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ABSTRACT

In recent years, there has been a substantial growth in technologies, which exploits the disintegration of a compound thread of fluid to
produce compound droplets or capsules. In many cases, careful control of the relevant operating and material parameters can determine a
range of features, including capsule sizes, production rates, and wastage. In this paper, we investigate the transition between jetting and
dripping of a compound inviscid liquid jet falling under gravity in a surrounding gas. We derive an analytical expression for the dispersion
relation, which takes into account the non-uniform nature of the jet, which we then solve numerically utilizing the cusp map method and its
significant reduction in computational effort required in identifying saddle points of the dispersion relation. Particular attention is paid to
investigating the effects of the inner-to-outer surface tension ratio ¢ and initial jet radii, y, as well as the influence of gravity on critical
Weber numbers, We, (which mark the transition between jetting and dripping). Our results provide the convective to absolute instability
boundary for a number of different parameter values.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0168339
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I. INTRODUCTION

A simple literature search on the topic of the instability of a
thread of fluid will provide a glimpse of the historical as well as mod-
ern, widespread interest in this subject area. Moreover, it will highlight
that this has been a topic of interest stretching back to the early classi-
cal works of Rayleigh' and Savart” in the late nineteenth century, and
that it continues to focus the minds of researchers well into the pre-
sent. These authors considered a single thread (or jet) of fluid disinte-
grating due to growing capillary instabilities on the free surface. Since
then, a large body of literature has accumulated investigating myriad
different settings, applications, and aspects of this prototypical setup
considered by Rayleigh. A testament to the growing importance of lig-
uid jet rupture can be gauged by the number of reviews in modern
times, including those of Lin,’ Eggers,"1 Eggers and Villermaux,” and,
more recently, that of Montanero and Ganan-Calvo.’

One recent industrial application has been the use of fluid threads
in the production of encapsulated droplets. In particular, encapsulation
of biologically active substances, like cells or proteins, is a growing field
of biomedical research (Jayaprakash and Sen”). Advances in this field
are unlocking the potential for refined treatment of many diseases,

including cancer and diabetes (Liu et al®). Cell encapsulation involves
encasing cells in a protective outer membrane and forms a fundamental
part of modern day medical and pharmaceutical research. Encapsulated
cells, which belong to a wider class of biocapsules, offer a promising
route in avoiding hostile in vivo responses of the bodies’ natural immune
system. Mechanical manufacturing of capsules is varied but generally
relies on some form of dripping or liquid jet breakup (Mishra”). Coaxial
jet atomization (where a concentric nozzle is used to produce a com-
pound liquid jet) provides a simple and efficient means to generate cap-
sules, whereby the controlled breakup process between the inner and
outer liquid jets can be used to generate tailor made capsules.

While the breakup of compound liquid jets is inherently more
complicated than its single jet counterpart, it, nevertheless, relies on
similar fundamental principles. The first works regarding compound
liquid jets were experimental in nature and those developed by Hertz
and Hermanrud'’ whose pioneering works demonstrated the viability
of producing compound liquid drops (or capsules) from the breakup
of a compound liquid jet. The same authors identified three types
of instabilities based on a combination of parameter values (including
surface tension ratio, jet radii, jet velocity, and density ratios).
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Sanz and Meseguer'' were the first to perform a theoretical stability
analysis of a compound jet using an inviscid fluid model to identify
two modes of instability. These modes were associated with capillary
forces on the inner and outer interfaces of the compound jet and were
unstable if waves were longer than the inner (called the squeezing
mode or sinuous mode) and outer circumference (called the stretching
mode or para-sinuous mode) of the compound jet, respectively. Radev
and Tchavdarov'” and Shkadov and Sisoev'’ derived a linear model
from the two-dimensional equations of motion, numerically solved
the resulting eigenvalue problem, and were then able to identify quali-
tative conditions for specific breakup points of the compound jet.
Chauhan et al."* considered the temporal instability of a compound
liquid jet, paying particular attention into growth rates and amplitude
ratios of the stretching mode so as to better understand the specific
nature of breakup and whether the inner (or core) fluid breaks first
and, thus, promotes the formation of compound droplets. These ideas
were extended by Qiao et al."” to explore temporal instability of vis-
cous compound jets with a radial thermal field. They determined that
the para-sinuous mode is susceptible to instability with changes in the
thermal conductivity and specific heat capacity. The nonlinear dynam-
ics of compound liquid jets have been considered by Uddin and
Decent'® who investigated droplet formation using a finite difference
scheme to solve the one-dimensional nonlinear governing equations.
The effects of viscosity were considered by Ruo et al.'” and Suryo
et al'® These authors used a Galerkin/finite element method to
numerically determine the conditions for compound jet formation.

