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Abstract

In this modern era of cyber–physical–social systems, there is a need of dynamic coor-
dination strategies for electric vehicles (EVs) to enhance the resilience of modern power
distribution networks (MPDNs). This paper proposes a two-stage EV coordination frame-
work for MPDN smart restoration. The first stage is to introduce a novel proactive EV
prepositioning model to optimize planning prior to a rare event, and thereby enhance the
MPDN survivability in its immediate aftermath. The second stage involves creating an
advanced spatial–temporal EV dispatch model to maximize the number of available EVs
for discharging, thereby improving the MPDN recovery after a rare event. The proposed
framework also includes an information system to further enhance MPDN resilience by
effectively organizing data exchange among intelligent transportation system and smart
charging system, and EV users. In addition, a novel bidirectional geographic graph is
proposed to optimize travel plans, covering a large penetration of EVs and considering
variations in traffic conditions. The effectiveness is assessed on a modified IEEE 123-node
test feeder with real-world transportation and charging infrastructure. The results demon-
strate a significant improvement in MPDN resilience with smart restoration strategies.
The validation and sensitivity analyses evidence a significant superiority of the proposed
framework.

1 INTRODUCTION

Power distribution networks are crucial for ensuring a reliable
electricity supply to consumers, and their resilience during rare
events is key. Thus, it is necessary to develop robust methodolo-
gies to guarantee efficient restoration of supply, minimizing any
load outage periods to reduce the resulting economic and soci-
etal impacts [1–3]. This paper explores integrating technological
advancements in intelligent transportation systems (ITSs) and
smart charging stations (SCSs) into modern power distribution
networks (MPDNs) to develop smart and resilience-oriented
restoration strategies. The relatively recent widespread adop-
tion of electric vehicles (EVs) and associated charging points
(CPs) has introduced opportunities in this era, albeit subject
to novel challenges. Integrating EVs and CPs into the existing
resilience framework would provide additional mobile power
sources (MPSs) to support restoration efforts, thereby improv-
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ing resource utilization to help facilitate a coordinated response
to power demand fluctuations. However, the integration of
EVs and CPs poses challenges in terms of optimization posi-
tioning, routing, and power scheduling [4]. Optimizing critical
pathways for high penetration of EVs is a complex process,
due to the potential for high congestion rates (CRs) and road
damage in the aftermath of rare event, when locating an avail-
able charging infrastructure becomes more difficult. To address
these challenges and leverage the opportunities presented by
EVs, effective EV coordination strategies can be developed
to manage prepositioning and dispatching [5]. Such strategies
would play a vital role in ensuring the efficient restoration of
MPDNs enhancing their resilience in the face of severe disrup-
tion. Therefore, this paper aims to provide a comprehensive EV
coordination framework integrating the emerging technologies
of ITS and SCS to harness the potential of EVs and CPs to
improve the resilience of MPDN.
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1.1 Motivation

An effective framework for coordinating EVs is crucial to
enhance the MPDN resilience, due to the huge volume of data
detailing the motion and other viral aspects of EVs. Such a
framework can be realized by integrating MPDN, SCS, and
ITS [6–8]. The Internet of Things (IoT) and fifth-generation
(5G) network technologies expedite communication between
ITS/SCS automated systems and EVs, enabling coordination
via vehicle-to-everything (V2X) operation mode across newly
implemented machinery (e.g. roadside unit [RSU] and CPs)
to support vehicular communications [9, 10]. Incorporating
these technologies enables ITS/SCS automated systems and
the MPDN operator to both store information pertaining to
EVs, roads, and CPs across distributed data centres (DDCs),
and simultaneously update resilience-oriented restoration plans
of roads, CPs, and the MPDN components in real-time [11].
The advent of cyber–physical–social systems also facilitates data
exchange from EVs through an efficient information system [1,
12], which is of particular relevance to the MPDN restoration,
and considered desirable by power utilities seeking to improve
the MPDN resilience during high-impact low-probability events
(i.e. rare events).

It is important to note here that rare events can destroy trans-
portation systems, roads and CPs, which would then impact
the dispatching of EVs, exacerbating difficulties with service
restoration and compromising the MPDN resilience. The lit-
erature to date focused on coupling MPDN branches and
transportation for emergency mobile power source dispatch-
ing problems, while neglecting geographic factors such as actual
locations, distance, energy consumption rates, road congestion
and damage status, as well as CPs’ capacity, characteristics,
and technologies. Although there has been progress deploying
constraints relating to transportation roads in [13–15], cur-
rent research studies examine dispatching problems consider
transportation and charging station systems in a deterministic
manner. Such an approach does not thoroughly address the
full impact of interrelated geographic and spatial-temporal posi-
tioning and dispatching constraints on the ITS, or the SCS, in
reference to its potential role in enhancing the MPDN resilience
after a rare event.

1.2 Literature review

EVs play a crucial role in enhancing the MPDNs’ resilience by
serving as MPSs with the capacity to navigate transportation
systems and use distributed smart CPs [6, 16]. This is espe-
cially true in areas with a high penetration of EVs and sufficient
CPs [16, 17]. The utilization of different types of MPSs has
previously been examined when evaluating resilience-oriented
restoration strategies that support the MPDN outage load. In
[18], a two-stage restoration scheme is proposed to enhance
the resilience of MPDNs during emergencies. The routing
and scheduling of MPSs is thus optimized in coordination
with dynamic network reconfiguration. However, the practical
deployment and coordination of MPSs may result in challenges,

such as limited power availability and an inadequate charg-
ing infrastructure for EVs. In [15], a dynamic load restoration
method is proposed to effectively restore service in MPDNs
by managing interdependence within the transportation system.
However, mobile emergency generators (MEGs) may not nec-
essarily be uniform, impacting their effectiveness. Therefore,
additional testing and refinement are necessary to execute this
method in real-world scenarios. In [19], a time–space network
is utilized to optimize the routing of flexible emergency MPSs
for MPDN restoration. A transportation network simplification
method is proposed to reduce the number of binary vari-
ables involved in the optimization process, while simultaneously
enhancing the optimality of the routing decisions obtained, and
reducing the computational burdens arising from calculation.
However, the lack of an existing functional charging infrastruc-
ture for mobile energy storage systems (MESSs) complicates
the transportation network simplification method, necessitating
more nodes and binary variables. In [20–22], a joint restora-
tion model is proposed to enhance post-disaster resilience by
coordinating electric bus scheduling with MPDN restoration.
The objectives here are to maximize load pickups and minimize
electric bus rental expenses. However, assumptions concerning
charging station availability and the bus companies’ willingness
to participate may not represent real-world implementations
accurately. Moreover, it is important to consider the additional
restoration costs that arise when involving electric buses and
companies; that is, the cost of charging the buses and the cost
of compensating participating bus companies.

In [13, 23], the authors propose a rolling optimization frame-
work for MESSs, which effectively optimizes the allocation and
scheduling of MESSs, microgrids, and MPDN reconfiguration
to restore critical loads during extreme events. However, these
approaches simplify the distribution network and transportation
system, ignoring real world constraints, such as the availability of
CPs and road closures that affect movement of MPSs. In con-
trast, the authors in [24, 25] propose innovative approaches to
reduce peak loads in grid connected photovoltaic-powered EV
charging stations using coordinated controls. These approaches
utilize real-time meteorological and load demand data to opti-
mize EV charging, lowering peak power demand. However,
further improvements to the proposed coordination and opti-
mization of EVs are needed, particularly to maximize the
utilization of CPs and to reduce peak loads for the duration of
the cold load pick-up phenomenon that occurs after rare events.

Additionally, it is noteworthy that the utilization of MPSs
to enhance the resilience of MPDNs is limited by their utility
and reliance on prior knowledge to determine the probabili-
ties for outages and affected areas. Therefore, it is important
to note that they may not be sufficient to resolve unexpected
outages when larger areas are affected, resulting in extended
outages and disruptions. Existing studies have also highlighted
the need for innovative frameworks to optimize coordinated uti-
lization of EVs and CPs. While some promising approaches
have been proposed, there remains a need to develop more
comprehensive strategies to integrate the complexities of trans-
portation networks, as well as the availability of CPs and other
real-world constraints in optimization models. In addition, the
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requirement for an intelligent coordination framework to orga-
nize high penetration EVs results in inefficient use of resources.
Increased EV penetration also complicates transportation and
charging station automated system prepositioning plans and
dispatch strategies. This necessitates more sophisticated and
smarter restoration strategies, to ensure EVs can access charging
stations efficiently without triggering further disruption.

1.3 Major contributions

To address the aforementioned challenges and further enhance
MPDN resilience, an innovative resilient EV coordination
framework with a novel proactive prepositioning model and an
advanced spatial–temporal dispatching model is proposed here,
with the aim of effectively bridging the coordination gap where
there is penetration of EVs.

A novel information system is also proposed to further
enhance the MPDN resilience by exchanging EV data among
the MPDN operators, the automated ITS, automated SCS, and
EV users. The methodology uses real traffic data and patterns
to simulate a typical EV user behaviour in the real world.

Furthermore, a novel bidirectional geographic graph (BGG)
is proposed to dynamically consider spatiotemporal factors,
such as actual distance, traffic conditions, charging station avail-
ability, and power demand, to optimize routes between CPs
and EVs accordingly. This helps reduce the load on the SCS
to prevent overloading and queuing, which could lead to power
outages and other disruptions.

1.4 Paper organization

This paper is structured as follows: Section 2 presents the prob-
lem statement and the proposed information system. Section 3
provides the mathematical formulations for the proposed EV
coordination framework. Section 4 covers the solution, method
and linearization. Section 5 presents details of the simulation
studies and tests the systems’ specifications. Section 6 provides
the simulation results and discusses the proposed EV coordina-
tion framework. Section 7 covers the validation and sensitivity
analysis for the model proposed here. Section 8 provides fur-
ther remarks on the proposed work. Section 9 concludes the
article. The Appendix presents the remaining mathematical
formulations and figures adapted.

2 EVS COORDINATION FRAMEWORK

2.1 Problem statement

A modified conceptual resilience curve (R) is presented in
Figure 1 to illustrate the variance in the MPDN robustness
levels during pre-disruption (t0 ∼ te), disruption progress (te ∼
tpe), and the restorative phases (tpe ∼ tpr ) of a rare event [26].
The comparison highlights the superiority of the proposed
intelligent EV coordination framework (i.e. dashed line) over

FIGURE 1 A modified conceptual resilience curve associated with an
event [26].

FIGURE 2 The proposed two-stage electric vehicle (EV) coordination
framework and associated models.

the conventional EMPS coordination framework (i.e. solid
line). Accordingly, two categories of measures are employed to
enhance the MPDN resilience: for example, planning oriented
measures prior to the event (t0 ∼ te) in the initial stage, and
operation-oriented measures after the event (tpe ∼ tpr ) in the
second stage. Figure 2 demonstrates these stages, including the
models proposed to enhance the resilience of MPDN.

In the first stage, MPDN survivability is evaluated from tpe to
tr , proving the ability of the proposed EV propositioning model
to enhance MPDN resilience from Rr to R′

r at an earlier time (t ′r )
before tr . The MPDN reconfiguration model is co-optimized to
shift the system into a state where it is less impacted and stressed
by the event [27]. In the initial stage of the EV coordination
framework, EV prepositioning at the CPs is carried out to
ensure prompt discharging of connected EVs immediately after
a rare event occurrence. Additionally, the MPDN operator and
the automated ITS/SCS gather and update data associated to
EVs, CPs, roads, and the MPDN. Consequently, this active data
collection and updating contribute to the effective enhancement
of MPDN resilience for the subsequent stage. The enhance-
ment is achieved through the optimization of well-informed
restorative decisions.

