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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Low-cost method for monitoring pollen 
using machine learning 

• Models demonstrated for grass, oak, 
birch, pine and total pollen 

• Methodical neural network hyper-
parameter tuning for improved model 
performance 

• Use of explainable artificial intelligence 
analysis to elucidate ‘black box’ model 

• Relationship investigated between 
different pollen types and observed 
particle size  
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A B S T R A C T   

Pollen is a major issue globally, causing as much as 40 % of the population to suffer from hay fever and other 
allergic conditions. Current techniques for monitoring pollen are either laborious and slow, or expensive, thus 
alternative methods are needed to provide timely and more localised information on airborne pollen concen-
trations. We have demonstrated previously that low-cost Optical Particle Counter (OPC) sensors can be used to 
estimate pollen concentrations when machine learning methods are used to process the data and learn the re-
lationships between OPC output data and conventionally measured pollen concentrations. 

This study demonstrates how methodical hyperparameter tuning can be employed to significantly improve 
model performance. We present the results of a range of models based on tuned hyperparameter configurations 
trained to predict Poaceae (Barnhart), Quercus (L.), Betula (L.), Pinus (L.) and total pollen concentrations. The 
results achieved here are a significant improvement on results we previously reported: the average R2 scores for 
the total pollen models have at least doubled compared to using previous parameter settings. 

Furthermore, we employ the explainable Artificial Intelligence (XAI) technique, SHAP, to interpret the models 
and understand how each of the input features (i.e. particle sizes) affect the estimated output concentration for 
each pollen type. In particular, we found that Quercus pollen has a strong positive correlation with particles of 
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optical diameter 1.7–2.3 μm, which distinguishes it from other pollen types such as Poaceae and may suggest that 
type-specific subpollen particles are present in this size range. 

There is much further work to be done, especially in training and testing models on data obtained across 
different environments to evaluate the extent of generalisability. Nevertheless, this work demonstrates the po-
tential this method can offer for low-cost monitoring of pollen and the valuable insight we can gain from what 
the model has learned.   

1. Introduction 

Pollen is a major issue globally causing as much as 40 % of indus-
trialised country populations to suffer from hay fever and other allergic 
conditions (Fröhlich-Nowoisky et al., 2016). Only recently, Japan 
reportedly ‘declared war’ on pollen to combat the serious health and 
quality of life impacts it is having on the population (McCurry, 2023). 
An important step in addressing this issue is first being able to effectively 
monitor pollen, and afterwards to map and forecast its spatial distri-
bution as a bioaerosol in the atmosphere. However, the current tech-
nology available for doing this is limited and in great need of 
technological advancements and new innovative methods (Buters et al., 
2018; Oteros et al., 2020). 

Pollen grains are produced as plant male microgametophytes (con-
taining both vegetative and reproductive cells in varying numbers). 
Pollen that is most atmospherically relevant, since it is likely to travel 
the furthest as a free aerosol, would be from anemophilous (wind- 
pollinated) species. Pollen grains from such species are generally smaller 
than, for example, insect-pollinated species and have strong association 
with pollen allergies affecting the public. This includes tree types, such 
as birch (Betula, L.) and oak (Quercus, L.), grass (Poaceae, Barnhart), and 
weed types, such as ragweed (Ambrosia, L.). 

This pollen dispersion accomplishes an important task to ensure 
successful reproduction when a large portion of it is released into the 
atmosphere, because they can reach new areas and disseminate their 
genes. As such, pollen is vital for terrestrial ecosystem regeneration but, 
during the transport process, it becomes atmospherically relevant too as 
a class of Primary Biological Aerosol Particle (PBAP). Among PBAPs, 
which includes fungal spores, bacteria, viruses, and other plant debris 
(see, e.g., Huffman et al., 2019), pollen grains are generally large in 
diameter (10–100 μm) and vary widely in shape and size across taxa and 
species (see, e.g., Després et al., 2012; Reponen, 2011, pp. 723, Bradley, 
2015, pp. 408–409). 

In the atmosphere, pollen grains can release subpollen particles, for 
example at high relative humidity conditions or during thunderstorms 
(Subba et al., 2023). These are often starch granules or other cyto-
plasmic debris with size ranges reported between 20 nm and 6.5 μm 
(Stone et al., 2021). Hendrickson et al. (2023) and Matthews et al. 
(2023) measured wind-stimulated emission factors of subpollen parti-
cles from oak (Quercus), ryegrass (Lolium, L.) and giant ragweed (Am-
brosia). They reported emissions of 103–105 particles/pollen grain and 
1013–1015 particles/m2 (for a given sample area populated by the spe-
cies), for particles between 0.010 and 1.0 μm. 

Subpollen particles often also carry allergens that affect human 
health (Bacsi et al., 2006; Smiljanic et al., 2017), while their size also 
allows them to penetrate more easily into the respiratory system. 
Meanwhile, pollen and subpollen particles have potential for cloud 
condensation nucleation (CCN) activity (Pope, 2010; Griffiths et al., 
2012; Steiner et al., 2015; Mikhailov et al., 2019) and ice nucleation (IN) 
activity (Diehl et al., 2001; Diehl et al., 2002; Pummer et al., 2012; Tong 
et al., 2015; Dreischmeier et al., 2017; Gute and Abbatt, 2020; Burkart 
et al., 2021) which means they can affect cloud processes, weather and 
climate. 

The current standard methodology for measuring airborne pollen is 
based on a manual Hirst-type trap to sample particles from the air, then 
for the particle-impacted melinex tape to be taken to the lab and viewed 
under the microscope by experienced scientists who count the number of 

pollen grains present for each type. This method is laborious and time- 
consuming, and data is not automatically nor quickly available. Other 
instruments have more recently been developed to automate the pro-
cess, such as the BAA500 (Oteros et al., 2015), the Rapid-E (Šaulienė 
et al., 2019), PollenSense (Jiang et al., 2022) and the Swisens Poleno 
(Chappuis et al., 2020; Huffman et al., 2019) (see Buters et al., 2022, for 
an overview). Recent work has focused on comparing their performance 
with the Hirst reference to address the current limitations in pollen 
monitoring capabilities (Crouzy et al., 2016; Oteros et al., 2020; Maya- 
Manzano et al., 2023). 

Generally, these automated techniques involve machine learning 
methods, since they are designed to learn from many pollen samples the 
characteristics of each pollen type through whichever data medium they 
use. These can include optical light scattering or fluorescence data, but 
high-end instruments rely largely on image or holographic image data 
(e.g. Oteros et al., 2020; Sauvageat et al., 2020), i.e. training an algo-
rithm to recognise the individual grain shapes as conventionally expe-
rienced scientists do by eye under the microscope for the Hirst. Naturally 
this requires certain hardware demands and complex computer vision 
models with stringent sample demands for training. Thus, these in-
struments can demonstrate good performance with an ability to accu-
rately distinguish pollen grains, however they can also be bulky and 
expensive. 

