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A B S T R A C T   

The willingness to exert effort for reward is essential but comes at the cost of fatigue. Theories suggest fatigue 
increases after both physical and cognitive exertion, subsequently reducing the motivation to exert effort. Yet a 
mechanistic understanding of how this happens on a moment-to-moment basis, and whether mechanisms are 
common to both mental and physical effort, is lacking. In two studies, participants reported momentary (trial-by- 
trial) ratings of fatigue during an effort-based decision-making task requiring either physical (grip-force) or 
cognitive (mental arithmetic) effort. Using a novel computational model, we show that fatigue fluctuates from 
trial-to-trial as a function of exerted effort and predicts subsequent choices. This mechanism was shared across 
the domains. Selective to the cognitive domain, committing errors also induced momentary increases in feelings 
of fatigue. These findings provide insight into the computations underlying the influence of effortful exertion on 
fatigue and motivation, in both physical and cognitive domains.   

1. Introduction 

Fatigue - a feeling of exhaustion induced by the exertion of effort - is 
a common feature of many of our daily activities (Chaudhuri & Behan, 
2004; Herlofson & Larsen, 2002; Müller & Apps, 2019). Demanding 
tasks putatively increase sensations of fatigue, both when the required 
effort is physical or cognitive in nature (Kuppuswamy, 2017; Lorist, 
Boksem, & Ridderinkhof, 2005; McMorris, Barwood, & Corbett, 2018; 
Mockel, Beste, & Wascher, 2015; Müller & Apps, 2019; Stein, Jacobsen, 
Blanchard, & Thors, 2004). Theoretical accounts posit that the subjec-
tive feeling of fatigue increases the cost of continuing to exert effort. As a 
result, larger incentives are required to persist on a task when one is 
fatigued as compared to well-rested (Boksem, Meijman, & Lorist, 2006; 

Boksem & Tops, 2008; Massar, Csathó, & van der Linden, 2018; Müller 
& Apps, 2019; Richter, Gendolla, & Wright, 2016). However, despite 
being a cornerstone of theoretical accounts of physical and mental fa-
tigue, and the motivation to exert effort, few studies have simulta-
neously measured people’s sensations of fatigue and willingness to exert 
effort on a moment-to-moment basis (Müller & Apps, 2019). As a result, 
whether the same computational processes underpin momentary 
changes in subjective sensations of fatigue induced by physical or 
cognitive effort, and how they impact on motivation, is unknown. 

Recently, computational accounts have formalised how fatigue 
might fluctuate on a momentary basis, and how such fluctuations could 
reduce the motivation to exert effort (Blain, Hollard, & Pessiglione, 
2016; Massar, Csathó, & van der Linden, 2018; Meyniel et al., 2016; 
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Meyniel, Sergent, Rigoux, Daunizeau, & Pessiglione, 2013; Müller & 
Apps, 2019; Müller, Klein-Flügge, Manohar, Husain, & Apps, 2021). One 
component of fatigue is recoverable, increasing after the exertion of 
effort, but subsides after short amounts of time spent resting (Meyniel 
et al., 2013; Meyniel & Pessiglione, 2014; Müller et al., 2021). A second, 
unrecoverable component gradually increases across a task, but is not 
ameliorated by short periods of rest (Blain et al., 2016; Müller et al., 
2021). Increases in both recoverable and unrecoverable fatigue similarly 
increase the cost of effort and reduce the value placed on rewards that 
require effort (Müller et al., 2021; Müller & Apps, 2019). However, most 
tasks that take self-reported fatigue ratings only do so after extended 
periods of exertion (Ito, Kimura, & Gomi, 2022; Mockel et al., 2015; 
Müller & Apps, 2019), which does not offer the temporal resolution 
required to examine the computational mechanisms that govern 
momentary fluctuations in fatigue. Indeed, most experiments treat the 
effects of fatigue as a confound to avoid in an experimental design, do 
not account for it, or only include time on task as a regressor (Müller & 
Apps, 2019). As a result, it is unknown whether fluctuations in fatigue 
and motivation are underpinned by the same mechanisms, each influ-
encing the other. Furthermore, it is unclear how such mechanisms may 
generalise across both physical and cognitive effort (Müller et al., 2021). 

Humans are typically averse to exerting effort. People will often 
choose to undertake less effortful behaviours for less reward, rather than 
higher effort for more reward (Apps, Grima, Manohar, & Husain, 2015; 
Chong et al., 2017; Hull, 1943; Kool & Botvinick, 2018; Pessiglione, 
Vinckier, Bouret, Daunizeau, & Le Bouc, 2018; Shenhav et al., 2017; 
Westbrook & Braver, 2015). Such “effort discounting” of rewards is 
often examined with effort-based decision-making (EBDM) tasks where 
people make choices of whether to tackle easier or more difficult ver-
sions of the same task for more or less reward (Chong, Bonnelle, & 
Husain, 2016). Using EBDM paradigms it has been possible to show that 
people are averse to both cognitive and physical exertion for many 
different types of underlying task. This includes studies manipulating 
effort costs through varying difficulty in the numbers of switches of 
attention (Apps et al., 2015; Chong et al., 2017), number of task switches 
(Kool & Botvinick, 2014; Otto & Vassena, 2020), complexity of mathe-
matical operations (Vassena, Deraeve, & Alexander, 2019), number of 
finger movements (Bächinger et al., 2019), number of mouse-button 
clicks (Contreras-Huerta, Lockwood, Bird, Apps, & Crockett, 2020), 
and levels of grip-force (Chong et al., 2017; Klein-Flugge, Kennerley, 
Saraiva, Penny, & Bestmann, 2015; Lockwood et al., 2017; Pessiglione 
et al., 2018). However, it is unclear how subjective feelings of fatigue 
develop as we perform such tasks. Previous work using computational 
approaches has shown that the motivation to exert physical effort fluc-
tuates with the theorised recoverable and unrecoverable components 
(Blain et al., 2016; Meyniel et al., 2013; Meyniel & Pessiglione, 2014; 
Müller et al., 2021). However, it is plausible that in EBDM paradigms 
fatigue may not similarly fluctuate, as people can prevent increases in 
fatigue through choices to avoid effort. Since such paradigms have not 
simultaneously measured both fatigue and the willingness to exert effort 
for reward, it is unclear how fatigue develops over time. 

While both physical and cognitive effort have been shown to dis-
count rewards, it is also unclear whether they depend on the same 
computational mechanisms and whether the fatigue experienced is 
similar (Boksem & Tops, 2008; Marcora, Staiano, & Manning, 2009). 
Previous work has shown that different computations might underlie 
decisions of whether to exert physical and cognitive effort (Atkins, 
Andrews, Stout, & Chong, 2020; Chong et al., 2017). Moreover, there 
are often differences between physical and cognitive effort that might 
influence motivation and fatigue. Specifically, physically effortful tasks 
typically set difficulty levels as percentages below a participant’s 
maximum grip strength, thus controlling for capacity (Chong et al., 
2017; Müller et al., 2021). As a result, participants do not typically make 
errors, and are successful almost all of the time at the higher effort levels 
(Chong et al., 2017; Müller et al., 2021). In contrast, the difficulty levels 
of cognitively effortful tasks are not usually constrained to participant 

capacity. As a result, as well as higher difficulty levels being more 
effortful, they also lead to participants making significantly more mis-
takes. Errors in cognitive processes have been shown to be aversive 
(Dunn, Inzlicht, & Risko, 2019; Hajcak & Foti, 2008), and people will 
avoid them even if they do not impact on the extrinsic rewards that can 
be obtained from a task (Apps et al., 2015; Birnbaum, 2008; Desender 
et al., 2021; Desender, Van Opstal, & Van den Bussche, 2017; Kool, 
McGuire, Rosen, & Botvinick, 2010; Otto & Vassena, 2020; Westbrook 
et al., 2020; Westbrook, Lamichhane, & Braver, 2019). However, it is 
unclear whether they also impact upon people’s self-reported momen-
tary assessments of fatigue. As a result, it is not known whether the 
theorised recoverable and unrecoverable components of fatigue can 
account for fluctuations induced by both physical and cognitive effort, 
or whether additional computational features are needed to explain 
fatigue in tasks where people make errors. 

