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Action initiation and punishment learning
differ from childhood to adolescence while
reward learning remains stable

Ruth Pauli 1 , Inti A. Brazil2, Gregor Kohls3,4, Miriam C. Klein-Flügge 5,6,
Jack C. Rogers1,7, Dimitris Dikeos8, Roberta Dochnal9, Graeme Fairchild10,
Aranzazu Fernández-Rivas11, Beate Herpertz-Dahlmann3, Amaia Hervas12,
Kerstin Konrad3,13, Arne Popma14, Christina Stadler15, Christine M. Freitag 16,
Stephane A. De Brito1,7 & Patricia L. Lockwood 1,5,6,7

Theoretical and empirical accounts suggest that adolescence is associated
with heightened reward learning and impulsivity. Experimental tasks and
computational models that can dissociate reward learning from the tendency
to initiate actions impulsively (action initiation bias) are thus critical to char-
acterise the mechanisms that drive developmental differences. However,
existing work has rarely quantified both learning ability and action initiation,
or it has relied on small samples. Here, using computational modelling of a
learning task collected from a large sample (N = 742, 9-18 years, 11 countries),
we test differences in reward and punishment learning and action initiation
from childhood to adolescence. Computational modelling reveals that whilst
punishment learning rates increase with age, reward learning remains stable.
In parallel, action initiation biases decrease with age. Results are similar when
considering pubertal stage instead of chronological age. We conclude that
heightened reward responsivity in adolescence can reflect differences in
action initiation rather than enhanced reward learning.

Adolescence is a time of great change, as young people navigate their
way from the dependency of childhood to the independence of
adulthood. Theoretical accounts suggest it is a period of risky,
impulsive, and reward-seeking behaviour, which is hypothesised to
reflect neurobiological changes that lead to heightened reward

learning1–5. Adolescence is also a high-risk period for the onset of
mental disorders6, including disruptive behaviour disorders7, which
are strongly associated with impulsive behaviour and difficulties with
reinforcement learning8. Internalising problems are likewise asso-
ciated with difficulties in reinforcement learning9,10, and social media
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use (which can become problematic for some adolescents11) has
recently been linked to reward learning mechanisms12. However,
reward- and punishment-guided behaviour in adolescence is not yet
fully understood. This is because distinct psychological processes can
manifest in similar overt behaviour, and traditional data analysis
techniques are usually not well suited to capturing these covert
processes13. A myriad of terms have been developed to describe clo-
sely related concepts, such as reward learning, risk-taking, and
impulsivity14, which, though theymight reflect similar behaviour, likely
point to distinct psychological processes. Furthermore, these con-
cepts are typically operationalised using questionnaires or summary
performance measures from behavioural tasks, which cannot capture
the temporally dynamic nature of learning processes13. In con-
sequence, to understand differences in behaviour across adolescence,
it is important to distinguish between learning processes and other
mechanisms that might manifest in similar behaviour, such as
response biases. Here, we use computational modelling to distinguish
between learning processes (modifying future behaviour based on
past experienceof rewardandpunishment) and action initiationor ‘go’
biases (initiating actions impulsively, without regard for con-
sequences). We test whether these different mechanisms are separ-
able, and to what extent they exhibit normative developmental
differences across late childhood and adolescence in a large sample
collected from multiple countries.

Computational modelling of learning can be conducted using
reinforcement learning models, which assume that actions and their
outcomes become associated through experience, and the learned
value of an action then influences the likelihoodof repeating that action
in the future15. There has been a relative paucity of computational
modelling work focusing on learning in adolescence compared to the
adult literature, and previous studies were not always designed to dis-
tinguish between learning processes and action initiation biases (a bias
to make a response, regardless of its expected outcome value). Prob-
abilistic learning tasks have suggested an adolescent peak in reward
learning16, better reward learning in adolescents17, and relatively better
reward (versus punishment) learning in adolescents compared to
adults18 (see also19). Reversal learning tasks (with changeable outcome
probabilities) have pointed to increased punishment learning in ado-
lescents compared to adults20, a trough in punishment learning rates in
mid-adolescence coupled with a sudden increase in reward learning
rates in early adulthood21, or peaks in both punishment and reward
learning in late adolescence22. Together these studies suggest that
reward and punishment learning might differ across adolescence, but
theyprovide inconsistent evidence. Part of this variability is likely due to
different learning contexts and task demands23,24, but it could also
reflect the relianceon smaller andnon-diverse samples that are not fully
representative of adolescents across different countries.