In the second stage, MPDN recovery is measured from tr
to tpir proving the capability of the proposed EV dispatching
model to enhance MPDN resilience from Rpr to R′

pr , achiev-
ing complete restoration at t ′pir and enhancing the MPDN
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FIGURE 3 The proposed information system.

robustness level from R0 to R′
0. At this stage, spatiotempo-

ral routing and dynamic power scheduling of EVs, dynamic
network reconfiguration and dynamic power dispatch of the
MPDN are co-optimized. Consequently, the proposed EVs
coordination framework enhances the MPDN resilience from
the solid curve, shown in Figure 1, to the dashed curve. The
decisions and data obtained and collected during the first stage
are updated in this stage, ensuring a continuous process of
updates to guarantee the most optimal restorative decisions.
This includes routing decisions that require positioning and
routing EVs to CPs across critical routes, at the same time,
involves power scheduling decisions that necessitate a gradual
restoration of the MPDN within a shorter time frame, thereby
avoiding any further disruption or collapse.

2.2 Information system

As stated above, the aim of the proposed information system
is to further enhance the resilience of the MPDN by effectively
organizing data exchange among the MPDN operators, the ITS
and SCS automated systems, and EV users. In Figure 3, the
information system is divided to perform two tasks (i.e. Task

1 and Task 2), each according to a systematic order. During Task

1, each entity collects and shares the necessary data, as indicated
by the arrows. This ensures the automated systems have access
to the routing plan for the EVs across the roads, as well as to the
connection and discharging schedule at CPs during Task 2. This
data exchange is conducted in coordination with the MPDN
operators, so as to ensure outage loads are survived and are
restored efficiently, maintaining the operational constraints of
the grid components. Specifically, automated ITS ensures opti-
mal critical routes for each EV to reach its designated CP, while
the automated SCS schedules the connection between the EVs
and the CPs. Additionally, the automated SCS optimizes the uti-
lization of CPs throughout the restoration period, enabling the

most effective use of charging infrastructures and contributing
to faster and more efficient restoration of the MPDN.

This paper assumes the data obtained and shared by the
ITS/SCS automated system in the first and second tasks is auto-
matically transmitted to DDCs via RSUs within the intelligent
transportation infrastructure [28]. Thus, the MPDN operators
and the ITS/SCS automated system dynamically update the
MPDN resilience-oriented restoration plan at each predefined
time point. Moreover, the ITS/SCS automated systems share
data with the EVs via V2X operating modes [29]; particularly,
vehicle-to-infrastructure (V2I) communications [30].

The data exchange depicted in Figure 3 is used in both stages
of the proposed EV coordination framework. The commu-
nication operations shown are continuously updated at every
time step (Δt ) throughout the restoration time horizon ( ).
This ensures the restoration process remains synchronized and
efficient. To maintain clarity, Task 1 represents the proposed
communication protocol between the associated entities for
data exchange and updates. In contrast, Task 2 represents the
communication protocol between entities for initiating restora-
tive actions, which includes the models proposed here for EV
prepositioning, routing, and dispatching. Both tasks are per-
formed simultaneously and form the layout of the information
system, which is integrated into the first and the second stages
of the proposed EV coordination framework, as described
below:

2.2.1 The first stage

In the first stage of the proposed EVs coordination framework,
two key operations are conducted: EV prepositioning and plan-
ning for the restorative phase. During EV prepositioning, the
MPDN operator and the ITS/SCS automated system take pre-
ventive action to enhance the MPDN resilience. The automated
SCS collects technical and geolocation information about the
V2G-CPs and C-EVs, maximizing utilization of the available
EVs for post-event operations. This is illustrated as Task 1 in
Figure 3. These EVs are prepositioned to participate and dis-
charge shortly after the rare event, as indicated in Task 2. In
addition, the automated ITS plans for the restorative phase by
collecting location and technical data about T-EVs, as indicated
in Task 1 in Figure 3. This information is utilized to optimize the
critical route for each T-EV once road damage status and traf-
fic conditions are obtained shortly after the event, during Task

2. Meanwhile, the MPDN operator maximizes survived loads
while maintaining requisite constraints upon network compo-
nents. For example, as shown in Figure 4a, the automated SCS
collects technical data regarding V2G-CPs, C-EV6, and C-EV5,
while T-EV1 and T-EV2 are being pre-positioned. However, T-
EV3 is not eligible for pre-positioning due to its low average
state of charge (SOC av

e,t ) level.

2.2.2 The second stage

In the second stage of the proposed EV coordination frame-
work, the focus shifts to dispatching EVs according to the
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FIGURE 4 An illustration of the proposed electric vehicle (EV) coordination framework. (a) Preventive actions associated with the first stage (before the event
[t0 ∼ tpe]). (b) Restorative actions associated with the second stage (after the event [tpe ∼ tpr ]).

preparatory actions taken in the first stage. During EV dis-
patch, several key operations are conducted using information
collected during the first stage. Notably, this information is
repeatedly updated at every time step (Δt ) on the restoration
time horizon ( ). The automated SCS reports the damage sta-
tus of V2G-CPs and updates the available energy of C-EVs
(SOC av

e,t ), as depicted in Task 1 in Figure 3. It ensures that C-
EVs are immediately disconnected if the level of their state
of charge (SOCe) reaches the minimum boundary (SOC

e
). This

allows the next T-EV in the queue to participate immediately,
minimizing queues and maximizing use of CPs during Task 2.
Simultaneously, the automated ITS constantly updates traffic
data, road status, and CRs at each time step during Task 1.
This information is utilized to dynamically optimize the crit-
ical pathways for T-EVs in Task 2, thereby ensuring efficient
and timely routing decisions. Furthermore, the MPDN operator
keeps track of network components’ status based on the reports
provided by repair crews (RCs). This enables them to update
the status of network components accordingly. For example,
Figure 4b illustrates the disconnectedness of C-EV6, allowing
T-EV2 to connect and discharge. The automated ITS shares
optimal routes between V2G-CPs and T-EV1/T-EV2, while
C-EV5 is actively discharging.

2.3 Algorithm

The innovative algorithm in this section asserts that EVs and
CPs must not deviate from their prepositioning and dispatching
plans, as determined by the ITS/SCS automated systems and
the MPDN operators according to the proposed information
system set out in Section 2.2. This is achieved by modelling
binary variables (xe,t ), (xcp,t ), and (xe,cp,t ), in which they are
explained in this section, respectively. The flowchart in Figure 5
illustrates the proposed algorithm.

For the former variable (xe,t ), EVs are categorized according
to their connection mode: First, the away EV (A-EV), which
refers to an EV that cannot participate in the restoration pro-
cess, due to being connected to a unidirectional CP, and/or
its state-of-charge level (SOCe) being equal to or lower than
the minimum value (SOC

e
). Here, xe,t = 0∀t . Second, the con-

nected EV (C-EV), which refers to an EV that can participate
in the restoration process, since it is connected to a bidirec-
tional CP and its SOCe is greater than SOC

e
. Here, xe,t = 1∀t ⇒

FIGURE 5 Flowchart for the proposed algorithm.

SOCe ≥ SOC
e
. Third, the travelling EV (T-EV), which refers

to an EV that is travelling and cannot connect until its arrival
time (t ar

e,cp) is reached, where t = t ar
e,cp. To enable participation,

T-EV calculated SOCe at t ar
e,cp must be greater than SOC

e
. Here,

xe,t = 1, t ≥ t ar
e,cp ⇒ SOCe ≥ SOC

e
.

For the medial variable (xcp,t ), CPs are classified by technol-
ogy into two categories. First, the bidirectional CP (V2G-CP)
which operates a CP support vehicle-to-grid (V2G) operation
mode, for example, a vehicle-to-building (V2B) operation mode,
which can inject the power to the MPDN allowing C-EV to dis-
charge. Moreover, various capacities (i.e. the characteristics of
supplying electric power to an EV, ranging from slow to ultra-
rapid) and capabilities (i.e. the constraint of charging slot allows
for connection to only one EV at each time period [tn ∼ tn+𝜏],
given 𝜏 is the connection period of time) of V2G-CPs are con-
sidered. Here, xcp,t = 1∀t , if it is not damaged, and 0 otherwise.
Second, a unidirectional CP (V1G-CP) that is a CP cannot inject
power back to the MPDN: for example, in the vehicle-to-home
(V2H) operation mode. Here, xcp,t = 0∀t .

For the latter variable (xe,cp,t ), if a C-EV is connected
to V2G-CP, it is equal to 1 for the duration of the con-
nection period (t ar

e,cp ≤ t ≤ 𝜏), and 0 otherwise. Consequently,
charging/discharging processes, connecting and disconnecting
timings, and routes and destinations comply with the obtained
EV prepositioning and dispatching plan for the ITS/SCS
automated systems.
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3 MATHEMATICAL FORMULATION

3.1 Proactive prepositioning of EVs

Before a rare event occurs, the MPDN operator and ITS/SCS
automated systems collaborate to maximize the number of con-
nected EVs so as to enhance MPDN survivability. The objective
function of the first stage, in (1), maximizes the amount of
survived MPDN loads at t = 0.

min
e,cp,t

(max
l ,𝜙,t

∑
t

∑
l

∑
𝜙

[xL
l ,t ⋅ PL

l ,𝜙,t
]),

∀l ∈  ⊂ , e ∈ ̆ ⊂ , cp ∈ ̂ ⊂ , 𝜙 ∈ Φ, t = 0

(1)

Unlike [13–15, 18, 20–23, 31–37], the number of available
EVs is not predetermined here. Thus, the objective function
facilitates the prompt discharge of available EVs following the
event to maximize the amount of restored load in the inner
level, while obviating the necessity for further EV discharge if all
loads are survived in the outer level. By involving the variables
at the outer level, constraint (2) is modelled using charging sta-
tus (xch

e,t ) and discharging status (xdisch
e,t ), as well as binary variables

to ensure the EVs are prepositioned and connected at predeter-
mined CPs to allow them to start discharging immediately after
the event. Constraint (3) maintains the capability of CPs:

xch
e,t + xdisch

e,t ≤ xe,cp,t , ∀e ∈ E , cp ∈ CP , t = 0, (2)

∑
e

xe,t ≤ xcp,t , ∀e ∈ E , cp ∈ CP , t = 0. (3)

The problem of prepositioning is intelligently addressed in
the proposed approach by utilizing variables integrated into the
second stage of the framework. This approach makes the pro-
posed method novel and highly effective as means of improving
the resilience of the MPDN. This is because the proposed
prepositioning model allows for the transfer of updated initial
values for decision variables, via the information system to the
second stage of EVs dispatching, as shown in Figure 2. Con-
sequently, the information system, as described in Section 2.2,
facilitates effective coordination between the MPDN opera-
tors and the ITS/SCS automated system. Moreover, this model
effectively incorporates diverse categories of EVs and CPs into
the algorithms proposed in Section 2.3. The proposed preposi-
tioning model also ensures the MPDN resilience continues to
improve shortly after the disaster, thereby maximizing survived
loads. In the second stage, it enhances initial dispatch decisions
to maximize restored load.

