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1. Overview 17 

The last decade has seen an enormous increase in long non-coding RNA (lncRNA) 18 

research within rheumatology. LncRNAs are arbitrarily classed as non-protein 19 

encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts 20 

have tissue and cell specific patterns of expression and are implicated in a variety of 21 

biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in 22 

rheumatoid conditions, correlating with disease activity and cited as potential 23 

biomarkers and targets for therapeutic intervention. In this chapter, following an 24 

introduction into each condition, we discuss the lncRNAs involved in rheumatoid 25 

arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint 26 

conditions share several inflammatory signalling pathways and therefore not 27 

surprisingly many commonly dysregulated lncRNAs are shared across these 28 

conditions. In the interest of translational research only those lncRNAs which are 29 

strongly conserved have been addressed. The lncRNAs discussed here have diverse 30 

roles in regulating inflammation, proliferation, migration, invasion and apoptosis. 31 

Understanding the molecular basis of lncRNA function in rheumatology will be crucial 32 

in fully determining the inflammatory mechanisms that drive these conditions. 33 

 34 

 35 

 36 

 37 

 38 

 39 

  40 
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2. Arthritic Diseases 41 

2.1 Rheumatoid arthritis 42 

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune condition resulting in 43 

progressive disability and premature death in older adults.1 It is a lifelong condition 44 

mainly effecting the lining of the synovial joint causing pain, stiffness and swelling in 45 

and around the effected joints. Unfortunately, up to 1% of the world’s population suffer 46 

with this debilitating condition, for which there is no cure. Additionally, with a third of 47 

patients unable to work within 2 years of diagnosis, there is a substantial 48 

socioeconomic burden. RA affects more women than men, with women having a 3.6% 49 

lifetime risk of developing RA compared to 1.7% in men.2 Although the aetiology is not 50 

fully clear, a combination of genetic, environmental and lifestyle factors are all 51 

associated with RA. Aside from gender, additional RA risk factors include age with a 52 

peak disease onset in the 60s, obesity, diabetes, osteoporosis and smoking.3  53 

 54 

Following immune activation, inflammation of the synovial membrane (synovitis) is an 55 

initial characteristic presentation of RA. Synovial fibroblasts also termed fibroblast-like 56 

synoviocytes (FLS), within the synovial joint membrane, become dysfunctional and 57 

hyperplastic forming the pannus. The synovial joint is infiltrated with leukocytes, which 58 

interact with FLS inundating the synovial fluid with pro-inflammatory factors.1 Cells of 59 

both the innate and adaptive immune system are thought to be central in RA 60 

pathogenesis. Monocytes and macrophages are commonly found to infiltrate the 61 

synovium with a polarisation towards the pro-inflammatory (M1) versus anti-62 

inflammatory (M2) macrophage.4 These cells contribute to a sustained chronic 63 
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inflammatory state within the joint by releasing pro-inflammatory cytokines, such as 64 

tumour necrosis factor alpha (TNFα) and interleukin 6 (IL-6).5 65 

 66 

The pro-inflammatory microenvironment within the synovial joint results in cartilage 67 

degradation and bone loss. Synovial hyperplasia causes elevated matrix 68 

metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), which 69 

drive joint destruction.1 Proteoglycans and extracellular matrix (ECM) binding soluble 70 

factors are released from damaged cartilage further activating FLS and resulting in a 71 

tumour like transformation.6 These activated FLS express matrix-degrading enzymes 72 

such as MMPs, ADAMTs and cathepsin, and activate signalling pathways that 73 

regulate growth and apoptosis.6 Activated FLS together with pro-inflammatory 74 

cytokines with pro-osteogenic effects facilitate the differentiation of infiltrating 75 

macrophages into osteoclasts, which result in inflammatory cysts, bone resorption, 76 

erosion and loss.1, 7  77 

 78 

Synovitis, cartilage damage and bone loss are all detected by radiographs, 79 

ultrasonography and magnetic resonance imagining (MRI).7 Another early 80 

inflammatory marker detected by MRI is seen in the subchondral bone marrow. Like 81 

synovitis, the bone marrow is infiltrated by a host of immune cells including 82 

macrophages, T lymphocytes, B lymphocytes and osteoclasts.8 The resulting 83 

inflammation is detected by MRI, presenting as bone marrow edema (BME). BME is 84 

correlated with disease severity and joint destruction and may develop independently 85 

of synovitis. As such, detection of BME in MRIs has 100% accuracy in predicting rapid 86 
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RA onset.7, 8 The first joints to be affected by synovitis and BME are the symmetrical 87 

joints of the hand and feet, with other joints subsequently becoming diseased.1 88 

 89 

Pro-inflammatory cytokines released by the tissues and cells described above result 90 

in dysfunctional intracellular signalling responsible for inflammation, cell survival and 91 

apoptosis. Pathways involved in RA include the Janus Kinase/ Signal Transducers 92 

and Activators of Transcription (JAK/STAT), the Mitogen-Activated Protein Kinase 93 

(MAPK), and the Phosphatidylinositide-3-Kinase/AKT/mammalian Target of 94 

Rapamycin (PI3K/AKT/mTOR), all of which have been previously reviewed.9 Notably, 95 

elevated interleukins in synovial fluid activates the JAK/STAT signalling pathway, 96 

which results in the transcriptional expression of STAT-responsive genes including IL-97 

6, IL-10, interferon gamma (INF), Oncostatin M (OSM) and TNFA, which contributes 98 

to ECM degradation and joint degeneration.9 The MAPK signalling pathway consisting 99 

of p38 MAP kinases, extracellular signal-regulated protein kinases (ERKs) and C-Jun-100 

N-terminal kinases (JNKs) is involved in cytokine responses, NF-kB activation, cell 101 

survival and apoptosis. Immune cell and synoviocyte proliferation, apoptosis and 102 

survival are regulated by the PI3K/AKT/mTOR pathway.9  103 

 104 

IL-6 has a fundamental immunoregulatory role in RA pathogenesis, regulating 105 

inflammatory pathways in immune cells, synoviocytes and osteoclasts. Elevated IL-6 106 

in RA patient synovial fluid correlates with disease activity and joint destruction.10, 11 107 

IL-6 binds the soluble IL-6 receptor (sIL-6R) in the synovial fluid and couples with 108 

gp130 subunit in synoviocytes or directly binds the IL-6R on leukocytes and 109 

macrophages, which activates the JAK/STAT and Ras-MAPK pathways. In 110 
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synoviocytes this results in hyperplasia and increased IL-6, IL-1 and Toll-like receptors 111 

(TLRs), which promotes a perpetual cycle of inflammation, inducing osteoblasts to 112 

produce RANKL, leading to osteoclastogenesis, pro-inflammatory cytokine and MMP 113 

production and ultimately bone and cartilage destruction.11, 12 Synoviocyte secreted 114 

RANKL binds RANK receptors on activated macrophages activating the NF-kB, 115 

MAPK, NFATc1 and Src signalling pathways and promoting bone resorption. Similarly, 116 

TNFα is another important cytokine produced by macrophages, which binds TNF 117 

receptors (TNFRs) to activate NF-kB, MAPK and protein kinase B (PKB/AKT) inducing 118 

inflammation, tissue degeneration and cell proliferation.11  119 

 120 

2.2 Osteoarthritis 121 

Globally, osteoarthritis (OA) is the most prevalent degenerative joint disorder affecting 122 

303 million people.13 In the United States, whilst RA effects 1.3 million adults, OA 123 

affects 27 million adults, making OA a significant public health challenge.14 The 124 

debilitating condition affects the entire joint causing loss of articular cartilage mass, 125 

subchondral bone sclerosis, joint space narrowing and inflamed synovium.15, 16 The 126 

resulting pain and stiffness of the synovial joints leads to progressive disability and 127 

reduced quality of life, amounting to a huge socioeconomic burden costing billions. 128 

The Global Burden of Diseases, Injuries and Risk Factors Study (2017) found that 129 

incidence and prevalence of OA was up by 8-9% since 1990 and that prevalence not 130 

only increased with age but was significantly higher in women.17 Since age is a 131 

significant OA risk factor, with an ageing global population coupled with increased life 132 

expectancy, OA prevalence is set to keep increasing.17 Other risk factors include sex 133 

(female), obesity, history of joint injury, abnormal loading, diet and genetics.18 OA in 134 

both weight-bearing and non-weight bearing joints has been linked to obesity, 135 
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suggesting the impact goes beyond increased biomechanical loading.16, 19 Adipose 136 

tissue is an endocrine organ, which in obesity has increased infiltration of 137 

macrophages and secretion of pro-inflammatory cytokines known as adipokines, 138 

which are likely to have systemic effects on joint integrity.16 Additionally, central 139 

adiposity is strongly associated with OA in women, particularly affecting the knee and 140 

hand joints.20 Menopausal women in particular are at greater of risk of developing hip, 141 

knee and hand OA due to hormonal factors.18 142 

 143 

Historically, osteoarthritis was considered a ‘wear and tear’ condition due to ageing. 144 

However, it is now known that joint inflammation plays a central role in both the 145 

incidence and progression of OA disease. OA pathogenesis involves the degradation 146 

of cartilage and remodelling of subchondral bone. This is driven in part by 147 

chondrocytes in the articular cartilage that secrete IL-6 into the synovial fluid, where it 148 

binds soluble IL-6 receptor (sIL-6R) and couples with membrane bound gp130 on 149 

fibroblasts thereby promoting additional FLS IL-6 secretion.16 This chondrocyte-150 

fibroblast crosstalk is further exacerbated in obese patients with OA, where the 151 

adipokine leptin stimulates greater IL-6 secretion from articular chondrocytes.16 OA 152 

chondrocytes also secrete PGE2, MMP3 and MMP13 leading to further articular 153 

cartilage degradation.21 Increased MMPs and aggrecanases ADMATS4 and 154 

ADMATS5 contribute to catabolism of integral cartilage matric components including 155 

collagen type II resulting in destabilised mechanical properties and structural integrity 156 

of both cartilage and bone.22 Additionally, loading in knee OA increases joint space 157 

narrowing resulting in severe mechanical degradation exposing the underlying 158 

subchondral bone.22 OA subchondral bone is hypoxic, which inhibits osteoblast 159 

mineralization and bone formation further contributing to joint damage.23 Synovial 160 
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immune cells such as IFNy and TNF producing T-cells and synovial derived 161 

macrophages which differentiate into osteoclasts are also thought to induce 162 

ostoclastogenesis and bone remodelling.24 163 

 164 

Similar to RA, synovitis is now more widely recognised to play a significant role in OA 165 

joint pathology. Synovitis in OA is evidenced by increased infiltration of activated B- 166 

and T- cells and synovial hypertrophy.25 Cartilage damage is facilitated by the 167 

synovium through secreted cytokines, growth factors, matrix metalloproteases and 168 

aggrecanases into the synovial fluid.19, 24 FLS from OA patients are more inflammatory 169 

compared to non-diseased patient controls with femoral neck fracture, and 170 

interestingly those that are isolated from obese patients with OA have an increased 171 

inflammatory phenotype. Inflammatory OA-FLS are also reported to secret greater 172 

levels of pro-inflammatory cytokine IL-6 and chemokine CXCL8.19 Interestingly, 173 

transcriptionally distinct FLS subsets are identified in early and late-stage knee OA 174 

patients and parapatellar synovitis has been associated with increased pain.26 Obese 175 

OA patients also exhibit a FLS subset with gene signatures related to immune cell 176 

regulation and inflammatory signalling.27  177 

 178 

Many of the major signalling pathways which govern joint inflammation in RA are 179 

shared with OA, such as the IL-6 mediated JAK/STAT and Ras/MAPK pathways 180 

discussed earlier. Similarly, the NF-kB signalling pathway is described as the master 181 

regulator of inflammation and as such regulates pro-inflammatory cytokines including 182 

