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ARTICLE

Formation of the Xigaze Metamorphic Sole under
Tibetan continental lithosphere reveals generic
characteristics of subduction initiation
Carl Guilmette 1✉, Douwe J. J. van Hinsbergen2, Matthijs A. Smit3, Antoine Godet4, François Fournier-Roy1,

Jared P. Butler4, Marco Maffione5, Shun Li6 & Kip Hodges7

Metamorphic soles found under allochthonous oceanic lithosphere, or ophiolites, are inter-

preted as derived from lower plate oceanic crust material accreted to upper plate mantle

during intraoceanic subduction initiation. Their metamorphic evolution is inferred to reflect

the thermal structure at the site of subduction nucleation, with granulite-bearing soles linked

to initiation at hot spreading centers. Here we present garnet Lu-Hf geochronology for the

granulite-bearing sole of the Xigaze ophiolite in South Tibet, whose oceanic crust formed

∼130 Ma through continental forearc extension. Our study shows that sole metamorphism

was ongoing by 144 Ma, implying that north-directed subduction began at least 14 million

years before oceanic forearc spreading. The upper plate at the time of subduction initiation

was thus continental, not oceanic. Our results demonstrate that metamorphic characteristics

of soles are independent of the specific tectonic setting at the subduction nucleation site and

rather provide generic constraints on the subduction initiation process.
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The formation of new subduction zones, or Subduction
Initiation (SI), is fundamental to the onset and stabilization
of plate tectonics1, yet the processes and settings involved

in the nucleation of a new convergent plate boundary remain
challenging to reconstruct2. Critical to our understanding of SI
are geological records of the incipient subduction plate contact,
but these are inaccessible in modern subduction zones. Exposed
relics of such interfaces have been recognized in the form of sub-
ophiolitic metamorphic soles (soles) – thin slabs of metamorphic
rocks found at the base of supra-subduction zone ophiolites and
showing an inverted metamorphic gradient3–6. These meta-
morphic rocks are derived from upper oceanic crust and are
interpreted as being accreted from the lower to the upper plate
during SI5,7–9. The overlying supra-subduction zone ophiolites
are interpreted as allochthonous relic forearc oceanic lithosphere
of the upper plate formed during or shortly after SI10,11.
Accordingly, the ophiolite-sole association is generally seen as
diagnostic of intra-oceanic SI12,13. The high-temperature granu-
lite facies peak metamorphic conditions reported in most soles
(11–15 kbar, ≥800 °C7) are further interpreted as reflecting a high
geothermal gradient at the site of SI, leading to the association of
ophiolite-sole couples with SI at or near oceanic spreading
centers3,12–14. However, the inference that ophiolite-sole couples
are diagnostic of intra-oceanic SI may be challenged, especially
where it can be demonstrated that SI was induced, whereby upper
plate extension and ophiolitic crust generation post-dates initial
underthrusting1,15.

Recent studies using garnet Lu-Hf geochronology of garnet-
clinopyroxene amphibolite in soles revealed that initial under-
thrusting may predate upper plate extension and formation of the
overlying supra-subduction zone ophiolitic crust by more than
8Ma15–17. Determining the setting of SI therefore requires
reconstructing the upper plate lithosphere at the time of meta-
morphic sole burial, rather than at the time of ophiolitic crust
generation18,19. This is of particular importance in the case of
ophiolite-sole pairs that formed next to continental margins, like
the Xigaze Ophiolite20 and its sole21,22 in South Tibet.

The Xigaze Ophiolite was generated at the southern margin of
the continental Lhasa Terrane of southern Tibet23,24 through
forearc extension25–27 that generated a slow28 to ultra-slow29

spreading center above the north-directed subduction zone that
eventually led to the India-Asia collision30. Estimates of timing of
this SI vary: on the one hand, those using the age of ophiolite
spreading and hyperextension as a proxy for the birth of the
subduction zone place SI around ~130Ma, in which case sole
formation occurred below the forearc when ophiolites were
spreading21,31,32. If, on the other hand, ophiolite spreading post-
dates SI, then sole formation may have started below the litho-
sphere within which the ophiolites formed. Such an older SI age
of even 170Ma has been proposed to explain magmatism on the
southern Lhasa Terrane30,33, although this magmatism may also
be related to southward subduction along the northern Lhasa
margin34–36. The current state of the art thus allows for multiple
interpretations of SI timing, hampering interpreting the tectonic
setting and conditions under which the Xigaze sole formed.