Here, we tested whether: (1) fatigue fluctuates on a momentary basis 
when people make both physical and cognitive effort-based decisions, 
and (2) fatigue and motivation are driven by both exerted effort and 
committed errors. To do so, we performed two studies using modified 
versions of commonly deployed EBDM tasks. In both, participants were 
required to make a series of choices between two options – one of which 
required effort, but offered high reward (between 6 and 10 credits), and 
a second which permitted rest, but only resulted in 1 credit. On each 
trial, participants chose their preferred option, and then had to exert 
effort or rest. If successful at the task they received the reward, but if 
unsuccessful they received nothing. On every trial, before being 
informed of the outcome but after completing the task or resting, par-
ticipants were required to rate their level of fatigue between 0 and 100. 
Using this design, we could measure trial-by-trial changes both in fa-
tigue and effort-based decision-making. In Study 1 we manipulated 
physical effort (grip-force), increasing the difficulty of the task by 
requiring higher percentages of participants’ maximum voluntary 
contraction (MVC). In Study 2, we manipulated cognitive effort by 
varying the levels of complexity of mathematical operations. Using 
computational modelling we could then test the hypothesis that effort- 
based decisions and fatigue ratings fluctuate with recoverable and un-
recoverable components in both the physical and cognitive domain. In 
addition, we predicted that in the cognitive effort task, errors in math-
ematical performance would influence both decisions to exert effort and 
self-reported ratings of fatigue. 

2. Materials and methods 

2.1. Participants 

Two experiments examined the factors that underlie moment-to- 
moment fluctuations in fatigue in an effort-based task. We recruited 
108 healthy young participants across two studies. Study 1, investi-
gating effort-based decisions in the physical domain (N = 59 partici-
pants, 39 female, 20 male, age range 19–37), was approved by The 
University of Oxford Research Committee. 2 participants were excluded 
due to a failure to follow task instructions. Study 2, investigating effort- 
based decisions in the cognitive domain (N = 49 participants, 31 female, 
18 male, age range 18–34) was approved by the Monash University 
Human Research Ethics Committee. 9 participants were excluded due to 
a failure to follow task instructions. Informed consent was obtained from 
all participants. For both studies, participants were compensated a flat 
rate of £12 for their time and were also told that they would receive a 
bonus of up to £4 based on their responses in the task. 

2.2. Design 

Across both studies, the same design was used to examine how the 
willingness to exert effort to obtain rewards changes over trials. The 
critical difference between each experiment was whether the task 
required physical or cognitive effort. Both studies comprised a training 
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phase, in which participants were familiarised with each level of physical 
or cognitive effort, followed by a pre-task (that minimised fatigue), and 
the main task. Study 1 also involved an initial calibration phase. 

2.3. Effort levels 

In Study 1, participants were required to deploy physical effort 
through the exertion of force on a hand-held dynamometer. Participants 
undertook an initial calibration phase to measure their maximum 
voluntary contraction (MVC) in order to normalise force levels across 
participants and avoid variability due to differences in strength. 

2.3.1. Calibration 
Participants had three attempts to squeeze the dynamometer as hard 

as they could, receiving strong verbal encouragement throughout. 
During each attempt, a bar presented on the screen provided live feed-
back of the force level being generated. In the second and third attempts, 
a benchmark representing 105–110% of the previous best attempt 
(displayed with a “target” yellow line on the screen) was used to 
encourage the participants to improve on their score. Participants were 
not instructed that this yellow line indicated a higher force level than 
their previous attempts. The maximum level of force generated during 
the three attempts was used as that participant’s MVC. 

The levels of force required throughout the experiment were then 
computed as percentages of each participant’s MVC. We defined 6 effort 
levels corresponding to 0 (rest option), 30%, 39%, 48%, 57%, 66% of 
MVC. 

In Study 2, participants were required to exert cognitive effort to 
solve mathematical operations of increasing complexity. We determined 
the levels of cognitive effort in a pilot experiment, and they remained 
fixed for all participants. Operations in each level were designed to be 
achievable but require an increasing degree of cognitive demand. Level 
1 (rest option) required only a token amount of cognitive effort — the 
addition of 6 zeros. Participants were still required to select the correct 
option (zero) from three options displayed during the response window 
(see 2.5 Cognitive task). Levels 2 through 6 were distinguished by 
increasingly challenging combinations of operands (addition and sub-
traction), and by manipulating how numerically close the incorrect al-
ternatives were to the correct response. Fifty unique mathematical 
operations were designed for levels 2 through 6 (comprising 250 oper-
ations in total). Participants were only rewarded for correct responses. 
Subjective ratings of mental load confirmed that the task levels suc-
cessfully modulated cognitive effort (see Supplementary material and 
Suppl. Fig. 6). 

2.3.2. Training 
In both studies, the pre-task and main task were preceded by an 

initial training phase. In the first part of training, participants were 
familiarised with how much physical or cognitive effort was required at 
each level. Participants were presented with the rest option and the 5 
effort levels in an ascending order, 3 times through this sequence (18 
trials in total). Participants exerted physical or cognitive effort to com-
plete each trial. If the participant successfully exerted physical force, or 
made a correct response to the mathematical operation, they were 
awarded 1 credit. Thus, participants were familiar with how much effort 
would be required for each level of effort prior to making decisions 
about whether exerting effort was worth it for the offered reward. 

In the second part of training, participants were introduced to the 
choice to work or not. Participants completed 6 trials, selecting between 
the fixed rest option for 1 credit and work offers of different levels of 
reward and effort. Work offers included “good” offers (maximum reward 
for minimum effort) and “bad” offers (minimum reward for maximum 
effort). Participants freely chose between “work” or “rest”, and were 
required to exert effort if they elected to “work”. 

2.4. Physical task 

A yellow line was shown representing the required level of effort 
while a fluctuating vertical red bar represented the instantaneous effort 
exerted by the participant on the hand-held dynamometer. Participants 
had 5 s to reach the required effort threshold by squeezing the dyna-
mometer. The response was considered correct if the effort exerted was 
above the required level for at least 3 out of 5 s. 

2.5. Cognitive task 

A sequence of six operands appeared on the screen, one at a time for 
750 ms each and separated by a 400 ms interstimulus interval (ISI). Each 
operand was paired with an operator (either addition or subtraction). 
After the final ISI, three response options appeared on the screen. One 
option was the correct answer to the operation and the other two options 
were foils. Participants had 1500 ms to register their response, using 
either the left, up, or right arrow key on a standard computer keyboard 
to select the option on the left, centre, or right of the screen. Once an 
option was selected, the participant’s choice was highlighted in yellow 
and the screen paused for any remaining time in the 1500 ms response 
window. The total duration of a trial was 8400 ms. 

2.6. Pre-task 

In order to estimate the degree to which people devalued rewards by 
effort in the absence of fatigue, participants performed 75 trials of an 
effort-based task prior to the main task. While in the main task choices 
on every trial influenced whether force was required or not, in the pre- 
task only 10% of choices required effort exertion after choice. On 90% of 
trials, no effort was required irrespective of what was chosen. Partici-
pants indicated their choices by pressing one of two keys on the 
keyboard to select the “work” or “rest” offer, presented on the corre-
sponding left or right of the screen. After the participant made a choice, 
“no force required” (physical task) or a countdown (cognitive task) was 
displayed on the screen for a duration identical to trials that required 
effort in order to avoid the effects of temporal discounting. The 10% of 
trials that required effort were pseudo-randomly selected. Participants 
were also given four breaks during this task, to minimise any possible 
effects of fatigue. Taking this approach allowed us to measure the degree 
to which people devalue rewards by effort in a task where the total 
demands were low and thus participants were unlikely to become 
significantly fatigued. In the pre-task, the work options were sampled 
from five reward levels (2, 4, 6, 8, 10 credits) and five effort levels; for 
the physical task this corresponded to force intensity (30, 39, 48, 57, 
66% MVC) and to mathematical complexity in the cognitive task (see 2.3 
Effort levels). Effort levels were represented by the number of elements 
in a pie chart (Fig. 1b). Effort and reward levels were chosen based on 
pilot and previous experiments that controlled for fatigue (Chong et al., 
2017; Lockwood et al., 2017). Having such high value work offers 
ensured that participants would not be naturally inclined to avoid those 
effort levels in the main experiment prior to becoming fatigued. The pre- 
task was always followed by the main fatigue task. 

2.7. Main task 

This was the main phase of the experiment, in which most of the 
primary outcome measures were taken and related to fatigue. On each 
trial, participants chose between “work” or “rest” (Fig. 1a). The rest 
option was always worth 1 credit, but gave participants a 5 s time 
window to pause and, in the cognitive task, only required a token 
amount of exertion (Fig. 1c). Work offers varied in terms of both the 
rewards on offer and the effort required on every trial. For the work 
option we selected 9 combinations of reward and effort levels for which 
acceptance in the pre-task was higher (Fig. 2). This corresponded to the 
three highest rewards (6, 8, 10 credits) and three lowest effort level 
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(2–4). Participants were instructed that more credits equated to a 
greater financial remuneration for their participation. They were 
instructed that there would be no breaks, and, if they felt the need to 
rest, they would have to choose the rest option. Shifts in preferences 
towards resting rather than working would therefore be indicative of 
changes in motivation and potentially the effects of fatigue. Participants 
had 4 s to make their choice. Participants indicated their choices by 
pressing one of two keys on the keyboard corresponding to the option on 
the left or right of the screen. If the choice was to work, participants 
exerted the corresponding level of either physical (Study 1) or cognitive 
(Study 2) effort. If they failed to do so, they received 0 credits. All trials 

lasted the same duration, to avoid the effects of temporal discounting 
(Green, Fristoe, & Myerson, 1994). If the choice was to rest, participants 
either observed a blank screen for the same five-second duration (Study 
1), or performed a mathematical operation containing only zeros and 
provided a response within 1.5 s (Study 2). 

