i=1
(ZWi − ZiW )2, Z ′ = Z ·

s∏
i=1

(WWi − ZZi)2,

D′ = D� ·
s∏

i=1
(Wi + Zi)8, C ′ = C� ·

s∏
i=1

(2Zi)8.

Define the polynomial hS ∈ Fp[T1, T2] as hS(T1, T2) :=
∏

i∈S(ZiT1 −WiT2). Then, these 
equations can be rewritten as follows:

W ′ = W · (hS(W,Z))2, Z ′ = Z · (hS(Z,W ))2. (16)



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 31
D′ = D� · (hS(−1, 1))8, C ′ = C� · (2shS(1, 0))8 . (17)

Here, S is the set {1, 3, . . . , � − 2}. By using resultants, we can compute hS(α, β) for 
some α, β in Õ(

√
�) time.

Now, we explain the method to compute hS on Edwards curves using resultants.
As in [6], let I = {2b(2i + 1) | 0 ≤ i < b′}, let J = {1, 3, . . . , 2b − 1}, and let 

K = S � (I ± J), where b = �
√
�− 1/2�, and b′ = �(� − 1)/4b� (for b > 0). Define 

polynomials F0, F1, and F2 in Fp[T1, T2, T3, T4] such that

(T − w(P + Q))(T − w(P −Q)) = T 2 + F1(w(P ),w(Q))
F0(w(P ),w(Q))T + F2(w(P ),w(Q))

F0(w(P ),w(Q)) .

In other words,

F0(T1, T2, T3, T4) = D(T1T3 − T2T4)2,

F1(T1, T2, T3, T4) = −2(D(T1T3 + T2T4)(T1T4 + T2T3) + (4D − 8C)T1T2T3T4),

F2(T1, T2, T3, T4) = D(T1T4 − T2T3)2.

Then, it holds that,

hS(α, β) =

⎛
⎝ ∏

i∈(I±J)

Zi

⎞
⎠ · hK(α, β)

ΔI,J
· ResT (hI(T, 1), EJ(α, β, T )),

where ResT (·, ·) is the resultant of two polynomials in T ,

ΔI,J = ResT (hI(T, 1),
∏
j∈J

F0(T, 1,Wj , Zj)),

and

EJ(T1, T2, T )

:=
∏
j∈J

(F0(T, 1,Wj , Zj)T 2
1 + F1(T, 1,Wj , Zj)T1T2 + F2(T, 1,Wj , Zj)T 2

2 )

=
∏
j∈J

(F0(T1, T2,Wj , Zj)T 2 + F1(T1, T2,Wj , Zj)T + F2(T1, T2,Wj , Zj)).

Therefore, by using resultants, we can compute the equations (16) and (17). Denote 

hK(α, β) ·ResT (hI(T, 1), EJ(α, β, T )) by h̃S(α, β). Since 
(∏

i∈(I±J) Zi

)
and ΔI,J do not 

depend on α and β, it is enough to consider h̃S(α, β) instead of hS(α, β) to compute 
these equations. Furthermore, it holds that



32 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
h̃S(1, 0) = hK(1, 0) · ResT (hI(T, 1),
∏
j∈J

F0(T, 1,Wj , Zj))

= hK(1, 0) · ResT (hI(T, 1),
∏
j∈J

D(WjT − Zj)2)

= hK(1, 0) ·D#I#J · (ResT (hI(T, 1), hJ(1, T )))2 .

Denote hK(1, 0) · (ResT (hI(T, 1), hJ(1, T )))2 by ˜̃hS(1, 0).
From the above discussions, we get the new formulas for computing isogenies on 

Edwards curves as follows:

W ′ = W · (hK(W,Z) · ResT (hI(T, 1), EJ(W,Z, T ))2,

Z ′ = Z · (hK(Z,W ) · ResT (hI(T, 1), EJ(Z,W, T ))2,

D′ = D2#K+1 · (hK(−1, 1) · ResT (hI(T, 1), EJ(−1, 1, T ))8,

C ′ = C� ·D4#I#J · (2shK(1, 0) · (ResT (hI(T, 1), hJ(1, T ))2)8.

Remark 2. There are some methods to compute resultants. Since hI is not a monic 
polynomial, some methods give the value of a resultant multiplied by a constant value 
determined by the degree of EJ(α, β, T ) (e.g., the remainder-tree algorithm [17, §2. 
Method C] with using pseudo division, the scaled remainder-tree algorithm [4] with us-
ing pseudo reciprocal). The following problems may occur when using such a method. 
Although we compute projective coordinates, the constant value affects the final com-
putational result of Edwards coefficients. It is because the degree of hJ(1, T ) is different 
from that of EJ(−1, 1, T ), and the constant value multiplied by D′ is not the same as 
the constant value multiplied by C ′.

If we know these constant values, this problem is easily solved. This is the case if we 
use the scaled remainder-tree algorithm. If we do not know, we can avoid this situation 
by doing the following. First, we divide EJ(−1, 1, T ) into degree 2�#J/2� and degree 
2�#J/2� polynomials. Next, by adding terms with zero coefficients to these polynomials 
and hJ(1, T ), we set the degrees of these two polynomials to 2�#J/2�. Finally, we com-
pute resultants, respectively. In this way, we can cancel out the effect of the constant 
values.

7.2. Analysis of the formulas

In this subsection, we explain the difference between two 
√

élu’s formulas and analyze 
the efficiency of our proposed formulas. Here, we use the techniques proposed in [1] for 
Montgomery curves.

In [6], they use the scaled remainder-tree algorithm [4] to compute resultants. It is the 
improved version of the remainder-tree algorithm [17]. Therefore, we choose the scaled 
remainder-tree algorithm for our analysis.



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 33
The outlines of these formulas are the same; however, there are small differences that 
affect their efficiency. In particular, the following difference is important in efficiency.