In this paper, we aim to determine the timing of initial lower
plate underthrusting through Lu-Hf garnet geochronology, as a
direct way to date whether the Xigaze Ophiolite metamorphic
sole formed prior to or after forearc extension and ophiolite
formation. We therefore investigate garnet-clinopyroxene
amphibolite from the Xigaze sole and complement the Lu-Hf
garnet isochron ages with Lu trace element maps to support age
data interpretation. We discuss the implications of our results for
the timing and setting of north-directed SI under the Lhasa
margin and for the generic mechanism and setting of sole for-
mation during SI in general.

Results
Geological setting and sampling. The 2000 km long Indus
Yarlung Zangbo Suture Zone, in South Tibet (Fig. 1A), exposes the
remnants of the Neo-Tethys Ocean that once separated India from
the Lhasa Terrane20. The central segment hosts the Xigaze
Ophiolite (XO), which comprises several ophiolitic massifs
(Fig. 1B) that are typically composed, from the base up, of a
mantle tectonite section, rare cumulates and gabbro of the lower
plutonic crust, a sill/dike complex and pillowed basalts20,37, and a
Lower Cretaceous radiolarian chert38 sedimentary cover inter-
fingered with arc-derived volcanic ash layers and Lhasa Terrane-
derived turbiditic sandstones23,24. These Lower Cretaceous ages of
the oldest sedimentary cover of the ophiolite are coincident with
a ~ 130Ma U/Pb zircon age of gabbro of the XO39, and with
similar 130–120Ma ages along-strike20,31. Paleomagnetic data and
provenance of the XO sedimentary cover indicate formation at the
immediate southern margin of the Lhasa Terrane as a forearc to
the Gangdese arc23,24,26. The mantle section of the XO has a long
history of interaction with subduction fluids and is not genetically
related to the overlying crust40,41: instead, its characteristics are
consistent with at least partial derivation of the XO mantle section
from Lhasa Terrane subcontinental lithosphere25,26,42. To the
South, the ophiolite is overthrusting a sheared serpentinite mél-
ange that contains a dismembered sole21,22,43 and oceanic
lithosphere-derived blocks44,45. Farther below is the Bainang
subduction complex, a thrust-stack of trench-fill and abyssal
radiolarian mudstone and chert offscraped from the Neo-Tethys
seafloor during north-directed subduction46. This package was
eventually thrust onto the continental margin-derived Tethyan
Himalayan Sequence in Paleogene time47.

The XO sole consists of blocks of grt-cpx amphibolites,
common amphibolite, and greenschist embedded in the serpen-
tinite matrix of the ophiolitic mélange. The high-pressure
granulite blocks show evidence of partial melting as mostly
concordant leucosomes48. The maximum metamorphic condi-
tions recorded in the grt-cpx amphibolite of the XO sole are
in the high-pressure granulite facies ~14 kbar and over
850 °C22,32,43,48, in agreement with the reported leucosomes,
and are consistent with the other soles worldwide7. They returned
133–119Ma U-Pb zircon dates that are interpreted either as post-
peak metamorphism or igneous protolith ages32,48, apatite U-Pb
ages of 132–133Ma48, and 40Ar/39Ar hornblende cooling ages of
130–119Ma21,43, all overlapping with the age of overlying
ophiolitic crust39,49. Such a dismembered sole sharing the same
geochronological and petrological characteristics has also been
described under the Saga ophiolite, farther west along the central
segment of the Yarlung Zangbo Suture Zone43.