The inner level of the objective function is subjected to the
following constraints:

Vi,𝜙,t −Vj ,𝜙,t ≤ 𝓏i j ,𝜙S∗
i j ,𝜙,t

+ 𝓏∗
i j ,𝜙

Si j ,𝜙,t

+M
(

1 − xN
i,𝜙,t

)
, ∀i j ∈ ∕ , 𝜙 ∈ Φ, t = 0,

(4)

Vi,𝜙,t −Vj ,𝜙,t ≥ 𝓏i j ,𝜙S∗
i j ,𝜙,t

+ 𝓏∗
i j ,𝜙

Si j ,𝜙,t

−M
(

1 − xN
i,𝜙,t

)
, ∀i j ∈ ∕ , 𝜙 ∈ Φ, t = 0,

(5)

(
V

i,𝜙,t

)2
Vi,𝜙,t ≤ Vj ,𝜙,t ≤

(
V i,𝜙,t

)2
Vi,𝜙,t ,

∀i, j ∈  , 𝜙 ∈ Φ, t = 0,

(6)

∑
ji

PB
ji,𝜙,t

+ Pdisch
e,𝜙,t

=
∑

i j

PB
i j ,𝜙,t

+ Pch
e,𝜙,t

+ PL
l ,𝜙,t

,

∀e ∈ E , 𝜙 ∈ Φ, t = 0,

(7)

∑
ji

QB
ji,𝜙,t

+ Qdisch
e,𝜙,t

+ QC
v,𝜙,t

=
∑

i j

QB
i j ,𝜙,t

+ QL
l ,𝜙,t

,

∀e ∈ E , 𝜙 ∈ Φ, v ∈  , t = 0.

(8)

Since the MPDN is naturally unbalanced, the three-phase
unbalanced power flow model is applied here [38–41]. First,
constraints (4) and (5) represent the three-phase line model that
ensures the feasible range of voltage difference between the two
end nodes (i), and ( j ), in each line (i, j ) and phase (𝜙) except for
the voltage regulators and transformers. Note that𝓏i j ,𝜙 ∈ ℂ3×3

is the equivalent three-phase line impedance matrix, consisting
of constant values defined in [39]. The three-phase apparent
power (Si j ,𝜙,t ) from node (i) to node ( j ) at time (t ) is equiva-
lent to [Pi j ,a,t + iQi j ,a,t , Pi j ,b,t + iQi j ,b,t , Pi j ,c,t + iQi j ,c,t ] ∈ ℂ3×3.
Note that, subscript “i” denotes the node index, while a com-
plex number in the imaginary part is denoted as “i”. M is a
large positive number and is selected to ensure constraints are
valid only when the line is energized. Second, the regulators are
assumed to be wye-connected, and the tap setting is continuous
[42] and approximate as suggested in [43], using constraint (6) to
force the regulators’ voltage on the secondary side of the volt-
age regulator to fall within 5% of the primary side. Constraints
(7) and (8) are the three-phase active and reactive power node
balance, respectively.

Furthermore, the mathematical formulations for the remain-
ing MPDN operational constraints are presented in Equations
(A.1)–(A.6) in the Appendix. These include the radiality con-
straint, active power limits for EV charging and discharging
operations, and constraints on capacitor reactive power, line
power, node voltages, and regulator voltages.

3.2 Dynamic dispatch of EVs

After the occurrence of a rare event, damage to the MPDN
components is addressed by the MPDN operator; concurrently,
the automated ITS and automated SCS reports the status of
roads and CPs, respectively. At this stage, extensive penetration
of EVs is ordered to restore the maximum possible proportion



ALGHAMDI ET AL. 7

FIGURE 6 An illustration the proposed geographic graphs (, ).

of the outage of the MPDN load as follows:

max
∑

t

(
∑
𝜙

∑
l

[
xL

l ,t ⋅ PL
l ,𝜙,t

]
−
∑

cp

∑
e

∑
r

[De,cp,r ,t ⋅ ECRe]),

∀l ∈  ⊂ , e ∈ ̆ ⊂ , cp ∈ ̂ ⊂ , r ∈  ⊂  ,

𝜙 ∈ Φ, t ∈  .

(9)

In (9), the first line maximizes the number of restored loads,
ensuring each load is restored non-decreasingly and fully recov-
ered, preventing the restored load from being shed again. The
second line minimizes the energy used during the transporta-
tion of EVs, taking into account the energy consumption rate
(ECRe) and considering only critical routes to avoid the unnec-
essary travel of EVs, resulting in an additional deficit of energy.
The objective function quantifies the MPDN resilience via
optimal EVs routing and power scheduling maintaining the
MPDN operational constraints, as presented in the following
subsections, respectively.

3.2.1 Spatial–temporal routing model

Considering the transportation system’s geographic constraints,
the road map is defined by a BGG (( ,)). For intersection
set ( ), each node (y ∶ (𝛾, 𝛽)) is determined by its coordinate
(i.e. longitude (𝛾) and latitude (𝛽)). This set contains the coor-
dinates for the CPs (̂y ∶ (𝛾, 𝛽) ∈ ̂ ), and EVs (y̆ ∶ (𝛾, 𝛽) ∈ ̆ ).
In the case, the ends of the road (r ) in the set of edges ()
are modelled as (y𝛿, y𝜁 ) ∈ . Similarly, the MPDN is designed
to function as a BGG (( , )). In the set of buses ( ), the
nodes are indexed by i ∶ (𝛾i , 𝛽i ), and j ∶ (𝛾 j , 𝛽 j ), and branches
are indicated as ={(i ∶ (𝛾i , 𝛽i ), j ∶ (𝛾 j , 𝛽 j ))|i, j ∈ ; i ≠ j}.
Correspondingly, the aforementioned graphs are combined into
the proposed BGG (), with a set of nodes () and edges
( ). For the set of nodes/intersections (), the geographic
graph () is intelligently modelled. This reduces the overall
number of nodes without any loss of associated coordinates.
Accordingly, similar coordinates are merged, which in turn
significantly reduces the overall computational burden of the
proposed methodology. For example, two graphs are repre-
sented in Figure 6, demonstrating the aforementioned graphs
and the proposed geographic graph. The number of intersec-

FIGURE 7 A demonstration of the proposed bidirectional geographic
graph (BGG), illustrating travelling plans for EV1 and EV2 to CP1, as well as
EV3 to CP2, for a single time step.

TABLE 1 The travelling information for the seismic routing plans of
EV1, EV2, and EV3 in Figure 7.

From To

From EV Cell To CP Cell Dtr ttr SOCtr

EV1 C7 CP1 B1 10 pu 11.13 pu 5.85 pu

EV2 C7 CP1 B1 8 pu 12.54 pu 7.69 pu

EV3 A7 CP2 A1 6 pu 8.34 pu 3.76 pu

tions at node1 is four (i.e. an EV, a CP, and the ends of two
roads). However, these four intersections merge to become one
node in (, ). For the set of edges/segments ( ), com-
bining the aforementioned graphs into the proposed graph
increases the number of segments describing the associated
edges (={(k𝜌, k𝜚 )|k𝜌, k𝜚 ∈; 𝜌 ≠ 𝜚}). This in turn improves
accuracy when calculating the actual distance between the EVs
and CPs. For example, the edge (k3 ∼ k7) in Figure 6 has
become two segments (i.e. k3 ∼ k5 and k5 ∼ k7).

To enhance understanding and visualization of the improve-
ments resulting from the integration of the proposed BGG into
the routing models, Figure 7 illustrates three simplified routing
examples. The figure assumes a distance of 1 p.u. between each
pair of segments, assigning specific CR values to individual
segments of the seismic road network. Additionally, Table 1
displays the routing information obtained from the simplified
examples in Figure 7. In Table 1, the variables Dtr , t tr , and
SOC tr represent the total travelled distance, total time required
for travelling, and energy consumed for travelling, respectively.
The routing plan for EV1 to CP1 represents the proposed
routing model after integrating the BGG. As listed in Table 1,
EV1 travelled further than EV2. However, EV1 arrived earlier
and consumed less energy when travelling. This highlights the
superior performance of the proposed routing model after
integrating the BGG. By considering the variations in CRs
across different road segments, the routing model can identify
critical routes more effectively, ensuring earlier arrival and lower
energy consumption, rather than solely focusing on distance.
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Additionally, it is apparent that EV3 exhibits the lowest dis-
tance, travel time, and energy consumption compared to the
other cases. This highlights the limitations of a deterministic
approach reliant on the average CR of the entire route.

In a practical sense, relying exclusively on average CR does
not accurately reflect the impact of real-world routing problems
as experienced by typical EV users. Consequently, the MPDN
operators may be vulnerable to risk of failure when effectively
restoring outage loads. Note that the BGG is also designed
to consider the dynamic variation in CRs for each time step
(Δt ), throughout the entire restoration period ( ). This sup-
ports accurate representation of real-world traffic conditions,
allowing the automated ITS to make informed decisions based
on current congestion levels.

Consequently, the proposed routing model not only exhibits
advanced geographical capabilities to facilitate the coordination
of high penetration of EVs on roads and CPs, but also includes
dynamic updates accounting for a large volume of EV data
that permits movement in multiple directions. This is achieved
by introducing a bidirectional flow variable (⃖⃗xk𝜌,k𝜚,e,t ), which
allows each EV to travel between node k𝜚 and node k𝜌 in either
direction, mimicking typical EV driving behaviour in the real
world. To ensure precise computation of the critical distance
travelled by an EV (e) and its associated CO (cp), constraint (10)
is introduced.

Dk𝜚,k𝜌,e,t =
∑
k𝜚

xk𝜚,k𝜌,e,t (Dk𝜚,e,t + (Dk𝜚,k𝜌,e,t xtr
e,t CRR

r ,t )),

∀(k𝜚, k𝜌 ) ∈ , (k𝜚, k𝜌 ) ∶ (𝛾, 𝛽) = y̆ ∶ (𝛾, 𝛽),

e ∈ E , t ∈  , t + 𝜏 ≤  , 𝜏 ≤ t tr
e,r , r ∈  .

(10)

This constraint represents a non-linear model designed to
calculate the critical path distance (Dk𝜚,k𝜌,e,t ) accurately. The
variables Dk𝜌,e,t and Dk𝜚

are integrated to calculate the distance
travelled by an EV e at time t to segment ends k𝜌 and k𝜚, respec-
tively. These segment ends are sequential and required for EVs
to satisfy the travelling of the critical path. This ensures the
EVs do not deviate from the critical path determined by the
automated ITS.

The time variables related to the spatial–temporal routing
model are formulated in Equations (11)–(16). These equa-
tions determine the limits on the travel time, connection time,
discharging time, and disconnection time for the EVs included.
The formulation of these time variables guarantees consistency
with the other constraints and decision variables in the model.
A visualization of these variables can be found in Figure 8.
Accordingly, these variables are designed as follows:

t
rq
e = {1, 2, … ,  }, ∀e ∈ ̆ ⊂ , t ∈  (11)

t ar
e = t

rq
e + t tr

e , ∀e ∈ ̆ ⊂ , t ∈  (12)

t w
e = t cn

e − t ar
e , ∀e ∈ ̆ ⊂ , t ∈  (13)

t cn
e = t ar

e + t w
e , ∀e ∈ ̆ ⊂ , t ∈  (14)

FIGURE 8 An illustration of requested time (t
rq
e ), travelling time (t tr

e ),
arriving time (t ar

e ), waiting time (t w
e ), connection time (t cn

e ), discharging time
(t dch

e ), and disconnection time (t dsc
e ).

t dch
e = {SOC av

e,t − DoDe}∕Pdisch
cp,t ,

∀e ∈ ̆ ⊂ , cp ∈ ̂ ⊂ , t ∈ 
(15)

t dsc
e = t cn

e + t dch
e , ∀e ∈ ̆ ⊂ , t ∈  . (16)

In Equation (11), the integer positive parameter (t
rq
e ) is pro-

posed to indicate the participation request point in time for an
EV (e); this reflects the order of the time step in the restora-
tion processes (i.e. Δt ∈  ). The time required for an EV (e)
to travel from its location, captured at t

rq
e , to the designated CP

(cp) is denoted as (t tr
e ). The arrival time variable (t ar

e ) in (12) indi-
cates the point in time when the EV (e) arrives at the CP, and it
is calculated by summing the requesting time (t

rq
e ) and the trav-

elling time (t tr
e ). Once an EV (e) has arrived at the designated

CP, the waiting time variable (t w
e ) is calculated using Equation

(13). This variable indicates the time period for an EV (e) to wait
in the queue for the next availability in the CP. The calculation
involves finding the difference between the arrival time (t ar

e ) and
the connection time (t cn

e ).
In Equation (14), the connection time variable (t cn

e ) for an
EV (e) is the sum of the arrival time (t ar

e ) and the waiting
time (t w

e ). This variable indicates when the EV is connected
to the CP and is ready to be discharged. The variable t cn

e

aligns with the time steps (Δt ∈  ), which are predefined
according to the proposed EV coordination framework time
horizon (i.e. Section 4.1), facilitating synchronized and efficient
coordination for timely restoration of the MPDN. When an
EV (e) is connected to the designated CP, the time required
to discharge the available energy (SOC av

e,t ) of the EV at the
time of connection (t cn

e ) is denoted as (t dsh
e ). This calculation

determining of the discharging time variable is performed using
Equation (15), which takes into account the rated discharging
power (Pdisch

cp,t ) of the CP, and the depth of discharge (DoDe) of

the EV. Note that the discharge/charge rate of the EV (Pch∕disch
e,t )

is also maintained as shown in Equations (A.16) and (A.17) in

the Appendix. It is unnecessary to integrate (Pch∕disch
e,t ), and the

feasible limits into the time model, as the proposed algorithm
here (i.e. Section 2.3) facilitates a connection between models.
Accordingly, the disconnection time variable (t dsn

e ), as defined
in Equation (16), indicates when an EV (e) will complete the
discharging operation such that the designated CP becomes
available for the next EV (e + 1) in the queue.