We recently demonstrated an alternative method for monitoring 
pollen that is low-cost and convenient in terms of mobility and real-time, 
remote data accessibility using Alphasense OPC-N3 sensors (see Mills 
et al., 2023). This method employed supervised machine learning 
(neural network and random forest) models which were trained, using 
Hirst data as a benchmark, to produce pollen concentrations from OPC 
sized particle concentrations. We demonstrated that this method 
showed promising results and could so far achieve coefficients of 
determination between model-predicted and Hirst-observed pollen 
concentrations of up to 0.67, but also highlighted how in particular the 
neural network methods presented further opportunities for perfor-
mance improvement. 

Machine learning models are optimised to make the best predictions 
within the feature space representation it is given by the training data. 
While often demonstrating impressive performance, they can be 
described as ‘black boxes’ since it is difficult to truly understand why 
exactly the predicted outputs are being produced from the input data. 
This difficulty in human comprehension of the model is because: (a) the 
model is often too large (i.e., contains too many parameters) to be easily 
read and interpreted by humans; and (b) the model is not constrained by 
causal relationships, and so may appear to get the right answer for the 
‘wrong’ reasons (see, e.g., Christianini, 2010; Cristianini, 2023). Being 
too large to read means that, even though the best description of a model 
is by definition the model itself, it is frequently useful to have smaller, 
simpler ‘explanation models’ that are an interpretable approximation of 
the original model (Lundberg and Lee, 2017). Having not correctly 
learned the causal relationships could potentially be an issue when 
applying a fitted model to a context or environment outside that from 
which the training data came. A comprehensive review explaining these 
points in an environmental (ecological) context, can be found by Pichler 
and Hartig (2023). Thus, for the sake of making decisions based on such 
models, it appears important to investigate the relationships that the 
models are learning (we return to this point in the concluding discus-
sion). This can be valuable for deciding how much to trust a certain 
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model, for investigating potentially unknown variable relationships, or 
diagnosing models as to which features are serving usefully or perhaps 
unhelpfully to the model. 

There are recently developed techniques for explaining machine 
learning models and interpreting outputs (often called ‘explainable 
artificial intelligence’, or XAI), an overview of which can be found by 
Gohel et al. (2021). The XAI technique that is utilised in this work is 
‘SHAP’ (SHapley Additive exPlanations), developed by Lundberg and 
Lee (2017). This is a method inspired by game theory, where Shapley 
values are calculated to explain the output of a machine learning model 
by considering all possible combinations (‘coalitions’) of input features 
(‘players’), quantifying and aggregating the marginal contributions of 
each feature towards the final output. In this study, we continue to 
develop the neural network method detailed in our previous work (Mills 
et al., 2023) for low-cost monitoring of pollen. While the machine 
learning methods yielded the best results out of those trialled in our 
study, these methods are not without limitations and should be used 
only with appropriate consideration of the context. As discussed, these 
methods provide a trade-off, casting aside interpretability of causal 
inference in favour of optimal predictive performance based solely on 
the statistical patterns the model learns (Christianini, 2010). The 
learning capability of these algorithms, especially deep learning neural 
networks, depend heavily on data quantity and representative quality. 
The dataset used in this study is relatively small (6220 data points) for 
deep learning purposes and covers various pollen seasons that each are 
absent, emerge, disappear, and overlap for different segments of the 
time series. Meanwhile, the sensors we use are designed to count general 
aerosols (i.e. particulate matter) and the task we give the algorithm is to 
isolate and measure pollen, a small fraction of total ambient aerosols. A 
further limitation is that the benchmark concentrations we use to teach 
the algorithm have their own associated uncertainties (Adamov et al., 
2021), yet is the best standard we currently have for determining pollen 
concentrations. 

Despite these limitations, our previous work (Mills et al., 2023) 
showed that machine learning methods are able to learn useful infor-
mation from this data for public health purposes. In particular, we 
demonstrated that, on classifying pollen concentrations into ‘high’ and 
‘low’ categories, we can achieve promising accuracy (F1 scores) with a 
low false negative rate. 

Machine learning has become such a popular and broad field that 
yields impressive results because the algorithms are generic and can be 
chosen and applied for a huge variety of tasks, yet come with great 
flexibility and potential for external optimisation of hyperparameters 
(on top of the intrinsic optimisation of parameters the model performs 
itself on training). Control of hyperparameters can determine whether 
the model underfits, overfits or finds the sweet spot in between. A model 
underfits when it has low complexity and does not learn effective pat-
terns from training data. It is quite possible for machine learning algo-
rithms with high complexity to overfit, by learning the training data too 
well that it generalises poorly for unseen (i.e. test) data. Hyper-
parameters can be used to improve model learning capability but also 
for regularisation. There are various established regularisation tech-
niques, which can be controlled by hyperparameters and constrain 
model complexity in a flexible way that adjusts to the input data. Further 
explanation on the roles of specific hyperparameters relevant to this 
study can be found in the Supporting Information extended methods 
section. 

In this work, we apply a methodological approach to tune various 
hyperparameters, including regularisation techniques, with an aim to 
improve predictive performance and generalisability on unseen data. (In 
this case, we measure generalisability as being able to make accurate 
predictions on a hold-out test dataset from the same experimental 
context. We do not test generalisability of the method on data from a 
different campaign context.) Selecting the optimal model configuration, 
we demonstrate the significant improvement in performance metrics 
this yields. We also extend the method to further pollen types, including 

Quercus (oak), Betula (birch) and Pinus (L., pine), beyond those reported 
in the previous work (‘total’ pollen and Poaceae (grass)). The XAI SHAP 
method is used to interpret and diagnose models for each pollen target 
variable, to assess which particle size ranges from the OPC are respon-
sible for ‘pushing up’ or ‘pulling down’ predicted outputs. We investi-
gate the relationship between OPC bin particle concentrations (input 
feature values), impact on model (SHAP values) and events of high and 
low pollen concentration when the model performed with high and low 
accuracy. We conclude by revisiting the rationale for ML in this domain 
and outline a pathway for further improvement. 

2. Methods 

2.1. Context and instrumentation 

The context and data used for this study are the same as detailed in 
previous works, Maya-Manzano et al. (2023) and Mills et al. (2023), 
from the EUMETNET AutoPollen – ADOPT COST Action (CA18226) 
Intercomparison Campaign 2021 at the Centre of Allergy & Environment 
(ZAUM) in Munich, Germany. The data input given to the machine 
learning models from which to predict pollen concentrations was ob-
tained collectively from three Alphasense OPC-N3 sensors logging data 
between 9th March and 7th July 2021. 

