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An angiopoietin 2, FGF23, 
and BMP10 biomarker signature 
differentiates atrial fibrillation 
from other concomitant 
cardiovascular conditions
Winnie Chua 1, Victor R. Cardoso 1,2,3, Eduard Guasch 4, Moritz F. Sinner 5,6, 
Christoph Al‑Taie 7,8,9, Paul Brady 1,10, Barbara Casadei 11, Harry J. G. M. Crijns 12, 
Elton A. M. P. Dudink 12, Stéphane N. Hatem 13, Stefan Kääb 5,6, Peter Kastner 14, 
Lluis Mont 4, Frantisek Nehaj 1,10, Yanish Purmah 1,10, Jasmeet S. Reyat 1, Ulrich Schotten 12, 
Laura C. Sommerfeld 1,7,8,9, Stef Zeemering 12, André Ziegler 15, Georgios V. Gkoutos 2,3, 
Paulus Kirchhof 1,8,9 & Larissa Fabritz 1,7,8,9*

Early detection of atrial fibrillation (AF) enables initiation of anticoagulation and early rhythm control 
therapy to reduce stroke, cardiovascular death, and heart failure. In a cross‑sectional, observational 
study, we aimed to identify a combination of circulating biomolecules reflecting different biological 
processes to detect prevalent AF in patients with cardiovascular conditions presenting to hospital. 
Twelve biomarkers identified by reviewing literature and patents were quantified on a high‑precision, 
high‑throughput platform in 1485 consecutive patients with cardiovascular conditions (median age 
69 years [Q1, Q3 60, 78]; 60% male). Patients had either known AF (45%) or AF ruled out by 7‑day ECG‑
monitoring. Logistic regression with backward elimination and a neural network approach considering 
7 key clinical characteristics and 12 biomarker concentrations were applied to a randomly sampled 
discovery cohort (n = 933) and validated in the remaining patients (n = 552). In addition to age, sex, and 
body mass index (BMI), BMP10, ANGPT2, and FGF23 identified patients with prevalent AF (AUC 0.743 
[95% CI 0.712, 0.775]). These circulating biomolecules represent distinct pathways associated with 
atrial cardiomyopathy and AF. Neural networks identified the same variables as the regression‑based 
approach. The validation using regression yielded an AUC of 0.719 (95% CI 0.677, 0.762), corroborated 
using deep neural networks (AUC 0.784 [95% CI 0.745, 0.822]). Age, sex, BMI and three circulating 
biomolecules (BMP10, ANGPT2, FGF23) are associated with prevalent AF in unselected patients 
presenting to hospital. Findings should be externally validated. Results suggest that age and different 
disease processes approximated by these three biomolecules contribute to AF in patients. Our findings 
have the potential to improve screening programs for AF after external validation.
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Cardioembolic stroke is a common complication of atrial fibrillation (AF) effectively prevented by oral 
 anticoagulation1–3. Treatment of concomitant cardiovascular conditions, and early rhythm control therapy can 
further improve outcomes in people with  AF4. Early detection of AF is therefore a recognised priority for car-
diovascular  health1,5. Simple methods to identify people at high risk of AF who would benefit from early AF 
detection are needed to implement timely care and prevent AF complications. While point-of-care testing for AF, 
using ECG recordings, is being tested in unselected elderly  populations6, and in view of consumer-electronics-
based methods that can provide access to rhythm screening at  scale7,8, there is a clear need to target screening 
efforts to at-risk populations to contain the effort and resources required.

Biomarkers can render ECG screening more effective and  efficient5,9. Quantification of the circulating biomol-
ecule N-terminal pro B-type natriuretic peptide (NTproBNP) was shown to enable targeted screening, leading 
to lower stroke rates during long-term follow-up compared to usual  care9. However, NTproBNP is also elevated 
in other cardiovascular conditions, notably in heart failure. So far, there is no single “best” biomarker for AF. In 
addition to  NTproBNP9,10, C-reactive  protein11, cardiac troponins, and fibroblast growth factor 23 (FGF23)12–14 
hold promise. As multiple pathophysiological pathways are implicated by the different mechanisms that lead 
to  AF15,16, combining several biomarkers reflecting these processes could improve detection of people with AF.

In this study, we quantified known and novel biomarkers utilising a high-precision, high-throughput analyti-
cal platform in a cohort of multi-ethnic patients with cardiovascular conditions. Biomolecules that are relevant 
for AF and represent different disease processes were selected in a modified Delphi-process as part of the CATCH 
ME  consortium15. All patients without known AF underwent 7-day Holter monitoring to rule out undetected 
 AF17. We applied both statistical modelling and machine learning techniques to identify biomarkers that enhance 
detection of unknown prevalent AF.