The remaining mathematical formulation in the proposed
routing model is provided in Equations (A.7)–(A.10) in the
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Appendix. These equations uphold the routing constraints to
ensure compliance with the EVs’ routing plan, maintaining the
designated start and end intersections, enforcing the required
travel distance for EVs, eliminating sub-tours, and calculating
the critical path distance for each EV.

3.2.2 Dynamic power scheduling model

In a practical sense, the amount of energy consumed (SOC tr
e,t )

by an EV (e) while travelling is relatively small. However, the
proposed framework coordinates a large penetration of EVs, so
the cumulative amount of SOC tr

e,t is considerable, affecting the
resilience-oriented restoration strategy; hence, constraint (17) is
used to calculate the available SOC level for the EVs:

SOC av
e,t = SOC av

e,t−1 +

(
𝜂CH Pch

e,t −
Pdisch

e,t

𝜂disch

)
Δt

−SOC tr
e,t , ∀e ∈ E , r ∈ , t ∈  .

(17)

Constraint (18) is a non-linear model computing the energy
consumption while travelling on critical routes (SOC tr

e,t ), con-
sidering the energy consumption rate (ECRe) for each EV (e)
individually:

SOC tr
e,t = xtr

e,t ECReDk𝜚,k𝜌,e,t ,

∀e ∈ E , t ≤ t ar , k𝜚, k𝜌 ∈ , k𝜚 ∶ (𝛾, 𝛽) = y̆ ∶ (𝛾, 𝛽),

k𝜌 ∶ (𝛾, 𝛽) = ŷ ∶ (𝛾, 𝛽).

(18)

In addition, constraints (A.11)–(A.17) in the Appendix are
formulated to ensure the EVs adhere to the scheduling plan
obtained for the ITS/SCS automated systems. Accordingly, this
model includes constraints that limit the SOC level of the EVs,
active power limits for EVs, exclusive charging and discharging
actions, CP capability and connection maintenance, and capac-
ity control for charging demand and the power injected into the
grid during EV discharge operations.

3.2.3 Modern power distribution network
operational constraints

After an extended period of outage, the cold load pickup
(CLPU) phenomenon may occur [44]. To evaluate this, it is
necessary to consider the diversified load (PDI

L ) and the undiver-
sified load (PU

L ). The CLPU constraint for active and reactive
power is formulated in constraints (19) and (20), according to
[43, 45]:

PL
l ,𝜙,t

= xL
l ,𝜙,t

PDI
l ,𝜙,t

+
(

xL
l ,𝜙,t

− xL
l ,𝜙,t−1

)
PU

l ,𝜙,t
,

∀𝜙 ∈ Φ, l ∈ , t ∈  ,

(19)

QL
l ,𝜙,t

= xL
l ,𝜙,t

QDI
l ,𝜙,t

+
(

xL
l ,𝜙,t

− xL
l ,𝜙,t−1

)
QU

l ,𝜙,t
,

∀𝜙 ∈ Φ, i ∈ , t ∈  .

(20)

When designing a modern power distribution network, the
set of switchable loads (S ) and non-switchable loads (∕S )
must be modelled. A non-switchable load (l ) is energized imme-
diately if connected to an energized node (i) using constraint
(21); on the other hand, constraint (22) requires that switchable
loads (l ) only be energized if connected to an energized node
(i). Constraint (23) ensures the loads () are not tripped again
after their restoration.

xL
l ,t = xN

i,t , ∀l ∈ ∕
{
S ∪ F

}
, 𝜙 ∈ Φ, t ∈  , (21)

xL
l ,t ≤ xN

i,t , ∀l ∈ S∕F , 𝜙 ∈ Φ, t ∈  , (22)

xL
l ,t − xL

l ,t−1 ≥ 0, ∀l ∈ S , 𝜙 ∈ Φ, t ≥ tpe, t ∈  . (23)

Remotely controlled switches (RCSs) are considered along-
side manual switches in the MPDN. Constraint (24) limits the
number of switching operations, as expressed by the binary vari-
able (xRCS

i j ,𝜙,t
). It is equal to 1 if the line switches its status from 0

(off) to 1 (on), or from 1 (on) to 0 (off).

xRCS
i j ,𝜙,t

≤ |xB
i j ,𝜙,t

− xB
i j ,𝜙,t−1|, ∀i j ∈ S , 𝜙 ∈ Φ, t ∈  . (24)

Also, a fault location, isolation, and service restoration
(FLISR) model is integrated and represented in constraints
(A.18)–(A.24) in the Appendix. This model is integrated into
the second stage to ensure the preservation of safe operational
conditions within a MPDN. Moreover, similar to the initial stage
of MPDN operational constraints, constraints (A.25)–(A.28)
are implemented here primarily for power scheduling purposes.
They define the feasible ranges for capacitor reactive power, line
active and reactive power, while also ensuring the maintenance
of MPDN radiality. Additionally, the optimal power flows for
three-phase unbalanced MPDN and node balance equations are
also integrated and represented in constraints (A.29)–(A.33) in
the Appendix.

4 SOLUTION METHOD

4.1 Rolling horizon optimization framework

Obtaining massive data on EVs and CPs and the damage sta-
tus of MPDN components and roads for all time periods of
restoration at t = 0 is a challenging task [13]. Hence, a rolling
optimization framework is adopted to solve the problem recur-
sively by providing a finite-moving horizon of intervals [46].
The time horizon ( ) is discretized into equal time intervals
(Δt ), and the problem solved at each interval where  = 24
and Δt = 0.5 h. Here, the decisions and information given
in the first interval are implemented and updated at each
(t ). The prediction horizon is then shifted forward and the
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FIGURE 9 The relative optimality gap at each iteration.

calculation repeated at the selected intervals until the end of the
time horizon.

4.2 Linearization techniques

The critical distance calculation model in (10), and the model of
energy consumed during travelling in (18) are both non-linear.
Therefore, for constraint (10), 𝛼 is a large parameter used to
relax this constraint. The CR variable (CRR

r ,t ) is replaced with a
non-constant parameter (CRR

r ), in which the value changes over
time for each road. Hence, the distance calculation model in
(10) is reformulated and expressed as described by constraints
(A.34)–(A.37) in the Appendix. Similarly, the travelling energy
consumption model in (18) is non-linear. Thus, it is reformu-
lated and expressed as described by constraints (A.38), which
involves eliminating the travelling status variable (xtr

e,t ) to be
maintained in constraint (A.39) as outlined in the Appendix.

5 SIMULATION STUDIES

5.1 Intelligent EV coordination
performance

The proposed restoration strategy was implemented in the
GAMS 42.2.0 studio and solved using Gurobi version 10.0.0
on a PC with a 12th Gen Intel(R) Core(TM) i7-12700k, 3500
MHz CPU processor and 8 GB RAM. The relative optimal-
ity gap offers a measure of the difference between primal
(zP ) and dual (zD) objective bounds, and is defined by the
incumbent equation (i.e. gap = |zP − zD|∕|zP |) as per [47].
The gap decreases monotonically until it reaches a threshold
of 0.001%, which indicate an optimal solution. This conver-
gence is then demonstrated in Figure 9, where the optimal

FIGURE 10 The map of Battersea road in London, UK, depicting A-, B-,
C-roads, as well as all roads combined.

FIGURE 11 The map of Battersea road with different congestion rates
(CRs), ranging from high to low level.

strategy is achieved within approximately 40 min at iteration
number 104.

5.2 Test systems

For all three case studies described in Section 6, EVs are consid-
ered as viable MPSs suited to the proposed coordination scheme
in instances of high penetration of EVs and multiple infrastruc-
tures. A UK-wide map of electric car CPs was imported from
ZAP-MAP [48], as were real world EV technical characteris-
tics. The repair time for CPs was coupled with MPDN nodes.
A map of Battersea road is used to simulate the transportation
system, as shown in Figure 10. The roads are categorized as A-,
B-, and C-roads, and collected from the UK Government web-
site [49]. CRs are assigned based on Google Maps colour codes
representing live traffic speeds, as in Figure 11 [50]. The real
distances between T-EVs and the associated CPs are adapted
according to real traffic information obtained from Google
Maps using a Python client following the model proposed in
[51]. The robustness of the proposed framework is verified on
a modified three-phase IEEE 123 node test feeder. The repair
times for MPDN lines are based on a two-stage stochastic pro-
gram proposed in [52], which involves dispatching 10 repair
crews to repair the damage. The scenario considered involves
15 damaged lines and laterals, as specified in Table 2. Here, the
proposed recovery plan in [52] is aligned with the time steps
(Δt ), which were predefined here. It is further assumed that the
MPDN remains separate from the main grid throughout the
entire restoration period ( = 12 h). Therefore, the repair time
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TABLE 2 The repair times of the damaged lines and laterals [52].

Line 38–39 18–163 58–59 113–114 7–8

Repair time (h) 1.75 1.75 0.5 1.25 2.5

Repair time (Δt ) 6 6 6 6 8

Line 54–57 15–17 27–33 105–106 18–19

Repair time (h) 0.75 2.25 2.25 2.75 0.5

Repair time (Δt ) 8 10 10 10 12

Line 67–72 76–86 91–93 93–95 150–149

Repair time (h) 5.25 8 1.5 2.75 12

Repair time (Δt ) 12 16 16 16 24

for line 150 − 149 is assumed to be 12 h (Δt = 24) as listed in
Table 2.

6 SIMULATION RESULTS AND
DISCUSSION

The application of the proposed MPDN resilience metric
enables the evaluation and comparison of different case studies,
assessing the effectiveness of novel and advanced framework
elements, such as the pre-positioning and dispatching model,
information system, integration of ITS/SCS automated system,
and geographic graph. These components contribute to achiev-
ing an optimal solution managing the geographic and technical
data associated with roads, MPDN components, CPs, and EVs.
Three case studies are designed as follows:

Case-I: presents the proposed framework.
Case-II: presents a less coordinated approach, wherein the

first and second stages are not synchronized, to highlight the
robustness of the proposed prepositioning model.

Case-III: presents a non-automated EVs dispatching frame-
work to demonstrate the effectiveness of integrating the pro-
posed information system and geographic graph into MPDN
resilience oriented restoration strategies.