Liquid jets that are accelerating due to, for example, rotational or
gravitational forces have received less attention. Recently, Amini
et al."” investigated the effects of gravitational forces on a liquid jet,
concluding that gravitational forces can alter maximal growth rates
toward shorter waves and increase cutoff frequencies. Vu et al.”"”’
have investigated the unsteady evolution of compound jet interfaces
numerically using the front-tracking/finite difference method. Their
results provide good agreement with experimental results but do not
take into account three-dimensional effects and most notably the pres-
ence of nonaxisymmetric distortions to the jet. Mohsin et al.”” investi-
gated the temporal instability of a compound jet falling under gravity
with Afzaal” and Afzaal et al,”* considering temporal and spatial
instabilities for compound jets falling under gravity. Afzaal and
Uddin® considered the effects of the surrounding medium (typically
taken as a gas) and nonaxisymmetric disturbances.

Keller et al.”® were the first to consider spatial instability in liquid
jets, and they demonstrated that, for very large Weber numbers, tem-
poral and spatial disturbances are analytically related. However, it was
not until Leib and Goldstein®” that absolute instability of an inviscid
liquid jet was first identified, and in Leib and Goldstein,” they were
able to determine the critical Weber number, as a function of the
Reynolds number, for which a liquid jet would be either convectively
unstable (jetting) or absolutely unstable (dripping). An excellent
review of the topic of dripping and jetting in liquid jets was provided
by Montanero and Gana-Calvo,” where it is stated that the distinction
between the two types of instabilities is not always clear. Lin and
Lian™ considered the effects of the surrounding gas on the absolute
instability of a liquid jet. Chauhan et al.”’ have considered the absolute
instability of an inviscid compound liquid jet as has Vadivukkarasan®’
who identified critical Weber numbers based on various parameters of
the compound liquid jet.

ARTICLE pubs.aip.org/aip/pof

The breakup mode of a fluid thread can be predicted via the tran-
sition between convective-to-absolute instability (see Montanero and
Gana-Calvo®). This has been demonstrated in a number of cases,”
although it should be noted that other instability mechanisms may
also lead to a transition between jetting and dripping. The transition
from convective to absolute instability is characterized, typically, by
the difference in location of droplet formation. In the case of jetting,
droplets are formed some distance downstream of the nozzle (leading
to the appearance of a column or jet of fluid before formation of drop-
lets). In the case of dripping, droplets form in the immediate vicinity
of the nozzle.”” A better understanding of this transition is useful in
many industrial applications, including recent attempts to control sat-
ellite droplets using a drainage device.”

In this paper, we examine the absolute instability of a compound
inviscid liquid jet, which is falling vertically under the influence of gravity
in the presence of a surrounding gas. We pay particular attention to the
transition from convective to absolute instability for a range of parameter
values and identify the critical Weber numbers involved. Our results
provide a systematic approach, using the cusp map method of Kupfer,
Bers, and Ram,™ to understanding the theoretical transition between
dripping and jetting in a compound liquid jet falling under gravity.

Il. PROBLEM FORMULATION

In this section and the next section, we briefly reformulate the
problem presented in Afzaal et al.”* We begin by considering an invis-
cid compound jet, which emerges from a concentric tube with exit
velocity U and moves in a surrounding gas (which is initially station-
ary). The initial outer radius of the compound jet is a with the inner
jet having a smaller initial radius ya, where 0 < y < 1. It is assumed
that the compound jet, after emerging from a circular orifice, falls in a
vertical direction under the influence of gravity. It is also assumed that
all the fluids are incompressible and immiscible. The geometry of the
compound jet is described in a cylindrical coordinate system (r, 0, x),
where 7 is the radial component, 0 is the azimuthal component, and x
represents the axial direction of the jet (see Fig. 1). The velocity vector

P \r
______ o
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ol | T
P .
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\;_/