Participants also provided a rating between 0 and 100 of how “tired, 
exhausted or fatigued they felt”, immediately after the exertion of force 
(or rest). They had a fixed four-second period to register their response 
using the left and right arrow keys, with the initial position of the cursor 
positioned on their previous rating. A rating taken prior to the main task 
of the experiment provided the initial position on trial 1. The reward 

Fig. 1. Methods. a) Trial structure in the main task for Study 1 (physical effort) and Study 2 (cognitive effort). Participants chose between a fixed “rest” offer for 1 
credit and variable “work” offers that paired different levels of effort with different rewards. In this example, the participant chooses a work offer that requires the 
successful exertion of intermediate effort (level 3) for 6 credits in reward. After working or resting, participants rated their fatigue on a 0–100 point scale. Finally, the 
outcome of the trial was revealed. Participants received no reward if they did not sustain physical effort at the required force level for 3 out of 5 s (Study 1), or gave 
an incorrect answer (Study 2). b) Effort and reward conditions. In the Pre-task, work offers included 5 levels of effort and 5 levels of reward. In the Main task, work 
offers paired the 3 highest levels of reward with the 3 lowest levels of effort. c) Declining the work offer. In Study 1, decisions to decline the work offer afforded the 
participant a 5 s window where no physical effort was required, they were required only to hold the grip-force device without squeezing it. In Study 2, decisions not 
to work required the participant to respond to a fixed mathematical operation (a sum of zeros) where the trivial answer (zero) was known in advance. 

Fig. 2. Proportion of decisions to work for (E)ffort and (R)eward conditions appearing in both the pre-task and main task. Decisions are contrasted between the pre- 
task, where only 10% of decisions required the exertion of effort, and the main task where effort was required on every decision to work. See Suppl. Fig. 8 for an 
expanded plot that includes all conditions in the pre-task. Group means are centred in each cell together with standard errors. a) Study 1 (physical domain). b) Study 
2 (cognitive domain). 
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outcome of the trial was then shown for one second. In the cognitive 
task, the outcome screen could be used to infer whether the selected 
response was correct or incorrect. For both studies, the main task 
comprised 234 trials, equally distributed amongst the nine conditions 
(three effort x three reward levels). 

2.8. Apparatus 

Physical exertion was measured using a hand-held dynamometer 
(SS25LA, BIOPAC Systems, USA) that participants squeezed using their 
dominant hand. The task was programmed and presented using MAT-
LAB 2012 (MathWorks, USA) and Psychtoolbox (http://psychtoolbox. 
org). Choices were made on the keyboard using their non-dominant 
hand. The cognitive task was also programmed and presented using 
MATLAB (MathWorks, USA) and Psychtoolbox. All choices and re-
sponses were made on the keyboard using the dominant hand. 

2.9. Computational modelling 

To study and compare fluctuations in the motivation to exert effort, 
as well as changes in the subjective feeling of fatigue in the cognitive and 
physical domain, we developed several computational models based on 
theories of fatigue and error-based learning. These models share the 
assumption that when engaging in a task, subjective fatigue sensations 
fluctuate continuously based on both the effort exerted and the outcome 
of the trial, and that this in turn affects the motivation to exert effort in 
the future. We built on previous work that established the presence of 
two components, a recoverable one, in which fatigue increases after 
effort, but declines through rest, and a long-term unrecoverable 
component that can only be restored by long-term disengagement in the 
task (Müller et al., 2021). 

We fit these models to choices and trial-by-trial ratings of fatigue. In 
order to fit choices, we input the fatigue ratings into a computational 
model of effort discounting, shifting how much rewards were devalued 
by effort on a trial-by-trial basis. By separately fitting these models both 
to choices to work and ratings of fatigue, we could determine whether 
the subjective feeling of fatigue and the effect of fatigue on the moti-
vation to exert effort are underpinned by similar factors and operate on 
the same timescales. 

2.10. Modelling choices in the absence of fatigue 

We first fit choices in the pre-task to estimate the choice model pa-
rameters in the absence of fatigue. We used an effort discounting model 
which has been used to accurately characterise how people trade off 
rewards against effort (Chong et al., 2017; Hartmann et al., 2015; 
Lockwood et al., 2017). The model assumes that the subjective value of a 
choice is proportional to the reward on offer, discounted by the effort 
associated with it. The shape of this discounting function reflects how 
effort affects choice behaviour. For example, linear models predict that 
the discounting will grow at a constant rate as effort increases. In 
contrast, a hyperbolic or exponential model predicts that changes from 
low effort will have greater impact than changes at a higher level of 
effort, whereas a parabolic model would predict the opposite. These 
functions have been used in several previous studies to fit effort dis-
counting in the physical and cognitive domain (Lockwood et al., 2017; 
Chong et al., 2017; Lockwood et al., 2022). 

We made a preliminary comparison of four models with linear, hy-
perbolic, parabolic, and exponential effort discounting functions. For 
each model we fit participants’ choices in the cognitive and physical 
effort pre-task. We found that the best-fitting effort discounting function 
for both the cognitive and physical domains was one with a parabolic 
function: 

SV(t) = R(t) − k0*E(t)
2 (1) 

Here we estimate the subjective value (SV) of a choice as the value of 
the reward (R) offered on a trial discounted by the associated effort (E). 
This trade-off is dictated by a free parameter (k0) estimated for each 
participant. As k0 increases, it leads to lower subjective values. To fit 
choices we used a softmax transformation: 

Pwork(t) =
eSV(t)*β

eβ + eSV(t)*β (2) 

This estimates the probability (Pwork) of the participants choosing to 
accept the offer to work (exert the effort) to obtain the reward. β is a free 
parameter that estimates the degree of stochasticity present in partici-
pants’ choices. The probability of the participant choice under the model 
is therefore defined as 

Pchoice(t) =

{
Pwork(t) if choice(t) = work

1 − Pwork(t) if choice(t) = rest (3) 

Fitting this model to the choices in the pre-task we could estimate the 
two free parameters (k0, β) for each participant using the fminsearch 
function in MATLAB. Each model was fit 50 times using different 
parameter starting values to ensure that the optimisation function had 
not settled on a local minimum. The parameters of this model allowed us 
to estimate the degree to which participants devalued rewards by effort 
when not fatigued. k0 and β were then used as fixed values when fitting 
all models to the main task data. 

2.11. Modelling subjective fatigue 

In the main task participants became increasingly fatigued. To esti-
mate how fatigued a participant was at any trial (t) in the experiment, 
we built models from the history of exerted effort and trial-by-trial 
outcomes. Based on previous studies (Massar, Csathó, & der Linden, 
2018; Müller et al., 2021; Müller & Apps, 2019) we assumed that, on any 
given trial (t) the level of fatigue (F) was a function of a recoverable (RF) 
and unrecoverable (UF) component: 

F(t) = RF(t) +UF(t) (4) 

Both components change over the course of the experiment. RF in-
creases after trials where participants had made a decision to work: 

RF(t+1) = RF(t) +
(

α*E2
(t)

)
(5) 

This increase depends quadratically on the amount of effort (E) 
required on the trial, such that higher amounts of effort would increase 
RF by larger amounts, weighted by a free parameter α. This parameter 
scales the degree to which exerting effort increases recoverable fatigue 
idiosyncratically for each subject. A higher α would reflect someone who 
shows greater fatigability. RF also decreases for all times when partici-
pants choose to rest or when they timed out without making a decision: 

RF(t+1) = RF(t) − (θ*TRest) (6) 

RF here declines by the amount of time (Trest) spent resting on the 
last trial. How much someone recovers through rest is determined by the 
free parameter θ, which scales the degree to which rest reduces fatigue. 
A higher θ reflects greater recovery through rest. As all trials are equally 
long within as task, we took a notional value of TRest = 1.

As outlined in (1), fatigue is also assumed to be a function of a long- 
term unrecoverable component UF reflecting the fact that people tend to 
always be exhausted after extended periods of work and are unable to 
fully recover unless they receive primary rewards or extensive periods of 
rest (e.g. sleep). This “unrecoverable” component of fatigue increases 
throughout the task: 

UF(t+1) = UF(t) +
(

γ*E2
(t)

)
(7) 

UF on trial t + 1 increases as a function of the effort (E), multiplied by 
the free parameter γ which idiosyncratically quantifies the build-up of 
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unrecoverable fatigue throughout the experiment. When effort is exer-
ted, UF increases on the next trial; when participants rest, UF remains 
unchanged, as it can only be reduced through extensive rest. A model 
defined by Eq. (1)–(4) therefore accounts for a trial-by-trial fluctuating 
level of subjective fatigue, given by the sum of a fluctuating recoverable 
component and an unrecoverable one that can only increase or remain 
stable. 