Methods
Selection of candidate biomarkers
Biomolecules were selected based on a modified Delphi process. A thorough literature and patent search was 
performed for biomarkers of AF in 2018. To assess the existing knowledge on biomarkers, we searched PubMed, 
the Cochrane Library, Scopus, and databases of the European Patent Office (EPO) and United States Patent and 
Trademark Office (USPTO) with no language or date restrictions to identify research and patents describing 
biomarkers related to AF. Search terms, including various alternate spellings, included “atrial fibrillation”, “screen-
ing”, “blood”, “plasma” and “biomarkers”.

An expert consensus process integrating knowledge on biomarkers, AF mechanisms, and AF screening, was 
coordinated to identify promising biomarkers for AF reflecting different disease processes in several in-person 
and remote meetings. This process was designed along the principles of a Delphi process and relied on face-to-
face discussion and agreement during meetings in addition to online surveys.

Integrating expert knowledge with the literature and patent review, an iterative collaborative discussion 
amongst experts within the CATCH ME Consortium (www. catch- me. info) identified 12 candidate biomarkers for 
AF, namely: angiopoietin 2 (ANGPT2), bone morphogenetic protein 10 (BMP10), cancer antigen 125 (CA125), 
C-reactive protein (CRP), endothelial cell specific molecule 1 (ESM1), fatty acid binding protein 3 (FABP3), 
FGF23, growth differentiation factor 15 (GDF15), insulin-like growth factor binding protein 7 (IGFBP7), inter-
leukin 6 (IL6), NTproBNP, and troponin T (TnT).

The 12 biomarkers selected were quantified and taken forward for testing in the present study. Seven clini-
cal characteristics (age, sex, body mass index (BMI), estimated glomerular filtration rate (eGFR), heart failure, 
stroke/ transient ischemic attack (TIA), hypertension) were selected based on a separate literature review and 
on-going analysis of clinical predictors for  AF18.

Study population
Consecutive patients, referred to the Sandwell and West Birmingham NHS Trust (Birmingham, UK) for inpatient 
or outpatient evaluation of acute illnesses, were recruited between September 2014 and February 2018 to the Bir-
mingham and Black Country Atrial Fibrillation Registry (BBC-AF). Patients had either diagnosed AF confirmed 
by ECG or presented with at concomitant cardiovascular conditions as assessed by the  CHA2DS2VASc score with 
either one of the following: age greater than 75 years or stroke, or two of the following: age greater than 65 years, 
female sex, congestive heart failure, hypertension, diabetes, prior stroke, or transischemic attack, left ventricular 
hypertrophy or vascular disease). Details of the enrolment criteria have been published  previously12. Patients 
who did not have a diagnosis of AF underwent 7-day ambulatory ECG monitoring to rule out asymptomatic 
AF. There were very few exclusion criteria (age < 18 years, inability to consent, to follow up and unwillingness 
to undergo investigations or life expectancy < 1 year). The patients were consecutively enrolled in both hospital 
outpatient clinics and inpatient admission settings with the majority being admitted as inpatients.

Ethics declaration
This study complied with the Declaration of Helsinki, was approved by the National Research Ethics Service 
Committee (IRAS ID 97753) and was sponsored by the University of Birmingham. All patients provided written 
informed consent.

Biomarker quantification
Blood samples from all patients were spun, fractionated, frozen, and stored at − 80 °C until analysis. Absolute 
protein concentrations were centrally quantified in EDTA plasma (see Supplemental material S1 for details). Run 
controls and calibrators were measured twice each run, and staff involved were blinded to clinical status and data.

http://www.catch-me.info
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Analysis
Using random selection, the cohort was divided at a 60:40 ratio, conventional for discovery-validation paradigms 
in regression modelling and machine learning. For the identification of biomarkers in the discovery cohort, we 
considered 12 biomarkers and 7 clinical risk factors (hypertension, heart failure, history of stroke or transient 
ischaemic attack (TIA), kidney function, and body mass index (BMI); age and sex were fixed factors). Hyperten-
sion was defined as an elevated resting blood pressure or hypertension requiring anti-hypertensive therapy. Heart 
failure was defined as left ventricular ejection fraction of < 50% or moderate or severe left ventricular dysfunction 
as an established diagnosis, or a clinical diagnosis of heart failure with a New York Heart Association (NYHA) 
Functional Classification class III or IV. Kidney function was determined based on the estimated glomerular fil-
tration rate (eGFR) using centrally quantified creatinine levels, calculated using the (CKD-EPI)  equation19. Since 
there were minimal missing data, only complete cases were used for analysis (Supplemental material Fig. S1).

Baseline characteristics of patients with and without AF were compared in the discovery and validation 
cohorts using  Chi2 tests, independent samples t-tests, or Mann–Whitney U tests as applicable after checking 
for data normality (Kolmogorov–Smirnov test and visual inspection of descriptive plots). A two-tailed P value 
of < 0.05 was considered statistically significant. Unadjusted univariate analyses indicated the relationship of 
each variable to the study’s outcome (rhythm status: AF or No AF). Biomarkers were also adjusted to account 
for common confounders. We evaluated the variance inflation factor to identify possible collinearity.