The proposed pre-positioning model and constrained large-
scale EV routing problem introduce the need for several
interrelated decision variables, such as distance travelled by the
EVs (Dk𝜚,k𝜌,e,t ), energy consumed during travel (SOC tr

e,t ), and
the state of charge of the EVs upon arrival at CPs (SOC av

e,t ).
The optimal values of these variables influence the MPDN
resilience oriented restoration strategy. In Figure 12, the crit-
ical path distances (Dk𝜚,k𝜌,e,t ), and the median value with the
normal distribution curve of (SOC tr

e,t ) are illustrated for each
case. Owing to the intelligent preparing stage, the proposed
novel prepositioning approach returns significantly lower val-
ues for the distance variable (Dk𝜚,k𝜌,e,t ) at the early stage of the
restoration. This is due to the coordinated efforts of the MPDN
operators and automated systems when maximizing SOC av

e,t of
the EVs, which in turn increases the number of loads surviving
(PL

l ,𝜙,t
) shortly after a rare event. As time passes, the ITS/SCS

automated system updates the decision variables obtained dur-
ing the first stage. Then, the critical path distance values increase

FIGURE 12 The simulation results. (a) The load is restored at each time
step (PL

l ,t ). (b) The cumulative load restored at each time step (
∑

t∈ PL
l ,t ). (c)

The median and normal distribution curve for SOC consumed during travel
(SOC tr

e,t ). (d) The distance of the critical pathways (Dk𝜚,k𝜌,r ,t ).

as most of the connected EVs (C-EVs) are discharged (i.e.
SOC av

e,t = SOC
e,t

) and disconnected from the CPs, while the
travelling EVs (T-EVs) start their journeys to connect to the
CPs for discharge.

Traditionally, the optimal solution typically requires travel
over the shortest distance. However, in the case of the proposed
approach (Case-I), while it appears to have higher distance val-
ues, the ITS/SCS automated systems optimize the distance
considering power scheduling constraints, CP utilization, and
overloading and queue management at charging stations. The
proposed methodology prioritizes the efficient use of CPs
and EVs, addressing multiple factors; that is, charging station
capacity, battery levels of EVs, and the availability of CPs.
This ensures that the optimal charging schedule is achieved
without causing a system overload or disruption. Therefore,
the proposed BGG optimizes distance in a way that reduces
SOC tr

e,t achieving a maximum number of restored loads. Thus,
Case-I has shown its robustness and resilience; as shown in
Figure 12, the median amount of energy consumed during travel
(SOC tr

e,t ) in Case-I is the lowest, saving more than 20% (SOC av
e,t )

compared to the other cases.
Moreover, the proposed approach aims to increase (SOC av

e,t )
by maximizing the number of EVs that can be communicated
with in both stages. This leads to a higher communication rate
among online EVs (i.e. online EVs are those EVs that are
can be communicated with via ITS/SCS automated systems
through RSUs installed on roads using V2I technology). Thus,
around 97%, 86%, and 74% of online EVs can be communi-
cated with in Case-I, Case-II, and Case-III, respectively. This
is achieved because the proposed information system allows
for efficient collaboration between the automated system of
roads and CPs, enabling the continuous transfer and updat-
ing of data and decisions obtained constantly. Therefore, the
proposed approach achieves a communication rate that is 11%
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and 23% higher than Case-II and Case-III, respectively, demon-
strating the superiority of the proposed information system for
enhancing MPDN resilience.

A high number of communicated EVs is crucial for improv-
ing the MPDN resilience, but not all EVs can participate in the
restoration process, due to limiting factors such as CP capacity
and capability, road CR and status, and the EVs’ state of charge
levels. Therefore, maximizing the number of participant EVs
is a challenging task. Despite this, simulation results indicate
the proposed dynamic approach performs well in worst-case
scenarios, where 72% of communicated EVs can participate
in Case-I. In contrast, only 52% and 17% of EVs participated
in Case-II and -III, respectively. This demonstrates the robust-
ness of the proposed approach, which intelligently updates and
coordinates between MPDN operators and automated systems,
resulting in a 20% and 55% increase compared to Case-II
and Case-III, respectively, leading to further enhancement of
MPDN resilience.

Figure 12 presents the load restored at each time step, and
the cumulative load restored in the presence of the CLPU phe-
nomenon, which can cause delays in the restoration process by
absorbing additional power due to undiversified loads (PU

l ,𝜙,t
).

Case-I, which employs the proposed approach, shows faster
and more efficient restoration, with higher objective values at
all time steps compared to comparative cases (i.e. Case-II and
Case-III). The severe damage scenario assumes the majority of
the distribution network’s 3-phase lines are damaged at t = 0.
Nevertheless, the proposed approach still significantly enhances
the MPDN resilience by restoring 100% of the load at t = 24,
which is sooner than in the comparative cases. Specifically, Case-
II and Case-III restore around 91% and 81% of the load,
respectively, at t = 24 indicating more EV (i.e. higher amount
of SOC), as well as more time steps, are required to fully restore
the MPDN.

Overall, the simulation results in Figure 12 demonstrate the
significant impact of the proposed EV coordination frame-
work (Case-I) on the restoration processes. This impact can be
attributed to several causes. First, the proposed EV preposition-
ing model outperforms the comparative case studies by around
20% by leveraging ITS/SCS automated system capabilities to
make strategic EV positioning decisions, thereby maximizing
the number of loads surviving the early stages of restora-
tion. Moreover, the proposed information system improves the
effectiveness of data exchange between entities and EV users,
resulting in 23% more participant EVs, increasing the energy
injection back into the grid (SOC av

e,t ). This leads to a greater vol-
ume of survived and restored loads (PL

l ,𝜙,t
), where the amount of

load restored at most time steps is higher in Case-I. Addition-
ally, the integration of the proposed BGG exhibits robustness
when optimizing routes for a large penetration of EVs, by con-
sidering the variations in traffic conditions. This is evident in
the lower values for SOC tr

e,t , despite the higher travel distances
observed, as 20% more of EVs energy are preserved. Finally, the
results depicted in Figure 12 provide evidence of the enhanced
resilience of the MPDN, as demonstrated by the higher objec-
tive values achieved with the proposed methodology (Case-I).

In Case-I, the first stage objective value, representing the total
load survived, is 3609 kW, while the second stage objective
value, representing the total load restored, is 63624.31 kW. In
comparison, the comparative case studies (Case-II and Case-
III) yield lower objective values. Specifically, Case-II achieves
2790.35 kW for the first stage and 56449.13 kW for the sec-
ond stage, while Case-III achieves 2412.64 kW for the first stage
and 45494.62 kW for the second stage. These findings highlight
the effectiveness of the proposed methodology with regard to
improving the overall resilience of the MPDN.

7 SENSITIVITY ANALYSIS AND
VALIDATION

The effectiveness of the models proposed here are presented
and discussed in separate subsections, with each subsection
highlighting the significance of the contributions presented.
Section 7.1 assesses and compares the robustness of the prepo-
sitioning and dispatching strategy presented in this study, with
the coordination framework proposed in a recently published
work. Section 7.2 shows the effectiveness of the proposed infor-
mation system and its impact on EV coordination strategies,
emphasizing its significance in improving coordination efforts
of ITS/SCS automated system. In Section 7.3, the effectiveness
of the proposed BGG is demonstrated. A sensitivity analy-
sis is conducted with the proposed routing model in recently
published works, highlighting the distinctive mechanism of the
proposed BGG and its impact on routing decisions.

7.1 The proposed two-stage optimization
approach

The proposed framework is one of the few two-stage opti-
mization frameworks to include a pre-positioning model for
MPSs in the first stage and a dispatching model in the second
stage. It also focuses solely on the use of MPSs to enhance the
resilience of MPDNs and can be compared to that proposed
in [23]. While recent works, such as [53, 54], propose simi-
lar approaches to enhance MPDN resilience, they extend the
concept by incorporating additional factors such as renewable
energy sources and repair crews. Such extensions are beyond
the scope of the proposed framework. Therefore, comparing
the proposed framework to these works may lead to unreliable
or misleading findings.

By comparing the proposed framework with [23], the over-
all effectiveness and performance of the proposed approach
can be evaluated. This comparison allows for the identifica-
tion of the superiority of the proposed framework over existing
similar frameworks. To maintain consistency and facilitate effec-
tive comparison, the test systems, scenarios, and initial settings
are set according to the specifications outlined in [23], with
regard to the IEEE-123 node test system, as demonstrated in
Figure A1 in the Appendix. The comparison is conducted with
the inclusion of six MPSs considering two MESSs with 500
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kW/776 kWh capacity, two EV fleet with 150 kW/150 kWh
capacity and 0.25 kWh/km energy consumption rate, and two
MEGs with 800 kW/600 kVar capacity. The depots and CPs for
the associated power sources are also illustrated in Figure A1 in
the Appendix, which includes six CPs. Also, the time window
for the simulations is modified to  = 48Δt , which is equiva-
lent to 24 h with Δt = 0.5 h. Additionally, the MEGs involved
are assumed to be three-phase. The MEGs’ operational con-
straints are also maintained using Equations (A.40) and (A.41)
in the Appendix. The MESS operational constraints are also
maintained using Equations (A.42)–(A.45) in the Appendix. To
simulate the travel in MPSs between depots and CPs, the seismic
transportation network presented in [23] is also deployed for all
the case studies in this section, to ensure a direct comparison.
Accordingly, the two case studies are as follows:

Case-IV: depicts the proposed two-stage optimization
framework proposed here.

Case-V: depicts the two-stage optimization framework
proposed in [23].

During the prepositioning stage, the proposed approach
demonstrates superior performance relative to Case-V, with an
approximately 25% increase in the number of survived loads.
This improvement is attributed to the integration of the infor-
mation system into the proposed prepositioning model. By
leveraging the capabilities of the ITS/SCS automated system,
enhanced prepositioning decisions are made to strategically
position the EVs to maximize the number of survived loads
during the early stages of the restoration process (from t = 1
to t = 4). The ITS/SCS automated system utilizes the available
shared information on DDCs to effectively preposition EVs,
aiming to optimize the utilization of CPs shortly after the event.
As a result, the proposed approach achieves higher objective
value by ensuring a greater number of loads to survive, and by
providing a more efficient and effective restoration process.

In the restorative state, the routing and dispatching strat-
egy proposed in [23] restored more loads between t = 5 and
t = 24, due to the assumption of normal road status, neglect-
ing congestion level, as indicated in Figure 13. In contrast, the
proposed strategy accounts for high CRs and severe critical
path damage, resulting in longer travel times and distances for
some EV fleets and MESS units. Note that, the detailed rout-
ing model is discussed in Section 7.3. As a result, the proposed
strategy produced lower objective values in the early stages of
the restoration process. Nevertheless, the proposed approach
outperforms the comparison approach from t = 25 onward, as
the automated ITS reported the roads as repaired. This update
is facilitated by the integration of the proposed information
system and BGG. This allows constant updates of road CRs
and damage status, resulting in more efficient routing decisions.
Thus, higher objective values are observed in Figure 13, as the
proposed method exhibits enhanced MPDN resiliency during
the post-event state (tpe ∼ tpr ), with a 14% increase in the num-
ber of loads survived compared to the case in [23]. This is
attributed to the well-coordinated efforts of the operators in
the pre-event stage (t0 ∼ tpe), as the information generated by
the automated systems can be optimally utilized to solve the
pre-positioning, routing and power scheduling problems.

FIGURE 13 Restored loads at each time period for the proposed strategy
(i.e. Case-IV) and in [23] (i.e. Case-V).

Overall, the integration of the BGG and information sys-
tem into the proposed EV coordination approach effectively
improves resilience and expedites the restoration of the MPDN.
By optimizing the routing and power scheduling of MPSs,
the proposed approach enhances overall MPDN resilience and
accelerates the restoration process. Consequently, the proposed
approach suggests improved resilience with 2 h faster recov-
ery times compared to the approach proposed in [23], thereby
maximizing the use of available resources. This enhanced utiliza-
tion of resources allows for accelerated load restoration efforts.
In Case-IV (i.e. the proposed approach), full load restoration is
achieved at t = 41, which is earlier than the time frame t = 45
achieved in [23].