FIG. 1. A schematic of the compound jet depicting the inner and outer jets with
some of the parameters. The inner and outer interfaces are given by x = R(x, t)
and x = S(x, t), respectively, with the interfacial/surface tensions of the inner and
outer interfaces given by o/l and ¢/
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describing the axisymmetric flow can be written as u” = (v4, 0, ul?),
where the subscript z=1 is for the inner fluid, z= O is for the outer
fluid, and z=A is for the surrounding gas. Here, we denote r
= R(x, t) as the interface of inner fluid with the outer one, r = S(x, f)
as the interface of outer fluid with the surrounding gas, o'/ is the inter-
facial tension at the interface » = R(x, t), and ¢[? is the surface ten-
sion at the interface r = S(x, t). The density of the fluids is denoted by
pl, and the pressure and the time are denoted as pl¥ and t, respec-
tively. The vector representing the acceleration due to gravity is taken
as g = (0,0, g). In addition, ¢/l and ¢[? are assumed to be constant
at the inner and the outer interface, respectively.

The continuity equation and Euler’s equation, which describe the
resulting dynamics of the compound jet, are given by

au[z] 8w[z] U[z]

ox | or +7:O7 W
O L a0 [Z]almf—iaidﬂé +02)g, ()
ar Y Tox TV Tor T pH ax T 008
and
Ol 8 ool 8 ol 1 opl!

3)

ot tu 8x+v or  pld or”’

where Jy, and do, are the Kronecker delta symbols with free index z.
These equations are supplemented by the kinematic conditions and
the normal stress conditions on the interfaces. The kinematic condi-
tions, at the interface r = R(x, t), are given by

_OR OR
ot Ox

where z = I, O. Similarly, the kinematic conditions, at the interface
r = S(x, ), are given by

Wl

) 4

08 08

[ =224 22
wt = +u s

ot Ox
where z = O, A. For inviscid fluids, we have the classical free surface
condition of constant pressure and hence zero tangential stress condi-
tion. The normal stress conditions, at the interfaces r = R(x, t) and
r = S(x,t), are

(©)

JROJSC T N R — glol, ol ©)

respectively, where x!!/ is the mean curvature of the inner free surface
and 9 is the mean curvature of the outer free surface, which are

given by
0 1 OR o (r
m_“(_ =), 2 (1
r Ox ( El 8x) + or <Em)7 @

19} 1 0S d [ r
o Y (__> 9 el
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where
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We can non-dimensionalize the velocity components with the initial
jet velocity U at the tube exit, so we have ol = v/ /U and @l
= ulFl/U, radial lengths with the outer jet radius a, so that 7 = r/a
and the axial length with a characteristic wavelength L (typically much
greater than a) in the axial direction as X = x/L. The time and the
pressure are scaled by # = tU/L and p¥l = pl&l /plO U2, respectively.
By assuming the jet is slender, we define a small parameter € as
€ = a/L < 1. The dimensionless forms of the inner and outer radii of
the jet at the nozzle are R(0,t) = y and S(0, t) = 1, respectively. The
resulting set of equations contain two key non-dimensional numbers,
namely, the Weber number We = p[o] U2a / oI, which measures the
ratio of surface tension forces to inertia, and the Froude number
Fr = gL/ U?, which measures the relative importance of gravity forces
over inertia.

lll. STEADY STATE SOLUTIONS

In order to find the steady state solutions, we consider a quiescent
gas so that ul® = (0,0,0). We expand our variables (after dropping
the overbars) using an asymptotic expansion, so that we have

[, wl, p1) (r, 1) = [ (81 + d10)u6 ), 0,7 ()|

R IO N LICo] R
[R, S](x,t) = [Ro(x), So(x)] + €[Ry(x, 1), Sy (x, t)]. (11)

Upon substitution of this expansion into (6)-(9), we obtain the
following expressions for the inner and outer pressures:

oy L My L (o 1
PO = mmy (x)‘We(Ro(x)+so(x)>' (12)

The remaining equations then lead to the following set of equations:

u[’]alm_ ,Lg g + 1 +L (13)
dx  pWedx \Ry(x)  So(x)) Fr?’
Oul®! 10/ 1 1
[0] - _ - 7 il
YU Tox T Weox <So(x)) TEr (14)

where p = pl! /pl% and ¢ = 6! /61? are the density and surface ten-
sion ratios between the inner and outer fluid, respectively. Moreover,
we make use of the symbol p© to represent the density ratio between
the density of the surrounding gas and the outer liquid density. Using
(12)-(14) and making use of (1), (4), and (5) and with appropriate
conditions at x =0, we can solve for u([)o] (x) and u([)l] (x). More details
as well as solutions for various parameter values can be found in
Afzaal et al.”* and Afzaal and Uddin.”