To test whether both components of the model were necessary to fit 
the fatigue ratings in our cognitive and physical effort tasks, we ran 
three different versions of this model. Model F1 included both compo-
nents as defined by Eqs. (1)–(4); Model F2 included only the long term, 
unrecoverable fatigue component defined in (4), i.e.: 

F(t) = UF(t) (8) 

Model F3 included only the short term, recoverable fatigue defined in 
(2–3), i.e.: 

F(t) = RF(t) (9)  

2.12. Modelling changes effort-based decisions through fatigue and trial- 
by-trial outcomes 

To estimate changes in effort-based decisions in the main fatigue 
task, we adapted Eq. (7) to allow rewards to be discounted by effort on a 
trial-by-trial basis: 

SV(t) = R(t) −
(
k(t)*E(t)

2 ) (10) 

Here, the subjective value (SV) of a work offer on a trial is a function 
of the reward on offer (R), discounted by the effort required (E) as 
weighted by the discount factor (k) which varies over time. Therefore, 
the trade-off between reward and effort varies trial-by-trial as a function 
of k. The evolution over time of the discount factor distinguishes how 
our models fit choices. For Model F1, Model F2 and Model F3, 
k(t) increases with the accumulated fatigue F(t): 

k(t) = k0
(
1+F(t)

)
(11)  

where k0 is the effort discounting in the absence of fatigue estimated in 
the pre-task. Next, we tested the hypothesis that the motivation to work 
varies together with participants’ capacity to successfully implement the 
required action. In Model 4 and Model 5, we hypothesised that an in-
dividual’s effort discounting parameter increases following a trial in 
which participants are not rewarded: 

k(t) = kt− 1 − ε
(

R̂(t− 1) − R(t− 1)
)

(12)  

where ε is a learning parameter and R(t− 1) and R̂(t− 1) are the reward 
chosen and obtained in the previous trial, respectively. The latter can 
either be equal to the chosen reward (when a subject is successful in the 
trial) or equal to 0 (following an error). In 12 we therefore implement a 
delta-learning rule, with an error-driven component whereby k(t) in-
creases following every trial in which a participant makes a mistake. In 
these two models, therefore, it is the trial outcome and not the subjective 
feeling of fatigue that drives increases in sensitivity to effort over time. 

Model 4 (L1 in figure labels) and Model 5 (L2 in figure labels) differed 
in how they modelled subjective fatigue. Both models had a recoverable 
and a non-recoverable component, but while Model 4 had fatigue in-
crease at the same pace after every trial, Model 5 further allowed RF(t) to 
increase at a different rate after a correct trial or a mistake. 

RF(t+1) =

⎧
⎪⎨

⎪⎩

RF(t) +
(

α*E2
(t)

)
if R̂(t) = R(t)

RF(t) +
(

ε*E2
(t)

)
if R̂(t) = 0

(13) 

Importantly, Model 5 had the further constraint that mistakes 
increased both subjective fatigue and effort sensitivity at the same rate, 
so that the same parameter ε scaled how fatigue should increase after a 

mistake, and also how the discount factor increased in Eq. (12). 

2.13. Model fitting 

To fit the models outlined above to trial-by-trial ratings of fatigue 
F̃R(t) we minimised an error ERRfat defined by the sum of squared re-
siduals between the ratings of fatigue and the estimated subjective fa-
tigue F(t) on each trial: 

ERRfat =
∑

t

(

F(t) − F̃R(t)

)2

(14) 

Ratings were first normalised to account for variability in scale usage 
between participants using 

F̃R(t) =
FR(t) − min

(
FR(t)

)

std
(
FR(t)

) (15)  

where min and std are computing the minimum and standard deviation 
of each subject ratings. To fit the models outlined above to choices C(t)

we minimised an error ERRchoice defined by the negative log likelihood of 
the choice model with 

ERRchoice = −
∑

t
log

(
Pchoice(t)

)
(16)  

where Pchoice(t)was obtained through Eq. (9). Time out trials were 
excluded from this analysis. 

A single error function was obtained as 

ERR = ERRfat +ERRchoice (17) 

The model parameters (α, γ, θ, ϵ) for each subject were optimised 
using MATLAB fminsearch function under the constraint they should all 
be positive. Initial parameter values were set randomly in the open in-
terval (0,1). Each model was fit 50 times using different parameter 
starting values to ensure that the optimization function had not settled 
on local minima. 

We compared models using the Bayesian Information Criterion (BIC) 
and Akaike Information Criteria (AIC), which punishes models for their 
number of free parameters. To do so we converted ERRfat to a likelihood 
under the assumption of normally distributed errors and obtained the 
criteria as 

AIC = 2k+ 2ERRchoice + n*log
(
ERRfat

)
(18)  

BIC = klog(n)+ 2ERRchoice + n*log
(
ERRfat

)
(19) 

Computing exceedance probabilities we could test which model 
outperformed the others. To do so, we used the MATLAB function 
spm_BMS from the spm12 toolbox. Schematics of the models and the 
model comparison is included in Fig. 5 while differential results for 
choice and fatigue ratings fitting are shown in Suppl. Fig. 5. 

All data, code to produce figures and computational modelling code 
are available. 

3. Results 

The aim of this project was to examine how self-reported fatigue 
fluctuated on a momentary basis, and in turn how that affected the value 
of exerting either physical or cognitive effort to obtain rewards. In two 
studies, we used a decision-making task in which participants exerted 
either physical (Study 1) or cognitive (Study 2) effort to obtain rewards 
(Fig. 1a). In the main task, participants were not given an opportunity to 
take breaks. Rather, on each trial, participants chose to either “work” or 
“rest”. Work offers varied on every trial in both the magnitude of the 
reward (6, 8, 10 credits) and the amount of physical or cognitive effort 
required to obtain it (Fig. 1c). Declining to work resulted in a token 
amount of effort in exchange for a small reward of 1 credit, providing an 
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opportunity to rest (Fig. 1b) In Study 1, physical effort was oper-
ationalised through grip-force on a handheld dynamometer. Effort levels 
were calibrated to each participants’ maximum grip strength (30, 39, 
48% of the maximum voluntary contraction [MVC]). In Study 2, 
cognitive effort was operationalised using arithmetic operations. Par-
ticipants responded to unique operations by choosing the correct solu-
tion between three possible alternatives. On each trial they were offered 
work options with different effort levels corresponding to operations of 
higher or lower mental demand. Mental demand was manipulated by 
the choice of operands (addition and/or subtraction), and by manipu-
lating how numerically close the incorrect response alternatives were to 
the correct response. To examine trial-by-trial changes in fatigue, we 
instructed participants to rate their level of fatigue on a scale from 0 to 
100 at the start of the main task, and again on each trial. Fatigue ratings 
were given after exerting effort -or resting - but before the participant 
was informed about the reward they had obtained (i.e., ratings were 
made prior to receiving reward feedback). 

3.1. Fatigue fluctuates on momentary basis after physical exertion, and 
predicts choices to work 

In Study 1, we hypothesised that physical effort would induce fatigue 
over time, diminishing the value of exerting physical effort to obtain 
rewards. Our framework predicts that: (1) participants will be more 
inclined to work, when their fatigue is low; (2) participants will change 
their valuation of physical effort, such that higher effort/lower reward 
work offers will increasingly be declined; and (3) ratings of subjective 
fatigue will fluctuate with unrecoverable and recoverable components 
of fatigue, and predict subsequent choices. To test these predictions, we 
used mixed-effects models and computational modelling. 

Our first prediction was that participants would be more inclined to 
work when their fatigue was low. To test this hypothesis, we compared 
choices in the main part of the experiment, where every choice of work 
resulted in the requirement to exert force for reward, with a pre-task in 
which only a random 10% of trials resulted in the requirement to exert 
force. We start with our analysis of the pre-task where decisions were 
made under conditions of low fatigue. 

In the pre-task, to ensure that participants were discounting rewards 
by effort we analysed choices to work or rest. Choices were entered into 
a logistic mixed model together with effort levels, reward levels, and 
subject-specific intercepts. We observed a significant main effect of 
effort (χ2(4) = 197.11, p < .001) and reward (χ2(4) = 16.20, p = .003) 
with an interaction between effort and reward (χ2(16) = 54.43, p <
.001). Consistent with effort discounting, participants worked most 
often when rewards were high and when effort demands were low 
(Fig. 2a, Suppl.Fig. 8a). Critically, participants worked on a high pro-
portion of trials (M = 96.9%, SEM = 1.6%) for all the effort levels (i.e., 2, 
3, 4) and reward levels (i.e., 6, 8, 10) included in the main task sug-
gesting that these offers were regarded as good value under conditions of 
low fatigue. 