The main significant difference is whether we compute ˜̃hS(1, 0) (on Edwards curves) or 
h̃S(1, 1) (on Montgomery curves). In order to compute h̃S(1, 1), it needs to compute the 
product of #J polynomials of degree 2, and use the scaled remainder-tree algorithm for 
the resulting polynomial of degree 2#J . On the other hand, to compute ˜̃hS(1, 0), it needs 
to compute the product of #J polynomials of degree 1, and use the scaled remainder-tree 
algorithm for the resulting polynomial of degree almost #J . Therefore, for computing 
˜̃hS(1, 0), we use lower degree polynomials than those for computing h̃S(1, 1). It shows 
that the computational cost of computing ˜̃hS(1, 0) is a little bit smaller than that of 
computing h̃S(1, 1).

Moreover, as we use the scaled remainder-tree algorithm, we need to care about the 
problem in Remark 2. We denote 

∏
i∈I Zi by Z̃. First, we compute the Laurent series 

of 1/hI in the variable T−1. In the natural method, we need to compute a division of 
Z̃. To avoid this division, we consider a pseudo-reciprocal. By this computation, we get 
Ω/hI instead of 1/hI , where Ω is a constant value determined by hI and the degree 
of the other polynomial of input. The value Ω can be easily computed by consider-
ing the Laurent series of Ω/hI and Z̃. Next, we compute #I values. By multiplying 
all these #I values together, we get (pseudo) resultants. Here, the i-th value is the 
value multiplied by the conventional value and 1/Zi (and Ω). Therefore, the constant 
value in Remark 2 is Ω#I/Z̃. Thus, we get constant values that come up when comput-
ing ResT (hI(T, 1), EJ(−1, 1, T )) and ResT (hI(T, 1), hJ(1, T )), respectively. Multiplying 
these values properly yields the correct result. This calculation does not occur in the case 
of Montgomery curves; however, the impact of this computation is smaller than that of 
the calculations in the above paragraphs.

Since the other differences have a small impact on their efficiency, we conclude 
√

élu’s 
formulas on Edwards curves are more efficient than those on Montgomery curves.

8. Implementations

In this section, we provide some implementation results of the paper. First, we show 
the result of the plain (non-constant-time and without using 

√
élu’s formulas) CSIDH 

on Edwards curves. This result is shown in Table 2. Second, we show the result of 
√

élu’s 
formulas on Edwards curves. This result is summarized in Fig. 1. Finally, we measured 
the computational costs of CTIDH. CTIDH [3] is one of the benchmarks of constant-time 
CSIDH implementations. This result is shown in Table 3.

8.1. Plain CSIDH implementation

In this subsection, we show our implementation results on three different plain CSIDH 
algorithms: the algorithm on Montgomery curves proposed by Meyer and Reith [25] (Al-
gorithm 1), that on Edwards curves with y-coordinates (Algorithm 7 in Appendix B), 



34 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
Table 2
Computational costs on each plain CSIDH algorithm.

Montgomery [25] Edwards (y-coordinate) Edwards (w-coordinate)
M 328,195 332,707 328,055
S 116,915 116,893 116,857
a 332,822 355,533 331,844

total 438,368 443,999 438,133

and that on Edwards curves with w-coordinates (Algorithm 3). The results are summa-
rized in Table 2. In this table, “total” means total numbers of multiplications on Fp, 
where we assume 1S = 0.8M, and 1a = 0.05M.

We measured the average computational costs of one group action over 50000 runs. 
The results are summarized in Table 2. Here, p was chosen as 4 · �1 · · · �74 − 1, where 
�1 through �73 were the smallest 73 odd primes and �74 = 587, and m was chosen as 5. 
These are parameters proposed in [10]. Secret keys were randomly taken 50000 times.

As shown in Table 2, there is no big difference in computational costs among the three 
different algorithms. The algorithm on Edwards curves with w-coordinates is the fastest 
one, by a little margin in our implementation.

Remark 3. Our implementation of the algorithm on Montgomery curves is based on the 
algorithm proposed by Meyer and Reith [25]. There are some techniques to make the 
CSIDH algorithm faster [24,11]. We did not implement these techniques. However, as far 
as we know, these techniques affect only a little or can be also adapted to our proposed 
algorithms. Therefore, even if we consider these techniques, we can conclude that there 
is no big difference in computational costs among the above three different algorithms.

8.2. 
√

élu’s formulas implementation

In this subsection, we provide the implementation result of 
√

élu’s formulas on Ed-
wards curves. This implementation is based on the original paper of 

√
élu’s formulas 

[6]. We used the C+assembly code provided in https://velusqrt .isogeny.org/, and mea-
sured the number of multiplications on Fp to compute isogenies using 

√
élu’s formulas 

on Edwards curve. The results are summarized in Fig. 1. Here, we assume 1S = 1M and 
1a = 0M due to the convenience of the code that we used.

Fig. 1 shows numbers of multiplications on Fp to compute isogenies of some different 
degrees via 

√
élu’s formulas on Edwards curves and Montgomery curves. The horizontal 

axis shows degrees of isogenies and the vertical axis shows numbers of multiplications. We 
measured costs of �1, . . . , �130-isogenies, where �1, . . . , �129 are the smallest distinct odd 
primes (i.e., primes from 3 to 733) and �130 = 983. As shown in Fig. 1, 

√
élu’s formulas 

on Edwards curves are more efficient than that on Montgomery curves for computing 
isogenies of high degree.

Refer to Table 3 to see the effect of 
√

élu’s formulas on Edwards curves to the whole 
CSIDH algorithm.

https://velusqrt.isogeny.org/


T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 35
Fig. 1. Numbers of multiplications to compute
√

élu’s formulas.

Table 3
Computational costs on CTIDH algorithms.