Only one study of adolescents to date, to our knowledge, has
measured learning in a task design that incorporates requirements
both to learn and also to inhibit actions25 (see26 for a study in adults).
This study compared reward and punishment learning as well as an
action initiation bias or tendency to ‘go’ (initiate an action) vs. ‘no-go’
(withhold an action) in children (8–12, n = 20), adolescents (13–17,
n = 20), and adults (18–25 years, n = 21). Relative to both children and
adults, adolescents exhibited attenuated ‘go’ and Pavlovian (action-
consistent-with-valence) biases. Learning was best captured by a gen-
eric (not valence-specific) learning rate, and learning rate was not
associated with age in this sample. This study suggests that, like
learning rates in previous studies, action initiation biasesmight display
developmental differences across adolescence.

In summary, adolescence has been associated with an enhanced
ability to learn from reward and possible differences in learning from
punishment, but evidence has been inconsistent. These differences
could be due to small sample sizes, two-group designs (which cannot
detect quadratic relationships), and lack of learning contexts designed

to assess action biases. Therefore, despite evidence that learning
processes can undergo profound changes during adolescence, little is
known about how learning mechanisms differ from action initiation
biases during this crucial developmental period.

Here, we examined differences in reward and punishment learn-
ing and action initiation, using a large sample (N = 742) of youths aged
9-18 years recruited fromacross Europe. Participants viewed a series of
abstract 3D objects and had to learn by trial-and-error whether to
respond (‘go’, to win points) or withhold responding (‘no-go’, to avoid
losing points) to each object27,28 (see Fig. 1). We built a set of reinfor-
cement learningmodels thatwerefitted to thedata using ahierarchical
expectation maximisation approach and compared them using Baye-
sian model comparison methods29–31. These models varied in terms of
whether parameters were included for separate reward and punish-
ment learning rates, action initiation biases, and sensitivity to the
magnitude (number of points) gained or lost.

Wefind that a computationalmodel including separate reward and
punishment learning rates, and a constant action initiation bias (that
measures the tendency to ‘go’ vs. ‘no go’ on each trial regardless of
rewardorpunishment) best explains behaviour. In addition,we showan
asymmetry in learning differences. While reward learning rates remain
stable, punishment learning rates increase from childhood to adoles-
cence. In parallel, despite stable reward learning, action initiation biases
decrease with age. All results remain the same when replacing chron-
ological age with pubertal stage. These findings point to normative
developmental differences in punishment learning and action initiation.
They suggest that theoretical accounts positing heightened responses
to reward in adolescence should consider differences in impulsive
action initiation rather than solely reward sensitivity or learning, since
these can mimic reward learning in some contexts. Such findings are
important for our understanding of learning and decision-making in
adolescence as well as how learning and action initiation can go awry in
the transition from childhood to adolescence.

Results
We analysed behaviour from 742 participants (491 girls) aged 9-18
years (mean 13.99, SD = 2.48, median pubertal stage ‘late pubertal’)
(see Methods) who completed a reward and punishment learning task
(see Fig. 1). All participants were free from psychiatric disorders (see
Methods). Pubertal status wasmeasured using the self-report Pubertal
Developmental Scale (PDS32; see “Methods”). After modelling the
learning taskdata,we tested associations between age, pubertal status,
and participants’model parameters, as well as behavioural responses.
Age was treated as a continuous variable in all these analyses, although
for presentation purposes, we divide age into three discrete bins. To
test for quadratic associations between age andmodel parameters, we
tested all models with age2 included. We first examined whether there
were associations between age or pubertal status and sex or IQ. As
there were some associations between these measures (see Table S1),
we included sex and IQ as covariates of no interest in all analyses of
participants’behavioural responses andmodel parameters. For eachof
these analyses, we ran two models to assess developmental changes:
one with participants’ chronological age and one with pubertal status.
Six participants who were included in the computational modelling
were removed from subsequent analyses due to missing IQ data.

Behavioural responses suggest age differences in reward and
punishment learning
We first examined whether learning occurred during the task. A gen-
eralised linear mixed model (GLMM) (predicting correct responses
from age, stimulus repetition number, outcome valence, and covari-
ates; see Methods) revealed a significant main effect of stimulus repe-
tition on the number of correct responses made, with performance
improving throughout the task (Odds ratio (OR) = 1.19 [1.17, 1.21],
z = 18.56,p <0.001, 2-tailed). To confirm that learning occurred for both
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reward and punishment stimuli, we repeated the analysis using only
reward trials, and founda significantmain effect of repetitiononcorrect
responses (OR= 1.13 [1.09, 1.16], z = 8.48, p <0.001, 2-tailed). We then
repeated the analysis using only punishment trials and again found a
significant main effect of repetition on correct responses (OR= 1.28
[1.26, 1.32], z = 19.65, p <0.001, 2-tailed). Thus, the task was able to
capture learning behaviour in both reward and punishment conditions.