IV. LINEAR ANALYSIS

We now consider a linear temporal instability analysis of an axi-
symmetric compound liquid jet moving in a surrounding gas. To this
end, we consider small perturbations to the steady state solutions found
in Sec. [1I. We note that the evolution of the jet depends on a length
scale x = O(1), but disturbances along the jet are typically much
smaller and are comparable to € when x = O(1). In other words, we
can say that the disturbances are typically of the order of jet radius a.
We, therefore, consider traveling short waves of the form ewiHikx
where k = k(x) = O(1) and w = w(x) = O(1) are the frequency and
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wavenumber of disturbances, respectively. Additionally, X = x/e and
t = t/e are small length and time scales, respectively. Thus, we have a
multiple scale formulation as the perturbations grow along the jet hav-
ing wavelength of O(€). Now we introduce small time dependent per-
turbations to the steady state solutions, which take the following form:

(l,0,07) = (3, + S0,) (), 0,05") + A@H (r),0,59 (1))@, (15)

pubs.aip.org/aip/pof

where Q = exp (wf + ikx) and 0 < A < e. Substituting the expan-
sions (15) and (16) into the non-dimensionalized form of equations
(1)-(12) yields a set of equations, which can be reduced to the disper-
sion relation,

D(w,k; We, 0, p, p°, 1,x) =0, (17)

(PR, S) = (pf, Ro, So) + A(p(r), R, 5)Q, (16)  where D is the determinant of the matrix
|
%(I(’)(kR) 0 0 0 — + ikull 0
1 1
0 ~ (I, (kR) — =~ (K} (kR) 0 —a + ikul® 0
i i
1 1
0 - (I, (kS) - (K. (KS) 0 0 — + ikul®
1
0 0 0 ~(K}(kS) 0 —o
—plw + ikul) (@ + ikul®) (0 + ikul®) o, 1
e 1 R ) 0 (K- 0
—(o + ikul) —(o + ikul) wp® 1 [/, 1
- 0 = Io(kS) = Ko (kS) T Ko (kS) 0 Ve k %) |

This has been fully derived in Afzaal et al.** (and in a more general
form incorporating nonaxisymmetric flows in a previous publication
Afzaal and Uddin™). We note that the aforementioned dispersion
relation does not explicitly depend on the Froude number Fr, and
instead, this dependency only enters via the steady state solutions
ut[)o], u([)l], Ry, and Sy from Sec. I1I. In general, these will vary along jet
axis x and will be different for different values of Fr.

We plot temporal growth rates in Fig. 2 for typical parameter val-
ues we use later on in Sec. V. In general, the dispersion relation, (17),

o
™

IS
o

©
~

We=66

growth rate, w,

o
o

...............
. .

wavenumber, k

FIG. 2. A plot of the temporal growth rates, «, for real values of the wavenumber,
k, for the cases when We = 1.6 (continuous line) and We = 6.6 (dotted line) for the
case where p = 0.1, p® = 0.001, 6 = 0.1, x=0,and y = 0.5.

produces four roots, of which typically two have positive growth rates
and are, therefore, unstable. In temporal instability analysis, the wave-
number with the largest growth rate (that is k = k* = 0.564 in Fig. 2)
is termed the most unstable wavenumber. This wavenumber can then
be used to predict the size of droplets (via determining the wavelength
A = 2m/k associated with this most unstable wavenumber). In a com-
pound liquid jet, there exist two types of growing modes: a stretching
mode driven by disturbances larger than the circumference of the
inner jet and a squeezing mode by wavelengths larger than the outer
jet circumference. The behavior of these unstable modes has been
shown to exhibit a variety of features under different parameter
regimes (particularly when < 1/+/2 and for small ¢)."" In particular,
there exist certain parameter regimes where the value of the most
unstable wavenumber, k*, may undergo a discontinuous transition®
when a parameter (typically ¢) is smoothly varied. This occurs because
the temporal mode goes from having one local maxima (from which it
is easy to identify k*) to having two local maxima. This is described in
more detail in Sanz and Meseguer'' and Mohsin et al.”* This theoreti-
cally predicted behavior has been exploited in Chauhan et al.”’ with a
view to exploring parameter regimes where the distinction between
convective and absolute instabilities will become, experimentally, eas-
ier to identify.