A logistic regression with backward elimination was applied to the discovery dataset (n = 933; 44% with AF) 
to select variables using a p value of 0.157 which is a recommended proxy for the Akaike information criterion 
(AIC)20. The selected variables from this process (apparent model) with increased odds of indicating AF (odds 
ratio, OR > 1), were bootstrapped to account for potential overfitting as a means of internal validation. The vari-
ables were subsequently validated using data from the validation cohort by fitting the bootstrapped coefficients 
to the data. The performance of the apparent, bootstrapped, and validation models were assessed by calculating 
the area under the ROC curve (AUC) and 95% confidence intervals (CI). For each model, the sensitivity, speci-
ficity, positive predictive value, and negative predictive value were also calculated. We applied different cutoff 
values to evaluate model performance in discriminating between patients at low and high risk of prevalent AF.

To assess the robustness of our findings, we evaluated the effect of replacing the biomarkers in our model 
with the current ‘industry standard’ biomarker  NTproBNP9. We also compared the performance of our model 
with the CHARGE-AF score and STROKESTOPII criteria by fitting available data of our whole cohort using the 
coefficients and criteria for those studies.

Machine learning
To complement statistical analyses and assess an alternative approach for interrogating the dataset, machine 
learning models were developed and applied on training and test datasets, corresponding to the discovery and 
validation cohorts of the regression analysis, with an additional internal-validation set created using 20% of the 
training data. We employed a Neural Network algorithm using the Keras open source library. Data were pre-
processed using the Scikit-learn software. Categorical variables (sex, heart failure, hypertension, stroke/TIA) were 
transformed using min–max scaler. Continuous variables were scaled towards mean and scaled to unit variance in 
reference to the training set. The model contained 2 blocks with a layer of 256 hidden dense variables with RELU 
activation, followed by a dropout layer. Subsequently, a 1 node dense layer with sigmoid activation was used for 
the prediction. The model was trained using the adam optimiser until the model’s performance plateaued for 20 
epochs. The best performing model was selected using binary cross-entropy. 10 further models, using different 
starting variables, were trained and evaluated using the Shapley Additive exPlanations (SHAP) method to identify 
the influence of individual variables in the neural network by quantifying feature importance for a linear model 
in the presence of multicollinearity. SHAP is the current state-of-the-art procedure for interpretation of neural 
networks. To increase robustness, the neural network algorithm was run with 100 different initialisation seeds 
and the importance values with their corresponding confidence intervals were assessed. References to machine 
learning algorithms are in Supplemental material S1.

In Supplemental Methods S1, we report the outcomes of all models with biomarkers which are rank normal-
ised by Blom transformation for better comparability between biomarkers.

All analyses were completed using SPSS v. 24 (IBM Corporation, Armonk, NY, USA) and R programming 
 language21.

Results
Patient characteristics
1485 patients (36% female, mean age 69 years, 45% with diagnosed AF) were included in the analysis (Supple-
mental Material Fig. S1). As expected, patients with AF were older, and more often had a history of heart failure. 
History of stroke / transient ischemic attack (TIA) and body mass index did neither differed between patients 
with or without AF or between in- and outpatient groups (Table 1, Supplemental Material Tables S4, S12). 16 new 
AF cases were identified by the 7-day Holter and were included in the AF group. All patterns of AF, paroxysmal 
and non-paroxysmal, were included.

Elevated ANGPT2, BMP10, FGF23, IGFBP7, and NTproBNP are associated with increased risk 
of AF
We interrogated the univariate association of biomarkers to the outcome of AF, adjusted by established clini-
cal risk factors (age, sex, BMI, eGFR, heart failure, stroke/TIA, hypertension) (Fig. 1). Five associations were 
consistent between the discovery and validation cohorts—elevated levels of ANGPT2, BMP10, FGF23, IGFBP7, 
and NTproBNP significantly increased odds of AF. Conversely, CA125 and ESM1 were associated with increased 
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odds of AF in the discovery cohort but this was not confirmed in the validation cohort. CRP, FABP3, GDF15, 
IL6 were not associated with the outcome whereas lower TnT concentrations were associated with AF in this 
cohort attending in- or outpatient care at the hospital.

Table 1.  Clinical characteristics of the randomly selected discovery cohort. Categorical variables are reported 
as n (%), continuous variables are reported as mean (standard deviation) or median (quartile 1, quartile 3) 
for skewed distributions (*). The independent t-test (or Mann–Whitney U test for skewed distributions) and 
Χ2 tests were used to compare characteristics between patients. eGFR was estimated using the CKD-EPI 
equation. BMI body mass index, eGFR estimated glomerular filtration rate, TIA transient ischemic attack, 
NOAC non-vitamin K antagonist oral anticoagulant, VKA vitamin K antagonist, ACE angiotensin-converting 
enzyme, ANGPT2 angiopoietin 2, BMP10 bone morphogenetic protein 10, CRP high-sensitivity C-reactive 
protein, CA125 cancer antigen 125, ESM1 endothelial cell specific molecule 1, FGF23 fibroblast growth factor 
23, FABP3 fatty acid binding protein 3, GDF15 growth differentiation factor 15, IGFBP7 insulin like growth 
factor binding protein 7, IL6 interleukin 6, NTproBNP N-terminal pro-B-type natriuretic peptide, TnT high-
sensitivity cardiac troponin T.