Next, we tested whether age was associated with behavioural
responses over stimuli repetitions (Fig. 2; see also Supplementary
Notes, Behavioural responses by stimulus point value, and Figs. S1–2
for behavioural responses broken down by stimulus point value and
Figure S3 for relative reward bias over trials). Age was a significant
positive predictor of overall learning (GLMM: age by stimulus repeti-
tion interaction: OR = 1.02 [1.01, 1.04], z = 2.49, p = .01, 2-tailed) and
older participants also made more correct responses in total (OR =
1.08 [1.04, 1.11], z = 4.58, p <0.001, 2-tailed; see Figure S4), consistent
with prior developmental learning studies23. However, this age-related
learning improvement was specific to learning from punishment out-
comes (age by repetition by valence interaction: OR = 1.09 [1.05, 1.13],

z = 4.65, p <0.001, 2-tailed). To check the direction of this interaction,
we repeated the analysis using only reward trials and found no age by
repetition interaction (OR=0.98 [0.95, 1.01], z = −1.48, p = 0.14, 2-
tailed), and repeated it again using only punishment trials and found a
significant age by repetition interaction (OR = 1.07 [1.05, 1.11], z = 5.63,
p <0.001, 2-tailed). To quantify the strength of evidence for this stable
reward learning pattern, we calculated a Bayes factor using the BIC
method33, by repeating the GLMM model for reward trials only (and
removing the valence term), then repeating this reward-only regres-
sion with the age by repetition interaction removed. This generated
strong support for the stability of reward learning across age in this
dataset (BF01 = 57.80; very strong evidence in support of the null).

Nextwe assessedwhether therewere possible quadratic effects of
age on behavioural responses. Although this slightly improved the
model fit (ΔBIC = −27.79, p = .003, 2-tailed), the age2 term was not
a significant predictor of correct responses (OR =0.99 [0.96, 1.02],
z = −0.41, p = 0.68, 2-tailed) or of overall learning (age2 by repetition
interaction: OR =0.99 [0.97, 1.01], z = −0.87, p =0.39, 2-tailed). How-
ever, we did observe a significant age2 by repetition by valence

a

b

Cue
>2500ms

Outcome 
(go)
1000ms

Outcome 
(go)
1000ms

Cue
>2500ms Cue

>2500ms
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(no-go)
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20-39
40-59
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200+

Fig. 1 | Recruitment sites and learning task. a Number of participants recruited
from each country. Countries are coloured according to the total number of par-
ticipants, with individual recruitment sites marked in yellow. b Details of the
learning task (shown here in the English language version). The aim of the task was
to learn whether to respond or withhold responses to stimuli in order to earn
points. Participants learnt by trial and error whether to make or withhold a button
press to obtain a reward (points) or avoid punishment (losing points). Eight unfa-
miliar stimuli were presented individually for 3000ms or until a button press

response was made. Responses were followed by feedback on the outcome
(1000ms) or a running total alone if the participant did not respond. Each stimulus
hadafixed value of +/− 1, 700, 1400, or 2000points andwas shownonce per ‘block’
for 10 blocks, with a randomised order within blocks. Thus, four stimuli were
associatedwith reward and fourwith punishment. Participants started the taskwith
10,000 points and could theoretically finish with a score between 51,010
and −31,010.
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interaction (OR = 1.08 [1.04, 1.12], z = 3.98, p <0.001, 2-tailed) as well as
the significant age by repetition by valence interaction (OR= 1.09
[1.05,1.13], z = 4.52, p <0.001, 2-tailed), suggesting that the
punishment-specific improvement in learning was partially non-linear.

Since feedback during the task was given in the form of point
scores, we also checked for age-related improvements in point score.
As expected, older participants gained more points than younger
participants overall (robust linear mixed effects regression: β = 0.16
[0.09, 0.23], z = 4.27, p <0.001, 2-tailed).