IL-1β, IL-6, IL-17 and TNFα in both OA and RA, as well as aggrecanases and MMPs 183 

which induce cartilage degradation in OA.28, 29 In bone homeostasis, receptor activator 184 
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of nuclear factor kappa B (RANK)/ RANKL pathway activates NF-kB induced 185 

transcription factors that balance bone resorption and formation which is deregulated 186 

in OA. Additionally, an NF-kB transcriptional target is the hypoxia-inducible factor 2 187 

alpha (HIF-2α) which is elevated in hypoxic OA subchondral bone and OA articular 188 

cartilage.29 In OA activated chondrocytes, NF-kB signalling regulates ECM 189 

remodelling and the production of catabolic enzymes and pro-inflammatory 190 

factors.30Additionally, NF-kB mediated signalling in synovial cells may drive synovial/ 191 

cartilage crosstalk resulting in cartilage degradation.31  192 

 193 

Cartilage degradation results in the accumulation of damage-associated molecular 194 

patterns (DAMPs) in the synovial joint, which are recognised by pattern recognition 195 

receptors (PRRs) such as TLRs in surrounding tissue leading to activation of a 196 

localised innate immune response. TLR1-7 and TLR9 are all upregulated in OA 197 

synovium, whilst the soluble TLR4 is recognised as an OA severity biomarker in 198 

synovial fluid.32 TLR4 is also expressed by osteoblasts and may be involved in 199 

reduced bone mineralisation in OA. Activated TLRs, through the NF-kB-mediated 200 

chemokine release, promote macrophage and lymphocyte infiltration into OA 201 

synovium. OA damaged articular cartilage and OA chondrocytes express increased 202 

levels of TLRs, which stimulate secretion of catabolic factors including IL-6, cyclo-203 

oxygense 2 (COX-2) and MMP13.25, 32 COX-2 is differentially expressed in OA joints 204 

and regulates the arachidonic inflammatory response pathways.28 In brief, pro-205 

inflammatory cytokines induce COX-2, which catalyses arachidonic acid into an 206 

unstable eicosanoid precursor, PGH2. PGH2 is then converted into the major pro-207 

inflammatory and pain mediating prostaglandin PGE2, which is significantly elevated 208 

in OA cartilage.33  209 
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 210 

Nitric oxide (NO) and inducible NO synthase (iNOS) are also key mediators of OA 211 

cartilage destruction and chondrocyte apoptosis.25 Both NO and iNOS are elevated in 212 

OA cartilage and patient serum. The pathogenic effects of IL-1β and TNFα are 213 

mediated by NO activation. However, conversely some reports suggest innate 214 

immune suppression in the early stages of OA is NO-associated.34 In OA, the p38 215 

MAPK pathway mediates pro-inflammatory cytokine signal transduction. DAMPS, IL-216 

1β and TNFα are all involved in p38 phosphorylation, which is detected in OA 217 

chondrocytes and OA articular cartilage to drive OA pathogenesis.25 p38 MAPK in OA 218 

chondrocytes selectively activates MAPK-activated protein kinase 2 (MK2), which 219 

regulates TNF stability and IL-1β induced production of catabolic factors MMP3, 220 

MMP13 and PGE2.21, 25 Bioinformatics analysis also finds that MAPK signal 221 

transduction pathway is influential in OA synovitis.35 Additionally, the MAPK signalling 222 

transduction pathways are utilised by many adipokines to elicit pro- and anti- 223 

inflammatory responses. Through MAPK and PI3K pathways, leptin induces naive T-224 

cell proliferation and IL-2 production.36, whilst the anti-inflammatory adiponectin 225 

through binding to adiponectin receptors attenuates IL-6 and TNFα production by 226 

affecting p38-MAPK, JNK and NF-kB signalling pathways.36 227 

 228 

2.3 Long non-coding RNAs in the pathogenesis of arthritis 229 

2.3.1 Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1)  230 

The highly-conserved 8.5kb Metastasis-Associated Lung Adenocarcinoma Transcript 231 

1 (MALAT1) was amongst the first cancer-associated lncRNAs to be discovered.37 232 

MALAT1 is nuclear RNA localized in nuclear speckles along with pre-mRNA splicing 233 
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factors and thought to regulate alternative splicing by modulating serine/arginine 234 

splicing factors.38 Several cancer studies have identified MALAT1 involvement in 235 

molecular signalling pathways including NF-kB, PI3K/AKT, WNT/β-catenin and 236 

MAPK/ERK associated with proliferation, apoptosis and inflammation.28, 39 237 

MALAT1 studies in OA have largely focused on articular cartilage tissue or articular 238 

chondrocytes and to a lesser extent in synovium or FLS. However, the expression of 239 

MALAT1 is significantly increased in both OA cartilage and synovium tissue, as well 240 

as in isolated chondrocytes and FLS. MALAT1 expression was found to increase in 241 

response to LPS stimulation in the murine ATDC5 chondrogenic cell line.40 Pan et al.40 242 

report protective effects of MALAT1, since overexpression reversed LPS-induced 243 

inflammatory injury. LPS induced expression and secretion of apoptotic and pro-244 

inflammatory factors including Bax, caspase 3 and 9, IL-1B, IL-6, IL-8 and TNFα were 245 

all suppressed by MALAT1 overexpression. MALAT1 alleviated LPS-induced cell 246 

injury through upregulation of miR-19b and suppressing the Wnt/β-catenin and NF-kB 247 

pathways.40 Chondroprotective effects of MALAT1 was also reported in primary rat 248 

chondrocytes treated with IL-1β to mimic OA inflammation. Gao et al.41 report 249 

overexpression of MALAT1 promotes proliferation and inhibits apoptosis and ECM 250 

degradation through the suppression of the JNK signalling pathway.  251 

 252 

In contrast, MALAT1 is reported to contribute to OA pathogenesis in several patient 253 

studies through its actions on chondrocyte proliferation which is likely due to 254 

differences in study context than species dependent functionality. Indeed, as reviewed 255 

by Arun et al, MALAT1 has numerous context-dependent molecular mechanisms 256 

influencing a myriad of physiological conditions.42 In human OA chondrocytes, 257 

MALAT1 can sponge and inhibit miR-127-5p expression leading to increased 258 
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osteopontin (OPN) expression and activation of the PI3K/Akt pathway, which in turn 259 

results in increased chondrocyte proliferation.43 Also, MALAT1 competitively binds 260 

miR-150-5p, indirectly promoting AKT3 expression and resulting in increased 261 

proliferation, ECM degradation and suppressed apoptosis in primary chondrocytes. 44 262 

Similarly, MALAT1 directly binds and inhibits miR-145, which can no longer suppress 263 

ADAMTS5 expression thus promoting ECM degradation and reduced cell viability in 264 

IL-1β treated primary chondrocytes.45 Li et al.46 found through regulation of miR-146a 265 

that MALAT1 indirectly activated the PI3K/AKT pathway, regulating proliferation of 266 

LPS treated chondrocytes isolated from the Sprague Dawley (SD) rat model. 267 

Additionally, siRNA mediated MALAT1 knockdown in human primary OA 268 

chondrocytes silenced IL-6, COX-2 and MMP13 and promoted collagen type II 269 

expression (COL2A1) suggesting MALAT1 is pro-inflammatory and pro-degradative.46 270 

These inflammatory mechanisms have also been identified in OA patient FLS. 271 

MALAT1 expression is elevated in OA synovial tissue compared to non-OA patient 272 

tissue, and even more so in OA patients who are obese. This increase was correlated 273 

with pro-inflammatory cytokine levels including IL-6 and CXCL8. Similar to findings in 274 

chondrocytes, LNA-Gapmer silencing of MALAT1 in OA-FLS supressed pro-275 

inflammatory cytokine expression and inhibited their proliferation.19 276 

 277 

Interestingly, in RA, MALAT1 expression is significantly reduced in synovium tissue 278 

and in RA-FLS. Furthermore, it is one of six lncRNA down-regulated in RA serum 279 

exosomes.47-50 LncRNA screening following treatment with the dietary anti-oxidant 280 

quercetin, identified MALAT1 to be upregulated during quercetin-induced apoptosis in 281 

immortalised RA-FLS.50 MALAT1 knockdown reversed quercetin-induced apoptosis, 282 

reduced caspase-3 and caspase-9 expression and activated the PI3K/AKT pathway, 283 
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enhancing cell proliferation.50  Li et al.48 reported that MALAT1 was fundamental in 284 

suppressing the Wnt signalling pathway by recruiting methyltransferases to the 285 

promoter of the CTNNB1 gene, which encodes the -catenin protein. Silencing of 286 

MALAT1 to mimic low expression levels in RA-synovial tissue resulted in activation of 287 

the Wnt/-atenin signalling pathway, increased primary RA-FLS proliferation and the 288 

secretion of pro-inflammatory cytokines IL-6, IL-10 and TNFα.48 This in contrast to 289 

MALAT1 silencing in OA-FLS where pro-inflammatory factors and proliferation are 290 

inhibited.19 It is evident that MALAT1 has a significant role in inflammation and cell 291 

proliferation in both conditions, although the disease specific mechanisms of action 292 

and the differences noted here leave much to be considered.  293 

 294 

2.3.2 HOX Transcript Antisense RNA (HOTAIR) 295 

HOX transcript antisense RNA (HOTAIR) was discovered in 2007 by Rin et al,51 as a 296 

2158-nucleotide containing long intergenic non-coding RNA (lincRNA). HOTAIR is 297 

expressed from the antisense strand of the HOXC genes located on chromosome 298 

12.52 This lincRNA is an important epigenetic regulator, which selectively binds 299 

components of the PRC2 complex including Suz12 and the histone methyltransferase 300 

EZH2.52, 53 Whilst the 5’ region of HOTAIR associates with PRC2 proteins, the 3’ 301 

domain interacts with the histone demethylase complex LSD1/CoREST/REST.54 302 

 303 

Recent studies indicate that HOTAIR lncRNA may have a significant role in the 304 

pathogenesis of both OA and RA. The differential expression of HOTAIR has been 305 

reported in rheumatic conditions particularly in the cartilage tissue of both OA and RA 306 

patients. Gain (GOF) and loss (LOF) of function studies find HOTAIR to be involved 307 
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in cell proliferation, apoptosis and inflammation. Chen et al,55 reported an increase in 308 

HOTAIR expression in response to LPS induction in C28/I2 chondrocytes, which 309 

correlated with elevated pro-inflammatory cytokine profiles of IL-6, IL-8 and TNF and 310 

cell injury. Suppression of HOTAIR reduced cell proliferation, apoptosis and cytokine 311 

expression of C28/I2 articular chondrocytes cells.55  Mechanistically, this study found 312 

that inflammatory injury was regulated through HOTAIR mediated down-regulation of 313 

miR-17-5p which lead to an increase in ETV1. Through activation of MAPK/c-Jun and 314 

NF-kB pathways, ETV1 regulated inflammatory damage and cell injury.55 More 315 

recently, the HOTAIR/ miR-17-5p axis has also been described in primary human 316 

chondrocytes isolated from OA patient articular cartilage tissue. Hu et al.,56 reported 317 

increased HOTAIR and reduced miR-17-5p expression in human OA diseased 318 

cartilage, which correlated with chondrocyte apoptosis and extracellular matrix (ECM) 319 

degradation in C28/I2 chondrocyte cell line. RNA immunoprecipitation assays 320 

confirmed HOTAIR could bind miR-17-5p, which resulted in the indirect upregulation 321 

of FUT2 protein. Additionally, FUT2 was found to aggravate ECM degradation and 322 

chondrocyte apoptosis through the Wnt/B-catenin pathway.56 Interestingly, in 323 

chondrosarcoma SW1353 cells, HOTAIR can directly activate the Wnt/β-catenin 324 

pathway through increased H3K27 trimethylation at the promoter of the Wnt inhibitory 325 

factor 1 (WIF-1).57  Other miRNAs that are regulated by HOTAIR in OA include miR-326 