Characteristic

No AF AF

P-value

Univariable analysis

N = 522 N = 411 Odds ratio (95% CI)

Age, years* 67 (58, 75) 74 (66, 80)  < 0.001 1.043 (1.031, 1.055)

Sex, males 309 (59%) 256 (62%) 0.337 1.138 (0.873, 1.484)

Ethnicity

 Caucasian 362 (69%) 350 (85%)

 < 0.001

Reference

 Asian 112 (22%) 31 (8%) 0.286 (0.187, 0.437)

 Afro-Caribbean 48 (9%) 30 (7%) 0.646 (0.400, 1.044)

BMI, kg/m2* 28.7 (25.5, 32.5) 29.0 (25.1, 33.1) 0.627 1.008 (0.987, 1.029)

eGFR, mL/min/1.73  m2 71.7 (26.1) 67.8 (25.9) 0.023 0.994 (0.989, 0.999)

Diabetes 238 (46%) 96 (23%)  < 0.001 0.364 (0.273, 0.484)

Stroke/TIA 46 (9%) 38 (9%) 0.818 1.054 (0.672, 1.654)

Coronary artery disease 252 (48%) 93 (23%)  < 0.001 0.313 (0.235, 0.418)

Hypertension 333 (64%) 218 (53%) 0.001 0.641 (0.493, 0.834)

Heart failure 222 (43%) 219 (53%) 0.001 1.541 (1.188, 1.999)

Admission criteria (inpatient) 469 (90%) 293 (71%)  < 0.001 0.281 (0.197, 0.400)

Medication

 NOAC 12 (2%) 198 (48%)  < 0.001 39.507 (21.590, 72.291)

 VKA 12 (2%) 100 (24%)  < 0.001 13.666 (7.387, 25.281)

 Aspirin 362 (69%) 101 (25%)  < 0.001 0.144 (0.108, 0.193)

 Antiplatelet agents 277 (53%) 76 (19%)  < 0.001 0.201 (0.148, 0.272)

 ACE inhibitors 194 (37%) 121 (29%) 0.013 0.705 (0.535, 0.930)

 Angiotensin II receptor blocker 82 (16%) 68 (17%) 0.730 1.064 (0.749, 1.511)

 Beta-blocker 306 (59%) 227 (55%) 0.299 0.871 (0.671, 1.131)

 Diuretic 164 (31%) 172 (42%) 0.001 1.571 (1.200, 2.057)

 Calcium channel antagonist 116 (22%) 66 (16%) 0.018 0.670 (0.479, 0.936)

 Cardiac glycoside 3 (1%) 89 (22%)  < 0.001 47.817 (15.007, 152.360)

 Aldosterone antagonist 37 (7%) 33 (8%) 0.588 1.144 (0.702, 1.865)

 Antiarrhythmics 8 (2%) 37 (9%)  < 0.001 6.356 (2.926, 13.807)

Biomarkers

 ANGPT2 (ng/mL)* 2.36 (1.73, 3.45) 3.64 (2.28, 6.14)  < 0.001 1.243 (1.177, 1.313)

 BMP10 (ng/mL)* 1.95 (1.70, 2.32) 2.35 (1.94, 2.94)  < 0.001 2.953 (2.348, 3.715)

 CRP (mg/L)* 4.95 (1.63, 18.89) 4.19 (1.57, 15.59) 0.386 0.999 (0.996, 1.001)

 CA125 (per 10 U/mL)* 1.23 (0.82, 2.01) 1.57 (0.95, 3.40)  < 0.001 1.050 (1.020, 1.081)

 ESM1 (ng/mL)* 2.01 (1.47, 2.91) 2.36 (1.78, 3.43)  < 0.001 1.137 (1.062, 1.218)

 FGF23 (per 100 pg/mL)* 1.65 (1.05, 2.69) 1.97 (1.35, 4.16)  < 0.001 1.050 (1.023, 1.077)

 FABP3 (per 10 ng/mL)* 3.53 (2.63, 5.19) 3.77 (2.82, 5.92) 0.017 1.001 (0.986, 1.016)

 GDF15 (per 100 pg/mL)* 18.71 (11.42, 31.08) 21.29 (13.41, 35.22) 0.004 1.004 (1.000, 1.009)

 IGFBP7 (ng/mL)* 96.23 (82.74, 115.30) 110.17 (91.65, 140.09)  < 0.001 1.010 (1.006, 1.013)

 IL6 (pg/mL)* 6.38 (3.31, 14.66) 6.49 (3.37, 14.69) 0.691 1.001 (0.995, 1.008)