We analyzed four grt-cpx amphibolite specimens in this study,
which were sampled from decametric blocks in the ophiolitic
mélange of the valley east of Bainang (Fig. 1C, D). Field
relationships, petrography, mineral chemistry, geochemistry, and
Ar geochronology of these rocks were reported previously21,22. All
four samples show a hornblende-dominated nematoblastic fabric
with anhedral prehnitized plagioclase and slightly coarser-grained
grt–cpx-rich horizons (Fig. 2A–D). Both domains show fine-
grained ilmenite–titanite symplectites. Garnet of mostly almandine
and grossular composition occurs as subhedral centimeter-scale
pre- to syn-kinematic porphyroblasts with inclusions of clinopyr-
oxene, plagioclase, hornblende, and titanite/rutile/ilmenite.

Garnet chemistry. Garnet grains show remarkably diverse Lu
zoning patterns between and within samples (Fig. 2E–H). Garnet
from BAI01 exhibits a bell-shaped concentric zoning consistent
with Rayleigh fractionation, with Lu content decreasing from core
(~10 ppm) to rim (~3 ppm). Garnet from CG64 shows complex
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zoning with a patchy Lu-depleted core with inherited fabric, a
slightly Lu-richer mantle (~6 ppm), and a variably Lu-poor rim
(3–4 ppm). Garnet from LUS17 broadly shows homogeneous
content, hinting to potential peak diffusion, with clear signs of
resorption at some boundaries and associated Lu enrichment (up
to 5 ppm). Some sub-grains still retain Rayleigh-type growth
zoning (lower left corner of Fig. 2G). Garnet from LUS12 features
sharp oscillatory zoning in a generally Lu-poor mantle over-
growing a patchy xenomorphic Lu-richer core (up to 20 ppm).

Lu-Hf garnet geochronology. The analyzed samples provided
four Lu-Hf garnet ages that were identical within uncertainty
(Table 1). Garnet from sample BAI01 yielded a Lu-Hf whole
rock-garnet isochron age (Fig. 2I) of 143.7 ± 0.7 Ma (MWSD=
1.6; number of garnet analyses ngrt= 4), whereas that of sample

CG64 (Fig. 2J) yielded a 144.6 ± 0. 9 Ma isochron (MSWD= 0.52;
ngrt= 4). Garnet fractions were extremely difficult to extract for
sample LUS17, mainly due to the fragile nature of grains. The
sample yielded an Lu-Hf isochron age (Fig. 2K) of 140.1 ± 4.5 Ma
(MSWD= 0.12; ngrt= 2). Garnet from sample LUS12 (Fig. 2L)
yielded a 144.3 ± 3.5 Ma (MSWD= 0.29; ngrt= 3) and required
omission of the fourth garnet fraction for which the isotopic
ratio did not correspond to that of the other fractions. The
weighted mean of these four isochron ages is 144.0 ± 1.2 Ma
(MSWD= 1.8).

Discussion
Evolution of the south tibetan metamorphic sole. The robust-
ness of the Lu–Hf geochronometer50,51 is largely governed by the
diffusivity of Hf, which is demonstrably sluggish52. The peak
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temperatures that the Tibetan sole samples were subjected to do
not exceed estimated closure temperatures of diffusive Hf loss,
which is in excess of 950 °C for grains analyzed in this study50.
Lutetium is more mobile, so the hypothesized effects of any dif-
fusive net transfer of Lu between garnet and matrix52 are to be
considered. The Lu element maps provide a useful means to do
so. The Lu distribution and zoning in garnet from all four sam-
ples is different (Fig. 2E–H), both in terms of primary zoning and
the degree to which resorption and possible Lu reuptake has
affected grains. Yet, despite these differences, the Lu–Hf dates
obtained for all samples are identical within uncertainty. The only
apparently different age component present among the samples is
observed for coarse fragments derived from particularly large
grains in LUS12a; this material (fraction Grt4) appears older than
most of the garnet in that sample, which is inconsistent with any
age bias by Lu redistribution in mafic rocks52 and instead may
indicate inherited cores (Fig. 2H). Regardless, the prevalence of c.
144-Ma Lu-Hf ages for garnet of different average grain size,
composition and zoning indicates that actual age bias, either due
to differences in zoning or possible diffusive Lu reuptake (e.g.,
LUS17), did not significantly influence the age data; the Lu-Hf age
data thus reliably represents the timing of garnet growth at
~144Ma. As prograde garnet growth in supracrustal mafic pro-
toliths requires an increase in both P and T, we interpret those
growth ages as a minimum age for formation of the XO meta-
morphic sole at an incipient plate contact, as is the case in other
soles15–17. Other studies have reported zircon ages of 133–119Ma
for the same locality48 and an adjacent one32. Apatite ages of
132–133Ma have also been reported from the Bainang valley48.
These authors interpreted some of the zircon and all apatite
grains as igneous, implying that the older range of the
133–119Ma dates would be protolith ages. However, the authors
could not rule out a metamorphic origin. We note that the zircon
ages overlap with 130–121Ma Ar–Ar on hornblende cooling ages