Age-related improvement in punishment learning is not better
explained by pubertal development
We next examined whether these age-related improvements in pun-
ishment learning were also observed for pubertal stage. Similar to age,
pubertal stage was positively associated with overall performance
(OR = 1.06 [1.03, 1.10], z = 3.71, p <0.001, 2-tailed), and with improved
learning (OR= 1.03 [1.01, 1.05], z = 2.95, p = 0.003, 2-tailed). However,
wedid not observe a significant pubertal stage by repetition byvalence
interaction (OR = 1.04 [0.10, 1.07], z = 1.87, p = 0.06, 2-tailed). Fur-
thermore, the model using age was a better fit to the data than the
model using pubertal stage (ΔBIC = −137.22). To confirm that the lack
of pubertal stage by repetition by valence interaction was not a
reflection of the number of pubertal categories, we repeated the
analysis with pubertal stage collapsed into three categories (pre/early,
mid, and late/post-pubertal), and observed no differences (see Sup-
plementary Notes, Behavioural responses by three pubertal stages).

Computational modelling shows that a model with separate
reward and punishment learning rates and an action initiation
bias best explain behaviour
Behavioural analyses suggested that age related differences in learning
were specific to punishment but not reward learning. However, to

quantify reward and punishment learning precisely, as well as other
latentmechanisms thatmight differ across age, computationalmodels
of reinforcement learning are needed.We therefore compared a range
of computational models of reinforcement learning to characterise
participants’ choicebehaviour. Inparticular, we comparedmodels that
varied in terms of a single learning rate or separate learning rates for
reward and punishment (influence of recent outcomes on future
responses), initial or constant action initiation biases (bias to respond
versus not respond on the first presentation of an object, or bias to
respond versus not respond across all trials, respectively) and sensi-
tivity to the magnitude of reward, punishment, or both (sensitivity to
points gained or lost). Models were fitted using a hierarchical expec-
tation maximisation approach and compared using Bayesian model
comparison methods29–31,34. We constructed seven different models
using an iterative procedure to appropriately constrain the model
space (see Methods for full details):
1. αβ: single learning rate (α) and temperature parameter (β)
2. 2αβ: reward α, punishment α, β
3. αβb_i (1): single α, β, initial ‘go’ bias (b_i)
4. αβb_c (2): single α, β, constant ‘go’ bias (b_c)
5. 2αβb_i or 2αβb_c: rewardα, punishmentα, β, b_i or b_c (depending

on winner from 3. & 4.)
6. 2αβb_iρ or 2αβb_cρ: reward α, punishment α, β, b_i or b_c, mag-

nitude sensitivity (ρ)
7. 2αβb_i2ρ or 2αβb_c2ρ: reward α, punishment α, β, b_i or b_c,

reward ρ, punishment ρ

Models were compared on exceedance probability, Log Model
Evidence (LME), and the integrated Bayesian Information Criterion
(BICint). Initially we found that model 6, which included separate
learning rates for reward and punishment, a constant action initiation
bias, and a single (valence-insensitive) magnitude sensitivity

Fig. 2 | Reward andpunishment responding across stimulus repetitions, by age
and pubertal stage. a Proportion of ‘go’ responses to reward stimuli across
repeated stimulus presentations, for three age groups. b Proportion of ‘go’
responses to punishment stimuli across repeated stimulus presentations, for three
age groups. c Proportion of ‘go’ responses to reward stimuli across repetitions, by
pubertal stage. d Proportion of ‘go’ responses to punishment stimuli across

repetitions, by pubertal stage. In all panels, points represent means and error bars
are 95% confidence intervals of the mean. N = 200 aged 9–12, 303 aged 13–15, and
239 aged 16–18. Dashed lines indicate chance performance. Note that ‘go’
responses are correct for reward and incorrect for punishment stimuli; thus,
learning is demonstrated by increasing responses to reward and decreasing
responses to punishment stimuli.
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parameter, best explained behaviour. This model had the highest
exceedance probability (0.99) and the highest LME (−34066.81), and
performed similarly to model 5 on BICint, which had the lowest abso-
lute BICint (see Fig. S5). However, when we further validated the win-
ning model using parameter recovery and model identifiability
procedures (see Methods for details), the magnitude sensitivity para-
meter exhibited relatively poor recoverability (r = 0.11). We therefore
selected model 5, with separate learning rates for reward and punish-
ment and a constant action initiation bias, as our winning model (see
Fig. 3). Except for LME, model 5 exhibited similar performance to
model 6 (Fig. 3), and showed good recovery and identifiability for the
winning model (Fig. 3 and Fig. S5). Moreover, all associations with age
remained the same regardless of whether model 5 or 6 was selected
(See Supplementary Notes, Associations with age are similar formodel
6 parameters, and Table S2).