 NTproBNP (per 100 pg/mL)* 4.21 (1.08, 14.34) 11.20 (3.51, 28.61)  < 0.001 1.006 (1.002, 1.009)

 TnT (per 100 pg/mL)* 0.30 (0.12, 1.09) 0.22 (0.12, 0.50) 0.001 0.963 (0.943, 0.984)
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Optimism‑adjusted model
The backward elimination process resulted in an apparent model that included 4 clinical characteristics and 
6 biomarkers (Supplemental Material Table S1). As we were interested in variables whose increase indicated 
greater odds of having AF, we fitted and bootstrapped an optimism adjusted model using variables with a sig-
nificant OR of > 1 (Supplemental Material Table S2). The AUC for the apparent model was 0.784 (95% CI 0.756, 
0.815), sensitivity 60% and specificity 81%. The optimism-adjusted model had a marginal shrinkage of all these 
measurements, resulting in an AUC of 0.743 (95% CI 0.712, 0.775; Fig. 2), sensitivity 52% and specificity 80% 
(Table 2). To estimate the added value of each individual biomarker to the clinical characteristics (age, sex, BMI), 
we calculated the AUC for each biomarker and ranked them by change in AUC (Supplemental Material Table S3).

Model validation
In the validation cohort (n = 552; Supplemental Material Table S4), patients with AF had a similar clinical and 
biomarker profile compared to the discovery cohort. The coefficients from the optimism-adjusted model were 
fitted with these data. The model performed consistently with an AUC of 0.719 (95% CI 0.677, 0.762), sensitivity 
51%, and specificity 81%.

The ROC curve considers all consecutive cutoff points to define a high risk and a low risk group. The perfor-
mance of the model was evaluated at cutoff points of 10%, 20%, 30%, and 40% probability of being classified as 
“at risk”. For each cutoff point, we illustrated the classifications generated by the model in identifying patients 
whom the model considers “at risk”, “not at risk”, and estimated the number of patients who would be correctly 
identified as well as those potentially missed (Supplemental Material Table S5).

Neural network analysis confirms ANGPT2, BMP10, FGF23
The neural network was created using the discovery cohort with 2 layers of abstraction (visualised in Fig. 3a) and 
yielded an AUC (95% CI) of 0.784 (0.745, 0.822) in the validation cohort. In comparison with our previously 
published machine learning methodology, using random forest feature selection and fivefold cross-validation12 
(Supplemental Material Fig. S2, Tables S6 and S7), neural networks yielded a better performance (AUC (95% CI) 
0.784 (0.745, 0.822) compared to fivefold cross validation, AUC 0.733 (95% CI 0.691, 0.775)). The application 
of the SHAP procedure on the validation datasets calculated the influence of each variable on the model. The 
directionality of the top 3 clinical variables (age, sex, BMI) and the top 3 biomarkers (ANGPT2, BMP10, FGF23) 
associated with prevalent AF corresponded exactly with the regression modelling (Fig. 3b). The maximum vari-
ance inflation factor amongst the 19 variables entered into the model was 2.987, and therefore, multicollinearity 
was not relevant (Supplemental Material Table S8).

Figure 1.  Five biomarkers predict prevalent AF. Higher levels of ANGPT2, BMP10, FGF23, IGFBP7, and 
NTproBNP are consistently associated with increased odds of prevalent AF as suggested by univariate OR and 
95% CI of quantified biomarkers for the discovery and validation cohorts. Biomarker levels have been adjusted 
for age, sex, BMI, eGFR, heart failure, stroke/TIA, and hypertension status. BMI body mass index, eGFR 
estimated glomerular filtration rate, TIA transient ischemic attack, ANGPT2 angiopoietin 2, BMI body mass 
index, BMP10 bone morphogenetic protein 10, CRP high-sensitivity C-reactive protein, CA125 cancer antigen 
125, CI confidence intervals, eGFR estimated glomerular filtration rate, ESM1 endothelial cell specific molecule 
1, FGF23 fibroblast growth factor 23, FABP3 fatty acid binding protein 3, GDF15 growth differentiation factor 
15, IGFBP7 insulin like growth factor binding protein 7, IL6 interleukin 6, NTproBNP N-terminal pro-B-type 
natriuretic peptide, OR odds ratio, TnT high-sensitivity cardiac troponin T.
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Comparison between biomarkers
Using different methodologies to transform biomarkers may result in marginally different outcomes. As there 
is currently no accepted standard to transform biomarker data, we presented an alternative method and results 
as supplemental analyses to enable better comparison of our study outcomes with existing literature. We rank 
normalised each biomarker using the Blom transformation and described the relationship between biomarkers 
and the outcome per SD increase (Supplemental Material Figs. S3 and S4, Tables S9 and S10). Although this 
method may reduce the interpretability of an individual biomarker concentration, it provides a better compari-
son between biomarkers. Analyses using rank normalised biomarkers yielded very similar outcomes to the use 
of biomarkers as continuous variables. Age, sex, BMI, ANGPT2, and BMP10 were consistently selected despite 
different data transformations, however, the signals for NTproBNP and FGF23 were more inconsistent (Sup-
plemental Material Fig. S4).