But did people’s preference change in the main task designed to 
induce fatigue? To directly contrast behaviour in the pre-task and main 
task, we first examined the subset of trials in the pre-task which matched 
the effort levels (2, 3, 4) and reward levels (6, 8, 10) from the main task. 
We entered these trials together with all trials in the main task into a 
logistic mixed model predicting choices to work or rest. We included 
effort levels, reward levels, and experiment phase (pre-task or main 
task) as fixed factors together with subject-specific intercepts. Interac-
tion terms were included for all fixed effects, and we tested the signifi-
cance of main effects after interactions (type III sums of squares). We 
observed a significant main effect of effort (χ2(2) = 8.49, p = .014) and 
experiment phase (χ2(1) = 9.66, p = .002) that was moderated by a two- 
way interaction between effort and experiment phase (χ2(2) = 47.56, p 
< .001). All remaining effects and interactions were not significant 
(main effect of Reward: χ2(2) = 0.64, p = .724; Reward x Effort: χ2(4) =
1.35, p = .853; Reward x Experiment Phase: (χ2(2) = 5.11, p = .078); 

Reward x Effort x Experiment Phase: χ2(4) = 0.44, p = .979). The same 
pattern of results was observed when contrasting the first and last 
halves, or first and last quarters, of trials in the main task, minimising 
the possibility that a change in behaviour was driven by a change in the 
frame of options available and not changes due to fatigue (see Supple-
mentary material and Suppl. Fig. 3). Thus, when repeated effortful 
exertion has to be made, the motivation to exert higher levels of effort is 
reduced. 

To examine our second prediction that choices would change over 
trials, we included cumulative physical effort into the model (a running 
sum of effort exerted from all previous trials). Choices were entered into 
a logistic mixed model together with effort levels, reward levels, cu-
mulative effort, and subject-specific intercepts as random effects. 
Interaction terms were included for all fixed effects. We observed a 
significant main effect of effort (χ2(2) = 283.47, p < .001), reward 
(χ2(2) = 27.81, p < .001), and an interaction between effort and cu-
mulative effort (χ2(2) = 8.97, p = .011). All remaining effects were not 
significant including the main effect of cumulative effort (χ2(1) = 2.98, 
p = .084), two-way interaction between reward and cumulative effort 
(χ2(2) = 0.62, p = .735), as well as the three-way interaction between 
reward, effort, and cumulative effort (χ2(4) = 1.03, p = .906). These 
results suggest that a build-up of fatigue is induced by the efforts exerted 
over time. 

Our third prediction was that self-reported fatigue would change 
over trials and participants would change their decisions to work as 
fatigue increases. We first used a linear mixed model, fitting trial-by-trial 
fatigue ratings as a function of trial count in the main task (together with 
subject-specific intercepts as random effects). Although participants 
could freely choose to rest, and thus prevent substantial build-up of fa-
tigue, ratings increased significantly during the main task (β = 0.168, 
95% CI [0.165, 0.171], F(1,13,280) = 14,471, p < .001; Fig. 3a). In 
addition, we found that fatigue ratings significantly decreased on the 
trials where they declined the work offer, and significantly increased as 
a function of effort exerted on the trials where they chose to work 
(Suppl. Fig. 4). The average change in fatigue was significantly lower 
following rest (M = -1.65, SEM = 0.31) compared to physical exertion at 
Effort level 2 (M = 0.20, SEM = 0.13; t(218) = − 5.07, pholm < 0.001), 
Effort level 3 (M = 1.06, SEM = 0.18; t(218) = − 7.45, pholm < 0.001), 
and Effort level 4 (M = 2.66, SEM = 0.33; t(218) = − 11.78, pholm <

0.001). Effort level 3 was associated with significantly higher fatigue 
than Effort level 2 (t(218) = 2.44, pholm = 0.016), and Effort level 4 was 
significantly higher than level 3 (t(218) = 4.47, pholm < 0.001). 

To test whether these increases predicted choices to exert effort, we 
examined choices to work in the main task together with effort levels, 
reward levels, and trial-by-trial fatigue ratings in a mixed model. 
Interaction terms were included for all fixed effects. We observed a 
significant main effect of reward (χ2(2) = 17.33, p < .001) and effort 
(χ2(2) = 133.09, p < .001), as well as a two-way interaction between 
Effort and Fatigue ratings (χ2(2) = 9.04, p = .011). All remaining effects 
were not significant (main effect of Fatigue: (χ2(2) = 1.80, p = .179); 
Reward x Effort interaction (χ2(2) = 3.86, p = .425); Reward x Fatigue 
(χ2(2) = 5.30, p = .071); Reward x Effort x Fatigue (χ2(4) = 5.25, p =
.263)). Thus, as self-reported fatigue increased it was associated with 
subsequent reductions in the willingness to choose to exert higher levels 
of effort. This is consistent with an increase in effort-discounting driven 
by increased fatigue. 

In summary and consistent with our hypotheses, we found that fa-
tigue increased as a function of time, and particularly after high effort 
trials. Furthermore, increases in fatigue were related to subsequent re-
ductions in the willingness to exert higher levels of effort for reward. 

3.2. Computational modelling reveals fatigue and motivation fluctuate on 
a momentary basis 

To better understand the relationship between fatigue and physical 
effort-based decisions we developed several computational models 
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based on theories of fatigue (Müller et al., 2021; Müller & Apps, 2019) 
and fit them to the choice and ratings data from Study 1. These models 
test the notion that the subjective sensation of fatigue fluctuates 
continuously based on the effort previously exerted, and that this in turn 
affects the motivation to exert effort in the future (Müller et al., 2021; 
Müller & Apps, 2019). We predicted that ratings of fatigue and effort- 
based decisions would fluctuate in line with unrecoverable and recov-
erable components. In addition, although errors were rare in this task, 
we also compared a class of models that included an error-driven 
mechanism that tracks trial outcomes using a simple delta-learning 
rule. However, we first modelled the pre-task choices to examine 
whether choice data were best explained by a linear, quadratic, or hy-
perbolic discount function. Consistent with previous reports (Chong 
et al., 2017), we found that the best computational model of effort 
discounting was one where efforts discount rewards quadratically (BIC 
= 47). By fitting the choices in the no-fatigue task we could also estimate 
the baseline level of effort aversion and choice stochasticity for each 
participant, which we then used in our modelling of the main task. 

For the main task, computational models were fit to both fatigue 
ratings and effort-based decisions simultaneously to ensure our models 

could explain fluctuations in both fatigue and choices. These models 
therefore assumed that effort discounting increased with fatigue, thus 
reducing reward value and decreasing the probability of working. Three 
models were developed to account for how exerting effort would sub-
sequently increase effort discounting (F1-F3; Fig. 4) which differed in 
how they accounted for increases in fatigue after effort. In addition, we 
developed two learning models (L1-L2 in Fig. 4), in which the trial 
outcome updated the effort discounting parameter, which did not 
depend on the effort-level. For trials in which participants were suc-
cessful, the effort discounting parameter remained unchanged. In 
contrast, trials in which participants were not successful resulted in an 
increase in this parameter. This had the subsequent effect of reducing 
motivation to work in successive trials. L1 and L2 differed in whether 
they allowed trial outcomes to have an impact on just choices or on both 
fatigue ratings and choices. Specifically, L1 assumed that fatigue simply 
varied with effort, while L2 assumed that fatigue would increase pro-
portionally to the effort exerted but with a different rate dependant on 
whether the trial was successful or not. 

Consistent with our predictions, we found that both choices and fa-
tigue ratings were best explained by a model of fatigue comprising both 

Fig. 3. Fatigue ratings fluctuate from trial to trial and depend on errors in the cognitive task. a) Study 1 (physical domain). Individual participants’ fatigue ratings are 
plotted in orange with the group mean in red together with standard error. Fatigue ratings predicted by the winning model (where ratings are determined by physical 
effort alone) are plotted in black. b) Study 2 (cognitive domain). Individual participants’ fatigue ratings are plotted in pastel blue with group mean in blue together 
with standard error. Fatigue ratings predicted by the winning model (where ratings are determined by cognitive effort as well as error history) are plotted in black. c) 
Incorrect decisions are associated with increases in fatigue in the cognitive domain. Here, we plot fatigue relative to the preceding trial separately for incorrect and 
correct responses. We observed that fatigue ratings were relatively higher following incorrect decisions than correct decisions. Notably accuracy was high in the 
physical effort (Mean = 99%) task. This result cannot be explained by feedback since participants observed the outcome only after rating fatigue. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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a recoverable and unrecoverable component of fatigue (Model F1). The 
winning model fit well both fatigue ratings and choices for both studies: 
the median R2 for fatigue ratings fit was 0.99 both for the physical and 
cognitive effort tasks while the median point-biserial correlation values 
for explaining choices was 0.77 and 0.78 respectively. This model out-
performed alternatives both in terms of model fit and in exceedance 
probabilities (BIC = 1808 AIC = 1798 Exceedance probability (XP) =
0.57, Fig. 4a, Suppl.Fig. 1). The winning model therefore did not include 
errors, consistent with the fact that participants were successful on 99% 
of trials and that fatigue primarily affected their decisions to work. It 
should be noted that the unrecoverable parameters were an order of 
magnitude lower than that of the recoverable parameters (S), this is 
because the unrecoverable parameter scales the effects of fatigue grad-
ually over trials, whereas the RF parameters constantly fluctuate, and as 
such they are not directly comparable (Suppl. Fig. 5). Thus, our results 

demonstrate that fatigue fluctuates constantly during physical effort- 
based decision-making, influencing both self-reports of fatigue and 
choices to exert effort. This fatigue is partially recoverable, increasing 
after effort and decreasing after rest, but also contains an unrecoverable 
component that simply increases over time. 