These commercially available OPC sensors count and categorise the 
size of particles as they pass through a 685 nm-wavelength laser beam, 
making measurements based on scattered light intensity and Mie scat-
tering theory. A refractive index of 1.5 and particle density of 1.65 g 
mL− 1 are assumed. Particle counts are monitored for 24 different bins of 
varying size ranges between 0.34 and 40 μm. Previously the sensors 
have been widely used for the monitoring of particular matter air 
pollution in indoor and outdoor locations (e.g. Crilley et al., 2020; 
Bousiotis et al., 2023). The sensors were functionalised for outdoor and 
automatic use, as described in our previous work (Mills et al., 2023), and 
particle number concentrations (grains m− 3) were calculated from raw 
particle counts for each bin using measured sample period (mean: 5.0 s) 
and flow rate (mean: 5.2 L min− 1) values. The corresponding size ranges 
for each of the OPC bins can be found in Table S1 in the Supporting 
Information. 

The target data given to the models, to calculate the error of pre-
dicted outputs from ‘actual’ values, was averaged from four Hirst-type 
samplers (Burkard Manufacturing Co Lid, Rickmansworth, UK), collo-
cated with the OPC sensors. The Hirst data obtained for the intercom-
parison campaign included number concentrations for 17 pollen types - 
Alnus (Mill., alder), Ambrosia (L., ragweed), Artemisia (L., mugwort), 
Betula (L., birch), Carpinus (L., hornbeam), Corylus (L., hazel), Fagus (L., 
beech), Fraxinus (Tourn. ex L., ash), Picea (A. Dietr., spruce), Pinus (L., 
pine), Plantago (L., plantain), Poaceae (Barnhart, grass), Populus (L., 
poplar), Quercus (L., oak), Taxaceae-Cupressaceae (Gray, yew), Tilia (L., 
lime), Urtica (L., nettle) – and varia (other pollen that were not included 
in the previous list or unknown pollen) and for ‘total’ pollen which was 
the sum of all types present at any given time. Full details on the context 
of the whole campaign can be found in Maya-Manzano et al. (2023) and 
further details on the Hirst observations are available in Triviño et al. 
(2023). 

2.2. Neural network hyperparameter tuning 

Scripts for external (hyperparameter) optimisation were run in Py-
thon 3.9.6 using the University of Birmingham's BlueBEAR Super-
computing facility. The module versions Scikit-learn 1.0.1, Tensorflow 
2.8.4, Matplotlib 3.4.3, Numpy 1.21.3 and Pandas 1.3.4 were utilised. 
Model architecture was initially constructed with the same hyper-
parameters as demonstrated in our previous work (Mills et al., 2023) 
and then a range of values for selected hyperparameters were tested. 
However, this time the original dataset was split into training, validation 
and test datasets (as opposed to just training and test datasets). The 
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training dataset was used for the model to directly train on. The vali-
dation dataset was used to determine a validation score by the loss 
metric (Mean Squared Error (MSE)) for a hold-out dataset for each 
training iteration (epoch) alongside a training score. The validation 
score was used to inform the model when to stop updating the param-
eters, i.e. when the mean squared error (between predictions and ob-
servations) had stopped decreasing further. The test dataset was used to 
calculate metrics, including Root Mean Squared Error (RMSE) and R2 

score (coefficient of determination), to evaluate the various models and 
effect of varying hyperparameters. The external optimisation procedure 
was computationally expensive, involving the training of many models, 
and therefore was only applied to one input feature-target variable 
pairing as a demonstration for this work. Thus, the specific optimisation 
results reported here apply to the model which is trained to predict total 
pollen concentrations from the 24 particle size bins available from the 
OPC data (i.e. not including temperature and relative humidity). We 
assume going forward that the model tasks are generally similar enough 
to benefit from hyperparameters tuned for just one of the models. 

The tested hyperparameters were as follows: number of layers and 
number of nodes in each layer (i.e. model capacity), batch size, opti-
misation algorithm, initial learning rate of best optimisation algorithm, 
activation function at hidden layer nodes, scaling of target variable, 
train:validation:test datasets split size, proportion of dropout nodes in 
each layer, weight constraints applied in each layer, and implementa-
tion of noise at different configurations within the network. A summary 
of the values trialled for each hyperparameter is presented in the table in 
Table 1. 

An extended methods section containing further details on each 
hyperparameter and the configurations chosen for this study is provided 

in the Supporting Information. Further explanations on the effect each 
hyperparameter has on a given model and other general information can 
be found in the book ‘Deep Learning’ by Goodfellow et al. (2017) and 
ebook ‘Better Deep Learning’ by Brownlee (2018) as well as other re-
sources by Bengio (2012a, 2012b), Masters and Luschi (2018), and Reed 
and Marks (1999). 

For testing, 5 distinct splits of training, validation and test data were 
created randomly (with the same random seeds for each hyperparameter 
test) from the whole dataset. Models were then trained and evaluated 5 
times on each of the 5 sets of train-validation-test data for each hyper-
parameter configuration. Thus, each hyperparameter configuration was 
sampled 25 different times in total, over 5 different combinations of 
training, validation and test datasets (visualised in Table 1). Due to the 
stochastic nature of machine learning algorithms they can produce 
different results on multiple runs, and they are also sensitive to the 
provided train/test data. We followed this method to allow for variation 
caused by differences in train/test datasets and the stochastic process to 
truly assess the effect of varying each hyperparameter. 

A metrics dataset was produced from each hyperparameter experi-
ment – including RMSE (Root Mean Squared Error), MAE (Mean Abso-
lute Error), Spearman correlation coefficient values and R2 scores for 
model-predicted values vs Hirst-measured pollen concentrations based 
on the test dataset in each case. These results were analysed and 
visualised using Python 3.9.7 in Jupyter Notebook from the Anaconda 
Distribution with module versions Numpy 1.24.1, Pandas 1.5.3, Mat-
plotlib 3.6.3 and Seaborn 0.12.2. Box and whisker plots were produced 
to summarise the R2 scores achieved across all 25 sample models for 
each hyperparameter configuration for each experiment. R2 scores were 
chosen as the primary metric for comparison, since they provide better 

Table 1 
Above: Summary table of hyperparameter configurations trialled for this study. *Initial learning rate was only trialled for chosen optimisation algorithm (Adam). 
Below: Figure showing the method by which the various hyperparameter configurations were tested. Five repeat models were trained for five different train:validation: 
test dataset splits, resulting in a total of 25 sample models for each hyperparameter configuration.  