Comparison with charge‑AF score
The CHARGE-AF score is a clinical risk prediction model developed using data from a racially and geographi-
cally diverse population and therefore applicable for comparison in our cohort. The 5-year risk for the simple 
CHARGE-AF  score22 was calculated as 1–0.9718412736exp(ΣβX-12.5815600) in 1289 patients with complete data for 
all the variables (n = 196 with partially missing data). The C-statistic (95% CI) yielded was 0.631 (0.600, 0.661; 
sensitivity 78%, specificity 35%) as compared with 0.746 (0.719, 0.772; sensitivity 49%, specificity 83%) for the 

Figure 2.  Biomarkers improve prediction of prevalent AF. (a) ANGPT2, BMP10, and FGF23 provided added 
value to clinical variables (age, sex, BMI) as denoted by the increase of AUC from 0.655 (95% CI 0.620, 0.690) 
to 0.785 (95% CI 0.756, 0.815) for the apparent model; [AUC 0.743 (95% CI 0.712, 0.775) after optimism 
adjustment using bootstrapping]. (b) Calibration curve of the apparent model demonstrating near perfect 
calibration as expected for model development. ANGPT2 angiopoietin 2, AUC  area under the ROC curve, 
BMP10 bone morphogenetic protein 10, CI confidence intervals, FGF23 fibroblast growth factor 23.

Table 2.  Combination of age, sex, BMI, ANGPT2, BMP10, FGF23 for prediction of prevalent AF. 
Performance measures of the apparent, optimism adjusted and validation models. AF atrial fibrillation, BMI 
body mass index, ANGPT2 angiopoietin 2, BMP10 bone morphogenetic protein 10, FGF23 fibroblast growth 
factor 23.

Model C-statistic (95% CI) Sensitivity (%, 95% CI) Specificity (%, 95% CI) Positive predictive value (%, 95% CI)
Negative predictive value (%, 95% 
CI)

Apparent 0.785 (0.756, 0.815) 59.85 (54.94, 64.63) 81.21 (77.61, 84.46) 71.30 (67.17, 75.11) 72.18 (69.60, 74.61)

Optimism-adjusted 0.743 (0.712, 0.775) 51.83 (47.03, 56.61) 79.57 (75.98, 82.84) 66.47 (62.18, 70.50) 67.89 (65.54, 70.16)

Validation 0.719 (0.677, 0.762) 51.05 (45.10, 56.98) 81.49 (76.70, 85.67) 71.92 (66.38, 76.87) 64.19 (61.16, 67.12)
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same patients using the present combined biomarker model (age, sex, BMI, BMP10, ANGPT2, FGF23) which 
also had better calibration (Supplemental Material Fig. S5).

Comparison with NTproBNP
The addition of the established biomarker NTproBNP provided incremental improvement to classifications 
based only on age, sex, and BMI (AUC 0.655, 95% CI 0.620, 0.690 to AUC 0.665, 95% CI 0.627, 0.697). How-
ever, combining the biomarkers identified here (BMP10, ANGPT2, FGF23) yielded larger improvements than 
NTproBNP in this cohort with known heart failure status (Supplemental Material Table S4). The combination of 
all three biomarkers significantly improved the AUC (Fig. 4). We present the reclassification tables to demonstrate 
the effect of each additional biomarker (Supplemental Material Table S11). In a further step, we compared the 
combined biomarker model (age, sex, BMI, BMP10, ANGPT2, FGF23) with NTproBNP in patients ≥ 75 years 

Figure 3.  Neural network analysis confirm regression outcomes. (a) Illustration of the neural network 
architecture. Red and pink circles are the input variables. In orange and blue are the first and second hidden 
layer of the network, with increased abstraction. (b) Visualisation of the SHAP procedure using the validation 
cohort. Variables are ranked top to bottom from the most to least influential. Dark to light shading indicates 
low to high variable values. Negative and positive SHAP values correspond to tendencies towards sinus rhythm 
and AF respectively. ANGPT2 angiopoietin 2, BMI body mass index, BMP10 bone morphogenetic protein 10, 
CRP high-sensitivity C-reactive protein, CA125 cancer antigen 125, eGFR estimated glomerular filtration rate, 
ESM1 endothelial cell specific molecule 1, FGF23 fibroblast growth factor 23, FABP3 fatty acid binding protein 
3, GDF15 growth differentiation factor 15, HF heart failure, HTN hypertension, IGFBP7 insulin like growth 
factor binding protein 7, IL6 interleukin 6, NTproBNP N-terminal pro-B-type natriuretic peptide, SHAP Shapley 
additive explanations, TIA transient ischemic attack, TnT high-sensitivity cardiac troponin T.
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old (n = 509; AF = 302, SR = 207) mirroring STROKESTOPII criteria and demonstrated that the biomarkers were 
better able to identify patients with AF compared to NTproBNP (Supplemental Material Fig. S6).