3.3. Momentary fluctuations in fatigue and cognitive effort-based 
decisions 

In Study 2, we hypothesised that fatigue fluctuates with recoverable 
and unrecoverable components as in Study 1. However, in addition we 
predicted that the nature of the arithmetic task, like other cognitive 
effort tasks, meant participants would make errors and that these would 
influence both choices and fatigue ratings. 

We analysed choices to work in the pre-task to ensure participants’ 

Fig. 4. Model fits on decisions to work a) Experiment 1 (physical domain). Decision and rating data were best fit by a model where motivation is entirely driven by 
physical effort. b) Experiment 2 (cognitive domain). Decision and rating data were best fit by a model that included cognitive effort as well as error history. Models 
labelled as ‘F’ modelled changes in effort-based decisions through changes in fatigue. Models labelled as ‘L’ modelled changes in effort-based decisions through an 
error driven learning component. F1 is the full model containing both recoverable and unrecoverable components. F2 contains only the unrecoverable component 
and F3 only the recoverable component. L1 includes the components of F1 to explain fatigue ratings, with the addition of errors impacting upon choices of whether to 
exert effort. L2 includes the components of F1 and L1, but also explains fluctuations in fatigue ratings with an additional error-driven component. 
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choices were consistent with effort discounting. Choices were entered 
into a logistic mixed model together with effort levels, reward levels, 
and subject-specific intercepts as random effects. Consistent with Study 
1, we observed a significant main effect of effort (χ2(4) = 168.06, p <
.001) and reward (χ2(4) = 26.47, p < .001), which were qualified by an 
interaction between effort and reward (χ2(16) = 48.89, p < .001). 
Participants worked most often when rewards were high and when 
effort demands were low (Fig. 2b, Suppl.Fig. 8b) (M = 87.6%, SEM =
4.0%). 

To contrast behaviour in the pre-task and main task, we considered 
the subset of trials in the pre-task matching the effort levels and reward 
levels from the main task. These trials and all trials in the main task were 
entered into a logistic mixed model on choices to work. We included 
Effort, Reward, and Experiment Phase (pre-task or main task) as fixed 
factors together with subject-specific intercepts. Interaction terms were 
included for all fixed effects. We observed the same pattern of effects as 
in Study 1, significant main effects of Effort (χ2(2) = 32.74, p < .001) 
and Experiment Phase (χ2(1) = 19.90, p < .001) were moderated by a 

two-way interaction between effort and experiment phase (χ2(2) =
40.14, p < .001). All remaining effects and interactions were not sig-
nificant (main effect of Reward: χ2(2) = 2.56, p = .278; Reward x Effort: 
χ2(4) = 5.36, p = .253; Reward x Experiment Phase: (χ2(2) = 3.28, p =
.194); Reward x Effort x Experiment Phase: χ2(4) = 1.59, p = .811). The 
same pattern of results was observed when comparing halves or quarters 
of the main task (see Supplementary material and Suppl. Fig. 3). It is 
thus unlikely that decisions are driven by there simply being different 
offers available in the main task compared to the pre-task. Notably there 
was also no difference in perceived mental load or accuracy over the 
course of the experiment (see Supplementary material, Suppl. Fig. 6, and 
Suppl. Fig. 7). As was the case for physical effort, the motivation to exert 
higher levels of effort was lower with repeated exertion. 

Consistent with Study 1, fatigue ratings increased significantly dur-
ing the main task (β = 0.205, 95% CI [0.202, 0.208], F(1,9319) =
19,675, p < .001; Fig. 3b). Fatigue increased as a function of Effort, with 
higher increases in fatigue ratings on more difficult trials (Suppl. Fig. 4). 
The change in fatigue at effort level 2 (M = -0.10, SEM = 0.13) was 

Fig. 5. Winning models a) In both domains, choices were fit computing the subjective value (SV) of the work offer. SV is proportional to the reward (R) offered and 
discounted by the effort (E) through the effort discounting parameter k(t). b) In both domains, fatigue ratings were fit by the sum of two components: a recoverable 
component, which increases after efforts but recovers with time when resting, and an unrecoverable component, which does not. c) Best model for physical domain. 
Fatigue ratings are best fit by a model with two components. Effort discounting is entirely driven by fatigue. d) Best model for cognitive domain. Fatigue ratings are 
best fit by a model with two components. However, recoverable fatigue has different rates of increase following either successful or error trial outcomes. Effort 
discounting increases after errors. 
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significantly lower than at effort level 3 (M = 0.31, SEM = 0.04; t(150) 
= − 2.69, pholm = 0.040) and effort level 4 (M = 0.56, SEM = 0.13; t 
(150) = − 4.36, pholm < 0.001). Changes in fatigue were not significantly 
different for the other comparisons, including those against rest (M =
0.21, SEM = 0.10). This indicates that effort exertion may not be the 
only factor that drives changes in fatigue ratings, as we explore below. 

To examine whether increases in fatigue predicted subsequent 
choices to work in the main task we modelled choice as a function of 
Effort, Reward, and trial-by-trial Fatigue Ratings together with subject- 
specific intercepts. We observed a significant main effect of Effort (χ2(2) 
= 95.94, p < .001) and Fatigue Ratings (χ2(2) = 4.01, p = .045), but no 
two-way interaction (χ2(2) = 1.68, p = .431). All remaining effects were 
not significant (Reward: (χ2(2) = 2.61, p = .271); Reward x Effort (χ2(2) 
= 1.62, p = .805); Reward x Fatigue (χ2(2) = 0.23, p = .893); Reward x 
Effort x Fatigue interaction (χ2(4) = 3.57, p = .468)). These results 
highlight that fatigue and effort both impact choices in a cognitively 
effortful task. 

We contrasted fatigue ratings against the alternative measure of fa-
tigue employed in Study 1: cumulative effort (the running sum of effort 
exerted from all previous trials). Choices were entered into a logistic 
mixed model together with Effort, Reward, Cumulative Effort, and 
subject-specific intercepts. We included interaction terms for all fixed 
effects. Consistent with Study 1 we observed a significant main effect of 
Effort (χ2(2) = 214.13, p < .001) and an interaction between Effort and 
Cumulative Effort (χ2(2) = 6.45, p = .040). Unlike Study 1, we observed 
a main effect of Cumulative Effort (χ2(1) = 9.67, p = .002) but the main 
effect of reward was not significant (χ2(2) = 2.57, p = .277). All 
remaining effects were not significant (Reward x Cumulative Effort 
(χ2(2) = 0.39, p = .822); Reward x Effort (χ2(4) = 4.57, p = .335); 
Reward x Effort x Cumulative Effort interaction (χ2(4) = 7.71, p =
.103)). Although the pattern of results for cumulative effort resembled 
those for fatigue ratings, the presence of an interaction between effort 
and cumulative effort, but not between effort and fatigue ratings, raised 
the possibility that self-reported fatigue was not a simple proxy of cu-
mulative effort. We investigated this further by examining the role of 
trial outcomes (errors) on fatigue. 

3.4. Errors are associated with increases in cognitive fatigue 

Notably, unlike in Study 1, participants made a significant number of 
errors in Study 2 (18% across all effort levels, 35% across the highest 
effort trials) and thus did not obtain the rewarding outcome on many 
trials. To examine the effect of trial outcome on fatigue ratings in Study 2 
we compared two nested, linear mixed models. The null model esti-
mated fatigue ratings as a function of trial number and subject-specific 
intercepts. The outcome model included an interaction with trial 
outcome. Despite the increase in model complexity, the outcome model 
provided a significantly better fit (χ2(4) = 19.95, p < .001; outcome 
model AIC = 69,102, BIC = 69,159, loglikelihood = − 34,543; null 
model AIC = 69,113, BIC = 69,142, loglikelihood = − 34,553). This 
suggests that the increase in fatigue ratings that accumulated from trial 
to trial were moderated by the outcome on each trial. 