Hyperparameter Trialled values 

Number of layers 3; 4; 5; 6; 7 
Number of nodes 50; 100; 200; 400 
Batch size 32; 64; 128; 256; 512 
Optimisation algorithm RMSProp (Root Mean Square Propagation); 

Adagrad (Adaptive Gradient Algorithm); 
Adam (Adaptive Moment Estimation); 

Initial learning rate* 0.0001; 0.0005; 0.001; 0.005 
Activation function ReLU; ELU; SELU 
Scaling of target variable True; False 
Train:Validation:Test dataset ratio 50:25:25; 

60:20:20; 
70:15:15; 
80:10:10 

Dropout node proportion 0.1; 0.2; 0.3; 0.4; 0.5 
Weight constraint Max-norms 1.0; 2.0; 3.0; 4.0; 5.0 and unit norm. 
Noise implementation None; input layer; hidden layers 
Noise standard deviation 0.001; 0.0001; 0.00001 
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comparison across models with different target value ranges than RMSE 
or. This was also the metric used to assess the performance of all in-
struments that took part in the AutoPollen intercomparison campaign 
(see Maya-Manzano et al., 2023). 

2.3. Final models 

The results from the hyperparameter tuning experiments were used 
to inform the configurations applied to the final optimised models. Final 
models were trained for 3 sets of input features – OPC bins only, OPC 
bins, RH and temperature, and RH and temperature only – and 5 
different target variables – total pollen, Poaceae, Quercus, Betula and 
Pinus pollen categories. These pollen types were chosen for their rele-
vance to public health (see, e.g., Darrow et al., 2012) and their preva-
lence in the dataset of this environment. The same hyperparameter 
configurations were used for all models, with the exception of train: 
validation:test ratio, which was 80:10:10 for total pollen and Poaceae 
models and 60:20:20 for the rest. This was because, although the 
80:10:10 split yielded optimal performance for the total pollen model 
that underwent hyperparameter tuning, for Quercus and other less 
prevalent types in this case the test dataset seemed not to be large 
enough to be representative. A greater test dataset size reduces the 
proportion that can be used for training but ensures that the model is 
evaluated fairly on a representative sample. 

This combination of input features and target variables produced 15 
different model sets, each of which was trained for 5 sample models 
within each set. The model hyperparameters within each set were 
identical however, due to the stochastic nature of the learning process, 
the ‘optimal’ model weights (parameters) settled on in each case will be 
different depending on the statistical patterns each model has learned. 
R2 scores were calculated for all models between relevant target vari-
ables and model predictions from the unseen test dataset. The resulting 
spread of R2 scores for each model set was visualised and the mean and 
best scores recorded. We can say that models which achieved high R2 

scores generalised well in terms of the hold-out test dataset here, but we 
cannot comment on how well they would generalise in other contexts. 
For example, the models with the best R2 scores here may not be those 
with the best R2 (and therefore generalisability) in another context, 
though this is unlikely to be models with very low scores here. If the 
spread of scores among a model set is narrow, it suggests any model with 
these hyperparameter configurations will result in similar performance 
and hence these hyperparameter configurations may be more robust. If 
there is great variance among R2 scores, it may suggest the hyper-
parameter configuration is not very robust and learning outcome de-
pends heavily on the stochastic learning process. 

This process was also applied to produce an equivalent set of models, 
predictions and R2 scores for models trained on daily (24 h) time reso-
lution data. This was to observe the difference in performance between 
models trained on hourly and daily resolution data. It was also in 
preparation to apply for future comparison purposes, since pollen con-
centration data from the standard Hirst-type samplers is often only 
available in daily time resolutions. 

2.4. Model interpretation using SHAP values 

To explain the models, understand the input feature-output variable 
relationships and why certain predictions are produced, we employed 
the SHAP (Shapley Additive exPlanations) method developed by Lund-
berg and Lee (2017). SHAP uses Shapley values from game theory to 
explain the output of any machine learning model. It does this by 
considering all possible combinations, or ‘coalitions’, of input features 
(‘players’ from a game theory perspective), quantifying the marginal 
contributions each feature makes towards the final output when added 
to coalitions, then aggregating the marginal contributions. The sum of 
SHAP values across all features for any given observation equates to the 
difference between the model prediction and the observation mean, or 

‘null model’. This process involves training models for each distinct 
feature coalition to calculate differences in predicted output (marginal 
contribution) and so is computationally expensive. SHAP values have 
limitations when feature dependencies are present and cannot simply be 
taken for causal inference; it tells us how important the feature is to the 
model. Nevertheless, it is a powerful method for interpreting machine 
learning models and can be implemented efficiently using Lundberg's 
SHAP library (https://github.com/slungberg/shap). 

We took the best performing models (highest R2 score on test data-
set) for each of our model sets and applied the SHAP method to inves-
tigate how each of the given features were affecting the output of the 
model. ‘Bee swarm’ plots were constructed in each case, which give 
information on feature importance, magnitude of the affect each feature 
has on the model output, and the corresponding magnitude of the input 
feature value in each case. The information from these plots was 
condensed into a matrix plot which scored input feature and target 
variable pairings by colour for strong positive correlation, weak positive 
correlation, strong negative correlation, weak negative correlation and 
no correlation respectively. Correlations were nonlinear and decided for 
each case based on the visual distribution of data points on the plot 
demonstrating feature value and SHAP value (i.e. impact on output 
prediction of target variable). 

To investigate further, we isolated data points that fit into four cat-
egories: high pollen low error (HPLE), low pollen low error (LPLE), high 
pollen high error (HPHE) and low pollen high error (LPHE) events - after 
excluding all zero values for the target variable. High and low pollen was 
defined as all data points above the 75th quantile and below the 25th 
quantile for the Hirst-measured target pollen variable and high and low 
error was defined as above the 75th and below the 25th quantile for the 
absolute difference between Hirst-observed and model-predicted target 
variable concentrations. The only exception for this was that for Betula 
the low error threshold was raised to the 40th quantile for the HPLE 
category because there were no data points available satisfying the 25th 
quantile threshold for high (> 75th quantile) Quercus concentrations. 
The percentage of non-zero values for each target variable in the whole 
and test datasets, the number of data points that were filtered by each 
category threshold, and the specific quantile threshold values calculated 
in each case can all be found in the SI in Tables S3-S5. 

The original feature (bin) values and SHAP values were averaged 
over all data points present in each group. Bar plots were constructed to 
show the relative averaged feature values for each category, and a 
colour scale added corresponding to SHAP value sign and magnitude. 