Type of patient enrolment (outpatient or inpatient), although showing some differences in clinical features 
with more heart failure and coronary artery disease in patients admitted) did not affect the analysis results (Data 
on file and Supplemental Material Table S12). We had not selected left atrial diameter as a marker for the pri-
mary model because it is not as readily available as age, sex and BMI, but requires a detailed echocardiography 
investigation, and we expected collinerality with NTproBNP. Indeed, in an analysis including left atrial size and 
left ventricular function, NTproBNP was eliminated (Data on file).

Discussion
In unselected participants with cardiovascular conditions presenting to hospital, 3 simple clinical characteris-
tics (age, sex, and BMI) and elevated concentrations of ANGPT2, BMP10, and FGF23 can identify participants 
with prevalent AF. Our findings illustrate the potential of quantifying the concentrations of several circulating 
biomolecules to enhance populations for patients with AF by combining a set of simple clinical characteristics 
and biomarkers. The results also highlight several disease relevant pathways that can be quantified in plasma 
and may be used to guide stratified prevention and therapy of AF. Our findings require external validation in 
prospective cohorts and potential updating or recalibration for a different setting.

The patients studied here resemble the high-risk populations that are currently considered for systematic and 
opportunistic AF  screening5,6. Their clinical characteristics rendered them clear candidates for oral anticoagula-
tion upon AF diagnosis. A particular characteristic is the acute care setting. This provides information on the 
interpretation of biomolecule concentrations in acutely ill patients, but also calls for validation in other settings, 
e.g. apparently healthy populations at risk for AF. The model exhibited a good performance and displayed high 
specificity (≥ 80%) in a cohort of patients enriched for cardiovascular conditions, rendering it useful in clini-
cal settings such as hospitals or general practices. In our cohort, the model outperforms existing strategies to 
screen for AF using age  alone1,5,6, age and cardiovascular  comorbidities1,5,6, models integrating multiple clinical 
variables (CHARGE-AF)22, and age with one biomarker (BNP)9. The biomarker combination depicted offers the 
advantage of integrating different disease pathways and including at least one atrial-specific biomarker (BMP10), 

Figure 4.  ANGPT2, BMP10, and FGF23 outperform NTproBNP. A comparison of model performance (using 
discovery cohort data) by area under the AUC and corresponding 95% CI demonstrating that (1) NTproBNP 
alone provides minimal improvements to the AUC in this cohort with known heart failure status, and (2) the 
incremental addition of biomarkers BMP10, ANGPT2, and FGF23 substantially improves the AUC. AUC  area 
under the ROC curve, CI confidence intervals, ANGPT2 angiopoietin 2, BMP10 bone morphogenetic protein 
10, FGF23 fibroblast growth factor 23.
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thus enabling differentiation for example between patients with AF and patients with heart  failure23 or other 
conditions which may also elevate other cardiovascular biomarkers such as NTproBNP or TnT. Of note, both 
NT-proBNP24 and  BMP1025,26 have recently been related to cardiovascular events in patients with AF.

Here, we took a pragmatic approach and assessed the ability of biomarkers to identify patients with prevalent 
AF, including 254 patients with diagnosed AF who were in sinus rhythm at the time of blood taking. Future stud-
ies should be planned to assess whether the novel biomolecules are elevated in prevalent and newly diagnosed 
AF, as well as the extent to which their elevation is related to the timing of arrhythmia episodes. Patients studied 
here presented with acute illness. This may affect the concentrations of biomarkers, calling for external valida-
tion in independent cohorts. This current approach is valuable for enriching screening, but does not evaluate 
risk of future incident AF, which was beyond the scope of our study. Future efforts to identify AF can use new 
technologies, providing more granularity for risk estimation which may be more advantageous compared to the 
conventional use of binary cutoff values.

Atrial fibrillation has different causes in different people. These causes of AF can interact and modify AF 
 risk15,27,28. Reflecting the clinically suspected multifactorial aetiology of AF in unselected  patients27,28, 9 of the 12 
biomarkers tested showed elevated blood concentrations in patients with AF in our study (ANGPT2, BMP10, 
CA125, ESM1, FABP3, FGF23, GDF15, IGFBP7, and NTproBNP), confirming prior reports. Using several ana-
lytical methods and evaluations of 12 different biomarkers, increased concentrations of three biomarkers were 
most strongly associated with AF (BMP10, ANGPT2, and FGF23; Fig. 5). Interestingly, these three biomolecules 
are expressed in three different cell types (BMP10: cardiomyocytes; ANGPT2: endothelial cells; FGF23: osteo-
cytes) and might represent three underlying molecular mechanisms of AF.