Without
√

élu’s formulas With
√

élu’s formulas
Montgomery [3] Edwards Montgomery [3] Edwards

M 237,880 237,846 228,782 226,446
S 93,850 93,826 82,167 83,071
a 279,303 279,032 346,802 338,643
total 326,925 326,859 311,856 309,835

8.3. CTIDH implementation

CTIDH is one benchmark of a constant-time CSIDH implementation [3]. Precisely 
speaking, CTIDH is not a constant-time implementation; however, the computing time 
does not leak information about secret keys. We implemented CTIDH on Edwards curves 
based on the source code in https://ctidh .isogeny.org/, and measured the computational 
costs of one group action.

The result of our implementation is in Table 3. We used the CTIDH-511 parameter 
that uses the same prime as in Subsection 8.1 (see [3, Section 8.3] for more detail of the 
CTIDH-511 parameter). We measured the average of the computational costs of group 
actions over 50000 runs in four cases; CTIDH without 

√
élu’s formulas on Montgomery 

curves and on Edwards curves, and CTIDH with 
√

élu’s formulas on Montgomery curves 

https://ctidh.isogeny.org/


36 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
and on Edwards curves. In this table, “total” means total numbers of multiplications on 
Fp, where we assume 1S = 0.8M, and 1a = 0.05M.

As shown in Table 3, CTIDH on Edwards curves without 
√

élu’s formulas is as efficient 
as (or a little bit more efficient than) that on Montgomery curves. In the case of using √

élu’s formulas, CTIDH on Edwwards curves is more efficient than that on Montgomery 
curves.

9. Conclusion and future work

9.1. Conclusion

We proved four important theorems (Theorem 4, Theorem 5, Theorem 6, and Theo-
rem 7) on Edwards curves and used them to construct a CSIDH algorithm on Edwards 
curves with w-coordinates. Theorem 4 shows that if w(P ) and w(2P ) are square, then 
w(2P ) can be treated as a point in Ed[πp + 1], and if w(P ) is square and w(2P ) is not 
square, then 1/w(2P ) can be treated as a point in Ed[πp−1]. Theorem 5 claims that the 
number of w(P ) such that w(P ) and w(2P ) are square is equal to the number of w(P )
such that w(P ) is square and w(2P ) is not square. Theorem 6 shows the probability 

that w
(

p+1
4�i 2P

)
represents a point of order �i is almost 1 − 1

�i
. Theorem 7 proves that 

an Edwards coefficient d is unique up to Fp-isomorphism. From these four theorems, we 
extended the CSIDH algorithm to that on Edwards curves with w-coordinates over Fp.

We compared the complexities of our proposed algorithm and the algorithm proposed 
by Meyer and Reith. We showed that our proposed algorithm is as fast as (or a little bit 
faster than) the one of Meyer and Reith.

Moreover, we construct Elligator on Edwards curves, which contributes to the ef-
ficiency of the constant-time CSIDH algorithm on Edwards curves. Theoretically, our 
proposed constant-time CSIDH algorithm is as efficient as (or a little bit more efficient 
than) that on Montgomery curves.

Furthermore, we proposed the new 
√

élu’s formulas on Edwards curves. Those on 
Edwards curves were a little bit faster than those on Montgomery curves.

Finally, we implemented three algorithms on Edwards curves related to this study; 
CSIDH on Edwards curves, 

√
élu’s formulas on Edwards curves, and CTIDH (that is one 

benchmark of constant-time CSIDH algorithms) on Edwards curves. Our implementation 
results showed that each algorithm on Edwards curves is more efficient than that on 
Montgomery curves.

Data availability

The data that has been used is confidential.



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 37
Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work the authors used Grammarly in order to fix errors 
in grammar. After using this tool/service, the authors reviewed and edited the content 
as needed and take full responsibility for the content of the publication.

Acknowledgments

This research was conducted under a contract of “Research and development on new 
generation cryptography for secure wireless communication services” among “Research 
and Development for Expansion of Radio Wave Resources (JPJ000254)”, which was 
supported by the Ministry of Internal Affairs and Communications, Japan.

Appendix A. How to compute the calculations and isogenies

Here, we explain how to compute the calculations and isogenies on Montgomery curves 
and Edwards curves.

A.1. Montgomery curves

The doublings formula (1) can be computed as

t1 ← X + Z, t2 ← X − Z, t1 ← t21, t2 ← t22, s ← t1 − t2, t2 ← t2 · (4C),

X ′ ← t1 · t2, t1 ← (A + 2C) · s, t1 ← t1 + t2, Z ′ ← s · t1.

If Z = 1, the doublings formula (1) can be computed as

t1 ← X + 1, t1 ← t21, s ← 2 ·X, s ← 2 · s, t2 ← t1 − s, t2 ← t2 · (4C),

X ′ ← t1 · t2, t1 ← (A + 2C) · s, t1 ← t1 + t2, Z ′ ← s · t1.

The addition formula (2) can be computed as

t1 ← X1 + Z1, s1 ← X2 + Z2, t2 ← X1 − Z1, s2 ← X2 − Z2, t ← t1 · s2,

s ← t2 · s1, X3 ← t + s, Z3 ← t− s, X3 ← X2
3 · Z0, Z3 ← Z2

3 ·X0.

The formula for calculating φ(P ) (3) can be computed as

ti ← Xi + Zi, si ← Xi − Zi, ti ← ti · (X − Z), si ← si · (X + Z),

X ′ ←
s∏

(ti − si), Z ′ ←
s∏

(ti + si), X ′ ← X · (X ′)2, Z ′ ← Z · (Z ′)2.

i=1 i=1



38 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
The formula for calculating E′ (4) can be computed as

c ← 2 · C, a ← A + c, d ← A− c, a′ ←
s∏

i=1
(Xi + Zi),

d′ ←
s∏

i=1
(Xi − Zi), a′ ← (a′)4, d′ ← (d′)4, a′ ← as · a′, d′ ← ds · d′,

a′ ← a · (a′)2, d′ ← d · (d′)2, A′ ← 2 · (a′ + d′), C ′ ← a′ − d′.