3. Results and discussion 

3.1. Hyperparameter tuning 

The results of the optimisation experiments are summarised in Fig. 1, 
based on the R2 scores calculated from the test datasets across the 25 
samples for each configuration. This visualises the effects of varying the 
model capacity, by the number of layers and nodes per layer in the 
neural network architectures, and model learning behaviour by varying 
batch size, optimisation algorithm, learning rate and node activation 
functions. Also visualised are the effects of certain data preparation 
considerations, such as scaling of the target variable and the test-train 
split size, as well as the effects of varying regularisation methods to 
improve generalisation such as dropout percentage, weight constraints 
and addition of noise. 

In theory, there would be an optimal capacity of the model archi-
tecture, defined by the number of layers and nodes, with enough 
complexity to address the given task yet not so much as to learn the 
training dataset too meticulously (i.e., to be fitted but not overfitted). 
Increasing the number of layers is computationally cheaper than 
increasing the number of nodes in a layer, yet the optimal capacity in 
practice can only be found empirically, keeping computational limita-
tions also in mind. The results from our empirical experiments here in 
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plot A of Fig. 1 demonstrate the general increase in model performance 
with increasing number of layers and nodes, but the increase with 
additional layers diminishes after 5 layers for a large number of nodes 
(N ≥ 200). The configuration that achieved the highest mean R2 score 
(0.24) across all model samples was the combination of 5 layers and 400 
nodes; thus this combination was chosen to proceed. (Other combina-
tion means also achieved close to this (>0.22), e.g. 6 or 7 layers with 200 
or 400 nodes, but these were also more computationally expensive.) 

Batch size dictates how often the weights of the model are updated 
during training, thus affecting training dynamics. No clear trend was 
observed across different batch sizes. The highest mean across models 
(see plot B in Fig. 1) was achieved with a batch size of 256 (0.22), 
however, the difference among other batch size means was not large 
(<0.11). The results using the commonly used batch size of 32 showed 
the smallest range and highest minimum, and therefore was chosen to 
proceed for further models. 

The Adam optimiser (R2 = 0.17) (see plot C in Fig. 1) clearly per-
formed better than the RMSprop (R2 = 0.06) or Adagrad (R2 = 0.04) 
alternatives, when used on default settings. When the initial learning 
rate was varied for the Adam optimiser (see plot D in Fig. 1) an optimal 
value of 0.0005 was found (R2 = 0.22). The standard, and less compu-
tationally expensive, ReLU activation function applied at each hidden 
layer in the network proved to yield generally higher R2 scores (0.19) 
than either of ELU (0.11) or SELU (0.15) (see plot E in Fig. 1). This 
suggests that the extra nuance these activation functions can add (e.g. 
decreasing bias shift, self-normalisation, and robustness – see Ped-
amonti, 2018; Marchisio et al., 2018) did not offer an advantage. On the 
contrary, it appears that the characteristic of the ReLU activation 
function to equate all negative incoming values to zero (while ELU and 
SELU continue to propagate negative values) has benefited the algo-
rithm in this case. The best performing configuration in each case was 
taken to proceed. 

Previous work during the development of these models (in Mills 
et al., 2023) showed that scaling (normalisation) of the particle con-
centration input data is important for successful model training with 
good predictive performance. However, it was not previously conclusive 
whether scaling (normalising) the pollen concentration target variable 
was useful or not. The results here (see plot F in Fig. 1) demonstrate that 
scaling the target variable in this case is not useful (R2 = − 0.24), but 
rather leaving it unscaled results in generally better (0.20) and less 
variable performance. 

While some testing had been tried before, we decided to investigate 
more thoroughly the potential effect that the train-test split size had on 
estimated model performance. We considered this useful to test as the 
available data here is limited and therefore wanted to make best use of 
the available data to provide effectively for both model training and 
evaluation. The varied proportions of the whole dataset taken for the 
training dataset are labelled in the x-axis of plot G in Fig. 1. It is 
important to note that the remaining proportion of the dataset was then 
split once more, in equal parts, into validation (used to settle on the 
optimal model over training epochs) and test datasets. The latter of 
which was used for final model evaluation. 

From the results, we found that using 80 % for the training dataset, 
and therefore 10 % each for validation and test datasets, yielded the best 
performance (R2 = 0.25). This split was used for further models pre-
dicting total pollen and Poaceae pollen, however it was observed that 
this did not generally result in best performance for models targeting 
Quercus pollen. This is likely because the representation (i.e. season 

length) of the Quercus pollen season in the given dataset is relatively 
small, at least compared to ‘total’ or Poaceae pollen, so a smaller dataset 
proportion used for evaluation would less likely be representative. After 
testing splits of 80:10:10 and 60:20:20 (train:validation:test) it was 
decided that the latter was best when applied to Quercus, Betula and 
Pinus models. (This split ratio also achieved the second best R2 score 
(0.20) for the original total pollen hyperparameter testing experiment.) 

Dropout layers and weight constraints are both effective methods for 
model regularisation and reducing overfitting, but again the optimal 
tuning of dropout node percentage and threshold values for weight 
constraints can generally only be determined empirically. We found for 
the purposes of our task that a dropout percentage of 20 %, see plot H in 
Fig. 1, and weights constrained by a max-norm (upper value threshold) 
of 4.0, see plot I in Fig. 1, at each hidden layer yielded optimal perfor-
mance (R2 scores of 0.20 and 0.33 respectively). These configurations 
were applied to further models. 

Finally, the addition of a small amount of noise at input or hidden 
layers was trialled to see if it affected the ability of the model to accu-
rately predict the unseen test dataset (in theory by limiting dependency 
on training data and improving generalisability). Our results found that 
the addition of noise to the data at the input layer with a standard de-
viation of 0.001 improved model performance on the test dataset (R2 =

0.24), compared to no noise being added (R2 = 0.19), and among all 
other tested noise configurations. Thus, this addition of noise to input 
data was also applied to further models. 

3.2. Improved models from chosen hyperparameter values 

The plots in Fig. 2 present the results of the final model evaluations 
after the optimisation process for hourly and daily resolution models 
respectively, while the mean and best R2 scores achieved for each model 
set are summarised in the table in Fig. 2. We evaluate, in particular, the 
models that used OPC particle size bins data since it is that sensor-ML 
combination that we are primarily concerned with. The models based 
solely on meteorological variable input feature are provided for com-
parison to demonstrate the importance of the particle size bin data for 
the models. 

The results achieved here are a significant improvement to the initial 
results reported by Mills et al. (2023), denoted by the horizontal white 
dotted lines. The average R2 scores for the total pollen models have at 
least doubled - from 0.15 to 0.49 without meteorological variables and 
0.3 to 0.65 with them - and Poaceae models improved from 0.34 to 0.48 
without, and 0.67 to 0.87 with, meteorological input features. The 
greater improvement in total pollen models demonstrates the gain of 
hyperparameter tuning for specific tasks. These results also demonstrate 
the method being applied to a greater variety of pollen types, which 
appears to show similar promise provided appropriate data availability 
and model optimisation. 