Mutations in BMP10, a polypeptide encoded by the BMP10 gene belonging to the TGF-β superfamily have 
been associated with cardiovascular  disease29. In humans, BMP10 expression is enriched in the right atrium and 
is increased in diseased  atria30. As BMP10 is uniquely expressed in  cardiomyocytes31 and restricted to  atria32, it 
is a promising atrial-specific biomarker in circulating blood. Elevated BMP10 in blood have been shown to be 
predictive of recurrent AF after ablation for AF in  patients30. Downregulation of the paired-like homeodomain 
transcription factor 2 (PITX2) or an enhancer region close to the common AF gene variants is associated with 
increased left atrial expression of the BMP10  gene30. There have been recent work reporting the use of BMP10 for 
predicting AF  recurrences33,34 and ischemic stroke  risk25, however, further work on the atrial effects of BMP10 
is warranted.

ANGPT2 is a bioactive growth factor belonging to the angiopoietin/Tie (tyrosine kinase with Ig and EGF 
homology domain) family of signalling proteins that play a major role in maintaining vascular homeostasis. 
Located and synthesised by endothelial cells, it is rapidly released in inflammation or vascular  damage35. In 
its active form, ANGPT2 can act on its receptor Tie2 in an autocrine manner to promote endothelial barrier 
disassembly and leukocyte  extravasation36. This may acutely alter atrial function and lead to structural atrial 
remodelling in the long-term15. Elevated blood concentrations of ANGPT2 were found in patients with chronic 

Figure 5.  Detecting atrial fibrillation in patients with cardiovascular diseases. Combining age, sex, body mass 
index with ANGPT2, BMP10, and FGF23 discriminated between patients with and without prevalent AF. 
ANGPT2, BMP10, and FGF23 are circulating biomolecules representing distinct pathways associated with atrial 
cardiomyopathy and AF, namely hypertrophy and fibrosis (FGF23), endothelial dysfunction (ANGPT2), and 
the genomic predisposition to AF (BMP10). ANGPT2 angiopoietin 2, BMP10 bone morphogenetic protein 10, 
FGF23 fibroblast growth factor 23.
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 AF37. A greater understanding of the role of ANGPT2 for AF at the cellular level is required to understand how 
ANGPT2/Tie2 signalling in cardiac endothelium regulates cardiac remodelling.

FGF23 is a hormone secreted by osteocytes in the bone and functions to regulate phosphate homeostasis. 
Elevation of circulating FGF23 in patients with chronic kidney disease has been associated with increased risk 
of cardiovascular disease, including AF, by promoting cardiac  remodelling13. There is biological plausibility for a 
causal relationship between FGF23 and left ventricular hypertrophy and atrial fibrosis, which is often observed in 
patients with  AF38. FGF23 has been consistently associated with prevalent  AF12,13 and our data supports FGF23 
as a biomarker for AF and AF-related mechanisms.

Limitations
The inclusion criteria for BBC-AF were broad, aiming to represent unselected patients presenting to hospital for 
care. While this may be viewed as a strength for researchers and clinicians seeking to identify patients presenting 
with AF in acute settings, the process also induces bias in patient selection and will affect biomarker concentra-
tions compared to e.g. screening of apparently healthy individuals. Therefore, we have extensively described the 
characteristics of the cohort that should be read in parallel with the study outcomes. The single-centre setting 
enabled unified phenotyping but necessitates validation in external cohorts. Therefore, external validation in 
prospective cohorts with long-term follow-up for incident AF and in population-based cohorts is desirable. We 
also advise caution in like-for-like comparison of outcomes with other published scores as differences will exist 
between study designs (case–control vs population-based). Additional analyses based on our data and on external 
validation will also be needed to determine the cost-effectiveness of quantifying three biomarkers (e.g. compared 
with collecting multiple clinical variables for the CHARGE-AF score or using 7-day ambulatory monitoring). 
The directionality of influence of the biomarkers need to be interpreted in accordance with the characteristics of 
the cohort; e.g. the influence of markers such as TnT, hsCRP, and GDF15 reflect the patterns of co-morbidities 
present in the sinus rhythm group which have a higher proportion of patients with diabetes, coronary artery 
disease, and hypertension. While systematic 7-day Holter monitoring for undiagnosed AF is a strength of this 
cohort compared to other observational data sets, longer monitoring periods are likely to identify even more 
patients with rare atrial  arrhythmias39. The therapeutic consequences of very rare arrhythmias were evaluated, 
e.g. in the controlled NOAH-AFNET 6 and ARTESiA  trials39–41, with NOAH-AFNET 6 results showing a low 
stroke risk in patients with atrial high-rate episodes (AHRE).

Conclusion
Our study recapitulates age, sex, and BMI, as clinical markers for AF. Elevated ANGPT2, BMP10 and FGF23, 
are novel biomarkers that were robustly associated with AF in this study. Results suggest that age and different 
disease processes approximated by these three biomolecules contribute to AF in patients. In an acute care set-
ting, a stratification procedure using age, sex, BMI, and these three biomarkers can identify people at high risk 
of prevalent AF and calls for external validation.

Data availability
The data underlying this article cannot be shared publicly due to the privacy of individuals who participated in 
the study. Reasonable requests to the corresponding author for data access will be considered.
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