130a-3p and miR-20b.58, 59 Upregulated HOTAIR expression is reported in knee OA 327 

patients with radiographic evidence of articular cartilage degradation.58 Increased 328 

HOTAIR was found to sponge miR-130a-3p in primary knee OA chondrocytes, 329 

reducing miR-130a-3p levels and resulting in repressed autophagy and cell growth 330 

leading to chondrocyte apoptosis.58  331 

 332 
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In the destabilization of the medial meniscus (DMM) OA mouse model, silencing of 333 

HOTAIR reversed cartilage degradation, repressed MMP13 and ADAMTS-5 and 334 

activated aggrecan and collagen type II production in cartilage.59 HOTAIR was 335 

identified as a competing endogenous RNA (ceRNA), which sponged miR-20b 336 

resulting in the upregulation of PTEN, a negative regulator of the PI3K/AKT signalling 337 

pathway.59 These findings support a previous study where HOTAIR was also found to 338 

strongly promote ADAMTS-5 expression in human OA articular chondrocytes. Dou et 339 

al.,60 found overexpression of HOTAIR stabilized ADAMTS-5 mRNA, which could be 340 

through miR-20b sponging as described by Chen at el.59 HOTAIR lncRNA has similar 341 

pro-inflammatory functionalities in OA synovium tissue. HOTAIR expression has been 342 

significantly noted in the synovial fluid of temporomandibular joint OA (TMJ-OA) 343 

patients. This correlated with increased MMP1, MMP3, MMP9 and HOTAIR in rabbit 344 

condylar chondrocytes, a temporomandibular OA model.61 Additionally, in the ACLT 345 

rat model of OA, silencing HOTAIR inhibited the Wnt/β-catenin pathway resulting in 346 

reduced synovial inflammation.62  347 

 348 

HOTAIR is also described to a lesser extent in RA. Song et al.47 isolated RA patient 349 

peripheral blood mononuclear cells (PBMCs) and serum exosomes to find HOTAIR 350 

expression was increased by four-fold in these patients. However, in RA patient FLS, 351 

HOTAIR was significantly decreased by threefold. Lentiviral overexpression of 352 

HOTAIR in FLS and osteoclasts significantly reduced activation of MMP2 and MMP13. 353 

Song et al.47  found that LPS-activated monocytic cells actively migrated towards RA 354 

serum exosomes containing high levels of HOTAIR. This suggests in vivo circulating 355 

HOTAIR-containing exosomes may attract and activate macrophages inducing 356 

immune responses in RA. More recently, in LPS-stimulated rat chondrocytes 357 
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overexpression of HOTAIR suppressed LPS-induced inflammation. HOTAIR was 358 

found to directly target and inhibit miR-138-mediated activation of NF-kB signalling in 359 

vivo, resulting in the suppression of IL-1β  and TNFα.63 Interestingly, in RA studies 360 

overexpression of HOTAIR is recognised to be protective, reducing catabolic MMPs 361 

and inflammatory cytokines, whilst the opposite is true in OA where HOTAIR 362 

expression promotes cartilage degradation. These opposing mechanisms of HOTAIR 363 

in OA and RA suggests there may be condition specific mechanisms coordinated by 364 

other regulators which are yet to be determined.  365 

 366 

2.3.3 Growth Arrest-Specific 5 (GAS5) 367 

The growth arrest-specific 5 (GAS5) gene encodes several non-coding RNAs 368 

including a lncRNA. Although the molecular mechanisms are largely unclear, GAS5 is 369 

known to regulate apoptosis, proliferation, invasion and metastasis.64 Interestingly, its 370 

secondary structure forms a stem loop that competitively binds and inhibits 371 

glucocorticoid receptors, which may be of functional relevance in rheumatic 372 

conditions.65 373 

 374 

GAS5 expression in OA cartilage tissue and chondrocytes is reported to be 375 

significantly upregulated.66, 67 Lentiviral overexpression of GAS5 in primary human OA 376 

chondrocytes inhibited autophagic responses whilst activating apoptosis and up-377 

regulating expression of several MMPs.67 Song et al.67 identified a mechanism of 378 

reciprocal repression between GAS5 and miR-21, where exogenous GAS5 379 

suppressed miR-21 resulting in apoptosis and increased expression of cartilage 380 

MMP13. Lentiviral miR-21 injected into mice significantly reduced GAS5 mRNA levels, 381 
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DMM-induced cartilage destruction and MMP13 expression. The conditions that 382 

regulate this reciprocal inter-regulator repression between GAS5 and miR-21 requires 383 

further study. More recently, silencing of GAS5 in primary chondrocytes promoted 384 

proliferation, inhibited apoptosis and reduced expression of pro-inflammatory factors 385 

IL-6 and TNFA.68 Double luciferase reporter assays confirmed the regulatory 386 

mechanism of GAS5 lay in the suppression of miR-34a and the subsequent 387 

upregulation of the apoptotic regulatory protein Bcl-2. In contrast, effects reported in 388 

mouse chondrogenic ATDC5 cells found LPS-induced inflammation suppressed 389 

GAS5 mRNA levels, which promoted apoptosis.69 Arguably LPS may promote 390 

apoptosis independently of GAS5, however GAS5 overexpression also alleviated 391 

LPS-induced inflammation suggesting lncRNA mechanisms may differ between mice 392 

and human. Mechanistically, Li et al.69 found GAS5 positively regulated the KLF2 393 

transcription factor which in turn suppressed the NF-kB and Notch signalling 394 

pathways. 395 

 396 

In RA, GAS5 is significantly upregulated in peripheral blood but down regulated in RA 397 

synovial tissue and primary RA-FLS.47, 70-72 Profiling of blood samples from RA 398 

patients found GAS5 to be one of several lncRNAs to be significantly upregulated in 399 

RA blood monocyte cells.47 Treatment of primary RA-FLS with the cytotoxic, anti-400 

inflammatory antioxidant Tanshinone IIA (Tan IIA) induced apoptosis and significantly 401 

up-regulated GAS5 expression. Silencing of GAS5 reversed these effects of Tan IIA 402 

by down-regulating the expression of pro-apoptotic caspases 3 and 9 and activating 403 

the PI3K/AKT signalling pathway.70 In RA patient plasma, GAS5 expression was found 404 

to be inversely correlated to concentrations of IL-18, a pro-inflammatory cytokine 405 

known to contribute to RA pathogenesis.71 Overexpression of GAS5 in primary FLS 406 
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was found to downregulate IL-18 expression and promote apoptosis. Anti-407 

inflammatory effects of GAS5 in RA were echoed in reports that found the GAS5 408 

promoter to be hypermethylated in RA synovial tissue and patient RA-FLS.72 GAS5 409 

promoter methylation was inhibited with 5-aza-2-deoxycytidine which increased the 410 

expression of GAS5 and decreased the expression of the apoptotic regulator HIPK2 411 

and pro-inflammatory cytokines TNFA and IL-6. Collectively, these multiple studies 412 

suggest GAS5 has a significant role in regulating apoptosis and inflammation in both 413 

RA and OA.  414 

 415 

2.3.4 H19 imprinted maternally expressed transcript (H19) 416 

The highly evolutionary conserved H19 gene is an imprinted gene which encodes a 417 

2.3kb lncRNA. H19 is known for its tumour suppressive effects in cancer where it is 418 

associated with cell viability, migration and invasion.73 Upregulated H19 expression is 419 

observed in RA synovial tissue and OA cartilage. Microarray analysis of OA cartilage 420 

found H19 was one of 21 up-regulated lncRNAs.66 Steck et al.74 found H19 was 421 

induced under hypoxic conditions in primary OA chondrocytes and was silenced when 422 

stimulated with pro-inflammatory cytokines IL-1β and TNFα. In the human 423 

chondrogenic cell line C28/I2, elevated H19 was found to sponge miR-130a resulting 424 

in LPS-induced apoptosis and inflammation.75 Similarly, elevated H19 in primary 425 

human chondrocytes stimulated by IL-1β, inhibited proliferation and induced 426 

apoptosis. RNA-immunoprecipitation (RIP) assays confirmed H19 sponging of miR-427 

106a-5p, whose overexpression reversed H19 effects.76 In HC-A cells, silencing H19 428 

not only facilitated proliferation but also suppressed MMP1 and MMP13 whilst 429 

upregulating COL2A1 levels. Yang et al.77 found H19, through suppression of miR-430 

140-5p, could regulate cartilage degradation and calcification in OA. In contrast, Tan 431 
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et al.78 found primary OA-FLS exosomes containing H19 were responsible for cartilage 432 

repair through targeting of miR-106b-5p. They also reported decreased H19 433 

expression in OA cartilage as well as a silencing of H19 in OA chondrocytes in 434 

response to IL-1β stimulation.78 In primary RA-FLS stimulated with IL-1β, H19 was 435 

significantly elevated, which was also demonstrated to a lesser extent in primary OA-436 

FLS.79 Stuhlmuller et al.79 found H19 expression also responded to serum starvation, 437 

TNFα and platlet-derived growth factor-BB (PDGF-BB) stimulation and was 438 

significantly higher in RA isolated synovial macrophages. Inhibitor assays showed that 439 

H19 RNA expression was under the control of the MAPK/ ERK1-2 signalling pathway. 440 

Similarly, pro-inflammatory stimulation of RA-FLS MH7A cell line with TNFα increased 441 

H19 expression, increased IL-6, IL-8 and IL-1β production and increased apoptosis.80 442 

Through LOF and GOF studies it was determined that H19 promoted the 443 

phosphorylation of TAK1, a MAP3 kinase known to activate the JNK/p38MAPK and 444 

NF-kB pathway in RA resulting in cellular inflammation of RA synovial MH7A cells.  445 

 446 

2.3.5 Nuclear Enriched Abundant Transcript 1 (NEAT1) 447 

The Nuclear Enriched Abundant Transcript 1, NEAT1, is found in neighbouring regions 448 

of MALAT1 on chromosome 11 and shares several similarities with MALAT1 which 449 

was previously known as NEAT2.53 Like MALAT1, NEAT1 is found mainly localised in 450 

the nucleus and is necessary for the formation of the nuclear paraspeckles, which are 451 

ribonucleoprotein (RNP) bodies thought to regulate gene expression. NEAT1 lncRNA 452 

is fundamental for maintaining the paraspeckle architecture, where it also influences 453 

splicing factors. This lncRNA enables the expression of cytokines and antiviral genes 454 

including IL-8 by binding to the SFPG (splicing factor proline/glutamine-rich) RNA-455 
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binding protein and sequestering it within the paraspeckles. Removal of SFPG from 456 

the IL-8 promoter alleviates repression at this locus allowing IL-8 to be transcribed.54  457 

NEAT1 expression in OA cartilage tissue and chondrocytes is upregulated and has 458 

been described to regulate several miRNAs. Lui et al.81 found NEAT1 sponged miR-459 

193-3p activating SOX5, resulting in elevated IL-6, IL-1B, TNFA and IL-8 expression, 460 

increased apoptosis and promotion of ECM degradation in primary chondrocytes. 461 

Similarly, miR-377-3p was also silenced by NEAT1 sponging in IL-1β stimulated 462 

primary chondrocytes resulting in increased inflammation, apoptosis and cartilage 463 

degradation through elevated ITGA6 expression.82 Additionally, NEAT1 was identified 464 

as a ceRNA silencer of miR-16-5p. However, in mouse ATDC5 chondrocyte cells, this 465 

inhibited apoptosis.83 Similarly, Wang et al.84  also report NEAT1 to be anti-apoptotic 466 

ceRNA of miR-181a in human chondrocytes suggesting there may be miRNA specific 467 

regulatory mechanisms. Interestingly, NEAT1 expression is down-regulated in 468 

synovial tissue.84 In RA, NEAT1 expression is reportedly upregulated in RA blood 469 

exosomes, RA PBMCs, and in Th17 cells induced from RA CD4+ T-cells.47, 85 RA 470 

pathogenesis is correlated with elevated levels of pro-inflammatory T-helper cells 471 