A.2. Edwards curves

The doublings formula (8) can be computed as

t1 ← Y 2, t2 ← Z2, t3 ← C −D, t4 ← t2 − t1, t1 ← t3 · t1, t5 ← C · t4,

t6 ← t1 + t5, t6 ← t4 · t6, t1 ← t1 · t2, Y ′ ← t1 − t6, Z ′ ← t1 + t6.

If Z = 1, the doublings formula (8) can be computed as

t1 ← Y 2, t3 ← C −D, t4 ← 1 − t1, t1 ← t3 · t1, t5 ← C · t4,

t6 ← t1 + t5, t6 ← t4 · t6, Y ′ ← t1 − t6, Z ′ ← t1 + t6.

The addition formula (9) can be computed as

t1 ← Y1 · Z2, t2 ← Y2 · Z1, s1 ← t1 + t2, s2 ← t1 − t2, s1 ← s2
1, s2 ← s2

2,

s1 ← (Z0 − Y0) · s1, s2 ← (Z0 + Y0) · s2, Y3 ← s1 − s2, Z3 ← s1 + s2.

The formula for calculating φ(P ) (10) can be computed as

ti ← Z · Yi, t′i ← Zi · Y, s1 ←
s∏

i=1
(ti + t′i), s2 ←

s∏
i=1

(ti − t′i), s1 ← s2
1,

s2 ← s2
2, s1 ← (Z + Y ) · s1, s2 ← (Z − Y ) · s2, Y ′ ← s1 − s2, Z ′ ← s1 + s2.

The formula for calculating E′ (11) can be computed as

D′ ←
s∏

i=1
Yi, C ′ ←

s∏
i=1

Zi, D′ ← (D′)4, C ′ ← (C ′)4,

D′ ← Ds ·D′, C ′ ← Cs · C ′, D′ ← D · (D′)2, C ′ ← C · (C ′)2.

The doublings formula (12), addition formula (13), and formula for calculating φ(P )
(14) can be computed similarly as the formulas on Montgomery curves.



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 39
The formula for calculating E′ (15) can be computed as

D′ ←
s∏

i=1
(Wi + Zi), C ′ ←

s∏
i=1

Zi, D′ ← (D′)4, C ′ ← (C ′)4,

D′ ← Ds ·D′, C ′ ← (2 · 2 · 2 · 2 · C)s · C ′, D′ ← D · (D′)2, C ′ ← C · (C ′)2.

A.3. Calculations of 
√

élu’s formulas on Montgomery curves

In this subsection, we explain the method to compute �-isogenies proposed in [6]. 
Although in [6], they wrote down the formulas using affine coordinates, we consider the 
formulas using projective coordinates to estimate their computational costs.

Let E be a Montgomery curve y2 = x3 + ax2 + x, and let A/C = a. Let G =
{Pi | i = 1, . . . , �} be a finite subgroup of E, and let φ : E → E/〈G〉 be an isogeny 
satisfying kerφ = G. Denote x(Pi) by (Xi, Zi). Let hSet(T1, T2) be a polynomial defined 
by hSet(T1, T2) :=

∏
i∈Set(ZiT1 −XiT2). Let S = {1, 3, . . . , � − 2}, let I = {2b(2i + 1) |

0 ≤ i < b′}, let J = {1, 3, . . . , 2b − 1}, and let K = S � (I ± J), where b = �
√
�− 1/2�, 

and b′ = �(� − 1)/4b� (for b > 0). Define polynomials F0, F1, and F2 in Fp[T1, T2, T3, T4]
such that

(T − x(P + Q))(T − x(P −Q)) = T 2 + F1(x(P ),x(Q))
F0(x(P ),x(Q))T + F2(x(P ),x(Q))

F0(x(P ),x(Q)) .

In other words,

F0(T1, T2, T3, T4) = C(T1T4 − T2T3)2,

F1(T1, T2, T3, T4) = −2(C(T1T3 + T2T4)(T1T4 + T2T3) + 2AT1T2T3T4),

F2(T1, T2, T3, T4) = C(T1T3 − T2T4)2.

Note that #S = 2#I#J + #K. From [6, Theorem 4.11], it holds that,

hS(α, β) =

⎛
⎝ ∏

i∈(I±J)

Zi

⎞
⎠ · hK(α, β)

ΔI,J
· ResT (hI(T, 1), EJ(α, β, T )),

where ResT (f, g) is the resultant of polynomials f and g in Fp[T ], ΔI,J is ResT (hI(T, 1),∏
j∈J F0(T, 1, Xj , Zj)), and

EJ(T1, T2, T )

:=
∏
j∈J

(F0(T, 1, Xj , Zj)T 2
1 + F1(T, 1, Xj , Zj)T1T2 + F2(T, 1, Xj , Zj)T 2

2 )

=
∏
j∈J

(F0(T1, T2, Xj , Zj)T 2 + F1(T1, T2, Xj , Zj)T + F2(T1, T2, Xj , Zj)).



40 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
Therefore, by using resultants, we can compute the equations (5) and (6). Denote 

hK(α, β) · ResT (hI(T, 1), EJ(α, β, T )) by h̃S(α, β). Since 
(∏

i∈(I±J) Zi

)
and ΔI,J do 

not depend on α and β, it is enough to consider h̃S(α, β) instead of hS(α, β) to compute 
these formulas.

We use the scaled remainder-tree algorithm to compute resultants. First, we generate 
a product tree of polynomials {ZiT−Xi | i ∈ I}. Next, by using the scaled remainder-tree 
algorithm for EJ(α, β, T ), we compute {EJ(α, β, Xi/Zi) | i ∈ I}. Finally, we multiply 
all these values together to get the result.