To further examine how fatigue is related to trial outcomes, we 
computed changes in fatigue on each trial relative to the trial preceding 
it. This was entered into a point biserial correlation with accuracy 
(correct or incorrect). The correlation was significant (r = − 0.097, 95% 
CI [− 0.117, − 0.076], p < .001) and we observed the same result using a 
repeated measures correlation (r(9272) = − 0.103, p < .001, 95%CI 
[− 0.125, − 0.081]) or building a logistic mixed model predicting trial- 
by-trial accuracy from trial-by-trial changes in fatigue (increases in fa-
tigue predict errors: χ2(1) = 76.63,p < .001). 

To determine whether trial outcomes were driving the effects above, 
we pooled trials into correct and incorrect answers to the arithmetic 
question, and, for each trial, computed the change in fatigue relative to 
the preceding trial. This allowed us to compute the mean change in fa-
tigue for correct and incorrect trials for each participant in Study 2 and 

contrast these means with a paired t-test. Fatigue was significantly 
higher following incorrect decisions than correct decisions (t(39) =
3.10, p = .004, 95%CI [0.163, 0.775], Fig. 3c). Taken together, these 
results suggest that making an incorrect response is associated with 
rating fatigue higher relative to making a correct response. Critically, 
these results cannot be explained by the mere appearance of feedback 
since fatigue ratings are made prior to witnessing the trial outcome. 

3.5. Computational modelling reveals both effort and error-driven 
mechanisms of fatigue in the cognitive domain 

To better understand the relationship between fatigue and cognitive 
effort we developed several computational models based on theories of 
fatigue (Müller et al., 2021; Müller & Apps, 2019) and fit them to the 
choice and ratings data from Study 2. We deployed the same set of 
models used in Study 1 to examine Study 2. Thus, we could compare 
whether models including recoverable and unrecoverable components 
(F1-F3) in addition to delta-learning rules to account for the effects of 
error (L1 and L2) could best explain both fatigue ratings and choices. 

We first modelled the pre-task to examine whether choice data were 
best explained by a linear, quadratic, or hyperbolic discount function. 
Consistent with Study 1, we found that the best computational model of 
effort discounting was one where efforts discount rewards quadratically 
(BIC = 58). By fitting the choices in the no-fatigue task we could also 
estimate the baseline level of effort aversion and choice stochasticity for 
each participant, which we then used in our modelling of the main task. 

Consistent with our predictions, we found that choices and fatigue 
ratings were best explained by a model of subjective fatigue comprising 
both a recoverable and unrecoverable component where effort increases 
fatigue, as well as a delta-learning rule to explain the impact of errors 
(Model L2 BIC = 1009 AIC = 0.9951 XP = 0.8763, Fig. 4b, Suppl.Fig. 2). 
This suggests that cognitive fatigue was dependent on errors as well as 
on the effort induced by mental exertion. Specifically, errors increased 
fatigue more than correct responses, and subsequently reduced the value 
of exerting effort for reward. 

3.6. Pooled analysis 

Studies 1 and 2 suggest that the effects of fatigue on choice vary 
across the physical and cognitive domains. Choices to exert physical 
effort depended on reward and the amount of effort, with the latter 
modulated by fatigue. In contrast, choices to exert cognitive effort 
depended primarily on effort and fatigue, in the absence of an interac-
tion between the two. To clarify this statistically, we entered trial-by- 
trial choice data from both studies into a logistic mixed model with 
Effort, Fatigue Ratings, and Experimental Domain (physical or cogni-
tive). We included interactions between all fixed effects and subject- 
specific intercepts as random effects. The main effects of Effort (χ2(2) 
= 185.12, p < .001), Fatigue (χ2(1) = 27.12, p < .001), and Domain 
(χ2(1) = 7.80, p = .005) were significant. We also found a significant 
interaction between Effort and Domain (χ2(2) = 20.74, p < .001). The 
remaining two-way interactions were not significant (Effort x Fatigue 
(χ2(2) = 3.32, p = .190); Fatigue x Domain (χ2(1) = 0.11, p = .736)). 
Critically, we observed a three-way interaction between Effort, Fatigue 
Ratings, and Domain (χ2(2) = 9.73, p = .008) (see Supplementary ma-
terial and Suppl.Fig. 4). This suggests that the precise relationship be-
tween effort and fatigue on decisions to work depends on whether the 
effort being exerted was physical or cognitive in nature. 

4. Discussion 

Humans are cognitive and physical misers, but when they do exert 
effort it often induces fatigue (Hull, 1943). By probing fatigue on every 
trial of two effort-based decision-making tasks, we show that fatigue 
constantly fluctuates whether the effort required is physical (Study 1) or 
cognitive (Study 2). In Study 1, we showed that fatigue induced by 
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physical exertion (grip-force) is best explained by a computational 
model in which fatigue has both recoverable and unrecoverable com-
ponents. That is, exerting effort increases fatigue, and taking a rest re-
duces it, but there is also a gradual increase in fatigue which cannot be 
recovered by short breaks. This model accounted for fluctuations in both 
effort-based decisions and in ratings of fatigue, with ratings also pre-
dictive of choices on the next trial. In Study 2, we showed that self- 
reported fatigue and its effect on effort-based decisions are similarly 
increased by the exertion of cognitive effort (mental arithmetic) and are 
also explained by a model with recoverable and unrecoverable compo-
nents. However, this is supplemented by an error-driven mechanism that 
monitors trial outcomes. These results highlight that fatigue: (1) can 
fluctuate on a momentary basis due to either cognitive or physical effort, 
(2) impacts the willingness to exert effort for reward, and (3) is sensitive 
to errors in a cognitive task. 

There has been considerable debate surrounding the existence of 
mental fatigue in cognitive tasks, the antecedents of its development 
across time, and its relationship to motivation (Boksem & Tops, 2008; S. 
M. Marcora et al., 2009; Mockel et al., 2015; Müller & Apps, 2019). 
Notably, our study differed methodologically from many others probing 
mental fatigue in a number of ways. In particular, studies measuring self- 
reported fatigue often do so before and after extended blocks with 
multiple trials of a cognitive task, and use speed and accuracy changes or 
neurophysiological changes with time-on-task as proxies of fatigue and 
motivation (Boksem et al., 2006; Lorist et al., 2000, 2005, 2009; Mockel 
et al., 2015; Wascher et al., 2014). Such methods are useful, but are 
indirect measures of motivation (i.e., the value of exerting effort) and 
sensations of fatigue as they are likely to interact with each other. For 
example, as fatigue increases it may decrease motivation and in doing so 
reduce task accuracy. Moreover, people may temporarily disengage 
from trials of the task to reduce fatigue, and in doing so increase the 
motivation to exert effort in the future. All such processes may occur 
across a block, and thus a single measurement at the end obscures these 
processes. 

Here, we more directly measured sensations of fatigue and effort- 
based decisions on a trial-by-trial basis. In doing so, we were able to 
examine moment-to-moment the dynamics of people’s sensations of 
fatigue and motivation. Such an approach allowed us to show unam-
biguously that mental fatigue increases over time in demanding tasks, 
but also changes transiently from moment-to-moment, from even brief, 
but demanding cognitive processes. In this case, even the short mental 
exertion required by a difficult mathematical operation induced an in-
crease in self-reported fatigue and lead to reductions in the willingness 
to perform more effortful operations over time. Moreover, we were able 
to show that errors in cognitive processes also increase self-reported 
fatigue and subsequently reduce the willingness to choose to exert 
effort. Such findings highlight the need to measure fatigue more 
frequently during tasks than is common in the literature, as error and 
effort driven mechanisms will otherwise be obscured, and also for effort- 
based decision-making research to consider how the willingness to exert 
effort may be constantly fluctuating across a task. Beyond this, by using 
computational approaches to model trial-by-trial changes we were able 
to reveal multiple new insights into the dynamics of fatigue, high-
lighting the utility of formal modelling of such processes and potentially 
opening new avenues for a computational psychiatry and neurology of 
fatigue (Chaudhuri & Behan, 2004; Huys, Maia, & Frank, 2016; Huys, 
Moutoussis, & Williams, 2011; Mars, Shea, Kolling, & Rushworth, 2012; 
Stephan et al., 2016). 

A major debate in research on fatigue has been the extent to which 
physical and cognitive tasks induce similar sensations and whether they 
similarly impact on motivation (Boksem & Tops, 2008; S. M. Marcora 
et al., 2009). Our results suggest that there are some striking similarities 
in the mechanisms that underlie the development of fatigue, even if the 
underlying task is different. In particular, we found that similar effort- 
driven processes influenced sensations of fatigue and effort-based de-
cisions in both tasks. In both, a model containing recoverable and 

unrecoverable components of fatigue that increased with the amount of 
effort exerted and partially recovered after rest best explained people’s 
ratings. This suggests similarity between how fatigue develops during 
physically and mentally demanding tasks, with both induced (at least in 
part) by effort costs. Moreover, it raises the possibility that previous 
evidence of recoverable and unrecoverable components of fatigue 
induced by physically demanding tasks is not driven by peripheral or 
muscular fatigue, but instead more directly relates to the mental fatigue 
induced by cognitive tasks that influences the valuation and choice to 
exert effort (Gallagher et al., 2001; S. Marcora, 2009; McMorris et al., 
2018; Müller et al., 2021). 