V. ABSOLUTE INSTABILITY ANALYSIS

Linear instability in liquid jets can be separated in two distinct
groups: convective instability whereby disturbances grow in time but
are convected downstream of the flow and absolute instability in which
disturbances grow both upstream and downstream of the point of ori-
gin and subsequently dominate any region of the flow.” Determining
the type of instability requires an understanding of the spatiotemporal
behavior of the dispersion relationship. In general, it is sufficient to
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determine the type of instability by analyzing the behavior of the
Green’s function,

G(x,t) = J d—wJ %e("k’”"“’)D_l(k, o), (18)
L 21 F 21

where L and F are Fourier and Laplace contours in the complex wave-
number and frequency plane, respectively, and D(k, ) is the linear
dispersion relation relating k with . In particular, one has convective
instability when G — 0 along the ray x/t = 0 [i.e, G(x,t — 00) =0
for any finite x] with absolute instability when G — oo for any fixed
point x (see Charru™). In order to ensure convergence of the integral
in (18), it is necessary, to avoid singularities of the dispersion relation,
for appropriate deformations to the contour L. Evaluation of the afore-
mentioned Fourier-Laplace integral is not always feasible (see Patne
and Shankar‘”), and even in the case of large time solutions where ana-
lytical progress can be made, this involves deformation of the contour
F, so that it passes through a saddle point, k = ko, in the k-plane.”” For
absolute instability, it is necessary that disturbances have positive
growth rate, @, > 0, and that the group velocity dw/0k = 0 at the
saddle point ko. Absolute instability will occur if the solution of the dis-
persion relation is a first-order saddle point in the complex k-plane
(the saddle point occurring at some point in the plane, say k), which
corresponds to a pinch point (also called a cusp point) in the complex
w-plane. A “cusp point” is defined as an intersection between map-
pings of k() curves in the complex frequency plane. However, this is
only a necessary condition and not a sufficient condition since the
group velocity is zero at points other than at saddle points, including
when two k-branches meet independently of whether the branches
originated from the same half-k-plane or not. The aforementioned
analysis requires an appreciation of the mapping between the complex
frequency, w, plane to the complex wavenumber, k, plane, and so it
will involve solving D(, k) = 0 to find k for a given m."** In general,
as is the case for our aforementioned dispersion relation, the function
D(w, k) is transcendental in k and, therefore, often numerically inten-
sive to solve. A rather creative solution to avoid solving complex tran-
scendental functions and utilizing the fact that in many cases, the
dispersion relation is only a polynomial in @ (and therefore much
more easily, and accurately, solved). Kupfer et al.”* developed a map-
ping procedure (called the cusp map method), in which pinch points
can be found by using mappings of selected contour lines from the
complex k-plane into the complex w-plane.

In particular, this method seeks to identify points in the complex
o plane, where the group velocity, dw/0k, is zero as well as whether
these very points correspond to pinch points in the complex wave-
number plane. Solutions of D(w, k) = 0 and dD(w, k)/0k = 0 are
branch points in the o plane; for any point, w = wy, which satisfies
both these expressions, and for which 9*D(wy, k)/Ok* # 0, then it
can be shown that a local mapping @ — wo ~ (k — ko)* exists. Such a
relationship signifies that a cusp will form in the complex frequency
plane when a curve from the complex wavenumber plane (containing
the point k) is mapped into the complex frequency plane.

The cusp map method, as developed by Kupfer et al,” can be
viewed as a systematic procedure to determine whether a cusp point
corresponds to absolute instability or not. The primary feature of this
method is a careful examination of the behavior of mappings of hori-
zontal lines from the complex wavenumber plane [i.e., contours with
fixed values of Im(k) = k; < 0 and 0 < k, < k., where k, is the cutoff