Additionalmodelling analyses in three separate age groups (9–12,
13–15, and 16–18 years) confirmed thatmodel 5 won across the full age
range (See Figure S6). As a further control analysis, we repeated the
modelling procedure with the first presentation of each stimulus
removed from the data, in case our main findings were skewed by the
effect of stimulus unfamiliarity early on. For this analysis, action values
were initialised as the mean ‘go’ response for the first set of pre-
sentations. Our results were unchanged when modelling only repeti-
tions 2–10 (see Table S2, and Figs. S7 and S8).

Punishment learning rates increase with age, while action
initiation biases decline
Next we assessed whether the parameters from the winning compu-
tational model varied as a function of age, using GLMMs predicting
parameter values from age and covariates.

Fig. 3 | Model performance and validation. a Exceedance probability for the five
computational models that comprised the final model space. The winning model
was the 2αβb_cmodel, with separate reward and punishment learning rates, and a
constant action initiation bias. b ΔBICint, relative to the winning model (2αβb_c).
c ΔLME, relative to the winning model (2αβb_c). d Parameter recovery. The con-
fusion matrix represents Spearman correlations between simulated and fitted
(recovered) parameters. Eachparameter exhibited a significant positive correlation
between its true and fitted values, with r values ranging from 0.49–0.92 (shown on

the lower diagonal). e Exceedance probability from the model identifiability pro-
cedure. The diagonal represents the probability of eachmodel having the best fit to
its own synthetic data. The winning model (2αβb_c) was highly identifiable from
other models. f Number of runs where each model was selected as the best fit for
data generated by each model in the model identifiability procedure. The diagonal
represents the number of runs each model was selected as the best fit for its own
data. Thewinningmodel (2αβb_c) was the best fit to its owndata on all 10 runs. This
Figure also relates to Figs. S5 and S7.
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Strikingly, agewas strongly associatedwith increasedpunishment
learning rates (β = 0.10 [0.05, 0.15], z = 4.12, p <0.001, 2-tailed), and
lower action initiation biases (β = −0.20 [ −0.28, −0.12], z = −4.91,
p < 0.001, 2-tailed; see Fig. 4). Importantly, reward learning rates did
not differ significantly with age (β =0.01 [ −0.05, 0.07], z = 0.30,
p = 0.77, 2-tailed). To confirm the strength of these associations, and
check the strength of evidence for any null effects, we calculated Bayes
factors using the BIC method33. For each model parameter of interest,
we compared two linear mixed effects regression models: our ‘stan-
dard’model, predicting themodel parameter fromage and covariates,
and a ‘null’ model, which predicted parameter values from the cov-
ariates only. We then calculated the BIC of each of these two models,
and used the difference between the BICs to calculate a Bayes factor33.
We observed decisive evidence for the associations between age and
punishment learning rate (i.e., themodel including agewas a better fit;
BF10 = 167.25, BF01 = 0.01) and between age and action initiation bias
(BF10 = 8926.69, BF01 = 0.0001). In contrast, there was no evidence for
associations between age and reward learning rate (BF10 = 0.07,
BF01 = 13.60, strong evidence in support of the null). Continuous plots
of age and these model parameters are provided in Fig. S10.

We observed no credible evidence for a relationship between age
and temperature parameter (β =0.002 [−0.07, 0.07], z =0.08, p=0.94,
2-tailed), and Bayes factors showed strong evidence for a lack of dif-
ference (BF10 =0.04, BF1 = 26.11). All associations with age remained the

same when using fitted parameters from model 5 or model 6, which
included the magnitude sensitivity parameter (see Table S2).

Lack of associations between age and model parameters might
also reflect non-linear associations, especially for reward learning (see
Fig. 4c).We therefore tested for quadratic effects of age by adding age2

terms to the models. However, none of the model parameters exhib-
ited significant quadratic associations with age (temperature para-
meter:β = 1.06 [−0.78, 2.90], z = 1.13,p =0.26, 2-tailed. Reward learning
rate: β = −0.84 [ − 2.37, 0.69], z = −1.07, p = 0.28, 2-tailed. Punishment
learning rate: β =0.35 [ −0.87, 1.57], z = 0.56, p = .57, 2-tailed. Action
initiation bias: β = −0.60 [−2.67, 1.45], z = −0.58, p =0.56, 2-tailed).