The formula for calculating φ(P ) (5) can be computed as

t1,j ← XjX, t2,j ← XjZ, t3,j ← ZjX, t4,j ← ZjZ,

t5,j ← 2At1,jt4,j , t6,j ← (t1,j + t4,j)(t2,j + t3,j),

h1,j ← (−2)(t6,j · C + t5,j), h0,j ← C(t1,j − t4,j)2, h2,j ← C(t2,j − t3,j)2,

EJ(X,Z, T ) ←
∏
j∈J

(h2,jT
2 + h1,jT + h0,j),

Set(X,Z) ← ResultantT (EJ(X,Z, T ), {ZiT −Xi | i ∈ I}),

h̃S(X,Z) ←

⎛
⎝ ∏

v∈Set(X,Z)

v

⎞
⎠ ·

(∏
k∈K

(ZkX −XkZ)
)
,

EJ (Z,X, T ) ←
∏
j∈J

(h0,jT
2 + h1,jT + h2,j) = Reverse(EJ (X,Z, T )),

Set(Z,X) ← ResultantT (EJ(Z,X, T ), {ZiT −Xi | i ∈ I}),

h̃S(Z,X) ←

⎛
⎝ ∏

v∈Set(Z,X)

v

⎞
⎠ ·

(∏
k∈K

(ZkZ −XkX)
)
,

X ′ ← h̃S(Z,X), Z ′ ← h̃S(X,Z), X ′ ← X · (X ′)2, Z ′ ← Z · (Z ′)2.

The formula for calculating E′ (6) can be computed as

t1,j ← (Xj + Zj)2, t2,j ← (Xj − Zj)2, t3,j ← C · t1,j , t4,j ← C · t2,j ,
t5,j ← A(t2,j − t1,j), h+,j ← t4,j , h−,j ← t3,j ,

h+,1,j ← t5,j − 2h−,j , h−,1,j ← 2h+,j − t5,j ,

EJ (1, 1, T ) ←
∏
j∈J

(h+,jT
2 + h+,1,jT + h+,j),

EJ(−1, 1, T ) ←
∏
j∈J

(h−,jT
2 + h−,1,jT + h−,j),

Set+ ← ResultantT (EJ (1, 1, T ), {ZiT −Xi | i ∈ I}),
Set− ← ResultantT (EJ (−1, 1, T ), {ZiT −Xi | i ∈ I}),



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 41
h̃S(1, 1) ←

⎛
⎝ ∏

v∈Set+

v

⎞
⎠ ·

(∏
k∈K

(Zk −Xk)
)
,

h̃S(−1, 1) ←

⎛
⎝ ∏

v∈Set−

v

⎞
⎠ ·

(∏
k∈K

(−Zk −Xk)
)
,

c ← 2 · C, a ← A + c, d ← A− c, a′ ← h̃S(−1, 1)2, d′ ← h̃S(1, 1)2,

a′ ← a#I#J · a′, d′ ← d#I#J · d′, a′ ← (a′)2, d′ ← (d′)2,

a′ ← a#K · a′, d′ ← d#K · d′, a′ ← a · (a′)2, d′ ← d · (d′)2,

A′ ← 2 · (a′ + d′), C ′ ← a′ − d′.

A.4. Calculations of 
√

élu’s formulas on Edwards curves

The formula for calculating φ(P ) (16) can be computed as

tDC ← 2(D − 2C), t1,j ← WjW, t2,j ← WjZ, t3,j ← ZjW,

t4,j ← ZjZ, t5,j ← 2tDCt1,jt4,j , t6,j ← (t1,j + t4,j)(t2,j + t3,j),

h1,j ← (−2)(t6,j ·D + t5,j), h0,j ← D(t2,j − t3,j)2, h2,j ← D(t1,j − t4,j)2,

EJ (W,Z, T ) ←
∏
j∈J

(h2,jT
2 + h1,jT + h0,j),

Set(W,Z) ← ResultantT (EJ(W,Z, T ), {ZiT −Wi | i ∈ I}),

h̃S(W,Z) ←

⎛
⎝ ∏

v∈Set(W,Z)

v

⎞
⎠ ·

(∏
k∈K

(ZkW −WkZ)
)
,

EJ(Z,W, T ) ←
∏
j∈J

(h0,jT
2 + h1,jT + h2,j) = Reverse(EJ(W,Z, T )),

Set(Z,W ) ← ResultantT (EJ(Z,W, T ), {ZiT −Wi | i ∈ I}),

h̃S(Z,W ) ←

⎛
⎝ ∏

v∈Set(Z,W )

v

⎞
⎠ ·

(∏
k∈K

(ZkZ −WkW )
)
,

W ′ ← h̃S(W,Z), Z ′ ← h̃S(Z,W ), W ′ ← W · (W ′)2, Z ′ ← Z · (Z ′)2.

The formula for calculating E′ (17) can be computed as

t1,j ← (Wj + Zj)2, t2,j ← (Wj − Zj)2, t3,j ← D · t1,j , t4,j ← D · t2,j ,

t5,j ← t1,j − t2,j , h0,j ← t3,j , h1,j ← tDC · t5,j + 2t4,j ,

EJ(−1, 1, T ) ←
∏

(h0,jT
2 + h1,jT + h0,j),
j∈J



42 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
Set(−1,1) ← ResultantT (EJ (−1, 1, T ), {ZiT −Wi | i ∈ I}),

h̃S(−1, 1) ←

⎛
⎝ ∏

v∈Set(−1,1)

v

⎞
⎠ ·

(∏
k∈K

(−Zk −Wk)
)
,

Set(1,0) ← ResultantT

⎛
⎝∏

j∈J

(WjT − Zj), {ZiT −Wi | i ∈ I}

⎞
⎠ ,

˜̃hS(1, 0) ←

⎛
⎝ ∏

v∈Set(1,0)

v

⎞
⎠

2

·
(∏

k∈K

Zk

)
,

D′ ← h̃S(−1, 1), C ′ ← ˜̃hS(1, 0), D′ ← (D′)4, C ′ ← (C ′)2,

C ′′ ← 2 · 2 · 2 · 2 · C, C ′ ← (D · C ′′)#I#J · C ′, C ′ ← (C ′)2,

D′ ← D#K ·D′, C ′ ← (C ′′)#K · C ′, D′ ← D · (D′)2, C ′ ← C · (C ′)2.