for the same locality, as also reported from the well-studied
Semail ophiolite-sole couple of Oman. Zircon of the Semail sole
was demonstrated to have formed during the crystallization of
partial melts generated during granulite metamorphism of the
sole15,53,54. In addition, apatite is highly unstable in the presence
of leucosome and will likely be consumed by melt producing
reaction before crystallizing upon cooling55. The garnet Lu-Hf
and hornblende Ar-Ar geochronology of the Bainang samples
constrain prograde metamorphism near 144Ma and cooling
between 133 and 121Ma; we therefore interpret the reported
zircon and apatite ages from granulite of the XO metamorphic
sole as dating the crystallization of a melt fraction following peak
metamorphism, consistent with the leucosomes reported in the
field and on samples48. Metamorphism of the XO sole involved a
long prograde stage to granulite-facies peak metamorphism fol-
lowed by rapid cooling from peak conditions, a similar scenario
as reported for the Semail sole15,56. Definitive evidence for the age
of the protolith in metamorphic soles remains elusive, or con-
troversial at best, as reviewed elsewhere13.

Our new data thus show that subduction of Neotethyan
seafloor was underway by 144Ma, providing the earliest direct
evidence for northward subduction of Neo-Tethys seafloor south
of the Lhasa Terrane. As the XO formed above this north-
directed subduction directly at or close to the margin of the Lhasa
Terrane23,25,26,42, the underlying sole must have been buried
following SI around the ocean-continent boundary (Fig. 3A, B).
After nucleation of the subduction zone, the sole was transferred
from the lower to the upper plate, accreting to Lhasa Terrane
continental mantle (Fig. 3B, C).

Numerical models of this setting predicts that viscous necking
of the subduction interface (Fig. 3D), trench retreat, and
continental forearc hyperextension (Fig. 3E) followed as the
increasing slab pull force eventually overcomes coupling at
the subduction interface27. The sole was then exhumed between
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Fig. 3 Tectonic model for sole formation during subduction initiation under a continental margin. A lithospheric cross-section of the pre-subduction
Tibetan margin, (B) forced subduction initiation at the continental margin causes metamorphism in the lower plate and garnet growth, (C) increasing slab
pull force during convergence causes slab roll-back, (D) slab-pull force reaches a critical point triggering viscous necking of the subduction interface, trench
retreat, upper plate extension, and exhumation of the metamorphic sole. (E) Continued northward subduction of Neotethyan oceanic lithosphere under the
Lhasa Terrane margin with the Xigaze ophiolite and sole forming the basement of the clastic forearc basin.
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130 and 120Ma, as indicated by sole cooling ages, synchronous
with limited mantle melting and generation of the XO crust. The
forearc extension model3,11,26,27 following induced subduction
initiation therefore provides a comprehensive explanation for the
lag time between burial and exhumation of soles as well as a
mechanism for sole exhumation synchronous with upper plate
extension and supra-subduction zone ophiolite spreading. Ensu-
ing north-directed subduction of Neotethyan oceanic lithosphere
resulted in the formation of the Gangdese magmatic arc at the
southern margin of the Lhasa Terrane34 and deposition of the
Xigaze basin clastic sediments on the XO24, until obduction over
the Tethyan Himalayan continental margin30,47.