(Th17s) in PBMCs. Shui et al.85 found NEAT1 knockdown prevented CD4+ T-cells 472 

from differentiating into Th17 cells suggesting NEAT1 is involved in RA development.  473 

 474 

2.3.6 X-Inactive Specific Transcript (XIST) 475 

One of the first lncRNAs to be as characterised as many protein-coding transcripts 476 

was X-Inactive Specific Transcript (XIST) lncRNA.86 The X-chromosome consists of 477 

numerous immune genes that are silenced through mechanisms of X chromosome 478 

inactivation (Xi). Xi is essential for dosage compensation of the X chromosome in 479 
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female mammals. LncRNA XIST is fundamental in recruiting the PRC2 complex for 480 

chromosome wide silencing through H3K27me3.87 More recently, XIST has been 481 

reported as a microRNA sponge in numerous conditions, although this may very well 482 

be a sex-specific regulatory mechanism considering XIST is nearly exclusively 483 

expressed in females.88 Certainly rheumatic conditions are highly prevalent in females 484 

possibly due to differential levels of hormones, the ability of women to get pregnant, 485 

the health consequences that can manifest as a result of pregnancy and giving birth, 486 

as well as the number of X chromosomes present in female cells.89 Interestingly, Xi-487 

skewing is reported in RA, where three times as many women are affected.90 Although 488 

the functions of XIST lncRNA in RA is poorly defined, YY1 expression and protein 489 

levels are elevated. The YY1 transcription factor is fundamental in bridging XIST 490 

lncRNA to the inactive X chromosome for silencing. Additionally, inhibition of YY1 491 

reduced IL-6 expression and inflammation in collagen-induced mouse arthritis 492 

model.91 493 

 494 

Reports suggest twice as many women as men develop OA of the knee, although 495 

there is little differences in the incidence of OA reported in other joints between males 496 

and females. 92, 93  As such, in recent years few mechanistic studies have explored 497 

these sex specific effects. However, cartilage tissue, chondrocytes and synovium from 498 

OA patients all highly express XIST lncRNA and studies largely report an XIST/miRNA 499 

regulatory function.94 OA pathogenesis is characterised by cartilage degeneration, 500 

which involves chondrocyte apoptosis. Through regulation of the chondrocyte 501 

apoptosis contributor CXCR4 and downstream MAPK signalling, the XIST/ miR-211 502 

axis was found to regulate proliferation and apoptosis in primary chondrocytes.95 503 

Similarly, the miR-142-5p/SGTB/XIST axis was described in IL-1β treated SW1353 504 
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chondrocytes to impact on cell growth and apoptosis.96 Although, one study in CHON-505 

001 and ATDC5 chondrocyte cell lines found overexpression of XIST to inhibit 506 

apoptosis through the miR-653-5p/SIRT1 axis.97 XIST could also promote MMP-13 507 

and ADAMTS5 mediated ECM degradation by functioning as a ceRNA of miR-1277-508 

5p. This was validated in the DMM  OA rat model, where downregulation of XIST 509 

proved to be protective against ECM degradation.98 Additionally, by sponging of miR-510 

149-5p, XIST was found to enhance DNMT3A expression supressing collagen type II 511 

and aggrecan production, inhibiting proliferation and promoting apoptosis of IL-1β 512 

treated CHON-001 chondrocyte cell line.99 Interestingly, collagen degradation in 513 

primary OA chondrocytes is reportedly regulated by MMP inhibitor TIMP-3. XIST was 514 

found to recruit DNMT1, DNMT3A and DNMT3B to increase TIMP-3 promoter 515 

methylation, thereby silencing TIMP-3 and promoting collagen degradation.100 OA 516 

chondrocyte apoptosis is also regulated by M1 macrophages via the XIST/ miR-376c-517 

5p/OPN axis in co-culture studies.101 XIST was identified as a ceRNA of miR376c-5p, 518 

which was essential for silencing osteopontin (OPN) known to regulate pro-519 

inflammatory cytokines within M1 macrophages, which in turn promoted apoptosis in 520 

primary chondrocytes. 521 

 522 

2.3.7 Maternally Expressed Gene 3 (MEG3) 523 

The maternally expressed gene 3 (MEG3) lncRNA is a chromatin binding transcript 524 

known to interact with the PRC2 complex.102 MEG3 recognises GA-rich DNA regions 525 

within promoter regions of common EZH2 target genes. In this way, it functions as a 526 

guide lncRNA for PRC2 and binds chromatin through a RNA-DNA triple helix 527 

conformation.102, 103 MEG3 expression is downregulated across cancers and similar 528 

observations are also reported in rheumatic conditions. Functionally, MEG3 is involved 529 



 23 

in apoptosis and proliferation through modulating the TGFβ and Wnt/β-catenin 530 

signalling pathways and the regulation of p53.102 531 

 532 

MEG3 down regulation is observed in OA cartilage tissue and chondrocytes, although 533 

there are some conflicting reports.104-106 In ATDC5 cells, MEG3 functioned as a ceRNA 534 

of miR-203 whose downstream target, SIRT1, could alleviate LPS-induced 535 

inflammatory injury through the PI3K/AKT and NF-kB pathways in the absence of 536 

MEG3.107 Interestingly, treatment of rabbit joints with the pain eliminating nerve 537 

inhibitor methylene blue elevated MEG3 expression. Here, MEG3 overexpression was 538 

found to relieve OA-associated pain through suppression of pro-inflammatory 539 

cytokines IL-6, TNFA, IL-1B and IL-8.108 Overexpressed MEG3 was found to be anti-540 

proliferation and pro-apoptotic through the miR-16/SMAD axis in IL-1β treated SD rat 541 

chondrocytes.105 In line with this, a more recent study, using the same IL-1β treated 542 

rat OA chondrocytes, also reported MEG3 to be downregulated. However, here 543 

overexpression of MEG3 resulted in increased proliferation, suppressed apoptosis 544 

and alleviated ECM degradation. Chen et al.106 found MEG3 to disrupt the miR-545 

93/TGFBR2 axis thus activating the TGFβ signalling pathway which regulates ECM 546 

degradation. Although similar findings have been reported in primary chondrocytes 547 

isolated from OA patient tissue. Wang et al.109 reported MEG3 targeting of miR-548 

361/FOXO1 regulatory axis, which promoted proliferation whilst suppressing 549 

apoptosis and ECM degradation. Interestingly, MEG3 is highly expressed in RA 550 

synovial tissue and RA-FLS, and in vivo studies in SD rats found this overexpression 551 

facilitates cell proliferation and inhibited inflammation by downregulating miR-141 and 552 

inactivating the AKT/mTOR pathway.110 However in a contradictory study, primary RA-553 

FLS MEG3 expression was found to be down regulated and further suppression 554 
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promoted proliferation and invasion, stimulating the STAT3 and PI3K/AKT 555 

pathways.111 The handful of studies mentioned here utilise various models from 556 

primary human FLS to immortalised cell lines as well as several animal models. Lu et 557 

al. 2019, cited trauma patients undergoing joint placement as appropriate controls 558 

however on average these patients were 10 years younger than the OA patients.111 559 

Whilst another study failed to describe the designation of ‘healthy’ control.110 The many 560 

contradictions stipulated here may be attributed to these differences in controls used, 561 

studies being underpowered or choice of study model. 562 

 563 

2.3.8 HOXA Transcript at the Distal Tip (HOTTIP) 564 

The HOXA transcript at the distal tip (HOTTIP) transcript is a ~3.8 kb lncRNA that is 565 

highly expressed across many cancers and is known to regulate the HOXA locus. 566 

Through binding of WDR5 protein and recruitment of the histone methyltransferase 567 

protein MLL, HOTTIP drives activation of the HOXA genes through H3K4 568 

methylation.112 Reports also find HOTTIP can enhance IL-6 expression in ovarian 569 

cancer tissue through binding of c-jun. Additionally, HOTTIP enhanced IL-6 secretion 570 

in ovarian cancer tissue promoted neutrophil induced inhibition of T-cell activity.113, 114 571 

These findings may also be functionally relevant in RA and OA where HOTTIP 572 

expression is similarly increased in RA-FLS, OA cartilage and chondrocytes and 573 

patients present with elevated IL-6 levels. HOTTIP has been linked to the progression 574 

of OA through suppression of HoxA13 in chondrogenic mouse mesenchymal stem 575 

cells (MSC), which modulated integrin-α1 expression and cartilage maintenance.115 576 

Additionally in human chondrogenic MSC, HOTTIP targets the miR-455-3p/CCL3 577 

pathway in OA inducing cartilage degradation.116 In primary RA-FLS, HOTTIP is 578 

thought to recruit DNA methyltransferase Dnmt3b to silence SFRP1.117 Through 579 
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Dnmt3b HOTTIP could also activate the Wnt signalling pathway leading to 580 

inflammation. Overexpression of HOTTIP in the rat adjuvant-induced RA model 581 

resulted in synovial tissue hyperplasia, increased infiltration of inflammatory cells and 582 

elevated IL-6 and IL-8 production and MMP3 expression.117  583 

 584 

2.3.9 Plasmacytoma Variant Translocation 1 (PVT1) 585 

Plasmacytoma variant translocation 1 (PVT1) is a highly conserved lncRNA 586 

transcribed from a prominent cancer-associated region on chromosome 8. PVT1 is a 587 

multifaceted lncRNA whose function includes miRNA regulation, epigenetic 588 

coordination involving PRC2, cell cycle modulation as well as numerous other 589 

signalling pathways.118 As in cancerous tissues, PVT1 is upregulated in the rheumatic 590 

conditions discussed.66  591 

 592 

In OA, PVT1 is largely described as a sponging ceRNA facilitating apoptosis, 593 

inflammation and cartilage degradation. Overexpression of PVT1 in OA primary 594 

chondrocytes induced apoptosis through sponging of miR-488-3p.119 Through 595 

sponging of miR-149, PVT1 mediates cartilage degradation.120 PVT1 silencing 596 

suppressed primary chondrocyte catabolism and inflammation, where IL-1β induced 597 

production of IL-6, IL-8 and TNFα and expression of MMP3, MMP9 and MMP13 were 598 

all downregulated, whilst production of anabolic factors, collagen type II and aggrecan, 599 

were increased. Similarly, the PVT1/miR-27b-3p/TRAF3 axis promoted apoptosis and 600 

inflammation in C28/I2 cells, whilst the PVT1/miR-26b/CTGF/TGF-B1 axis enhanced 601 

cartilage degradation in primary chondrocytes.121, 122 Interestingly, PVT1 was also 602 

found to induce TNFA expression and secretion through miR-211-3p sponging in TMJ-603 
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OA FLS, which in turn facilitated SW982 chondrocyte apoptosis.123 Although elevated 604 

PVT1 expression was found to promote proliferation in RA-FLS through the miR-605 

543/SCUBE2 axis, knockdown resulted in apoptosis and supressed inflammation 606 

suggesting tissue specific mechanisms of action.124, 125 In RA-FLS isolated from Lewis 607 

rats injected with complete Freund’s adjuvant, evidence suggests PVT1 facilitated 608 

promoter methylation of SIRT6, a stress responsive protein known to supress 609 

inflammation and bone destruction in arthritic mice.125 610 

 611 

2.3.10 Taurine Up-regulated 1 (TUG1) 612 

The 7.6 kb Taurine up-regulated 1 (TUG1) transcript is a fundamental cancer 613 

regulatory lncRNA involved in a variety of biological processes. Mechanistically, TUG1 614 

regulates transcriptional activity of target genes through its ability to sponge miRNAs 615 

and by interacting with the PRC2 compelx.126 TUG1 is overexpressed in RA patient 616 