ARTICLE pubs.aip.org/aip/pof

wavenumber beyond which temporal modes are stable]. In order to
find (any) cusp point, we must map such contour lines for different
values of k; < 0 and plot their images [via the dispersion relation
D(w, k) = 0] in the complex w-plane. In the case where k; =0, this
leads to a reduced polynomial dispersion relation with real coefficients
and may be solved via Ferrari’s methods (e.g., see previous work in
Mohsin et al.”” and Afzaal and Uddin®’). However, when k; < 0, the
resulting dispersion relation may not be solved using Ferrari’s method,
and instead, we resort to Muller’s method to yield the numerical roots
of the dispersion relation. As Muller’s method requires a series of ini-
tial guesses, we complete a systematic search (through iterating
between different initial guesses in the complex wavenumber plane
such that 0 < k, < k. and k; < 0) in order to determine the roots of
the dispersion relation. The resulting images will form a series of con-
tour lines in the complex w-plane, of which one will form a cusp (if
such a cusp point exists). This is demonstrated in Fig. 3 where a cusp
can be seen to form when k; = —0.245. In this same figure, we have
shown the contours for the cases where k; is slightly less and slightly
more than this value (we chose k; = 0.23 and k; = 0.26 to make the
differences between the contours clearer). The location in the fre-
quency plane of this cusp point, denoted by @ = wy [in Fig. 3 where
we have that wy = (0.043, —0.848)], will be associated with a wave-
number k= ko. After identifying the cusp point, one can determine
the nature of stability by identifying the sign of Re(wy). If
Re(wg) = wg, > 0, the flow is absolutely unstable, and if wy, < 0, the
system is convectively unstable, provided that in both scenarios, the
system is already temporally unstable. In the case of Fig. 3, we see that
@or = 0.043 > 0, so that this does, indeed, correspond to a cusp
point.

When the contour lines are deformed, a branch point arises up in
the w-plane, which is called a cusp point. At the same time, a pinch
point appears in the k-plane. Further deformations of contour lines
after forming the pinch point lead to a violation of causality, and these
deformations are stopped. To determine if the cusp point has been

-0.74

-0.76 1

-0.78 |

3 087

-0.827 1
—k; =-0.230

-0.84 ——k; =-0.245 |
——k; =-0.260

-0.86 5 : : 5

0.03 0.04 0.05 0.06 0.07 0.08
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FIG. 3. Horizontal rays within the unstable wavenumber domain (i.e., lines of con-
stant k;) are mapped onto the complex frequency plane. The images intersect, and
a singularity (identified by the angle doubling property of a local mapping) in the
form of a cusp appears for a specific value of k. Here, We=2 and
p =001, p° =0.001, =1, x=0,and y = 0.3.
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formed by the continuous analysis of k-branches creating from two
different halves of k-plane or not, the following procedure can be fol-
lowed. According to Kupfer et al.,”* one can check that the cusp point
is a pinch point by drawing a straight ray parallel to w,-axis from the
cusp point to the image of the first contour line (for k;=0) and then
counting the number of points that this ray intersects with the image
of the first contour line. If the number of intersections between this
ray and the image of the first contour line is odd, then this cusp point
has been formed by two k-branches creating from two different halves
of k-plane and the cusp point are named as a pinch point.”**” '

The procedure was applied to liquid jets in Alhushaybari*’ and
Alhushaybari and Uddin"’ for the case of viscoelastic liquid jets. In
general, for liquid jets, the critical parameter that influences the transi-
tions between convective to absolute instability is the dimensionless
Weber number. In order to determine the critical Weber number,
We,, for a given set of parameter values, we first fix a value of the
Weber number and use the cusp map method (typically small values
of the Weber number produce a cusp as outlined earlier, and this is
then checked to ensure it does correspond to absolute instability with
particular attention paid to where the cusp is located in the complex
-plane). Absolute instability only occurs when @, > 0. This proce-
dure is then repeated with increments to the Weber number until w,
is negative, in which case the process is terminated and the current
value of the Weber number is labeled as the critical Weber number
We,. In Fig. 4, we show this methodology in action with the three val-
ues of the Weber number. As the Weber number is increased (here
from We=1 to We = 3.4), we see that the cusp moves in the complex
frequency plane and, in particular, moves to the left, so that at
We =34, the cusp is now located at w, = 0. Further increases in We
will lead to no cusp formation or the presence of a cusp with w, < 0.
This procedure was used in Alhushaybari and Uddin*’ and
Alhushaybari and Uddin."* This critical Weber number will mark the
convective/absolute instability boundary (CAIB) between the convec-
tive and absolute regions and as stated by Montanero and Gana-

-0.65 T

Wi
'
o
@
T

0851 We = 2.0

LW@ =34

0 0.05 0.1 0.15 0.2 0.25

Wy

-0.95

FIG. 4. The location of the cusp in the complex -plane for various values of the
Weber number, We=1.0 (k; = —0.208), We=2.0 (k = —0.167), and We =34
(ki = —0.067). Other parameters are p = 0.01, p¢ = 0.001, ¢ = 0.5, x=0,
and 7 = 0.5. As the value of the Weber number is increased, the cusp moves
toward the line w, = 0.