Although there were similarities between the findings between 
studies, there were some crucial differences. Firstly, ratings of fatigue 
were broadly speaking higher in the physical effort task. Secondly, the 
willingness to exert effort for reward was higher in the cognitive effort 
task. Although it is tempting to draw conclusions about these differences 
being due to a difference between cognitive and physical effort, it is 
important to note that there are also differences between the tasks that 
make broader distinctions between cognitively and physically induced 
fatigue difficult. In particular, as is commonly the case with cognitive or 
physically effortful tasks deployed in research, the levels of difficulty in 
the physical effort task were yoked to participants’ capacity – their 
maximum grip strength – but this was not the case for the cognitive 
effort task. This difference between the tasks was due to our desire to use 
paradigms as similar as possible to those used in the literature examining 
effort-based decisions, such that individuals using such tasks can be 
aware of additional effects present in people’s behaviour (Bonnelle, 
Manohar, Behrens, & Husain, 2016; Chong et al., 2017; Chong et al., 
2016; Kool & Botvinick, 2018; Le Heron et al., 2018; Lopez-Gamundi 
et al., 2021; McGuigan et al., 2019; Müller, Husain, & Apps, 2022; 
Scholey & Apps, 2022; Vassena et al., 2014, 2019). However, it does 
limit the strength of inferences we can yield from direct contrasts be-
tween the two studies. 

It seems highly likely that one distinct finding between the two tasks, 
that error-driven processes underlie fatigue in the cognitive task, would 
become more similar if errors were present in the physical task. There is 
a wealth of evidence that people’s decisions of whether to engage in 
instrumental behaviour is guided by reinforcement learning (RL) pro-
cesses that govern the probability of a successful outcome being received 
following an action (Dayan & Balleine, 2002; Dayan & Daw, 2008; 
Seymour et al., 2004). People can learn to avoid more effortful actions 
through RL processes (Hauser, Eldar, & Dolan, 2017; Scholl et al., 2015). 
In addition, people avoid risks in relation to effort (Apps et al., 2015; 
Nagengast, Braun, & Wolpert, 2011), and are more averse to physical 
effort levels close to their capacity, where the probability of success 
decreases (Bonnelle et al., 2016; Klein-Flugge et al., 2015). Further, 
errors in physical tasks have been associated with perception of fatigue 
in the physical domain (Ito et al., 2022) and in turn physical effort can 
influence RL processes (Jarvis et al., 2022). Thus, whilst the studies 
differed in terms of the nature of the demanding task, effort-driven and 
error-driven processes are likely to underlie fatigue and effort-based 
decisions regardless of whether it is physical or cognitive in nature. 

Intriguingly we found that error-driven processes might supplement 
effort-driven fatigue processes when it comes to the motivation to exert 
cognitive effort. Previous work has suggested that risky decision-making 
and effort-related decisions may in part be driven by separate neural 
circuits (Burke, Brunger, Kahnt, Park, & Tobler, 2013). Given the close 
links between risk, which is often defined as the fixed probability of 
receiving a highly rewarding outcome, and RL, which often involves 
learning the probability of a rewarding outcome being present, partial 
distinction in their circuits could be interpreted as suggesting they do 
not have similar effects on behaviour. However, more recent work has 
shown that RL and effort-based decision-making mechanisms may 
indeed be intertwined in several different ways. Recently studies have 
shown that RL-like processes are involved when learning how effortful a 
behaviour is and when learning how to avoid highly effortful actions 
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(Hauser et al., 2017; Scholl et al., 2015). In addition, there is at least 
some overlap in neural mechanisms, with the ventral striatum being 
linked to RL processes, risky decision-making and integrating fatigue 
into valuations that guide effort-based decisions (Dayan & Balleine, 
2002; Lockwood, Apps, Valton, Viding, & Roiser, 2016; Mohr, Biele, & 
Heekeren, 2010; Müller et al., 2021). As such, it appears likely that RL 
based error aversion, and fatigue related effort aversion, are integrated 
to guide goal-directed decision-making. 

Not only do our results suggest that RL mechanisms influence effort- 
based decision-making, but we also found that people’s fatigue ratings 
can be influenced by whether a trial was successful or not. Strikingly, 
this was despite the fatigue rating being taken before a participant was 
informed of the actual outcome of the trial. This removes the possibility 
that being explicitly informed of the absence, or presence, of a 
rewarding outcome was increasing or decreasing fatigue ratings. 
Instead, it suggests that participants were aware of a difference between 
accurate and inaccurately performed cognitive processes and such 
awareness was influencing how fatigued they were rating themselves. 
These results indicate that fatigue may be underpinned by meta-
cognitive processes (De Martino, Fleming, Garrett, & Dolan, 2013; 
Fleming, Weil, Nagy, Dolan, & Rees, 2010; Müller & Apps, 2019; Ste-
phan et al., 2016; Turner et al., 2021), with people estimating the fi-
delity of the cognitive process they had just performed, and low 
confidence in that process leading to an increase in sensations of fatigue. 
The links between error-driven and metacognitive processes is not sur-
prising. Models of metacognition highlight that estimating confidence in 
part relies on estimating the error in one’s cognitive processes (Müller & 
Apps, 2019; Stephan et al., 2016) and similar neural circuits have been 
shown to underlie fatigue and metacognition (Fleming et al., 2010; 
Müller et al., 2021). Behavioral and neuroscientific evidence supports 
the involvement of metacognitive mechanisms in decisions to exert 
effort (Desender et al., 2017, 2021) and in decisions to engage in diffi-
cult tasks (Rouault, Dayan, & Fleming, 2019; Rouault & Fleming, 2020). 
Further, causal evidence shows that disruption of this underlying met-
acognitive circuitry impairs participants’ ability to mediate between 
these decisions optimally (Miyamoto et al., 2021). As such, it seems 
likely that monitoring and estimating the state of cognitive systems, a 
key component of processing one’s level of fatigue, may be strongly 
linked to metacognitive processes that underlie one’s estimates of con-
fidence. Overall, this suggests that multiple costs feed into both sensa-
tions of fatigue and the effects of fatigue on effort-based decisions. In 
particular, both rely on estimates of the effort-costs associated with 
performance of a level of difficulty of a task, and metacognitive, RL 
processes that estimate one’s confidence in the cognitive or physical 
processes being executed to accurately succeed at a task. 

In our experiments, it is likely that higher levels of difficulty (i.e. 
more force or harder arithmetic) also required participants to exert more 
effort. This is a common feature of effort-based decision research and is 
consistent with close connections between effort and difficulty (Massin, 
2017). Critically, our design provides sufficient granularity to identify 
situations where individuals are initially willing but later become un-
willing to perform trials of the same difficulty for reward. Through our 
analyses, we can attribute this phenomenon to fatigue, indicating that 
fatigue is associated with a diminished willingness to exert the effort 
that participants were previously willing to invest. 

A recent line of work investigates how knowledge of task progress 
and goal proximity affect the willingness to exert effort (Devine, Roy, 
Beierholm, & Otto, 2023; Devine & Otto, 2022; Emanuel, Katzir, & 
Liberman, 2022)). Consistent with the goal-gradient hypothesis (Hull, 
1932), these studies show that humans exert more effort when they get 
closer to a known deadline or finish line. In our studies, we intentionally 
minimised the amount of information provided to participants about the 
length of the experiment and their progress. While participants may 
have occasionally felt the study must be nearing completion, these 
feelings would not have occurred at systematic points of the experiment. 
Our analyses found significant effects of fatigue on the willingness to 

exert effort even in the last quarter of trials in the main task. This sug-
gests that even though participants were nearing the end of the task, as 
this fact was unknown to them it was not reflected in an increase in the 
willingness to exert effort as found in goal gradient studies. Thus, our 
results reflect the dynamics of effort and fatigue when goal-gradient 
effects are minimised. Future research should explore the curious ef-
fects of goal knowledge, and pacing more broadly, on the dynamics of 
effort and fatigue. 

4.1. Conclusion 

Fatigue is a major factor influencing our everyday lives. Here, using a 
combination of two effort-based decision-making tasks, trial-by-trial 
ratings of fatigue, and computational modelling, we show that the dy-
namics of fatigue and effort-based decisions depend on effort-driven 
components of fatigue which hinge on how costly physical or cogni-
tive exertion is. However, when demanding tasks also come at the cost of 
mistakes, these errors in turn increase the sensation of fatigue, while 
simultaneously reducing the willingness to exert effort. 
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