PBMCs, RA patient serum exosomes and OA patient cartilage.47, 127 TUG1 617 

overexpression was found to regulate ECM degradation in OA through the miR-618 

195/MMP-13 axis in primary chondrocytes.127 Interestingly emodin-induced TUG1 619 

expression in ATDC5 chondrogenic cells attenuated apoptosis and inflammation by 620 

inactivating the Notch and NF-kB signalling pathways.128 621 

 622 

2.3.11 Urothelial Carcinoma-Associated 1 (UCA1) 623 

The urothelial carcinoma-associated 1 (UCA1) lncRNA was initially identified as 624 

upregulated in bladder cancer and subsequently across other cancers. UCA1 gene 625 

encodes three variants ranging from 1.4kb to 2.7kb although the smallest is the most 626 

recognised and well-studied as a miRNA sponge.129 UCA1 is overexpressed in OA 627 
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cartilage tissue and through miR-204-5p/MMP-13 axis, suppresses type II and type IV 628 

collagen and promotes C28/I2 chondrocyte cell proliferation and MMP13 629 

expression.130 In RA-FLS cell line, UCA1 expression is significantly reduced and 630 

thought to induce apoptosis through Wnt6 expression modulation although the exact 631 

mechanism remains to be described.131  632 

 633 

2.3.12 Cancer Susceptibility Candidate 2 (CASC2) 634 

The cancer susceptibility candidate 2 (CASC2) lncRNA was first recognised in 2004 635 

as an onco-suppressor in endometrial cancer cells.132 CASC2 is a ~3.3kb lncRNA with 636 

three alternative transcripts but no putative protein. In cancer, CASC2 has been 637 

identified to regulate proliferation through epigenetic actions and by influencing 638 

miRNAs and other regulatory pathways such as STAT3, PI3K/AKT, NF-kB and 639 

MAPK.133 CASC2 is reportedly upregulated in OA chondrocytes and patient 640 

plasma.134, 135 Upregulated CASC2 promoted HC-OA chondrocyte cell apoptosis but 641 

was found to be targeted by miR-93-5p for degradation, which reversed these 642 

effects.134 Overexpression of CASC2 in human CHON-001 cells upregulated IL-17 643 

expression, enhanced apoptosis and suppressed cell proliferation.135 Whilst in OA 644 

chondrocytes CASC2 and IL17 expression were positively correlated, in RA patient 645 

plasma CASC2 expression was downregulated whilst IL-17 was upregulated.136 646 

Additionally, in primary RA-FLS, overexpression of CASC2 suppressed IL-17 which 647 

promoted apoptosis. These results suggest CASC2 may have disease and tissue 648 

specific regulatory mechanisms, which require further investigation. 649 

  650 

2.3.13 Antisense Non-coding RNA in the INK4 Locus (ANRIL) 651 
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ANRIL is the antisense non-coding RNA in the INK4 locus on chromosome 9 whose 652 

transcript is ~38kb in length.137 ANRIL epigenetically regulates gene expression by 653 

forming a RNP complex with polycomb repressive complexes that regulate mono- and 654 

tri-methylation of H3K27.138, 139 ANRIL is known to regulate many biological processes 655 

including proliferation and apoptosis. In OA cartilage, ANRIL expression is significantly 656 

elevated and downregulation with siRNAs in primary OA-FLS results in cell cycle 657 

arrest at GO/G1, inhibited proliferation and enhanced apoptosis.140 ANRIL is able to 658 

sponge miR-122-5p resulting in increased DUSP4 expression and the subsequent 659 

regulation of proliferation and apoptosis.140 In RA, there are few functional studies of 660 

note although in RA patient PBMCs ANRIL expression is reportedly decreased.47, 141 661 

Interestingly the ANRIL/miR-125a axis has been shown to exacerbate disease 662 

severity and inflammation in bronchial asthma, which could be functionally relevant in 663 

RA and SLE where miR-125a expression is similarly downregulated.142 664 

  665 

2.3.14 LncRNA Downregulated in Liver Cancer (Lnc-DILC) 666 

The lncRNA downregulated in liver cancer stem cells (lnc-DILC) mediates crosstalk 667 

between TNFA/NF-kB signalling and IL-6/STAT3 cascade.143 Lnc-DILC binding sites 668 

were also confirmed at the IL-6 promoter in liver cancer stem cells which through lnc-669 

DILC binding blocks IL-6 expression.143, 144 In both OA and RA patient plasma the lnc-670 

DILC expression is low whilst IL-6 is elevated.145 In primary RA-FLS, overexpression 671 

of lnc-DILC was found to induce apoptosis and supress IL-6 but only at the protein 672 

level.145 Similar overexpression in CHON-001 chondrocytes also inhibited IL-6 673 

production, although had no significant effects on proliferation and apoptosis.144 In 674 

both studies, IL-6 inhibition occurs at the protein rather than mRNA level suggesting 675 

lnc-DILC mechanisms effect IL-6 translation. Although the full regulatory mechanisms 676 
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are poorly defined in RA and OA, lnc-DILC has great therapeutic potential in reducing 677 

IL-6 driven inflammation. 678 

  679 

2.3.15 IGHC gamma 1 (IGHCy1) 680 

IGHCgamma1 (IGHCy1) is a lncRNA transcript significantly upregulated in RA clinical 681 

samples and positively correlated with erythrocyte sedimentation rate.146 IGHCy1 is 682 

highly expressed in OA patient PBMCs and in PMA-induced THP-1 macrophages 683 

activated with LPS.147 Silencing with siRNA reduced macrophage cell proliferation. 684 

IGHCy1 was identified as a ceRNA of miR-6891-3p resulting in increased TLR4 and 685 

NF-kB activity which promoted IL-6 and TNFα production.147 686 

 687 

2.3.16 Long Intergenic ncRNA p21 (lincRNA-p21) 688 

The long intergenic ncRNA p21 (lincRNA-p21) is p53-activated lncRNA that is well 689 

characterised in cancer.148 Modulated by p53, lincRNA-p21 is a transcriptional 690 

repressor involved in triggering apoptosis. Studies also report functions involving 691 

protein binding and localisation to chromatin, suppression of targeted mRNA 692 

translation as well as cis p21 activation regulating cell cycle.148 LncRNA-p21 is 693 

significantly upregulated in OA patient cartilage tissue.149 Silencing lncRNA-p21 in 694 

primary OA chondrocytes increased cell viability and reduced apoptosis which was 695 

reversed by miR-451 overexpression. Tang et al.149 found that lncRNA-p21 sponged 696 

miR-451 and in this way promoted chondrocyte apoptosis. In RA whole blood, 697 

lincRNA-p21 levels were significantly reduced whilst the NF-kB activator p65 was 698 

increased.150 Spurlock et al.150 found those patients not treated with methotrexate had 699 

even lower levels of lincRNA-p21. Methotrexate was found to induce lincRNA-p21 700 
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expression through DNA-protein kinase catalytic subunit and contributed to NF-kB 701 

activation in THP-1 monocytes. 702 

 703 

2.3.17 Small Nucleolar RNA Host Gene 1 (SNHG1) 704 

The small nucleolar RNA host gene 1 (SNHG1) is an lncRNA transcript that can be 705 

alternatively spiced into eight snoRNAs.151 SNGH1 is largely reported as a ceRNA 706 

which sponges miRNAs and contributes to cell proliferation, migration and metastasis 707 

in cancer. 152 SNHG1 is downregulated in RA patient serum exosomes and in RA 708 

patient PBMCs although the biological significance of this in RA is yet to be 709 

determined.47 However, in an IL-1β-induced OA chondrocyte model cell line, SNHG1 710 

overexpression inhibited catabolic and inflammatory factors MMPs, ADMATs, 711 

collagen, aggrecans, IL-6, TNFA, COX-2 and PGE2.153 SNGH1 was found to sponge 712 

miR-16-5p to inhibit ERK1/2, phosphorylated p38 and phosphorylated p65 factors 713 

involved in p38/MAPK and NF-kB signalling pathways. 714 

 715 

2.3.18 TNF and HNRNPL Related Immunoregulatory LncRNA (THRIL) 716 

The THRIL lncRNA was identified in THP-1 macrophages in an RNP-complex with 717 

hnRNPL which bind to and suppressed the TNFA promoter, hence its namesake TNF- 718 

and HNRNPL-related immunoregulatory lncRNA.154 This lncRNA is reported to also 719 

regulate IL-8, CSF1, CCL1 and CXCL10 expression. Interestingly, THRIL expression 720 

is elevated in RA and OA patients and in preclinical in vivo models. Pro-inflammatory 721 

roles are reported in an OA model using ATDC5 cells, where THRIL sponges miR-722 

125b activating the JAK1/STAT3 and NF-kB signalling pathways which induced 723 

inflammatory cell injury.155 Increased THRIL expression is also reported in RA patient 724 
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T-cells and in primary RA-FLS where THRIL activated the PI3K/AKT signalling 725 

pathway modulating cell growth and inflammation.156, 157 726 

 727 

2.3.19 ZNFX1 Anti-Sense 1 (ZFAS1) 728 

ZNFX1 antisense RNA1 (ZFAS1) is overexpressed in many cancers and hosts three 729 

snoRNAs. ZFAS1 is involved in many cancer-associated biological process, which 730 

include increased proliferation, migration, invasion and suppressed apoptosis.158 731 

Similarly in RA, ZFAS1 is reported to promote cell migration and invasion of patient 732 

isolated RA-FLS. ZFAS1 is highly expressed in RA synovial tissue as well as in 733 

primary RA-FLS and regulates migration and invasion through sponging of miR-734 

27a.159 In primary OA chondrocytes, ZFAS1 is downregulated, but its overexpression 735 

is reported to promote proliferation and cell migration whilst inhibiting apoptosis and 736 

matrix synthesis. Mechanistically, ZFAS1 overexpression was found to significantly 737 

suppress Wnt3a, β-catenin and p53.159 738 

 739 

3. Systemic Lupus Erythematosus 740 

Systemic lupus erythematosus (SLE) is another chronic autoimmune disease which 741 

leads to inflammation in various parts of the body including the skin causing rashes, 742 

internal organs such as the heart, lungs and kidneys as well as painful and swollen 743 

lymph nodes and joints.160 SLE has an estimated prevalence of 80-100 per 100,000 744 

adults with significant phenotypic heterogeneity. It is one of the leading causes of 745 

death in women with a female to male ratio of up to 15:1.161 Women also have an 746 

earlier peak in disease onset, usually in their 30s-50s, although males with later onset 747 

develop more severe comorbidities such as nephritis.160 Depending on race and 748 
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ethnicity, those of Black, South/ East Asian and Hispanic decent have significantly 749 

increased SLE prevalence with more sever disease activity.162 Although the cause of 750 

SLE is unknown, studies find that SLE heritability is less than 40%. Additionally, 751 

several environmental and lifestyle factors are also heavily associated with SLE 752 

including smoking, obesity, alcohol consumption, diet and air pollution.160 753 

 754 

The heterogeneity of SLE is such that almost any organ or tissue in the body may be 755 

affected with a variety of clinical presentations. In SLE, defective clearance of 756 

apoptotic cells and material is central to loss of immune tolerance resulting in the 757 

release of nuclear antigens which provoke a cascade of immune responses resulting 758 

in auto-reactivity.163 The pathophysiology is characterised by aberrant immune 759 

responses which sustain the production of autoantibodies, driving chronic 760 

inflammation.163 Several effector cells are involved in SLE, including dendritic cells 761 

(DCs), T-cells, B-cells, neutrophils, and monocytes. Plasmacytoid dendritic cells 762 

(pDC) are activated by neutrophils which undergo a cell death mechanism known as 763 

NETosis forming autoantigen containing neutrophil extracellular traps (NETs).164 764 