Remark 4. The above formulas do not care about the problem explained in Remark 2. If 
we want to do the actual calculation, we need to do some additional calculations about 
the constant values in Remark 2.

Appendix B. CSIDH on Edwards curves with y-coordinates

In this section, we explain the CSIDH algorithm on Edwards curves with y-
coordinates. There is no difference essentially between this algorithm and the original 
CSIDH algorithm [10]. The precise algorithm is as follows.

Algorithm 7 Evaluating the class group action on Edwards curves with y-coordinates.
Input: d ∈ Fp such that Ed is supersingular and a list of integers (e1, . . . , en)
Output: d′ such that [le1

1 · · · len
n ]Ed = Ed′

1: while some ei �= 0 do
2: Sample a random y ∈ Fp

3: y(P ) ← (y : 1)
4: Set s ← +1 if (1 − y2)(1 − dy2) is a square in Fp, else s ← −1
5: Let S = {i | sign(ei) = s}
6: if S = ∅ then
7: Go to line 2
8: end if
9: k ←

∏
i∈S �i, y(P ) ← y(((p + 1)/k)P )

10: for all i ∈ S do
11: y(Q) ← y((k/�i)P )
12: if Q �= 0d (y(Q) �= (1 : 1)) then
13: Compute an �i-isogeny φ : Ed → Ed′ with kerφ = 〈Q〉
14: d ← d′, y(P ) ← y(φ(P )), k ← k/�i, ei ← ei − s
15: end if
16: end for
17: end while
18: return d (Theorem 7)



T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 43
Sampling points (line 2-8 in Algorithm 7) We take a uniformly random element of 
Fp. Let the element be y, and P be a point in Ed such that y(P ) = y. We calculate 

(1 − y2)(1 − dy2). Here, 1−y2

1−dy2 is a square of x(P ), where x(P ) is the x-coordinate of P . 
If (1 − y2)(1 − dy2) is square in Fp, then P ∈ ker (πp − 1), and if (1 − y2)(1 − dy2) is not 
square in Fp, then P ∈ ker (πp + 1).

Scalar multiplication (line 9 in Algorithm 7) Next, we calculate P1 = p+1
k (P ), where 

k =
∏

i∈S �i. The calculation uses the ladder algorithm which is constructed in the same 
way as Montgomery curves [27].

Calculation of isogenies (line 10-16 in Algorithm 7) We calculate P2 = k
�i
P1. The order 

of P2 is 1 or �i. The probability that P2 is not the identity is almost 1 − 1
�i

. This fact can 
be proven in the similar way in [10]. Therefore, with highly probability, we get a point 
of order �i. Then, by Theorem 7, we can calculate isogenies by using the same strategy 
as the original CSIDH algorithm. To do so, we can use the formulas on Edwards curves 
[28,11].

Output (line 18 in Algorithm 7) If the list of integers (e1, . . . , en) is the zero vector, we 
output the Edwards coefficient d′ ∈ Fp.

References

[1] Gora Adj, Jesús-Javier Chi-Domínguez, Francisco Rodríguez-Henríquez, Karatsuba-based square-
root Vélu’s formulas applied to two isogeny-based protocols, J. Cryptogr. Eng. 13 (1) (2023) 89–106, 
https://doi .org /10 .1007 /s13389 -022 -00293 -y.

[2] Omran Ahmadi, Robert Granger, On isogeny classes of Edwards curves over finite fields, J. Number 
Theory 132 (6) (2012) 1337–1358, https://doi .org /10 .1016 /j .jnt .2011 .12 .013.

[3] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange, Michael Meyer, 
Benjamin Smith, Jana Sotáková, CTIDH: faster constant-time CSIDH, Cryptology ePrint Archive, 
Paper 2021/633, https://eprint .iacr .org /2021 /633, 2021.

[4] Daniel J. Bernstein, Scaled remainder trees, https://cr .yp .to /papers .html #scaledmod, August 2004.
[5] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, Christiane Peters, Twisted Edwards 

curves, in: Progress in Cryptology – AFRICACRYPT 2008, Springer, 2008, pp. 389–405.
[6] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, Benjamin Smith, Faster computation of isogenies 

of large prime degree, in: Proceedings of the Fourteenth Algorithmic Number Theory Symposium 
– ANTS 2020, vol. 4, Mathematical Sciences Publishers, 2020, pp. 39–55.

[7] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, Tanja Lange, Elligator: elliptic-curve points in-
distinguishable from uniform random strings, in: Proceedings of the 2013 ACM SIGSAC Conference 
on Computer & Communications Security, 2013, pp. 967–980.

[8] Daniel J. Bernstein, Tanja Lange, Faster addition and doubling on elliptic curves, in: Advances in 
Cryptology – ASIACRYPT 2007, Springer, 2007, pp. 29–50.

[9] Wouter Castryck, Thomas Decru, An efficient key recovery attack on SIDH, in: Advances in Cryp-
tology – EUROCRYPT 2023, Springer, 2023, pp. 423–447.

[10] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, Joost Renes, CSIDH: an effi-
cient post-quantum commutative group action, in: Advances in Cryptology – ASIACRYPT 2018, 
Springer, 2018, pp. 395–427.