From the hourly and daily model sets (blue and orange only), 6/10 
and 8/10 respectively produced a model that achieved an R2 score ≥ 0.5 
and there are even some models that have performed extremely well (R2 

≥ 0.8) when evaluated on the test dataset. The daily resolution models 
generally outperformed the hourly resolution models. It has been re-
ported previously (Maya-Manzano et al., 2023) that comparison 
alongside the Hirst-type sampler generally yields better results at 
coarser time resolutions, since the temporal averaging results in less 
deviation between instruments. 

Models targeting total and Poaceae pollen generally performed better 

Fig. 1. Box and whisker plots showing effect of varying various hyperparameters on model performance, quantified by the R2 score (coefficient of determination). 
Plot A: model capacity, L = number of layers and N = number of nodes. Plot B: batch size. Plot C: optimisation algorithm. Plot D: initial learning rate for Adam 
optimisation algorithm. Plot E: activation function applied at hidden layers. Plot F: target variable scaling. Plot G: train:validation:test split ratio – x-axis value 
corresponds to the fraction of the whole dataset used for training, while validation and test datasets where taken in equal parts from the remaining fraction. Plot H: 
dropout node proportion. Plot I: weight constraint. Plot J: noise implementation (none/input layer/hidden layers) and standard deviation applied. Colours are unique 
for each x-axis/hyperparameter value. 
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Model set Hourly mean R2 score Hourly best R2 score Daily mean R2 score Daily best R2 score

binsTP 0.49 0.50 0.80 0.90

binsRHTTP 0.65 0.73 0.82 0.87

RHTTP 0.36 0.39 0.61 0.68

binsPo 0.48 0.53 0.73 0.95

binsRHTPo 0.87 0.89 0.91 0.95

RHTPo 0.45 0.50 0.59 0.67

binsQu 0.31 0.36 0.40 0.67

binsRHTQu 0.45 0.62 0.20 0.66

RHTQu 0.09 0.22 0.33 0.66

binsBe 0.31 0.36 0.50 0.61

binsRHTBe -0.53 -0.05 0.66 0.68

RHTBe -0.05 0.04 -0.42 -0.01

binsPi 0.36 0.38 0.25 0.31

binsRHTPi 0.68 0.73 0.33 0.38

RHTPi 0.06 0.16 0.10 0.15

Fig. 2. Above: Summary of R2 scores achieved for final hourly resolution models. Horizontal white dotted lines denote scores achieved in previous study for models 
tested there (Mills et al., 2023). Middle: Summary of R2 scores achieved for final daily resolution models. Below: Summary of R2 scores achieved for all final models, 
both hourly and daily time resolution. TP = total pollen; Po = Poaceae; Qu = Quercus; Be = Betula; Pi = Pinus. Blue = models with only OPC bin input features; 
orange = models with OPC bin & meteorological input features; green = models with only meteorological input features. 
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than others. This is likely due to the better representation of these target 
variables within the time period for which data was collected and the 
fact that a larger proportion of the dataset was used for training (80 % as 
opposed to 60 % for the rest). In general, as more data is fed to machine 
learning models to learn from their prediction performance increases. 
However, we had a limited supply of data here. While total pollen 
models demonstrate the most improvement, since this target variable 
was used for hyperparameter tuning, it is interesting that the task of 
predicting Poaceae pollen also benefited from this process. The other 
types may also have benefitted to an extent, yet these models could 
benefit further by tuning hyperparameters for each pollen type. 

There were some instances, in particular for the Betula model with 
meteorological input features, where the R2 score was small or negative, 
implying that these models did not learn reliably useful information. 
This may be possible to improve upon by applying hyperparameter 
tuning for this specific model case, or it may simply be due to limitations 
of the available data. However, since the equivalent daily-resolution 
trained model appears to have performed considerably well, it does 
suggest there is useful information from which to learn the Betula type. 

In the overview study which summarised the blind performance of 
all instruments participating in the intercomparison campaign (Maya- 
Manzano et al., 2023), an R2 of >0.5 was considered good while >0.75 
was considered excellent agreement with the benchmark Hirst in-
struments. Measuring total pollen, 9/18 of the automated pollen 
monitoring systems achieved R2 > 0.5 for 3-hourly and daily resolution, 
while 3/18 achieved R2 > 0.75 for daily resolution. Those instruments 
that performed best included the BAA500 and the Swisens Poleno. These 
instruments (depending on the algorithm applied) also demonstrated R2 

scores above 0.5 for daily and above 0.75 for 3-hourly Poaceae pollen 
concentrations. R2 scores of above 0.75 were observed for 3-hourly and 
daily measurements of Quercus and Betula pollen, the latter with the 
most success. 

Our results from this study applying low-cost sensors seem impres-
sive, with over half of our models achieving R2 > 0.5 and some even 
>0.75. However, it should be noted that these algorithms are not blind 
and have been specifically trained on the data in this context. Mean-
while, the results reported in the overview paper are for instruments that 
use machine learning algorithms trained independently from the Hirst 
data, on specific pollen samples previously provided to them. 

3.3. Model interpretation and input-output relationships 

Fig. 3 shows bee swarm plots from the Python SHAP package for the 
test datasets for each pollen type. The relationships learned by the model 
are generally not linear and are complex to interpret (see Introduction, 
above, and Lundberg and Lee, 2017), but our aim here is to discern 
which particle size ranges generally increased when a given pollen type 
was present (i.e., find and interpret an ‘explanation model’ for that 
purpose). Strong SHAP signals may relate to the size ranges of subpollen 
particles but we have no way of demonstrating this. We also aim to 
distinguish differences among the types that the model has learnt, in 
order to assess the feasibility of differentiating between types. The 
general observed correlations based on the bee swarm plots are sum-
marised in the matrix plot in Fig. 3. Corresponding bee swarm plots for 
models based on OPC bins and meteorological variables are displayed in 
Fig. S1 and partial dependence plots for each input bin and target pollen 
type can be found in Fig. S2–6 in the SI. 

While the meteorological variables were generally very useful for 
predicting pollen concentration, for models where they were included 
the correlations among the OPC bin ranges appear less clear. Therefore, 
for investigating the impact of the different bin sizes in each case we 
have focused on the models trained on OPC bins only. 

Fig. 4 shows bar plots visualising relative averaged particle con-
centrations for each OPC bin for four categories of high and low pollen 
concentrations and error. Bins beyond bin 11 (> 10 μm) have not been 
included since few particles were detected in that size range and the bee 

swarm plots did not provide useful information. Generally, when par-
ticles were observed in these larger-size bins, it pushed the predicted 
output of the model down, as can be seen for larger-size bins for the total 
pollen, Poaceae, and Betula plots. 