These NETs trigger type-1 IFN production by stimulating TLRs on pDCs, which 765 

sustains a positive feedback cycle promoting more NETosis, further pDC activation 766 

and enhanced type-1 IFN release. Neutrophils in lupus patients have reduced 767 

phagocytic activity, are more apoptotic and prone to NETosis which together 768 

stimulates immune activation and tissue damage.164 SLE myeloid DCs (mDCs), 769 

activated by pDC, released IFN-α, secrete pro-inflammatory cytokines and activate 770 

autoreactive CD8+ T-cells which differentiate into CD4+ T helper cells.165 Activated 771 

pDCs also produce chemokines (CXCL9, CXCL10, CCL3-5), which attract activated 772 

T-lymphocytes to sites of inflammation.165 In SLE, B-cells are influenced by DCs and 773 
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T-cells to differentiate and produce autoantibodies as a result of failed tolerance 774 

checkpoints.166 775 

 776 

More than half of SLE patients present with kidney injury which is a significant 777 

contributor to SLE morbidity. The kidney is infiltrated by IL-17 producing T-cells and 778 

autoantibody producing B-cells which activate the complement system causing kidney 779 

inflammation known as nephritis.167 Other infiltrating immune cells include pDCS, 780 

monocytes, macrophages and platelet aggregates, which bind CD40 on pDCs and 781 

monocytes stimulating IFN secretion which facilitates NETosis and further renal tissue 782 

damage.163 The complement system also disrupts the blood-brain barrier resulting in 783 

neuronal injury, microglial activation and the infiltration of T-cells.167, 168 Another 784 

common presentation in SLE patients is skin lesions and although not deemed life 785 

threatening, cutaneous lupus has a significant contribution in propagating 786 

autoimmunity. SLE skin biopsies are abundant in IL-17 secreting T-cells and pDCs, 787 

which produce large amounts of IFN-α.167 788 

 789 

SLE shares many of the key inflammatory pathways described in RA and OA including 790 

chemokine signalling, T-cell receptor signalling pathway and TLR pathway. As 791 

previously mentioned, TLRs, specifically TLR7 and TLR9, trigger type I IFN production 792 

in pDCs.169 TLR signalling stimulates pro-inflammatory cytokine production through 793 

MyD88 or IFN-B and IFN-inducible genes which act on the NF-kB and MAPK signalling 794 

pathways.170 The IFN signalling pathway is a prominent feature of SLE, which has a 795 

central role in SLE pathophysiology. The IFN system consists of ubiquitously 796 

expressed IFNα/β receptors (IFNAR) and IFNy (IFNGR) and IFNλ (IFNLR) receptors 797 
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which are bound by type I, II and III IFN subtypes, respectively, that regulate the 798 

expression of 200-2000 genes.169 A network of cells are involved in the production of 799 

IFNs, although the most prolific producer of type I IFN are pDCs.163, 169 IFN can also 800 

act on T-cells to modulate activation, proliferation, differentiation and survival as well 801 

as on B-cells to regulate migration, survival, cytokine production and antigen 802 

recognition and presentation.171 803 

 804 

T-cells are drawn to sites of inflammation by pDC cytokine production. Pro-805 

inflammatory cytokines such as IL-6, IL-21 and IL-23 activate STAT3, which 806 

suppresses IL-2 whilst enhancing transcription of IL-17 and BCL6, which facilitate 807 

inflammation and B-cell antibody production.171 IL-6 can stimulate CD4 T-cells to 808 

differentiate into IL-17 producing T-helper cells (Th17). Th17 cells are initiated by IL-809 

21 to produce IL-17 whilst IL-23 maintains sustained expression of IL-17 through the 810 

JAK-STAT signalling pathway.172 SLE T-cells also have elevated serine/threonine 811 

protein phosphatase 2A (PP2A), which regulates DNA hypomethylation of IFN-812 

regulated loci by suppressing the ERK/DNMT1 pathway.171, 173 Notably the IL-17 813 

promoter is hypomethylated whilst IL-2 remains methylated and silenced due to a 814 

failure in histone deacetylase 1 (HDAC1) recruitment.171 IL-17 is thought to be a 815 

fundamental driver in local tissue damage in SLE patients. Additionally, in SLE, T-816 

cells, macrophages and monocytes secrete TNFα, which acts through TNFR1 and 817 

TNFR2 receptors triggering the caspase cascade associated with apoptosis or the 818 

activation of NF-kB, JNK and MAPK pro-inflammatory pathways, respectively.172  819 

 820 

3.1 Evidence for the role of lncRNAs in the pathogenesis of SLE 821 
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Several lncRNAs have been identified through whole transcriptome profiling of SLE 822 

patient samples and many differentially expressed lncRNAs have been validated in 823 

SLE patient PBMCs.174-176 One computational study has used co-expression analysis 824 

and ceRNA networks to predict biological significance of some lesser known lncRNAs. 825 

Wu et al.177 found co-expression of GAS5, lnc0640 and lnc5150 may modulate the 826 

MAPK and PPAR signalling pathways, contributing to SLE pathogenesis. Additionally, 827 

GAS5, lnc0640, lnc3643, lnc7074 and lnc6655 were found to bind miRNAs that 828 

targeted genes involved in lncRNA-mRNA co-expression networks.177 These network 829 

predictions have yet to be functionally validated in SLE. MIAT lncRNA is also 830 

upregulated in SLE patient serums, although mechanisms have not been established 831 

in SLE.178 However, there are some indications in OA ATDC5 cells where MIAT 832 

sponges miR-132 leading to activation of NF-kB and JNK pathways and induction of 833 

apoptosis and cytokine release, which may also be functionally relevant in SLE.179 834 

FAS-AS1 is another lncRNA upregulated in SLE where mechanisms are yet to be 835 

determined but its expression is correlated with nephritis and positively correlated with 836 

anti-dsDNA antibody levels.180 Fittingly, in primary OA chondrocytes functional studies 837 

find silencing of FAS-AS1 inhibits apoptosis and promotes cell proliferation.181 Many 838 

SLE specific lncRNAs have been correlated with clinical markers such as erythrocyte 839 

sedimentation rate (ESR), C reactive protein (CRP), antinuclear antibodies (ANA) and 840 

falling complement factors C3 and C4.182-186 Despite identifying these lncRNAs very 841 

few have been functionally investigated in SLE to date. Those for which mechanisms 842 

have been determined include MALAT1, GAS5, NEAT1, XIST, TUG1, UCA1 and 843 

THRIL are all discussed in more detail below.  844 

 845 

3.1.1 Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) 846 
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Similarly to arthritis, elevated MALAT1 expression is also reported in peripheral blood 847 

monocytes (PBMCs), CD19+ B-cells and CD4+ T-cells of SLE patients.187, 188 848 

Silencing of MALAT1 in primary human monocytes reduced expression of IL-21, an 849 

important cytokine in the pathogenesis of SLE. MALAT1 silencing also suppressed 850 

expression of the deacetylase SIRT1.187 In another study, MALAT1 expression was 851 

positively correlated with type I IFN downstream effectors oligoadenylate synthase 852 

(OAS) proteins. OAS proteins were differentially expressed in SLE patients with renal 853 

disorders (PBMCs: OAS2 and OASL, CD19+ B-cells: OAS3 and OASL, CD4+ T-cells: 854 

OAS3) and those with arthritis symptoms (PBMCs and CD19+ B-cells: OAS2 and 855 

OAS3, CD4+ T-cells: OAS2). Silencing of MALAT1 repressed all OAS proteins as well 856 

as TNFA and IL-1B expression in IFNα-2a treated immune cells. By computation, this 857 

study determined that MALAT1 may function as a ceRNA of six miRNAs that all target 858 

OAS proteins, although functional validation is required.188 859 

 860 

3.1.2 Growth Arrest-Specific 5 (GAS5)  861 

In contrast to RA, expression of GAS5 is down regulated in SLE patient plasma.176, 177, 862 

189, 190 GAS5 was found to be significantly lower in active SLE, which highlighted its 863 

potential as a diagnostic marker.189 LncRNA screening of 240 SLE patients also found 864 

GAS5 to be significantly decreased in plasma.177 GAS5 was one of five proposed 865 

lncRNAs that together presented high diagnostic accuracy for SLE. KEGG pathway 866 

analysis of mRNAs associated with SLE found MAPK signalling to be enriched, which 867 

correlated with GAS5 lncRNA-mRNA co-expression networks as well as ceRNA 868 

networks. These predictions together suggest there may be a GAS5/miRNA/MAPK 869 

regulatory axis in SLE yet to be characterised. Interestingly, in CD4+ T-cells isolated 870 
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from SLE patients, GAS5 expression was significantly elevated and presented as a 871 

diagnostic marker for SLE patients with ulceration.190 872 

 873 

3.1.3 Nuclear Enriched Abundant Transcript 1 (NEAT1) 874 

Whole blood microarrays and qPCR validation find NEAT1 upregulated in SLE 875 

patients.178 Abnormally high levels of NEAT1 lncRNA is also detected in monocytes 876 

isolated from SLE patients.191 Silencing NEAT1 in LPS-induced THP-1 cells down-877 

regulated inflammatory cytokines IL-6, CXCL10 and CCL8. Zhang et al.191 determined 878 

NEAT1 as an early response gene which selectively regulated TLR4-mediated 879 

inflammatory genes through the MAPK pathway. Expansion of myeloid-derived 880 

suppressor cells (MDSCs) drives SLE pathogenesis. Through co-culture experiments 881 

Dong et al.192 found NEAT1 expression in granulocyte MDSCs induced the secretion 882 

of B-cell activating factor (BAFF), which promoted IFN-signalling activation of B-cells. 883 

Furthermore, silencing of NEAT1 alleviated lupus symptoms in lupus-prone MRL/lpr 884 

mouse model. An additional complication of SLE is kidney inflammation known as 885 

lupus nephritis effecting ~60% of patients. Elevated NEAT1 in SLE kidney tissues 886 

contributed to inflammatory cell injury, which included elevated IL-1β, IL-6, TNFα and 887 

IFN-y production as well as increased apoptosis.193 Mechanistically, it was determined 888 

that NEAT1 sponging of miR-146b allowed increased TRAF6 expression and 889 

activation of the NF-kB signalling resulting in accelerated cell injury in human renal 890 

mesangial cells.  891 

 892 

3.1.4 X-Inactive Specific Transcript (XIST) 893 
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There is considerable evidence for the role of XIST in the pathogenesis of SLE. Sex 894 

bias strongly drives risk of SLE, with nine times as many woman developing the 895 

autoimmune condition.194 In SLE female patient lymphocytes, XIST localisation 896 

patterns are disrupted and the inactive X chromosome becomes partially reactivated 897 

leading to the over expression of immunity related genes.195 In the NZB/W F1 SLE 898 

mouse model with female bias, YY1 expression was reduced resulting in poor 899 

localisation of XIST lncRNA to the Xi and increased expression of immune regulatory 900 

factors TLR7 and CXCR3 in B-cells.196 Similar disruptions to X-chromosome 901 

maintenance is also reported in SLE patient T-cells.197 Additionally, skewed allelic 902 

expression of X-linked genes has also been attributed to high variability of DNA 903 

methylation levels in SLE patients, which has been reversed in SLE mouse models by 904 

XIST knockdown.198 Finally, TSIX is the XIST antisense lncRNA which protects the 905 

active X chromosome from silencing during X-inactivation of the second X 906 

chromosome in females.199 TSIX inhibits XIST function by complementary binding of 907 

XIST forming a double-stranded RNA complex which is targeted for degradation by 908 

the endoribonuclease Dicer. Thus, upregulation of TSIX could be therapeutically 909 

protective against the Xi skewing reported in SLE and in tackling cartilage degradation 910 

and inflammation in OA as previously described. Intriguingly, the expression levels of 911 