Next, we assessed whether pubertal stage also predicted differ-
ences in punishment learning and action initiation (Fig. 5). These
analyses revealed a similar positive association with punishment
learning rate (β = 1.20 × 10−4 [4.90 × 10−5, 1.92 × 10−4], z = 3.32, p <0.001,
2-tailed), a negative association with action initiation bias
(β = −1.06×10−3 [ − 1.65 × 10−3, −4.80 × 10−4], z = −3.57, p <0.001, 2-
tailed), and no significant association with reward learning rate
(β = 6.30 × 10−5 [ − 3.90 × 10−5, 1.65 × 10−4], z = 1.21, p = 0.22, 2-tailed).
There was no significant association with temperature parameter
(β = −5.48×10−7 [ − 1.55 × 10−6, 4.53 × 10−7], t = −1.08, p = 0.28, 2-tailed;
these statistics for temperature parameter are from a standard linear
model without site, instead of GLMM as above, due to non-
convergence of the more complex model).

Fig. 4 | Age differences in action initiation bias and punishment learning, but
stable reward learning. a Punishment learning rate across three age groups.
Punishment learning rates increased linearly with age (GLMM; β =0.10 [0.05, 0.15],
z = 4.12, p<0.001 (2-sided), BF10 = 167.25, BF01 = 0.01).bAction initiation bias across
three age groups. Action initiation biases declined linearly with age (GLMM;
β = −0.20 [−0.28, −0.12], z = −4.91, p <0.001 (2-sided), BF10 = 8926.69,
BF01 = 0.0001). c Reward learning rates across three age groups. Reward learning

rates remained stable with age (GLMM; β = 0.01 [ −0.05, 0.07], z = 0.30, p = 0.77 (2-
sided), BF10 = 0.07, BF01 = 13.60), including no significant quadratic effect
(β = −0.84 [ − 2.37, 0.69], z = −1.07, p = 0.28). Points and error bars representmeans
and 95% confidence intervals of the means for each group, with raw data repre-
sented by smaller points. N = 200 aged 9–12, 303 aged 13–15, and 239 aged 16–18.
Division into age groups is for presentation purposes only; age was treated as a
continuous variable in all analyses. This Figure also relates to Fig. S8.
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Model parameters predict task performance
We next assessed whether differences in model parameters were
associated with task performance, using Spearman’s rank correlations
due to non-normal distributions of model parameters. Overall task
performance (proportion of correct responses) was positively corre-
lated with reward learning rate (Spearman’s r (696) = 0.40 [0.33, 0.46],
p < 0.001, 2-tailed) and punishment learning rate (Spearman’s
r (696) = 0.68 [0.63, 0.72], p <0.001, 2-tailed) and negatively correlated
with action initiation bias (Spearman’s r (696) = −0.26 [ −0.33, −0.19],
p < 0.001, 2-tailed). Temperature parameter values were also nega-
tively correlated with task performance (Spearman’s r (696) = −0.39
[ −0.45, −0.32], p <0.001, 2-tailed). These correlations demonstrate
that the optimal strategy for this task is captured by higher learning
rates for both reward and punishment, combined with a lower action
initiation bias. Correlations between model parameters and reward
and punishment task performance are shown in Supplementary Notes,
Correlations between model parameters and task performance, and
Table S3. Correlations between model parameters are shown in
Table S4. Correlations between parameters were small to moderate.

Winning computational model tracks learning from reward and
punishment
To further confirm the accuracy of our model, we generated synthetic
behavioural data for 742 ‘participants’ using the winningmodel and its

median parameter values. As a control analysis, we also generated
synthetic data using the version of the winning model with only sti-
mulus repetitions 2–10 included (Fig. 6). We then repeated the pro-
cedure separately for participants aged 9-12, 13–15, and 16–18 years to
ensure that the model captured behaviour adequately across the full
age range (see Fig. S11). In both the main 742-participant sample (with
and without the first stimulation presentation) and the aged-based
samples, the simulated responses fell within a similar range to the real
responses. They followed a somewhat similar trajectory, particularly
when omitting the first stimulus presentations and considering them
as part of the practice phase (Fig. 6 and Fig. S11). Importantly, para-
meter associations with age were identical whether we included all
trials or only repetitions 2–10 (Table S2 and Fig. S8).