Soles and subduction initiation at continental margins. Our
new results demonstrate that garnet growth in the Tibetan sole
was already underway 14Ma before forearc extension and for-
mation of the Xigaze Ophiolite. This has several first-order
implications for the regional tectonic evolution, and for the for-
mation of soles in general.

First, northward underthrusting of oceanic lithosphere below
the Lhasa block largely predating ophiolite formation implies that
SI was induced by far-field stresses15, ruling out spontaneous
subduction initiation. The 14Ma lag time between lower plate
burial (Lu-Hf garnet ages of the sole) and upper plate extension
(U-Pb zircon ages of ophiolitic crust) and associated, synchro-
nous, rapid sole exhumation and cooling (U-Pb zircon and
apatite and Ar-Ar hornblende ages of the sole) is longer than in
Oman (8Ma15), California (~10Ma16), and Turkey
(~12Ma17,57). This longer delay in Tibet may possibly reflect a
stronger coupling at the subduction interface, consistent with a
thicker continental upper plate and thus a longer plate interface.
However, some of the timing estimates could also be minimum
estimates. Still, the similarity and differences in timing is an
important point and an avenue of future research that needs to be
explored.

Second, the trigger of SI should be sought at or before 144Ma.
The identification of this trigger is beyond the scope of this paper,
but we note that SI occurred as the Lhasa Terrane was
approaching the Eurasian margin58, if not colliding with it35.
Subduction may thus have been initiated by transference, perhaps
diachronously: the forces required to induce SI at a continental
margin are significantly lowered in the case of lateral propagation
along inherited rift structures59.

Third, the 144Ma garnet growth age for the Xigaze ophiolite
sole directly demonstrates that soles also form during subduction
below continental lithosphere, as proposed before19 arguing
against the inference that ophiolite-sole couples are diagnostic of
intra-oceanic SI. Moreover, the P-T conditions, lithologies,
mineralogy, and chemistry of the XO sole rocks are typical of
soles worldwide, including those that unequivocally formed in
intra-oceanic settings (e.g., in the Mirdita Ophiolite60). This is
surprising, as peak temperatures in excess of 850 °C in soles have
long been inferred to be indicative of subduction initiation under
a hot mantle hanging wall3,5,8,9. Here, we demonstrate that SI
under a continental mantle resulted in a metamorphic sole
that recorded the same P-T conditions22,32. Perhaps this
demonstrates that the mantle below the southern Lhasa margin
was anomalously hot, e.g. related to the arc magmatism that
affected this region already since Jurassic times or before30,34.
On the other hand, metamorphic soles of Oman and Turkey
formed by subduction initiation in ancient lithosphere, devoid
of pre-existing magmatism that could have caused elevated
temperatures18,19, and these soles recorded near-identical
conditions as the XO sole7,15,17,61. So regardless of dynamic
interpretations and speculations on the causes of these

high-temperature conditions, our analysis shows that the
metamorphic conditions recorded are the same for soles that
form by SI near a mid-ocean ridge62–64, along ancient transform
faults in >100Ma old oceanic lithosphere18,19, or even along a
continental margin as we show here, spanning a remarkable
variety of settings with contrasting thermal gradients. Moreover,
these conditions are consistently found for soles that date back at
least 480Ma8,65. We thus conclude that the sole formation
process is irrespective of the setting of SI but may rather relate to
the subduction initiation process and/or the formation of the
overlying ophiolite during forearc extension, processes implicitly
common to all soles. Constraints from metamorphic soles may
accordingly be considered generic and provide key insight in the
processes that governed the initiation of Phanerozoic subduction
zones in general, regardless of the setting in which they formed.

Methods
Samples were collected from four adjacent outcrops (see Fig. 1D)
around location CG-64 at a longitude of 89.33311°E and a latitude
of 29.14045°N. Thin sections were mapped using a μ-X-ray
fluorescence spectroscopy (μ-XRF) Tornado M4 instrument at
Université Laval. Analytical conditions were a 20 µm step size with
an acquisition time of 3 ms per pixel. The X-ray tube was set at
50 keV and 300mA for a total acquisition time of c. 2.5 h per
sample. Garnet grains showing the strongest major element zon-
ing from core to rim, mainly observed as a bell-shaped spessartine
zoning, were selected for LA-ICP-MS Lutetium mapping.