ARTICLE pubs.aip.org/aip/pof

Calvo;” this may be used as a good indication to identify between jet-
ting and dripping of a liquid jet.

VI. RESULTS AND DISCUSSION

In Fig. 5, we plot We, against the surface tension ratio between
the inner and outer fluids, g, for the case of zero gravity, i.e., Fr = oo,
and for the case with gravity, Fr=1. These curves effectively demar-
cate the parameter space where a compound jet is convectively unsta-
ble (regions above the curves) with regions where the jet is absolutely
unstable (regions below). It should be noted in Fig. 5 that, in the zero
gravity case, the critical Weber number decreases sharply with ¢ for
small . Moreover, the effect of including gravity is to lead to a signifi-
cant reduction in the value of the critical Weber number (which is
always smaller than the zero gravity case). We can compare our results
favorably with Vadivakkurasan’' for a similar plot of the critical
Weber number and its behavior with ¢ for the zero gravity case,
although we note that in that work,”" the author considers, in effect,
an annular jet where inner jet/core is a quiescent gas, which differs
from our case. Changes to the inner-to-outer jet radii ratio are impor-
tant for different industrial applications with the configuration of small
% suitable for capsule and compound droplet formation, whereas
larger values of y are more suited to fiber production. Additionally, in
taking the limit ¢ — 0 with p = 1, our dispersion relation reduces to
that of the single inviscid liquid jet with a surrounding gas. This was
first investigated by Leib and Goldstein®** who determined that the
critical Weber in the case of p® = 0 was given by We, = 3.14 (see
also Lin}). We find, using the aforementioned methodology, and in
the limit described (i.e., the limiting case of a single jet), that the critical
Weber number agrees with this value of 3.14. We note that the critical
value of the Weber number, even for small values of &, is not affected
by the transitions in the most unstable wavenumber, k*, from tempo-
ral analysis, which is explained in Sec. IV. In Fig. 6, we see that typi-
cally the critical Weber number, We,, increases with y although the
changes are not significant (and do appear to decrease with y for small
). This behavior is seen for both the zero gravity case as well as the
case with gravity. Finally, in Fig. 7, we plot the effect of changing the
density ratio p on the critical Weber number, and we find that for

12 T .

FIG. 5. The critical Weber number, We, plotted against the surface tension ratio o.
Here, the parameters are p = 0.01, p€ = 0.001, x=1,and y = 0.5.
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FIG. 6. The critical Weber number, We,, plotted against the inner to outer radii ratio
%. Here, the parameters are p = 0.01, p® = 0.001, x=1,and ¢ = 0.5.

0.01 < p < 0.5, the critical Weber is fairly consistent in value and
then decreases for 0.5 < p < 1 and thereafter increases slightly.

VII. CONCLUSION

In this paper, we have considered the governing equations for an
inviscid compound liquid jet, which is falling under gravity in the pres-
ence of a surrounding gas, which is subject to small linear disturban-
ces. Using a linear stability analysis and the resulting dispersion
relation, we malke use of the cusp map method developed by Kupfer™*
to investigate the convective-to-absolute instability boundary with
regard to the critical Weber number under various parameter regimes.
In particular, we have shown that the presence of gravity tends to
reduce the critical Weber number for a range of different inner-to-
outer fluid surface tension ratios, inner-to-outer radii ratio as well as
density ratios. Moreover, we have shown that the critical Weber num-
ber typically decreases with surface tension ratio and increases with

4 . .
e
35 1
5
=
3 o 4
25 : :
1072 101 p 100 10’

FIG. 7. The critical Weber number, We;, plotted against the inner to outer density
ratio p. Here, the parameters are ¢ = 0.4, p€ = 0.001, Fr = oo, and = 0.5.
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the inner-to-outer radii. These results help in understanding the insta-
bilities of compound liquid jets with a view to appreciating the transi-
tion between dripping and jetting with the multitude of applications in
engineering where such transitions are important. A possible exten-
sion, with some modifications, of this work is the breakup of a jet of
molten nuclear core (corium) in a coolant, where according to Ref. 45,
the regime is well within the absolute instability range. This and other
such applications are the subject of current work by the authors.
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