Discussion
Adolescence is often considered as a period inwhich reward sensitivity
peaks1–5. Using a large, well-characterised, multi-country sample, we
demonstrate that, in fact, reward learning rates in certain contexts
remain stable across adolescence whilst the tendency to initiate
actions decreases with age. Moreover, punishment learning rates
increase across adolescence, with the oldest adolescents learning the
most rapidly from punishment feedback. These findings remained the
samewhenwe replaced chronological agewith pubertal status, andwe
found evidence that these differences in model parameters reflected

Fig. 5 | Pubertal maturity differences in action initiation bias and punishment
learning, but stable reward learning. a Punishment learning rates across five
pubertal stages. Punishment learning rates increased with pubertal stage (GLMM;
β = 1.20×10−4 [4.90×10−5, 1.92×10−4], z = 3.32, p <0.001, 2-sided). b Action initiation
bias across five pubertal stages. Action initiation biases decreased with pubertal
stage (GLMM; β = −1.06×10−3 [−1.65×10−3, − 4.80×10−4], z = −3.57, p <0.001, 2-sided).

c Reward learning rates across five pubertal stages. Reward learning rates were
stable across puberty (GLMM; β = 6.30×10−5 [−3.90×10−5, 1.65×10−4], z = 1.21, p =
0.22, 2-sided). N = 52 pre-pubertal, 65 early pubertal, 167 mid-pubertal, 356 late
pubertal, and 102 post-pubertal. Points and error bars represent means and 95%
confidence intervals of the means for each group, with raw data represented by
smaller points.
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linear associations across adolescence rather than quadratic effects.
Together, ourfindings suggest that the tendency to initiate actions and
learn from punishment shifts from late childhood across adolescence
and that future research should account for changes in action initiation
when evaluating differences in valenced processing of reward and
punishment. Our findings also demonstrate these associations
robustly by testing a large and international, and therefore potentially
more representative, sample.

These results highlight the importance of distinguishing between
valenced learning mechanisms and action initiation biases. While
previous research has demonstrated heightened reward learning in
adolescence16,18, we show that developmental differences in reward
learning might in fact be specific to certain learning contexts, and
apparent reward-oriented behaviour can reflect action initiation biases
rather than reward learning processes. Knowledge of these develop-
mental differences is an important prerequisite for understanding how
adolescent development can go awry, for example in behavioural
disorders, where there appear to be disruptions in reinforcement
learning8,35. It is plausible that adolescent-onset psychopathologies,
such as certain forms of conduct disorder, represent aberrant devel-
opmental pathways in which these normative increases in punishment
learning and declines in action initiation biases could be disrupted.
This would be consistent with the symptoms of conduct disorder,
which include aberrant learning from punishment as well as
impulsivity36. Life experience is also an important factor to consider

here, alongside biological changes37. Even in healthy adolescents, a
better understanding of the difference between reward-oriented and
impulsive behaviour could potentially facilitate behavioural interven-
tions designed to reduce risky behaviour. For example, there may be
contexts where it is more beneficial to focus on planning and impulse
control than on learned behaviour, evenwhen risky behaviour appears
superficially to be driven by desirable outcomes (e.g., social status or
material goods). These are important directions for future research.

One consideration is whether action initiation biases are them-
selves influenced by the prospect of a rewarding outcome, since there
are forms of impulsivity that occur specifically in situations where a
possible reward is anticipated38,39. Since ‘go’ responses in the current
study necessarily occur in the context of possible reward, it is possible
that the action initiation bias reflects a type of reward-related impul-
sivity. However, we have two reasons to suspect that this is not the
case. First, in contrast to the classic go/no-go paradigm (where ‘go’
responses are required substantially more often than no-go respon-
ses), our task used equal numbers of go-for-reward and no-go-for-
punishment trials. Participants whomake ‘go’ responses blindly (i.e., in
the absence of learning) are therefore equally likely to receive pun-
ishments as to receive rewards. Consequently, the classic go/no-go
element of being ‘primed’ to make responses to gain points (because
‘go’ responses are more often correct) is missing from this task. Sec-
ond, we tested amodel that captured sensitivity to rewardmagnitude,
but this model was outperformed by models with a generic or no

a b
All repe��ons

Repe��ons 2-10 only

c d

Fig. 6 | Simulated probability of ‘go’ response to reward and punishment sti-
muli across stimulus repetitions. a Simulated and real probability of ‘go’
responses on reward trials, with simulated data generated using the winningmodel
and its median parameter values for the full sample (N = 742) across all 10 stimulus
repetitions. b Simulated and real probability of ‘go’ responses on punishment trials
for the full sample (N = 742) across all 10 stimulus repetitions. c Simulated and real

probability of ‘go’ responses on reward trials for the full sample (N = 742) across
stimulus repetitions 2–10 only. d Simulated and real probability of ‘go’ responses
on punishment trials for the full sample (N = 742) across stimulus repetitions 2–10
only. This Figure relates to Fig. S11. Points and error bars represent means and 95%
confidence intervals of the means.
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magnitude sensitivity. This further suggests that there was no sensi-
tivity to reward driving behaviour other than that captured by the
learning rate. These considerations do not support a role for reward in
triggering the action initiation bias. Future studies could include ‘go to
avoidpunishment’ and ‘no-go to gain reward’ conditions to capture the
full influence of action biases on reward or punishment responses in a
large sample25. However, the action initiationbiasweobserved appears
to be a genuine action bias, rather than a deliberate strategy or an
indirect effect of reward facilitating action.