[11] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez, Luca De Feo, Francisco 
Rodríguez-Henríquez, Benjamin Smith, Stronger and faster side-channel protections for CSIDH, in: 
Progress in Cryptology – LATINCRYPT 2019, Springer, 2019, pp. 173–193.

https://doi.org/10.1007/s13389-022-00293-y
https://doi.org/10.1016/j.jnt.2011.12.013
https://eprint.iacr.org/2021/633
https://cr.yp.to/papers.html#scaledmod
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib30FA73D7A2B632F39E67AF7615B5B90Es1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib30FA73D7A2B632F39E67AF7615B5B90Es1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib13847F076A89696768C6B3BC24077D3Es1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib13847F076A89696768C6B3BC24077D3Es1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib13847F076A89696768C6B3BC24077D3Es1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib508D2E4A0CB07AD90EDCB48B869B1A19s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib508D2E4A0CB07AD90EDCB48B869B1A19s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib508D2E4A0CB07AD90EDCB48B869B1A19s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib20D27888780FE0EF626FC6E30B1F5B6Es1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib20D27888780FE0EF626FC6E30B1F5B6Es1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib23478C979B492E3780D261D73E96FF75s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib23478C979B492E3780D261D73E96FF75s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib032DEDA98212D9251F45005E94D30DA3s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib032DEDA98212D9251F45005E94D30DA3s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib032DEDA98212D9251F45005E94D30DA3s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib1B1006398B80BE88F01BDFE70208FBE7s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib1B1006398B80BE88F01BDFE70208FBE7s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib1B1006398B80BE88F01BDFE70208FBE7s1


44 T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310
[12] Craig Costello, Huseyin Hisil, A simple and compact algorithm for SIDH with arbitrary degree 
isogenies, in: Advances in Cryptology – ASIACRYPT 2017, Springer, 2017, pp. 303–329.

[13] Craig Costello, Benjamin Smith, Montgomery curves and their arithmetic: the case of large char-
acteristic fields, J. Cryptogr. Eng. 8 (2018) 227–240, https://doi .org /10 .1007 /s13389 -017 -0157 -6.

[14] Christina Delfs, Steven D. Galbraith, Computing isogenies between supersingular elliptic curves 
over Fp, Des. Codes Cryptogr. (2016) 425–440, https://doi .org /10 .1007 /s10623 -014 -0010 -1.

[15] Harold Edwards, A normal form for elliptic curves, Bull. Am. Math. Soc. (2007) 393–422, https://
doi .org /10 .1090 /S0273 -0979 -07 -01153 -6.

[16] Reza Rezaeian Farashahi, Seyed Gholamhossein Hosseini, Differential addition on twisted Edwards 
curves, in: Information Security and Privacy – ACISP 2017, Springer, 2017, pp. 366–378.

[17] Charles M. Fiduccia, Polynomial evaluation via the division algorithm the fast Fourier transform 
revisited, in: Proceedings of the Fourth Annual ACM Symposium on Theory of Computing, 1972, 
pp. 88–93.

[18] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, Ed Dawson, Twisted Edwards curves revisited, 
in: Advances in Cryptology – ASIACRYPT 2008, Springer, 2008, pp. 326–343.

[19] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, 
Aaron Hutchinson, Amir Jalali, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick Longa, 
Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, David Urbanik, Supersin-
gular isogeny key encapsulation. Submission to the NIST Post-Quantum Standardization project, 
2017.

[20] David Jao, Luca De Feo, Towards quantum-resistant cryptosystems from supersingular elliptic curve 
isogenies, in: Post-Quantum Cryptography – PQCrypto 2011, Springer, 2011, pp. 19–34.

[21] Suhri Kim, Kisoon Yoon, Young-Ho Park, Seokhie Hong, Optimized method for computing odd-
degree isogenies on Edwards curves, in: Advances in Cryptology – ASIACRYPT 2019, Springer, 
2019, pp. 273–292.

[22] Neal Koblitz, Elliptic curve cryptosystems, Math. Comput. (1987) 203–209, https://doi .org /10 .
1090 /S0025 -5718 -1987 -0866109 -5.

[23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, Benjamin Wesolowski, A direct 
key recovery attack on SIDH, in: Advances in Cryptology – EUROCRYPT 2023, Springer, 2023, 
pp. 448–471.

[24] Michael Meyer, Fabio Campos, Steffen Reith, On lions and elligators: an efficient constant-time 
implementation of CSIDH, in: Post-Quantum Cryptography – PQCrypto 2018, Springer, 2019, 
pp. 307–325.

[25] Michael Meyer, Steffen Reith, A faster way to the CSIDH, in: Progress in Cryptology – IN-
DOCRYPT 2018, Springer, 2018, pp. 137–152.

[26] Victor S. Miller, Use of elliptic curves in cryptography, in: Advances in Cryptology – CRYPTO ’85, 
Springer, 1985, pp. 417–426.

[27] Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math. 
Comput. (1987) 243–264, https://doi .org /10 .1090 /S0025 -5718 -1987 -0866113 -7.

[28] Dustin Moody, Daniel Shumow, Analogues of Vélu’s formulas for isogenies on alternate models of 
elliptic curves, Math. Comput. (2016) 1929–1951, https://doi .org /10 .1090 /mcom /3036.

[29] Tomoki Moriya, Hiroshi Onuki, Tsuyoshi Takagi, How to construct CSIDH on Edwards curves, in: 
Topics in Cryptology – CT-RSA 2020, Springer, 2020, pp. 512–537.

[30] National Institute of Standards and Technology. Post–quantum cryptography standardization, 
https://csrc .nist .gov /Projects /post -quantum -cryptography /round -4 -submissions.