TSIX has also been reported to be significantly higher in SLE patients compared to 912 

healthy donors and found to be highly expressed in female SLE patients compared 913 

with males which may be a protective response against elevated XIST.174 Although 914 

the ratio of XIST to TSIX expression levels in SLE has not been determined. As such 915 

endogenous TSIX levels may not be sufficient to reverse the effects of XIST which is 916 

also known to act locally to repress TSIX on both inactive and active X-917 

chromosomes.200 918 
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 919 

3.1.5 Taurine Up-regulated 1 (TUG1) 920 

TUG1 expression is significantly reduced in SLE patient whole blood and may be a 921 

clinically relevant biomarker.201 Xu et al.201 determined the protective effects of TUG1 922 

in HK-2 renal tubular epithelial cells, to understand lupus nephritis in SLE patients. 923 

Overexpression of TUG1 targeted the miR-223/SIRT1 axis activating the PI3K/AKT 924 

signalling whilst suppressing NF-kB pathway, increasing cell viability and supressing 925 

inflammation.202 With SLE mice, inhibition of the NF-kB signalling pathway with PDTC 926 

drug mitigated SLE progression and resulted in the up-regulation of TUG1 lncRNA 927 

expression.203  928 

 929 

3.1.6 Urothelial Carcinoma-Associated 1 (UCA1) 930 

UCA1 levels in SLE patient plasma was significantly increased along with AKT, 931 

particularly in females.204 Jiang and Li found high UCA1 expression correlated with 932 

those patients with evidence of organ involvement suggesting UCA1 could be a 933 

biomarker for stratifying SLE patients to distinguish those with and without organ 934 

involvement. Gain of function investigations found that UCA1 overexpression 935 

increased cell proliferation through activation of the PI3K/AKT pathway.204 936 

 937 

3.1.7 TNF and HNRNPL Related Immunoregulatory LncRNA (THRIL) 938 

THRIL expression is elevated in SLE patients and preclinical models. THRIL 939 

overexpression in LPS-induced HK2, a SLE model, increased apoptosis and the 940 

expression of pro-inflammatory cytokines IL-1B, IL-6, IL-8 and TNFA. THRIL was 941 

identified as a ceRNA of miR-34a which targeted MCP-1, thus THRIL activated the 942 
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JNK and Wnt/β-catenin signalling pathways which may be crucial in SLE 943 

pathogenesis.205   944 

  945 

4. Conclusions and Perspectives 946 

The evidence of lncRNA mediated roles in rheumatic conditions has been mounting 947 

in recent years and researchers are finally uncovering the diagnostic and therapeutic 948 

value of lncRNAs. Numerous lncRNAs have now been identified as central regulators 949 

of inflammatory pathways that are relevant to chronic inflammatory rheumatological 950 

conditions. This chapter illustrates the diverse role of lncRNAs in regulating 951 

inflammation, proliferation, migration, invasion and apoptosis in RA, OA and SLE. 952 

Unsurprisingly, since inflammatory diseases share several common pathways, studies 953 

have identified lncRNAs that are dysregulated across all three conditions. Although 954 

there are still gaps in our knowledge, lncRNA functional characterisation has been 955 

best explored in RA and OA and to a lesser extent in SLE, where lncRNAs are still a 956 

nascent field. However as inflammatory pathways are shared between conditions it is 957 

likely that there will be shared lncRNA functionality amongst respective conditions.  958 

These findings will not only add to our understanding of the dysregulation in chronic 959 

disease and the involvement of commonly dysregulated pathways, but will also be 960 

insightful in identifying therapeutic interventions and at‐risk patient populations across 961 

these rheumatological conditions. 962 

  963 
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Table 1. Summary of functional lncRNAs in Osteoarthritis 1594 

LncRN
A 

Expressio
n 

(Up '+' 
/Down '-') 

Model Function Ref. 

MALAT
1 

+ 
Human 
primary FLS 

Knockdown reduces expression and 
protein secretion of CXCL8 and IL6 and 
inhibits the proliferation of FLS 

19 

+ 
Mouse 
chondrocyte 
cell line 

Upregulates miR-19b suppressing 
Wnt/β-catenin and NF-kB pathways and 
pro-inflammatory factors IL-1β, IL-6, IL-8 
and TNFα 

40 

+ 
Rat primary 
chondrocytes 

Prevents activation of JNK signalling 
pathway supressing IL-1β-induced 
chondrocyte inflammation, apoptosis 
and extracellular matrix degradation 

41 

+ 
Human 
primary 
chondrocytes 

Acts as a molecular sponge to inhibit 
miR-127-5p, activating the PI3K/Akt 
pathway and increasing osteopontin 
(OPN) expression resulting in increased 
chondrocyte proliferation 

43 

+ 
Human 
primary 
chondrocytes 

Competitively binds miR-150-5p and 
indirectly promotes AKT3 expression 
resulting in increased proliferation, ECM 
degradation and suppressed apoptosis 

44 

+ 
Human 
primary 
chondrocytes 

Acts as a molecular sponge to inhibit 
miR-145, which can no longer suppress 
ADAMTS5 thus promoting ECM 
degradation and reduced cell viability 

45 

+ 
Rat primary 
chondrocytes 

Regulates miR-146a which activates the 
PI3K/AKT pathway, regulating 
proliferation and expression of IL-6, 
COX-2 and MMP13 and COL2A1 

46 

HOTAIR 
 

+ 
Human 
chondrocyte 
cell line 

Inhibits miR-17-5p mediated 
suppression of ETV1 which elevates 
pro-inflammatory cytokines IL-6, IL-8 
and TNFα through activation of MAPK/c-
Jun and NF-kB pathways 

55 

+ 
Human 
primary 
chondrocytes 

Sponging of miR-17-5p upregulates 
FUT2 increasing ECM degradation and 
apoptosis through the Wnt/β-catenin 
pathway 

56 

+ 
Human 
chondrocyte 
cell line 

Directly activates the Wnt/β-catenin 
pathway through increased H3K27 
trimethylation at the promoter of the Wnt 
inhibitory factor 1 

57 

+ 
Human 
primary 
chondrocytes 

Sponges miR-130a-3p reducing miR-
130a-3p levels resulting in repressed 
autophagy and cell growth leading to 
chondrocyte apoptosis 

58 



 56 

+ 
Mouse 
primary 
chondrocytes 

By sponging miR-20b upregulates 
PTEN, a negative regulator of the 
PI3K/AKT signalling pathway causing 
ECM degradation and chondrocyte 
apoptosis  

59 

+ 
Human 
chondrocyte 
cell line 

Stabilizes ADAMTS-5 mRNA through 
miR-20b sponging in chondrocytes 

60 

+ 
Rabbit 
primary 
chondrocytes 

Knockdown reverses IL-1β-stimulated 
expressions of MMP1, MMP3 and 
MMP9 and significantly decrease 
apoptosis 

61 

+ 
Rat primary 
synoviocytes 

Silencing inhibits Wnt/β-catenin pathway 
and reduced inflammation and promoted 
synoviocytes apoptosis 

62 

GAS5  

+ 
Human 
primary 
chondrocytes 

Exogenous GAS5 suppresses miR-21 
resulting in apoptosis and increased 
expression of cartilage MMP13 whilst 
lentiviral miR-21 represses GAS5, 
MMP13 and cartilage destruction 

67 

+ 
Human 
primary 
chondrocytes 

Suppresses miR-34a upregulating 
apoptotic regulatory protein Bcl-2 
increasing apoptosis and expression of 
pro-inflammatory factors IL-6 and TNFA. 

68 

- 
Mouse 
chondrocyte 
cell line 

Positively regulates KLF2 which 
suppresses the NF-kB and Notch 
signalling pathway alleviating LPS-
induced inflammation 

69 

H19 

+ 
Human 
primary 
chondrocytes 

Induced under hypoxic conditions and 
silenced when stimulated with pro-
inflammatory cytokines IL-1β and TNFα 

74 

 
Human 
chondrocyte 
cell line 

Found to sponge miR-130a resulting in 
LPS-induced apoptosis and 
inflammation 

75 

+ 
Human 
primary 
chondrocytes 

Increased H19 stimulated by IL-1β, 
inhibits proliferation and induces 
apoptosis through sponging of miR-
106a-5p 

76 

+ 
Human 
chondrocyte 
cell line 

Suppresses miR-140-5p to regulate 
cartilage degradation and calcification, 
increasing MMP1 and MMP13  

77 

- 
Rat primary 
FLS and 
chondrocytes 

FLS exosomes containing H19 were 
responsible for cartilage repair through 
targeting of miR-106b-5p 

78 

NEAT1 

+ 
Human 
primary 
chondrocytes 

Sponges miR-193-3p activating SOX5, 
resulting in elevated IL-6, IL-1B, TNFA 
and IL-8 expression, increased 
apoptosis and ECM degradation 

81 

+ 
Human 
primary 
chondrocytes 

miR-377-3p sponging by NEAT1 in IL-1β 
stimulates chondrocytes, increases 
inflammation, apoptosis and cartilage 
degradation through elevated ITGA6 
expression 

82 

+ 
Mouse and 
Human 

A ceRNA silencer of miR-16-5p inhibits 
apoptosis whilst reducing expression of 

83 
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chondrocyte 
cell line 

NEAT1 increased apoptosis and 
inflammatory cytokines 

- 
Human 
primary 
chondrocytes 

Anti-apoptotic and inflammatory ceRNA 
of miR-181a which regulates GPD1L 

84 

XIST 

+ 
Human 
primary 
chondrocytes 

Regulates CXCR4 and downstream 
MAPK signalling to regulate proliferation 
and apoptosis through the XIST/ miR-
211 axis  

95 

+ 
Human 
chondrocyte 
cell line 

miR-142-5p/SGTB/XIST axis described 
to impact on cell growth and apoptosis 
resulting in increased MMP13 and Bax 
and suppressed Bcl-2 

96 

- 

Human and 
Mouse 
chondrocyte 
cell lines 

Overexpression inhibits apoptosis 
through the miR-653-5p/SIRT1 axis 

97 

+ 
Human 
primary 
chondrocytes 

Promotes MMP-13 and ADAMTS5 
mediated ECM degradation by 
functioning as a ceRNA of miR-1277-5p. 

98 

+ 
Human 
chondrocyte 
cell line 

By sponging miR-149-5p, XIST 
enhanced DNMT3A expression 
supressing collagen type II and 
aggrecan production, inhibiting 
proliferation and promoting apoptosis 

99 

+ 
Human 
primary 
chondrocytes 

Recruits DNMT1, DNMT3A and 
DNMT3B to increase TIMP-3 promoter 
methylation, thereby silencing TIMP-3 
and promoting collagen degradation 

100 

+ 
Human 
primary 
chondrocytes 

A ceRNA of miR376c-5p, which is 
essential for silencing osteopontin 
known to regulate pro-inflammatory 
cytokines within M1 macrophages, 
which in turn promotes chondrocyte 
apoptosis 

101 

MEG3 

- 
Rat primary 
chondrocytes 

Overexpression is anti-proliferation and 
pro-apoptotic through the miR-16/SMAD 
axis 

105 

- 
Rat primary 
chondrocytes 

Disrupts the miR-93/TGFBR2 axis 
activating the TGFβ signalling pathway 
which regulates ECM degradation 

106 

- 
Mouse 
chondrocyte 
cell line 

A ceRNA of miR-203 whose 
downstream target, SIRT1, alleviates 
LPS-induced inflammatory injury 
through the PI3K/AKT and NF-kB 
pathways in the absence of MEG3 

107 

- 

Rabbit and 
Human 
chondrocyte 
cell line 

Overexpression relieves OA-associated 
pain through suppression of pro-
inflammatory cytokines IL-6, TNFA, IL-
1B and IL-8 

108 

- 
Human 
primary 
chondrocytes 

Targets the miR-361/FOXO1 regulatory 
axis, which promotes proliferation whilst 
suppressing apoptosis and ECM 
degradation 

109 
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HOTIP 

+ 
Mouse 
primary 
chondrocytes 

Suppresses HoxA13 which regulates 
integrin-α1 expression and cartilage 
maintenance  