7.2 The proposed information system

This section conducts comprehensive analysis and evaluation
of the proposed information system and its impact on the EV
coordination framework. The travelling time, waiting time, and
discharging time of the EVs involved in the different case stud-
ies are evaluated to highlight the significance of integrating
the proposed information system for EV coordination. Fur-
thermore, the length of time a CP (cp) is not operating for
discharging (t nu

cp ) is introduced and calculated as follows:

t nu
cp = t cn

e − t dch
e − t dsc

e−1, ∀e ∈ ̆ ⊂ , t ∈  . (25)

The sensitivity analysis conducted in this section assesses
the effectiveness of the proposed information system designed
to coordinate EVs and improve their scheduling and alloca-
tion to CPs. Since no similar works or methodologies were
identified in the existing literature for comparison, two case
studies were designed to validate the proposed methodology.
These case studies demonstrate the impact of the proposed
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FIGURE 14 The simulation results for the proposed communication
methodology (i.e. Case-VI). The vertical axis represents the order of electric
vehicle (EV) connections, while the horizontal axis represents time in hours.

communication methodology on the coordination of EVs. The
case studies are as follows:

Case-VI: presents the EV coordination results from the
requesting time to the disconnecting time, considering both
Task 1 and Task 2 of the proposed information system.

Case-VII: presents the EV coordination results from the
requesting time to the disconnecting time, considering only Task

2 of the proposed information system.
Here, the proposed EV coordination framework involves

more than 90 CPs, making it impractical to demonstrate the
detailed coordination results for all the CPs involved individ-
ually, therefore, Figure 14 illustrates the results associated with a
representative CP. The analysis shows that the CP is not operat-
ing (t nu

cp ) for a duration of approximately 1.5 h, which accounts
for 13% of the total restoration period of 12 h. This indicates
that the proposed methodology effectively coordinates the EVs,
ensuring the CPs are utilized for discharge mainly during the
restoration period. Specifically, the total discharging time (Pdisch

cp,t )
amounts to approximately 87% of the total restoration period.
Note that this paper focuses on the effects of the length of wait-
ing time in terms of time, rather than cost of waiting, as the
latter is beyond its scope. However, the effects of waiting on
restoration processes are thoroughly evaluated in this section.
The energy consumption of EVs during waiting is determined
to be negligible, as it is typically less than 0.4 kWh per hour of
waiting time. This is because EVs are typically in a low-power
state when waiting [55].

To further validate the benefits of the proposed information
system on MPDN resilience, the results for both cases are listed
in Table 3. In this table, the total travelling time (t tr

e ) and total
waiting time (t w

e ) for the involved EVs are measured in hours
(h). The total discharging time (t dsc

e ) for the EVs and total time
when the representative CP is not operating (t nu

cp ) are measured

TABLE 3 The simulation results of Case-VI and Case-VII considering
one representative charging point (CP).

Case t tr
e (h) tw

e (h) t dsc
e (%) tnu

cp,t (%) Total EVs

Case-VI 4.91 7.21 86.81 13.19 24

Case-VII 5.69 8.34 68.13 31.87 21

FIGURE 15 The simulation results for Case-VI and Case-VII
considering all involved charging points (CPs) and electric vehicles (EVs).

by percentage (%) of the total restoration period ( = 12 h).
During the travelling stage, the total travelling time (t tr

e ) for 21
EVs in Case-VII is approximately 1 h longer than in Case-VI,
which involves 24 EVs. More specifically, the average travelling
time for the EVs in Case-VI is around 12 min, while in Case-
VII, it is approximately 14 min. The longer travelling time in
Case-VII corresponds to a higher cumulative energy consump-
tion value (SOC tr

e,t ) compared to Case-VI, where the information
system is fully integrated. This increased SOC tr

e,t has a negative
impact on the restoration strategy, resulting in a lower amount
of total load being restored, as reflected in Figure 12. In the
proposed framework, which involves approximately 2000 EVs,
this 2-min average increase for each EV results in a travel time
that is approximately 67 h longer overall for all the associated
EVs, as detailed in Figure 15. This leads to a 723.6 kWh higher
energy consumption rate (SOC tr

e,t ) during travel in Case-VII than
in Case-VI.

Similarly, in terms of the waiting time (t w
e ), Case-VI outper-

forms Case-VII. In Case-VI, the average waiting time for each
EV is approximately 18 min, which is around 6 min lower than
in Case-VII. Additionally, the longer average wait time for each
EV at CP, which exceeded 20 min in Case-VI, may have a sub-
stantial influence on EV users’ decision to participate. It appears
likely that EV users are unlikely to participate in scenarios with
such long waiting times. Cumulatively, when considering the
total number of EVs involved in the proposed EV coordination
framework, the total waiting time in Case-VI is approximately
233 h higher than in Case-VII, as indicated in Figure 15. This
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higher waiting time significantly impacts the restoration strat-
egy. Moreover, during the waiting period at the involved CPs,
the energy consumption rate (SOC tr

e,t ) is higher in Case-VII than
in Case-VI where the information system is fully integrated.

Furthermore, in Case-VI, the total discharging period (t dsc
e ) at

the representative CP accounts for the majority of the restora-
tion period ( ). As shown in Table 3, the CP operates discharge
mode for approximately 87% of the restoration period, leav-
ing only around 13% of time where the CP is available. The
under-utilization of the representative CP during the restora-
tion period in Case-VII is primarily attributed to the absence
of the proposed information system. In this scenario, this fac-
tor restricts the efficient utilization of CPs, roads, and EVs. It
results in under-utilization of the CPs, potentially longer waiting
times for EVs, and a fewer EVs participating in the restoration
processes, as shown in Table 3 and Figure 15.

Overall, the integration of the proposed information sys-
tem significantly improves the routing plan, reducing the overall
travel time by 14.51% and total energy consumption during EV
travel by 19.8%. Furthermore, the total waiting time is reduced
by 31.1%, raising the participation rate of EV users by 11.7%.
These benefits extend to MPDN operators and ITS/SCS auto-
mated systems, enhancing the opportunities for allocation and
scheduling of EVs to CPs. As a result, the CPs were able to
operate in the discharging mode for more than 87% of the
restoration time horizon, effectively enhancing the resilience of
the MPDN.

7.3 The proposed bidirectional geographic
graph

This section conducts a comprehensive analysis and evaluation
of the proposed BGG and its impact on the EV routing model.
The primary objective of the BGG was to facilitate independent
travel plans for more than 2000 EVs and 90 CPs within the pro-
posed EV coordination framework. To validate the capabilities
of the BGG on the proposed spatial–temporal routing model,
an additional set of four case studies were conducted. Thus,
this analysis offers clear insights into the impact of the pro-
posed BGG on MPSs routing flexibility and overall resilience.
The conducted case studies reflect and evaluate the routing
methodology proposed in recently published works [23, 53], and
are:

Case-VIII: depicts the proposed routing model here.
Case-IX: depicts the routing model proposed in [23].
Case-X: depicts the routing model proposed in [53].
The simulation in this section employs the IEEE 123-bus dis-

tribution test system along with a simplified road network based
on the power distribution test system (consistent with the speci-
fications described in Section 7.1). This ensures consistency and
comparability with the simulation setup used in [23, 53]. Due to
space limitations, the detailed routing decisions set out in the
comparative case studies can be found in the original papers
[23, 53]. The detailed routing decisions for the proposed routing
model are given in Figure 16, where the symbol “→” indicates
that a MPS is travelling on the road.

Accordingly, the comparative case studies show that in the
earlier stages of the restoration process, travel times are faster,
with t being less than 1∕2 of  . This is because compara-
tive case studies do not consider severe road damage and high
CRs. In contrast, the proposed strategy accounts for delays and
encounters critical path damage and closures, resulting in longer
travel times and distances for some EV fleets and MESS units,
as depicted in Figure 16. Specifically, the critical path between
CP5 and CP3 was damaged during the event modelled, and
was under repair from t = 13 to t = 16. As a result, EV fleet 1
required approximately four time steps to travel on this road. By
contrast, EV fleet 2 only needed one time step as the road had
already been repaired. Similar situations occurred for the critical
paths between CP5 and CP6, CP3 and CP6, and CP3 and CP4,
where roads were damaged and subsequently repaired at differ-
ent time steps. Additionally, the critical paths between CP1 and
CP4, CP1 and CP5, and CP2 and CP6 experienced high CRs,
leading to longer total travel times for the corresponding MPSs.
This resulted in delays to the routing of MEG1, MEG2, and EV
fleet 1, respectively. Once the roads were reported as repaired
by the automated ITS at t = 25, the BGG demonstrated its
effectiveness by incorporating the updated information. This
integration enables the dynamic update of road CRs and damage
statuses, providing information to generate more accurate and
efficient routing decisions. The improved performance resulting
from this integration is apparent in Figure 16, where a signif-
icant reduction in travel time is evident starting from t = 25.
This enhanced flexibility in routing mobile power sources on
the road network allows for more journeys, surpassing the
capabilities of the approaches proposed in [23, 53].

The superior performance of the proposed approach is
evident through the higher overall energy usage for load restora-
tion compared to the comparative case studies, as shown in
Figure 17. In Case-VIII, the generated power (PG ) represents
the total power generated by the involved MPSs shown in
Figure 16. However, in Case-X, the generated power includes
contributions from MPSs, photovoltaic, and wind turbine
sources, as detailed in [53]. Although the precise data for gen-
erated power in Case-IX is unavailable in [23], the cumulative
load restored is considered equivalent to power generated for
comparison purposes. The notable increase in energy utiliza-
tion achieved by the proposed approach, with 11.21% higher
energy usage compared to Case-IX, and 24.93% higher com-
pared to Case-X, contributes to the enhanced resilience of the
distribution network.

8 FURTHER REMARKS

The necessity of separating the stages in the proposed two-stage
optimization framework arises from the adverse consequences
of combining into a single detailed model. That is, such
integration would heighten the complexity and pose com-
putational challenges, diminishing tractability. Moreover, the
inter-dependencies between the stages may become com-
plicated, preventing independent analysis and optimization.
Hence, it is vital to maintain the separation of stages to ensure a
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FIGURE 16 The routing plan of the mobile power sources (MPSs) obtained in Case-VIII.

FIGURE 17 The amount of generated power (PG ) by the involved
mobile power sources in Case-VIII, Case-IX, and Case-X.

manageable level of complexity, facilitate efficient computation,
and support independent evaluation.

In addition, while this paper primarily focuses on a large
single area, the proposed EV coordination methodology has
the flexibility to be adapted to manage multiple independent
large areas. This can be achieved by partitioning the prob-
lem into m number of sub-problems, where m represents
the number of areas. In this case, each sub-problem could
be solved separately and in parallel, utilizing multiple avail-
able PCs. This approach enables efficient and simultaneous
optimization of restoration processes across different areas,
facilitating expedited decision-making and enhancing overall
system performance.

In addressing optimization problems related to multi-
dependent large-scale transportation systems, CPs, distribution
networks, and a substantial number of EVs, the authors have
achieved significant progress by introducing an optimization
clustering technique with novel algorithms. This approach
effectively addresses inter-dependency across multiple large
areas, resulting in promising results.