[31] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, Tsuyoshi Takagi, A constant-time algorithm of 
CSIDH keeping two points, vol. 103, The Institute of Electronics, Information and Communication 
Engineers, 2020, pp. 1174–1182.

[32] Ronald L. Rivest, Adi Shamir, Leonard Adleman, A method for obtaining digital signatures and 
public-key cryptosystems, Commun. ACM (1978) 120–126, https://doi .org /10 .1145 /359340 .359342.

[33] Robert Damien, Breaking SIDH in polynomial time, in: Advances in Cryptology – EUROCRYPT 
2023, Springer, 2023, pp. 472–503.

[34] Peter W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in: Pro-
ceedings 35th Annual Symposium on Foundations of Computer Science – FOCS ’94, IEEE, 1994, 
pp. 124–134.

[35] Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a 
quantum computer, SIAM Rev. (1999) 303–332, https://doi .org /10 .1137 /S0036144598347011.

[36] Joseph H. Silverman, The Arithmetic of Elliptic Curves, vol. 106, Springer Science & Business 
Media, 2009.

http://refhub.elsevier.com/S1071-5797(23)00152-1/bibF8493D93579F1814FBB7394213EC937As1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bibF8493D93579F1814FBB7394213EC937As1
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1090/S0273-0979-07-01153-6
https://doi.org/10.1090/S0273-0979-07-01153-6
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib88A52A7B75289A64A510C75786135833s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib88A52A7B75289A64A510C75786135833s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib4B63A5BB97C7FCF6877E86431AD02F6As1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib4B63A5BB97C7FCF6877E86431AD02F6As1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib4B63A5BB97C7FCF6877E86431AD02F6As1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib97749E701F6C27AF2E3933B44E66289Bs1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib97749E701F6C27AF2E3933B44E66289Bs1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib5C0550F077DAF823ED2E836D3735D65Cs1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib5C0550F077DAF823ED2E836D3735D65Cs1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bibC74DB667F02117FF47F3F06EC1594CB6s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bibC74DB667F02117FF47F3F06EC1594CB6s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bibC74DB667F02117FF47F3F06EC1594CB6s1
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1090/S0025-5718-1987-0866109-5
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib5D3471C6AF12434AA0806B9B2B8FBB2Cs1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib5D3471C6AF12434AA0806B9B2B8FBB2Cs1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib5D3471C6AF12434AA0806B9B2B8FBB2Cs1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib70D1B0431A31D662E58689010599EC70s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib70D1B0431A31D662E58689010599EC70s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib70D1B0431A31D662E58689010599EC70s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib65EB73F1D4CF757E1E9BC236711BA89Es1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib65EB73F1D4CF757E1E9BC236711BA89Es1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bibB5DA643553FC5EC15762AD64D98ED6D7s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bibB5DA643553FC5EC15762AD64D98ED6D7s1
https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.1090/mcom/3036
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib901C00891823FCF48240EBD5B658D794s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib901C00891823FCF48240EBD5B658D794s1
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib3F6A5E0BB4E4F2E22AB244683EAEA223s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib3F6A5E0BB4E4F2E22AB244683EAEA223s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib3F6A5E0BB4E4F2E22AB244683EAEA223s1
https://doi.org/10.1145/359340.359342
http://refhub.elsevier.com/S1071-5797(23)00152-1/bibE4FA5DFC12D7365BC3A4BF01A244158As1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bibE4FA5DFC12D7365BC3A4BF01A244158As1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib85CD1BDDEDA18C97B43E2B566EEDD8BAs1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib85CD1BDDEDA18C97B43E2B566EEDD8BAs1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib85CD1BDDEDA18C97B43E2B566EEDD8BAs1
https://doi.org/10.1137/S0036144598347011
http://refhub.elsevier.com/S1071-5797(23)00152-1/bibE65CAB4958C8CEAD6693F1E3D1DBD370s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bibE65CAB4958C8CEAD6693F1E3D1DBD370s1


T. Moriya et al. / Finite Fields and Their Applications 92 (2023) 102310 45
[37] Jacques Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris, Sér. A (1971) 305–347.
[38] William C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. Éc. Norm. Supér. (1969) 

521–560.

http://refhub.elsevier.com/S1071-5797(23)00152-1/bib7765831ED5F3159B16222BF37C6C879Es1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib36D47E3B20A8E9404695C803848851A0s1
http://refhub.elsevier.com/S1071-5797(23)00152-1/bib36D47E3B20A8E9404695C803848851A0s1

	How to construct CSIDH on Edwards curves
	1 Introduction
	1.1 Our results

	2 Preliminaries
	2.1 Basic mathematical concepts
	2.2 Montgomery curves
	2.3 Edwards curves

	3 CSIDH [10]
	3.1 CSIDH protocol
	3.2 Evaluating the class group action on Montgomery curves
	3.3 Elligator on Montgomery curves

	4 Main theorems used for our algorithm
	5 Evaluating the class group action on Edwards curves
	5.1 Comparing computational costs theoretically

	6 Elligator like technique on Edwards curves
	6.1 Construction
	6.2 Computational costs of Elligator on Edwards curves

	7 √élu’s formulas on Edwards curves
	7.1 Formulas
	7.2 Analysis of the formulas

	8 Implementations
	8.1 Plain CSIDH implementation
	8.2 √élu’s formulas implementation
	8.3 CTIDH implementation

	9 Conclusion and future work
	9.1 Conclusion

	Data availability
	Declaration of generative AI and AI-assisted technologies in the writing process
	Acknowledgments
	Appendix A How to compute the calculations and isogenies
	A.1 Montgomery curves
	A.2 Edwards curves
	A.3 Calculations of √élu’s formulas on Montgomery curves
	A.4 Calculations of √élu’s formulas on Edwards curves

	Appendix B CSIDH on Edwards curves with y-coordinates
	References