115 

+ 
Human 
primary 
chondrocytes 

HOTTIP targets the miR-455-3p/CCL3 
pathway in OA inducing cartilage 
degradation 

116 

PVT1 

+ 
Human 
primary 
chondrocytes 

Overexpression of induces apoptosis 
through sponging of miR-488-3p 

119 

+ 
Human 
primary 
chondrocytes 

Silenced IL-1β induced secretion of IL-6, 
IL-8 and TNFα and expression of 
MMP3, MMP9 and MMP13 through 
sponging of miR-149 

120 

+ 
Human 
chondrocyte 
cell line 

Knockdown inhibits apoptosis and 
inflammatory response to IL-1β 
treatment via up-regulated miR-27b-3p 
targeting TRAF3 

121 

+ 
Human 
primary 
chondrocytes 

Sponging of miR-26b facilitates CTGF 
expression enhanced cartilage 
degradation and increases TGF-β1, 
SMAD3, and MMP-13 

122 

+ 
Human 
chondrocyte 
cell line 

Induces TNFA expression and secretion 
through miR-211-3p sponging facilitating 
apoptosis 

123 

TUG1 

+ 
Human 
primary 
chondrocytes 

Overexpression regulates ECM 
degradation through the miR-195 
suppression and increased MMP-13 
expression 

127 

+ 
Mouse 
chondrocyte 
cell line 

Upregulation attenuated apoptosis and 
inflammation by inactivating the Notch 
and NF-kB signalling pathways 

128 

UCA1 + 
Human 
chondrocyte 
cell line 

Regulates cell survival and matrix 
synthesis by suppressing the miR-204-
5p expression and increasing MMP-13 
expression 

130 

CASC2 

+ 
Human 
chondrocyte 
cell line 

Upregulation promotes apoptosis but is 
targeted by miR-93-5p for degradation 
which reverses these effects 

134 

+ 
Human 
chondrocyte 
cell line 

Overexpression upregulates IL-17 
expression, enhances apoptosis and 
suppresses cell proliferation 

135 

ANRIL + 
Human 
primary FLS 

By sponging miR-122-5p increases 
DUSP4 expression and regulates 
proliferation and apoptosis 

140 

Lnc-
DILC 

- 
Human 
chondrocyte 
cell line 

Overexpression supresses IL-6 at the 
protein level 

144 

IGHCy1 + 
Human THP-
1 cell line 

ceRNA of miR-6891-3p resulting in 
increased TLR4 and NF-kB activity 
promoting IL-6 and TNFα production 

147 

lincRNA
-p21 

+ 
Human 
primary 
chondrocyte 

Sponges and represses miR-451 
promoting the apoptosis 

149 
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 1595 
 1596 
 1597 
 1598 
 1599 
 1600 
 1601 
 1602 
 1603 
 1604 
 1605 
 1606 
 1607 
 1608 
 1609 
 1610 
 1611 
 1612 
 1613 
 1614 
 1615 
 1616 
 1617 
 1618 
 1619 
 1620 
 1621 
 1622 
 1623 
 1624 
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 1626 

SNHG1  
Human 
chondrocyte 
cell line 

Acts as a molecular sponge of miR-16-
5p to inhibit ERK1/2 and phosphorylated 
p38 and p65 involved in p38/MAPK and 
NF-kB signalling pathways 

153 

THRIL + 
Mouse 
chondrocyte 
cell line 

Overexpression promotes LPS-induced 
inflammatory injury by supressing miR-
125b thus activating JAK1/STAT3 and 
NF-kB pathways. 

155 

ZFAS1 - 
Human 
primary 
chondrocytes 

Overexpression promotes proliferation 
and cell migration whilst inhibiting 
apoptosis and matrix synthesis through 
suppression of Wnt3a, β-catenin and 
p53 

159 

MIAT  
Mouse 
chondrocyte 
cell line 

Silencing attenuates LPS-induced 
apoptosis and cytokines release by 
regulating miR-132 expression which 
inhibits NF-kB and JNK pathways 

179 

FAS-
AS1 

+ 
Human 
primary 
chondrocytes 

Low expression decreases expression 
of MMP1 and MMP13, but increases 
COL2A1 expression, inhibiting cell 
apoptosis and promote cell proliferation  

181 
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LncRNA 
Expression 

(Up '+' 
/Down '-') 

Model Function Ref. 

MALAT1 
 

- 
Human 
primary FLS 

Silencing stimulates β-catenin 
nucleation, secretion of pro-
inflammatory cytokines IL-1, IL-10, and 
TNFα, elevated proliferation and 
suppressed apoptosis of FLS 

48 

- 
Human FLS 
cell line 

Knockdown reversed quercetin-induced 
apoptosis, reduced caspase-3 and 
caspase-9 expression and activated the 
PI3K/AKT pathway, enhancing cell 
proliferation 

50 

HOTAIR 

+ 
Human whole 
blood 

HOTAIR-containing exosomes attract 
and activate macrophages inducing 
immune responses suppressing 
activation of MMP2 and MMP13 

47 

- 
Human 
primary 
chondrocytes 

Targets and inhibits miR-138-mediated 
activation of NF-kB signalling in vivo, 
resulting in increased cell proliferation 
and suppressed IL-1β and TNFα 

63 

GAS5 

- 
Human 
primary FLS 

Silencing reversed Tan IIA effects by 
down-regulating expression of pro-
apoptotic caspases 3 and 9 and 
activating the PI3K/AKT pathway 

70 

- 
Human 
primary FLS 

Overexpression downregulated IL-18 
expression and promoted apoptosis 

71 

- 
Human 
primary FLS 

Inhibiting GAS5 promoter methylation 
increased GAS5 expression supressing 
apoptotic regulator HIPK2 and pro-
inflammatory cytokines TNFA and IL-6 

72 

H19  

+ 

Human 
primary FLS 
and 
macrophages 

Expression responds to serum 
starvation, IL-1β, TNFα and PDGF-BB 
stimulation and is regulated by the 
MAPK/ ERK1-2 signalling pathway 

79 

+ 
Human FLS 
cell line 

Promotes phosphorylation of TAK1, a 
MAP3 kinase known to activate the 
JNK/p38MAPK and NF-kB pathway, 
resulting in increased IL-6, IL-8 and IL-
1β production and increased apoptosis 

80 

NEAT1 + 
Human whole 
blood 

Knockdown prevents CD4+ T-cells 
from differentiating into pro-
inflammatory Th17 cells correlated with 
RA pathogenesis 

85 

MEG3 

- 
Human 
primary FLS 

Suppression promotes proliferation, 
secretion of inflammatory cytokines IL-6 
and IL-8 and invasion, stimulating the 
STAT3 and PI3K/AKT pathways  

111 

- 

Human 
primary 
chondrocytes 
and FLS 

Overexpression facilitates cell 
proliferation and inhibited inflammation 
by downregulating miR-141 and 
inactivating the AKT/mTOR pathway 

110 

HOTIP + 
Human 
primary FLS 

Recruits Dnmt3b to facilitate SFRP1 
promoter methylation which activates 
the Wnt signalling pathway, 

117 
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proliferation, invasion, and migration, 
while supressing apoptosis 

PVT1 

+ 
Human FLS 
cell line 

Promotes proliferation through the miR-
543/SCUBE2 axis whilst PVT1 
knockdown results in apoptosis and 
supressed inflammation  

124 

+ 
Rat primary 
FLS 

Knockdown restores sirt6 expression 
through decreasing sirt6 methylation 
thereby alleviating RA 

125 

UCA1 - 
Human FLS 
cell line 

Regulates expression of Wnt6 and 
induces apoptosis 

131 

CASC2 - 
Human 
primary FLS 

Overexpression suppresses IL-17 
which promotes apoptosis 

136 

Lnc-
DILC 

- 
Human 
primary FLS 

Overexpression induces apoptosis and 
supresses IL-6 at the protein level 

145 

lincRNA
-p21 

- 
Human THP-1 
cell line 

Induced by methotrexate through DNA-
protein kinase catalytic subunit 
dependent mechanisms contributing to 
NF-kB activation 

150 

THRIL + 
Human 
primary FLS 

Regulates cell growth and inflammatory 
response by activating the PI3K/AKT 
signalling pathway 

157 

ZFAS1 + 
Human 
primary FLS 

Promotes cell migration and invasion 
through sponging of miR-27a 

159 

 1627 
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 1653 
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LncRNA 
Expression 

(Up '+' 
/Down '-') 

Model Function Ref. 

FAS-
AS1 

+ 
Human 
whole blood 

Expression is correlated with nephritis 
and positively correlated with anti-dsDNA 
antibody levels 

180 

MALAT1 

+ 
Human 
whole blood 

Silencing reduced expression of IL-21 
and SIRT1 

187 

+ 
Human 
whole blood 

Silencing represses all OAS proteins as 
well as TNFA and IL-1B expression in 
IFNα-2a treated immune cells. May 
function as a ceRNA of six miRNAs 
which target OAS proteins 

188 

GAS5 

- 
Human 
whole blood 

co-expression of GAS5, lnc0640 and 
lnc5150 may modulate the MAPK and 
PPAR signalling pathways 

177 

+ 
Human 
whole blood 

Elevated in CD4+ T cells of patients with 
SLE may serve as potential biomarker 
for diagnosis 

190 

NEAT1 

 
Human 
whole blood 

upregulated in SLE patients identified on 
whole blood microarray and validated in 
patient samples   

178 

+ 
Human 
whole blood 

an early response lncRNA which 
selectively regulates TLR4-mediated 
inflammatory genes through the MAPK 
pathway 

191 

+ 
Human 
whole blood 

Expression in granulocyte MDSCs 
induces secretion of B-cell activating 
factor (BAFF), which promoted IFN-
signalling activation of B-cells. Silencing 
alleviates lupus symptoms 

192 

+ 
Human renal 
cell line 

Contributes to inflammatory cell injury, 
elevated IL-1β, IL-6, TNFα and IFN-y 
production and increased apoptosis by 
sponging of miR-146b and increasing 
TRAF6 expression which activates NF-
kB signalling 

193 

XIST 

+ 
Human 
whole blood 

RNA localization patterns disrupted, 
evidence of bi-allelic expression and 
increased transcription of immunity-
related genes in SLE lymphocytes 

195 

+ 
Mouse 
primary B-
cells 

B cells of late stage SLE NZB/W F1 mice 
have decreased localization of Xist RNA 
to the Xi and increased expression of x-
linked genes TLR7 and CXCR3 

196 

+ 
Human 
whole blood 

X-chromosome inactivation maintenance 
is altered in T cells of SLE patients thus 
X-linked genes are abnormally 
upregulated 

197 

+ 
Human 
whole blood 

Skewed allelic expression of X-linked 
genes attributed to high variability of 
DNA methylation levels which was 
reversed by XIST knockdown 

198 
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TUG1 

- 
Human 
kidney cell 
line 

Overexpression targeted the miR-
223/SIRT1 axis activating the PI3K/AKT 
signalling whilst suppressing NF-kB 
pathway, increasing cell viability and 
supressing inflammation 

202 

- 
Mouse whole 
kidney 

Inhibition of the NF-kB signalling 
pathway with PDTC drug mitigated SLE 
progression and resulted in the up-
regulation of TUG1 lncRNA 

203 

UCA1 + 
Mouse B-cell 
cell line 

Expression correlated with evidence of 
active stage and pathological lesions. 
Overexpression increased B-cell 
proliferation through activation of the 
PI3K/AKT pathway 

204 

THRIL + 
Human 
kidney cell 
line 

Overexpression increases apoptosis and 
expression of pro-inflammatory cytokines 
IL-1B, IL-6, IL-8 and TNFA. Identified as 
a ceRNA of miR-34a which targets MCP-
1 activating the JNK and Wnt/β-catenin 
signalling pathways 

205 

 1656 
 1657 