In the design of the EV connection and disconnection time
variables in Equations (11)–(16), the requesting time variable
(t

rq
e ) and connection time variable (t cn

e ) are intentionally set as
positive integers. This design choice aims to synchronize the
allocation and discharging plans for the EVs with the predefined
time steps (Δt ) within the restoration horizon ( ). However,
this approach results in the accumulation of unnecessary time

periods, where the CPs are not operating in discharging mode
(t nu

cp ). Even if the next EV (e + 1) is ready to connect immedi-
ately after the previous EV (e) has disconnected, it is not allowed
to do so until the next time step (Δt + 1) within the restoration
horizon ( ) begins. In other words, the proposed mathemati-
cal formulation allows for only one EV to participate per time
step (Δt ) at each CP. To overcome this limitation, an alternative
approach could involve designing these variables as continuous,
allowing EVs to connect continuously, synchronizing them with
the time steps (Δt ) throughout the restoration horizon ( ). By
doing so, the involved CPs could be further utilized and the time
period during which CPs are not operating in discharging mode
(t nu

cp ) consequently reduced. This, in turn, would enhance the
resilience of the MPDN by increasing the number of partici-
pating EVs, providing more energy (SOC av

e,t ) for injection back
into the grid.

9 CONCLUSION

The proposed intelligent EV coordination framework proves its
robustness and superiority for coordinating a large penetration
of EVs. It can handle a significant amount of spatiotempo-
ral data and enable dynamic data exchange to ensure reliable
updates to critical information, such as EV location, charg-
ing status, and power demand. In the first stage, the proposed
prepositioning model successfully addresses prepositioning
challenges and improves the MPDN resilience shortly after a
rare event by preserving considerably more energy than has
been achieved elsewhere. Also, allowing data transfer to the
second stage and applying the proposed information system
facilitate communication between the ITS/SCS automated sys-
tems and EVs, resulting in a notably higher communication rate
than in comparative studies. As a result, the proposed preposi-
tioning model results in higher restoration levels being achieved
at each time step.

In the second stage, the proposed dispatching approach
successfully accounts for the geographical and operational con-
straints of roads and CPs when controlling the movement of
EVs, avoiding long queues and overload at CPs. This demon-
strates the superiority of the proposed geographic graphs when
handling large amounts of geographical information. It was also
possible to improve the routing of a large number of EVs,
in order to have more communications with EVs participat-
ing in the proposed methodology, compared to comparative
case studies. Additionally, the proposed approach demonstrates
superior performance in the form of considerable increase
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in overall energy usage for load restoration compared to the
comparative case studies. This enhanced energy utilization is
achieved through an improved routing plan, resulting in a signif-
icant reduction in overall travel times and a substantial decrease
in total energy consumption during EV travel. Furthermore, the
proposed approach successfully provides more time for CPs to
operate in the discharging mode for a significant duration of
the restoration time horizon. This enhancement significantly
rationalizes the resilience-oriented restoration strategy, as it
maximizes the efficient utilization of available power resources
throughout the restoration process.

The proposed intelligent framework outperforms all pub-
lished studies in the literature in worst-case scenarios, by
successfully fully restoring loads at a significantly earlier time
step. Henceforward, it is crucial for modern power distribu-
tion network planners to consider implementing intelligent
EV coordination frameworks to enhance resilience-oriented
smart restoration strategies as the number of rare events is
increasing.

In future work, it is crucial to acknowledge the uncertainties
associated with how EV users behave when they are requested
to participate in the restoration processes. Authors aims to
address these uncertainties technically, and the model address-
ing this will be presented in another journal paper. Furthermore,
the authors have achieved significant progress in addressing
the inter-dependencies of MPDN, ITS, and SCS across large
areas. This has been accomplished by designing a novel clus-
tering technique along with innovative algorithms, resulting in
promising outcomes that surpass commonly employed meth-
ods. Additionally, the authors also intend to present this work in
an upcoming journal paper.

NOMENCLATURE

Indices

𝛽, 𝜁 Indices for longitude
𝛾, 𝛿 Indices for latitude
𝜙 Index for phase number

𝜌, 𝜚 Indices for two end of the proposed BGG segments
av, tr Indices for the availability and travelling status
B,N Indices for line and node
C ,O Indices for capacitor and lines in a loop

ch Index for the charging status
CP , cp Indices for CPs
DI ,U Indices for diversified and undiversified load

disch Index for the discharging status
E , e Indices for EVs
F , S Indices for faulty, and switchable component
G , g Indices for MEGs

i, j , i j Indices for two end nodes and line
L, l Indices for load

M ,m Indices for MESSs
R, r Indices for road

RCS Index for remotely-switchable component
T , t Indices for time

V , v Indices for voltage regulator

Parameters

𝛼,M Large positive numbers
𝜂CH∕disch The charging/discharging efficiency of the EV bat-

tery
CRr ,t The congestion rate of road r at time t

ECRe The energy consumption rate of EV e

Sets

̆ Set of vertices indicate EV coordinates
̂ Set of vertices indicate CP coordinates
 Set of the proposed BGG including intersections

and edges
,  Set of intersections and edges of the proposed BGG
 , Set of nodes and lines
, Set of segments and vertices in a road map
 , Set of time intervals and EVs
 , Set of voltage regulators and capacitors

 Set of road map including segments and vertices
Φ, Set of phases and loads

Decision Variables

x⃖k𝜚,k𝜌,e,t Unidirectional flow variable equals to 1 if an EV e

is travelling from k𝜌 to k𝜚 at time t

⃖⃗xk𝜚,k𝜌,e,t Bidirectional flow variable equals to 1 if an EV e

is either travelling from k𝜚 to k𝜌, or vice versa at
time t

x⃗k𝜚,k𝜌,e,t Unidirectional flow variable equals to 1 if an EV e

is travelling from k𝜚 to k𝜌 at time t

Dk𝜚,k𝜌,e,t Sum of distance travelled for EV e at time t

P
ch∕disch

e,t The charging/discharging active power for EV e

at time t

P
ch∕disch

m,t The charging/discharging active power for MESS
m at time t

Q∕PG
g,𝜙,t

The three phase reactive/active power of MEG g

for phase 𝜙 at time t

Q∕PN
i,𝜙,t

The three phase reactive/active power for node i

at time t

Q∕PDI
l ,𝜙,t

The three phase diversified reactive/active power
for load l at time t

Q∕PL
l ,𝜙,t

The three phase reactive/active power for load l

at time t

Q∕PU
l ,𝜙,t

The three phase undiversified reactive/active
power for load l at time t

S∕Q∕PB
i j ,𝜙,t

The three phase apparent/reactive/active power
of line i j at time t

SOC av
e,t Available stat-of-charge level for EV e at time t

SOC tr
e,t Consumed stat-of-charge during travelling for

EV e at time t

SOC av
m,t Available stat-of-charge level for MESS m at time

t

t nu
cp,t The duration when a CP cp is not operating

for discharging
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t tr
e,r Total travelling time of EV e on road r

t ar
e The time when an EV e is arrived at the CP
t cn
e The time when an EV e is connected to the CP

t dsc
e The duration of discharging time of an EV e

t dsc
e The time when an EV e is disconnected from

the CP
t

rq
e The time when an EV e is requested to participate
t w
e The duration of waiting time of an EV e

Vi,𝜙,t The three phase voltage magnitude for node i at
time t

xcp,t Binary variable equals 1 if CP cp is operational at
time t

xe,cp,t Binary variable equals 1 if EV e is connected to a
CP cp at time t

xe,t Binary variable equals 1 if EV e is connected at
time t

x
ch∕disch
e,t Binary variable equals 1 if EV e is charg-

ing/discharging at time t

x
ch∕disch
e,t Binary variable equals 1 if electric vehicle e at time

t

xtr
e,t Binary variable equals 1 if EV e is travelling at time

t

xG
g,𝜙,t

Binary variable equals 1 if MEG g is connected to
energized node i and phase 𝜙 at time t

xg,t Binary variable equals 1 if MEG g is connected at
time t

xN
i,𝜙,t

Binary variable equals 1 if phase 𝜙 in node i is
connected at time t

xB
i j ,𝜙,t

Binary variable equals 1 if phase 𝜙 in line i j is
connected at time t

xRCS
i j ,𝜙,t

binary variable equals to 1 if the line i j switches
its status from off to on or from on to off.

xL
l ,t Binary variable equals 1 if load l is connected at

time t

xm,t Binary variable equals 1 if MESS m is connected
at time t

x
ch∕disch
m,t Binary variable equals 1 if MESS m is charg-

ing/discharging at time t

xV
v,𝜙,t

Binary variable equals 1 if phase 𝜙 in line with
voltage regulator v is connected at time t
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A.1 Constraints associated with the EV proactive

prepositioning model

The following equations pertain to the proposed proactive
prepositioning model for EVs outlined in Section 3.1. Con-
straint (A.1) represents the radiality constraint, which is derived
from reference [56]. Constraints (A.2) and (A.3) define the
limits on the active discharging and charging power of EVs,
respectively. Constraint (A.4) ensures the maintenance of appro-
priate limits to manage the reactive power of a capacitor (v).
Constraints (A.5) and (A.6) impose restrictions on line active
and reactive power, node voltages, and regulator voltages, to
guarantee adherence to safe margins.

∑
i j

xB
i j ,t ≤

||O|| − 1, ∀i j ∈ O, t = 0, (A.1)

P
disch

e,t xe,t ≥ Pdisch
e,t ≥ 0, ∀e ∈ E , t = 0, (A.2)

P
ch

e,t xe,t ≥ Pch
e,t ≥ 0, ∀e ∈ E , t = 0, (A.3)

Q
C

v,𝜙,t xV
v,𝜙,t

≥ QC
v,𝜙,t

≥ 0, ∀v ∈  , 𝜙 ∈ Φ, t = 0, (A.4)

P
B

i j ,𝜙,t xB
i j ,𝜙,t

≥ PB
i j ,𝜙,t

≥ P
B

i j ,𝜙,t
xB

i j ,𝜙,t
,

∀i j ∈ , 𝜙 ∈ Φ, t = 0,
(A.5)

Q
B

i j ,𝜙,t xB
i j ,𝜙,t

≥ QB
i j ,𝜙,t

≥ Q
B

i j ,𝜙,t
xB

i j ,𝜙,t
,

∀i j ∈ , 𝜙 ∈ Φ, t = 0.

(A.6)

A.2 Constraints associated with the EV spatial–

temporal routing model

The following equations pertain to the proposed spatial–
temporal routing model for EVs (i.e. Section 3.2.1). Constraints
(A.7)–(A.10) ensure the EVs do not deviate from their routing
plan, as initiated by the ITS/SCS automated systems, maintain-
ing start and end intersections, respectively. Constraints (A.7)
and (A.8) initiate and conclude the optimal path respectively.
Constraint (A.9) ensures the transportation of EVs among dif-
ferent coordinates, satisfying the necessary distance to travel by
enforcing the number of incoming and outgoing edges from
a node as equal. Constraint (A.10) eliminates sub-tours for
the routes and ensures each EV’s route follows a single and
continuous path that visits all the required coordinates.