These plots can give further evidence about which features are 
affecting the model and are correlated with certain events such as high 
pollen. For example, a taller bar of a strong red colour for the HPLE 
category (e.g. bin 0 for Poaceae) compared beside a shorter bar of a blue 
colour for LPLE suggests that high values of this feature contributed 
greatly to low error high pollen events while comparatively smaller 
values were also indicative of low error low pollen events. We may also 
be able to suspect features that might be confounding the model and be 
responsible for inaccurate predictions. In particular, strong blue bars for 
the HPHE category may suggest this feature is pulling the model pre-
dictions down and creating a large error from the high output value it 
should be. Likewise, strong red bars for the LPHE category (e.g. bin 5 for 
Pinus) may suggest the feature is pushing the model predictions up even 
when the actual pollen concentrations are low, potentially confusing the 
model. 

3.4. Total pollen 

From the bee swarm plots in Fig. 3, it appears that total pollen had 
some positive correlation with bins 0, 4, 7 and 8 (corresponding particle 
sizes can be found in Table S1 in the SI). From the bar plots in Fig. 4, 
comparing high/low pollen events with high/low error it appears that 
bins 0–3, 5 and 9–11 had large responsibility for pushing the predicted 
pollen concentration down when particles in these bins were at high 
concentrations. Meanwhile bins 6–8 are responsible for pushing the 
pollen concentrations up with high particle concentrations present in 
these bins. We conclude that total pollen here is largely correlated with 
particles, measured optically by the OPC, in the size range 2.3–5.2 μm. 

The model appears to have associated bins 1 and 5 with a strong 
negative correlation to total pollen. For example, when these particle 
concentrations are high they have contributed strongly to predicting low 
pollen events (i.e. strong blue bars for LPLE). However, the issue is that 
when the pollen concentrations have been low it has contributed 
strongly to predicting that pollen is high when it is actually not (i.e. 
strong red bars for LPHE). This suggests that these bins are causing the 
model to learn unhelpful correlations and it might be beneficial to 
remove them as input features. 

The total pollen target variable encompasses a wide range of pollen 
types which may be associated with varying particle sizes and would be 
very dependent on the representation of ‘total pollen’ in this context (e. 
g. majority of Poaceae representation in this context). Therefore it can be 
expected that there may be conflicting correlations with different types 
within this target variable and the model may not generalise well in 
other contexts where the representation of ‘total pollen’ is different. It 
could be expected to generalise less well than other specific pollen type 
models in other contexts. 

3.5. Poaceae 

From the bee swarm plots, the Poaceae type appears to have positive 
correlation with bins 0, 4, and 6–8. From the bar plots, bins 0 and 6–8 
are particularly congruent with this positive correlation. This suggests 
that particles in size ranges 0.35–0.46 and 2.3–5.2 μm are largely co- 
existent with Poaceae pollen type in this context, similar to the 
observed size range for total pollen. Bins 1 and 5 also show a similar 
effect as described for total pollen, being responsible for the high error 
low pollen (LPHE) events. These similarities are due to the fact that the 
total pollen model in this context is largely represented by the Poaceae 
type. 
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3.6. Quercus 

The Quercus model specifically shows strong correlation with bin 5 in 
the bee swarm plot, while most other bins suggest negative correlation. 
While it appears many bins have contributed to pushing the Quercus 
model output up generally, the bar plots (Fig. 4) show that specifically 
bins 4–6 demonstrate a stronger impact on the model (i.e. darker red 
colour) with higher particle concentrations in these bins (i.e. taller bars) 
for high pollen low error events (HPLE; 1st bar) when compared to low 
pollen low error events (LPLE; 2nd bar). This implies that the Quercus 
type is particularly associated with particles in the size range of 1.3–3.0 
μm. 

The bar plots suggest that bin 0 is responsible for pushing the pre-
dicted output concentration up when actual pollen concentrations are 
low (strong red LPHE bar) and is responsible for the high error in the 
HPHE category (blue bar, i.e. bringing predictions down when actual 
pollen is high). Other bins including bins 1–4 and 6 seem also respon-
sible for causing high error for LPHE events. Bin 5 is an example that the 
model has learned the relationship well, since the bars are red for high 
pollen events (HPLE and HPHE) and blue for low pollen events (LPLE 
and LPHE) but the overall output may be confounded by other less 
helpful bins. Here, for example, it may be beneficial to remove bins 0–3 
as input features and allow the model to learn to make better use of bins 
4–6. 

3.7. Betula 

The bee swarm plots suggest that the Betula type has positive cor-
relations with bins 4,5 and 9. Meanwhile, the bar plots suggest that 
accurate high pollen events are largely positively correlated with bins 
4–7 (i.e. darker red colour and taller bars for HPLE particularly when 
compared to LPLE), but not bin 9. This suggests that Betula can be 
associated with particles in size ranges 1.3–2.3 μm (bins 4–5), possibly 
extending up to 4 μm (bins 6–7). This size range is similar to Quercus and 
the two types have similar pollen size ranges - 17-26 μm for Betula 
(Mäkelä, 2009) and 20–42 μm for Quercus (Wrońska-Pilarek et al., 2016) 
– while generally smaller than Poaceae (22–46 μm, Radaeski et al., 2016) 
or Pinus (28–97 μm, Song et al., 2012). This may suggest that not only 
are the intact pollen grains of similar sizes but so are the associated 
subpollen particles that come from each. 

3.8. Pinus 

Pinus appears to have positive correlations with bins 0, 4 and 7 from 
the bee swarm plots. This positive correlation is only reinforced for bin 
0 in the bar plots, as this is the only case where the bin particle con-
centration is higher for HPLE events compared to LPLE events while the 
SHAP values (impact on the predicted Pinus concentration) were 
strongly positive. This corresponds with particle sizes between 0.35 and 
0.46 μm however, being the lowest size range measurable by the OPC 
instrument there may be subpollen particles associated with Pinus below 
this size range. There appear to be some similarities in positively 
correlated bins when compared with Poaceae according to the bee 
swarm plots which are not reinforced by the high pollen event bar plots. 
This may be due to the fact that the Pinus season overlapped with Poa-
ceae, so the two types may often have co-occurred leading to learned 
associations related to the wrong type, i.e. Pinus learning from Poaceae 
subpollen particles. 

The most unhelpful feature for the Pinus model appears to be bin 5 
since it has pulled the predicted output down when it should be high (i.e. 
blue bar for HPLE) and strongly pushed the output up when it should be 
low (i.e. strong red bar for LPHE). Meanwhile, even bins that have been 
helpful for distinguishing HPLE and LPHE events (e.g. bins 0–2) have 
also contributed to the high error when pollen should be low (red for 
LPHE). This model may benefit from removing certain features such as 
bin 5 but also by training on data in a different context that is not 
confounded by co-occurring pollen types. This would in fact be desirable 
for each taxon, however, may be hard to realise in practice. 