Trace element analyses of garnet were performed by LA-ICP-
MS at LabMaTer (Université du Québec à Chicoutimi), using a
Australian Scientific Instruments RESOlution 193 nm excimer
laser and an S155 Laurin Technic ablation cell system coupled to
an Agilent 7900 quadrupole ICP-MS. High-resolution mapping
was performed in-situ on garnet to document trace element
zoning. Analytical conditions were a 20 μm beam moving at a
speed of 80 μm s−1 and pulsing of 30 Hz at 5 J cm−2 in a 4 ms per
mass cycle. The synthetic reference glass GSE-1G66 was used for
calibration. Data reduction was processed with the Iolite
freeware67 using mean EPMA 29Si data as an internal standard.

Lutetium-hafnium chronology was performed in two separate
laboratories. Samples were crushed and garnet fractions were
hand-picked under a binocular microscope and contained all
sizes of grain and random core/rim proportions. Garnet and
whole rock (WR) splits from samples LUS12 and LUS17 were
analyzed at the Department of Earth Sciences, University of
California, Santa Barbara. Additional garnet materials from these
samples, as well as all analyses for samples BAI01 and CG64 were
done at the Pacific Centre for Isotopic and Geochemical
Research, University of British Columbia, Vancouver. Both
methods utilize mixed 176Lu-180Hf isotope tracers made from
different base metals and oxides, and independently developed
and calibrated68,69. For Lu-Hf analysis, garnet fractions and WR
powder were transferred to screw-top PFA vials. Garnet grains
were washed using de-ionized water and ethanol, dried, trans-
ferred to PFA vials, and bathed in 1 N HCl at room temperature
for 1 h. After removing the HCl, samples were mixed with a
176Lu-180Hf isotope tracer with matrix-equivalent Lu/Hf ratio,
and digested through repeated addition of HF:HNO3:HClO4 and
6 N HCl, each step followed by evaporation to dryness. After
tracer admixing, the WR powders were digested in stainless-steel
Parr vessels at 180 °C for 7 days using HF:HNO3. After digestion,
all samples were dried, re-dissolved in 6 N HCl, diluted to 3 N
HCl using de-ionized H2O, and centrifuged. The solution con-
taining the garnet elemental solute was then loaded onto poly-
propylene columns containing a 1-ml Ln-Spec resin bed before
being analyzed through REE-HFSE chromatography70.
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Hafnium and Lutetium isotope analyses were done with a Nu
Instruments Plasma/multi-collector inductively coupled plasma
mass spectrometry (MC-ICPMS) instrument. For Lu analyses,
isobaric interference of 176Yb on 176Lu was corrected using an
exponential correlation of 176Yb/171Yb and 174Yb/171Yb, cali-
brated through replicate analyses of NIST Yb solution standards
at different concentrations 10-100 ppb71; For Hf isotope analyses,
180Ta and 180W interferences were corrected by analyzing 181Ta
and 183W. Mass bias was assumed to follow an exponential law
and was corrected applying 179Hf/177Hf= 0.7325 and
173Yb/171Yb= 1.129672. Drift was corrected by assuming linear
time dependence. Hafnium isotope values are reported relative to
those of ATI-475, an in-house-developed Hf isotope reference
material made from the original Hf metal ingots from which the
international reference solution JMC-475 was made, with
176Hf/177Hf= 0.2821673. Replicate analyses of ATI-475 done at
concentrations bracketing that of samples helped estimate
external reproducibility of 176Hf/177Hf and was 38 ppm during
the course of our analytical session74. The Lu-Hf isochrons were
established using a λ176Lu decay constant of
1.867 × 10−11 yr−1,75,76. All uncertainties are cited at the
2-s.d. level.

Data availability
All data generated or analyzed during this study are included in this published article and
are available in the figshare repository, https://doi.org/10.6084/m9.figshare.24107223.v1.
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