∑
k𝜚

⃖⃗xk𝜚,k𝜌,e,t = 0, ∀(k𝜚, k𝜌 ) ∈ ,

(k𝜚, k𝜌 ) ∶ (𝛾, 𝛽) = y̆ ∶ (𝛾, 𝛽), e ∈ E , t ∈  ,

(A.7)

∑
k𝜌

⃖⃗xk𝜚,k𝜌,e,t = 1, ∀(k𝜚, k𝜌 ) ∈ ,

(k𝜚, k𝜌 ) ∶ (𝛾, 𝛽) = ŷ ∶ (𝛾, 𝛽), e ∈ E , t ∈  ,

(A.8)

∑
k𝜚

x⃗k𝜚,k𝜌,e,t =
∑
k𝜌

x⃖k𝜚,k𝜌,e,t , ∀(k𝜚, k𝜌 ) ∈ ,

(k𝜚, k𝜌 ) ∶ (𝛾, 𝛽) ≠ y̆ ∶ (𝛾, 𝛽), k𝜌 ∶ (𝛾, 𝛽) ≠ ŷ ∶ (𝛾, 𝛽),

e ∈ E , t ∈  , t + 𝜏 ≤  , 𝜏 ≤ t tr
e,r ,

(A.9)

Dk𝜌,e,t = 0,

∀k𝜌 ∈ , k𝜌 ∶ (𝛾, 𝛽) = y̆ ∶ (𝛾, 𝛽), e ∈ E , t ∈  .
(A.10)

A.3 Constraints associated with the EV dynamic

power scheduling model

The following equations pertain to the proposed dynamic
power scheduling model of EVs (i.e. Section 3.2.2). Con-
straint (A.11) limits the SOC level of EVs within the feasible
range. Constraints (A.12) and (A.13) define the active dis-
charging/charging power limits of EVs, respectively. Constraint
(A.14) guarantees that charging (xch

e,t ) and discharging (xdisch
e,t )

actions are always mutually exclusive states for each EV (e), and
if connected to a CP (cp), it can neither charge nor discharge. It
also ensures each EV is positioned and connected at a CP (cp)
predetermined by the ITS/SCS automated systems. Constraint
(A.15) maintains CP connection capability. Constraints (A.16)
and (A.17) maintain CP capacity, where the charging demand
and rate of injecting electricity back into the grid do not exceed
the capacity of CPs, respectively.

SOC
e,t

≤ SOC av
e,t ≤ SOC e,t , ∀e ∈ E , t ∈  , (A.11)

P
disch

e,t xe,t ≥ Pdisch
e,t ≥ 0, ∀e ∈ E , t ∈  , (A.12)

P
ch

e,t xe,t ≥ Pch
e,t ≥ 0, ∀e ∈ E , t ∈  , (A.13)

xch
e,t + xdisch

e,t ≤ xe,cp,t , ∀e ∈ E , cp ∈ CP , t ∈  , (A.14)∑
e

xe,t ≤ xcp,t , ∀e ∈ E , cp ∈ CP , t ∈  , (A.15)

0 ≤ Pdisch
e,t ≤ P

disch

cp,t , ∀e ∈ E , cp ∈ CP , t ∈  , (A.16)

0 ≤ Pch
e,t ≤ P

ch

cp,t , ∀e ∈ E , cp ∈ CP , t ∈  . (A.17)

A.4 Constraints associated with the operation of mod-

ern power distribution network

The following equations pertain to MPDN operational con-
straints (i.e. Section 3.2.3). Constraints (A.18)–(A.24) represent
the fault location, isolation, and service restoration (FLISR)
model used to reconfigure the MPDN, isolate failed lines, and
ensure restored lines cannot be disconnected again [38]. Con-
straint (A.18) ensures the voltage limits for the MPDN nodes
are within the permissible range. Constraint (A.19) forces the
MPDN line with voltage regulators to fall within the feasible
limits. Constraints (A.20) and (A.21) ensure both end nodes of
a switchable line must be energized when activated. Similarly,
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constraints (A.22) and (A.23) ensure a non-switchable line is
promptly energized when either of its end nodes receives power.
Constraint (A.24) establishes that an energized line cannot be
tripped afterward.

V i,𝜙,t xN
i,t ≥ Vi,𝜙,t ≥ V

i,𝜙,t
xN

i,t , ∀i ∈  , 𝜙 ∈ Φ, t ∈ 

(A.18)

V i j ,𝜙,t xB
i j ,t xV

v,t ≥ Vv,𝜙,t ≥ V
i j ,𝜙,t

xB
i j ,t xV

v,t ,

∀v ∈  , i j ∈  ∩  , 𝜙 ∈ Φ, t ∈ 

(A.19)

xB
i j ,𝜙,t

≤ xN
i,𝜙,t

, ∀i j ∈ S∕F , 𝜙 ∈ Φ, t ∈  (A.20)

xB
i j ,𝜙,t

≤ xN
j ,𝜙,t

, ∀i j ∈ S∕F , 𝜙 ∈ Φ, t ∈  (A.21)

xB
i j ,𝜙,t

= xN
i,𝜙,t

, ∀i j ∈ ∕
{
S ∪ F

}
,

𝜙 ∈ Φ, t ∈ 
(A.22)

xB
i j ,𝜙,t

= xN
j ,𝜙,t

, ∀i j ∈ ∕
{
S ∪ F

}
,

𝜙 ∈ Φ, t ∈ 
(A.23)

xB
i j ,𝜙,t

− xB
i j ,𝜙,t−1 ≥ 0, ∀i j ∈ S∕F , 𝜙 ∈ Φ, 1 ≤ t < 

(A.24)

Also, constraints (A.25)–(A.33) are utilized primarily for
power scheduling purposes, similar to the operational con-
straints present in the first stage. These constraints define the
acceptable ranges for capacitor reactive power (A.25)–(A.27),
line active and reactive power (A.27), and the radiality of the
modern power distribution network (A.28).

Q
C

v,𝜙,t xV
v,𝜙,t

≥ QC
v,𝜙,t

≥ 0, ∀v ∈  , 𝜙 ∈ Φ, t ∈  , (A.25)
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,

∀i j ∈ , 𝜙 ∈ Φ, t ∈  ,

(A.26)

Q
B

i j ,𝜙,t xB
i j ,𝜙,t

≥ QB
i j ,𝜙,t

≥ Q
B

i j ,𝜙,t
xB

i j ,𝜙,t
,

∀i j ∈ , 𝜙 ∈ Φ, t ∈  ,

(A.27)

∑
i j

xB
i j ,t ≤

||O|| − 1, ∀i j ∈ O, t ∈  . (A.28)

Furthermore, Equations (A.29)–(A.33) are utilized to enforce
constraints in the second stage of the three-phase unbal-
anced MPDN optimal power flow and node balance equations,
respectively.

Vi,𝜙,t −Vj ,𝜙,t ≤ 𝓏i j ,𝜙S∗
i j ,𝜙,t

+ 𝓏∗
i j ,𝜙

Si j ,𝜙,t

+M
(

1 − xN
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)
, ∀i j ∈ ∕ , 𝜙 ∈ Φ, t ∈  ,

(A.29)
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e,𝜙,t

+ PL
l ,𝜙,t

,

∀e ∈ E , 𝜙 ∈ Φ, t ∈  ,

(A.32)

∑
ji

QB
ji,𝜙,t

+ Qdisch
e,𝜙,t

+ QC
v,𝜙,t

=
∑

i j

QB
i j ,𝜙,t

+ QL
l ,𝜙,t

,

∀e ∈ E , 𝜙 ∈ Φ, v ∈  , t ∈  .

(A.33)

A.5 Linear form of the critical distance calculation

model

As outlined in Section 4.2, the relaxed form of the non-
linear critical distance calculation model in Equation (10) is
represented by the subsequent constraints:

Dk𝜚,k𝜌,e,t =
∑
k𝜚

xk𝜚,k𝜌,e,t

(
Dk𝜚,e,t +

(
Dk𝜚,k𝜌,e,t CRR

r

))
,

∀(k𝜚, k𝜌 ) ∈ , (k𝜚, k𝜌 ) ∶ (𝛾, 𝛽) = y̆ ∶ (𝛾, 𝛽),

e ∈ E , t ∈  , t + 𝜏 ≤  , 𝜏 ≤ t tr
e,r , r ∈  ,

(A.34)

Dk𝜌,e,t ≤ xk𝜚,k𝜌,e,t𝛼, ∀k𝜚, k𝜌 ∈ , e ∈ E , t ∈  , (A.35)

Dk𝜌,e,t ≤ Dk𝜚,e,t + Dk𝜚,k𝜌,e,t ,

∀k𝜚, k𝜌 ∈ , e ∈ E , r ∈  , t ∈  ,
(A.36)

Dk𝜌,e,t ≥ Dk𝜚,e,t + Dk𝜚,k𝜌,e,t − 𝛼 + xk𝜚,k𝜌,e,t𝛼,

∀k𝜚, k𝜌 ∈ , e ∈ E , r ∈  , t ∈  .
(A.37)

Constraint (A.34) represents the mathematical expression
used for calculating the critical distance. To account for all crit-
ical roads traversed by an EV (e), constraints (A.35)–(A.37) are
implemented. These constraints ensure the distances travelled
on critical roads are included in the calculation. To restrict the
validity of these constraints to segments associated with crit-
ical routes, a large positive number (𝛼) is carefully enforced
and selected.

A.6 Linear form of travelling energy consumption

model

As outlined in Section 4.2, a relaxed form of the non-linear
travelling energy consumption model in Equation (18) is rep-
resented by subsequent constraints, where constraint (A.39)
is introduced to enforce EV (e) either in a connection mode
(C-EV) or a travelling mode (T-EV).
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SOC tr
e,t = ECReDk𝜚,k𝜌,e,t ,

∀e ∈ E , k𝜚, k𝜌 ∈ , k𝜚 ∶ (𝛾, 𝛽) = y̆ ∶ (𝛾, 𝛽),

k𝜌 ∶ (𝛾, 𝛽) = ŷ ∶ (𝛾, 𝛽), t ≤ t ar

(A.38)

xtr
e,t + xe,t ≤ xe,cp,t , ∀e ∈ E , cp ∈ ̂ , t ∈  . (A.39)

A.7 The operational constraints of MEG

Constraints (A.40) and (A.41) play a critical role in ensuring
the secure operation of MEGs through the specification of
acceptable power ranges. In constraint (A.40), the MEG active

power (PG
g,𝜙,t

) is restricted within predefined maximum (P
G

g,𝜙,t )

and minimum (PG

g,𝜙,t
) bounds. Similarly, in constraint (A.41), the

reactive power of the MEGs (QG
g,𝜙,t

) is also ensured to remain

within permissible limits. The binary variable (xG
g,t ) represents

the connection status of the MEG. This variable ensures a MEG
can only be connected if its terminal node (g ∈ G ⊆  ) is
energized.

P
G

g,𝜙,t
xG

g,𝜙,t
≤
∑
𝜙

PG
g,𝜙,t

≤ P
G

g,𝜙,t xG
g,t ,

∀g ∈ G , 𝜙 ∈ Φ, t ∈  ,

(A.40)

Q
G

g,𝜙,t
xG

g,𝜙,t
≤
∑
𝜙

QG
g,𝜙,t

≤ Q
G

g,𝜙,t xG
g,t ,

∀g ∈ G , 𝜙 ∈ Φ, t ∈  .

(A.41)

A.8 The operational constraints of MESSs

Constraint (A.42) limits the SOC level of MESS within the fea-
sible range, respectively. Constraints (A.43) and (A.44) define
the active discharging/charging power limitations of MESSs,
respectively. Constraint (A.45) guarantees that charging (xch

e,t )
and discharging (xdisch

e,t ) actions are always mutually exclusive

states for each MESS (e), and if it is not connected to a CP
(cp) can neither charge nor discharge. Additionally, it ensures
each MESS is positioned and connected to a CP (cp) that is
predetermined by ITS/SCS automated systems.

SOC
m,t

≤ SOC av
m,t ≤ SOC m,t , ∀m ∈ M , t ∈  , (A.42)

P
disch

m,t xm,t ≥ Pdisch
m,t ≥ 0, ∀m ∈ M , t ∈  , (A.43)

P
ch

m,t xm,t ≥ Pch
m,t ≥ 0, ∀m ∈ M , t ∈  , (A.44)

xch
m,t + xdisch

m,t ≤ xm,cp,t , ∀e ∈ M , cp ∈ CP , t ∈  . (A.45)

A.9 Layout of the test system utilised for sensitivity

and validation analysis

Figure A1 illustrates the IEEE 123-node test system with MESS
stations and charging stations.

FIGURE A1 Illustration of the IEEE 123-node test system with mobile
energy storage system (MESS) stations (i.e. depots) and charging stations (i.e.
charging points, CPs). Adapted from the electronic Appendix of [23] for
comparison purposes.
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