3.9. Summary 

The conclusions of the results discussed in Sections 3.3–3.8, taking 
into account the SHAP bee swarm plots in Fig. 3 and the SHAP bar plots 
in Fig. 4, are summarised visually in Fig. 5. It shows which bin size 
ranges contributed positively to the detection of each pollen type, and 
demonstrates the similarities and differences in terms of the associated 
bins. For example, total and Poaceae pollen are similar, due to total 
pollen being largely represented by Poaceae in this dataset, as well as 
Quercus and Betula pollen, likely because the pollen grains or associated 
particles are similar in size. 

3.10. Importance of input features and context 

We proceeded to test the effect of removing bins that may have 
confounded the model in each case according to the discussed obser-
vations. The resulting R2 scores for each model set with certain bins 
removed are displayed in Fig. 7 in the SI. Removing those above bin 8 
(>5.2 μm) did not significantly affect performance. However, removing 
other specific bins considered potentially ‘unhelpful’ in each case 
(detailed in SI Fig. 7 caption) resulted in decreased performance, 
generally the more bins removed the worse the score. The models do not 
seem to gain much information from bins above 5.2 μm, which may be in 
part due to limitations of the OPC instrument when measuring larger 
particles. However, the results suggest that the models make use of all 
other bins for optimal performance in this context, as they are able to 
learn even very complex nonlinear relationships that are difficult for us 
to comprehend or visualise. 

This may include learned statistical relationships with some size 
ranges that are collinear with the given pollen target only in this context, 
and which may become irrelevant and unhelpful if applied to other 
contexts. If the bins that appear positively correlated with a given target 
pollen taxon are directly associated with subpollen particles within 
those size ranges, then these bins may generalise well in other envi-
ronments where the same taxon is present. However, bins that have 
simply been used by the model because they have some collinearity with 
the given target taxon (in particular, this may be relevant for negatively 
correlated bins) may cause the model to generalise less well in other 
environments and hence their removal may bring higher scores when 
applied to different contexts. 

Ultimately, it must be emphasised how sensitive such models are to 
the environment and context from which training data is taken. A model 
that performs best on the reserved test dataset here may not necessarily 
perform best on a test dataset in another context. In other words, a 
model with a lower R2 score here could potentially generalise better in 
other environments. Thus, we emphasise the need to further validate 
these models with more data in different contexts. For such methods to 

Fig. 3. Above: SHAP ‘bee swarm’ plots for all pollen types bins-only models. The features are ranked in order of general importance and each point corresponds to a 
datapoint in the test dataset. The x axis corresponds to the impact each datapoint and feature had on the model output (i.e. target pollen concentration), relative to 
the mean output at 0. The colour corresponds to the actual value of that feature – red for high particle concentrations in a given bin and blue for low values. 
Therefore, feature rows which generally have more red further to the right and blue further to the left on the x axis likely have some general positive correlation 
between feature value and SHAP values (impact on the model) and vice versa for negative correlation. Corresponding bee swarm plots for models based on OPC bins 
and meteorological variables are displayed in Fig. S1 and partial dependence plots for each input bin and target pollen type can be found in Fig. S2–6 in the SI. Below: 
Matrix plot summarising observable nonlinear correlations between input features and target pollen variables. 
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Fig. 4. Bar plots showing feature value for bins 0–11 for HPLE (high pollen low error), LPLE (low pollen high error), HPHE (high pollen high error) and LPHE (low 
pollen high error) events respectively for each target pollen variable. The colour of the bars represents an arbitrary scale for the corresponding SHAP value (i.e. 
impact on the model output), with a stronger red meaning the given feature value pushed the model output (pollen concentration) up and a stronger blue meaning 
vice versa, the model output was pulled down. The particle sizes sensed by each bin are tabulated in Table S1: the particle size range increases with bin number. 
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be put to purpose, for example among pollen monitoring networks for 
public health, it may be necessary to produce trained models for a 
particular context and scale within which there is some consistency of 
the local pollen environment. For a model to be used across a large scale 
among different contexts, i.e. different regions or countries, it would 
likely need a lot of varied data from within these regions for training. 

Nevertheless, we have also demonstrated the effect that methodical 
hyperparameter tuning can have on increasing model performance and 
that this works best on a case-by-case basis, depending on the task and 
available data. The method we have presented in this study could be 
further applied to optimise models that take fewer or different input 
features, which may be able to achieve even better results. 

4. Conclusions 

In this study, we have demonstrated how the methodology to detect 
pollen using low-cost OPC sensors presented previously in Mills et al. 
(2023) can be improved by hyperparameter tuning and regularisation 
techniques for better performance. We have also demonstrated its 
application on an increased range of pollen types. For hourly and daily 
time resolution models, 6/10 and 8/10 respectively were able to pro-
duce R2 scores above 0.5 for the test dataset. Maximum R2 scores ach-
ieved were 0.89 and 0.95 for hourly and daily models respectively, once 
again for the models targeting Poaceae pollen with particle size and 
meteorological input data. 

Using the SHAP explainable AI (XAI) method, we visualised and 
described the observable relationships between input features and target 
pollen concentration and assessed which particle size ranges were 
responsible for pushing up or pulling down predicted outputs. We 
further investigated the relationship between specific bin particle con-
centrations and impact on model output under four selected circum-
stances of high/low pollen and high/low error respectively. In 
particular, Quercus pollen displayed strong positive correlation with 
particles in the range 1.3–3.0 μm, which could be evidence of associated 
subpollen particles in this size range. Quercus and Betula pollen showed 
some similarity with each other but difference from Poaceae (which 
largely contributed to total pollen), while Pinus pollen showed mild 
similarity with Poaceae. Thus, this method may be more effective at 
isolating some types (e.g. Quercus) than others, and at differentiating 
between certain types (e.g. Quercus vs Poaceae) based on particle size 
measurements alone. 

This work demonstrates the potential that this method shows for 
low-cost monitoring of pollen and provides deeper explanation as to 
how the models are learning and the influence each input feature has on 
predicting output pollen concentrations. While caution must always be 
taken when implying causal inference from machine learning models, 

useful information is obtainable that we can pair with our current sci-
entific understanding. Currently, our scientific understanding of sub-
pollen particles is limited and further studies characterising these 
particles for different pollen types would be an important step forward 
to provide scientific verification for these methods. Meanwhile, as with 
most machine learning methods, this technique would greatly benefit 
from training and testing on more data representing more varied envi-
ronments to truly assess the extent of generalisability. 
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