We also note that participants were not given practice trials, to
encourage learning from the first stimulus onwards. However, as a
control analysis, we repeated our analyses with these initial trials
excluded. The analysis of stimulus repetitions 2–10 showed that the
associations between age and model parameters remained unchan-
ged, supporting the robustness of these associations. Furthermore, we
assessed whether there were any age differences between excluded
participants and the final sample, and obtained substantial evidence in
support of the null hypothesis that data exclusions were not biased by
age. Our findings therefore appear to be robust to data exclusions and
across repetitions 2–10 as well the full learning task.

Previous research has painted a mixed picture of punishment
learning in adolescence, with different studies reporting decreases21,40

and increases in punishment learning during the adolescent period20,22.
It is likely that these differences at least partially reflect variation in task
design; in particular, having ahigheror lower learning rate canbemore
or less beneficial depending on the task23,24. We observed a positive
correlation between accuracy and punishment learning rates across
age, suggesting that higher punishment learning rates as seen in older
adolescents were more optimal for this task. Thus, the higher pun-
ishment learning rates exhibited by older adolescents are indicative of
better overall performance. Importantly, however, we did not see
increases in reward learning rates across adolescence, although these
too were correlated with overall performance. Therefore, the higher
punishment learning rates were not simply a reflection of higher
general ability on the task, but rather seem to reflect a more specific
ability to recall previous punishments and inhibit responses as a result.
Crucially, we observe these results in a large sample of adolescents
from multiple countries, providing substantive support for develop-
mental differences in punishment learning.

Although there have been previous reports of heightened reward
learning in adolescence16,18, the only other study to use a go/no-go
design did not observe separate learning rates for reward and
punishment25. By contrast, our winning model did contain separate
learning rates for reward and punishment, demonstrating an asym-
metry in learning. However, the lack of an age effect for reward
learning in the current study and the lack of a separate learning rate for
reward in previous studies25 both suggest that reward learning rates
are not related to age in a context where action initiation biases can
occur. It is theoretically possible that a strong action initiation bias
would remove the need for reward learning, since participants could
‘default to go’ and then simply learn frompunishment. Again, however,
there was a clear association between the reward learning parameter
and task performance, andwhen action initiation biases were lowest in
older participants, there was no increase in reward learning rates. This
suggests that reward learning was necessary for better performance,
even if it did not improvewith age. Moreover, for all parameters where
we observed differences across development, we saw the same asso-
ciations when considering pubertal stage, suggesting that our findings
were robust across different measures of development capturing
pubertal stage as well as chronological age.

Our study has several strengths. It is among the first to test how
action initiation biases and learning differ concurrently across the full
spectrum of adolescence, using a learning context that manipulates
the requirement for learning and action initiation, something that has
often been neglected in computational modelling studies of learning.

We used a large (N = 742), mixed-sex sample, collected from multiple
different countries and speaking different languages, carefully
screened to be typically developing in terms of psychiatric function-
ing, and well characterised in terms of social background. The inter-
national nature of our sample helps our findings to represent
adolescent behaviour more universally. In all analyses, we modelled
test site as a random effect, and our results remain robust to this
modelling. Given the fundamental nature of reward and punishment
learning41, we did not anticipate or set out to test country-level dif-
ferences, but future studies could seek to include an even larger and
more geographically diverse sample to further investigate possible
differences between countries and cultures in learning rates across
adolescence. We built and tested several different plausible models of
learning and used multiple measures to validate them, and we also
usedmeasures of pubertal stage aswell as chronological age to further
elucidate developmental differences in learning.

However, we note some limitations to the study. First, our learn-
ing task did not contain ‘no-go to gain reward’ and ‘go to avoid pun-
ishment’ conditions, meaning that we were unable to assess Pavlovian
action biases25. It would be interesting for future studies to implement
probabilistic learning tasks with the full action-valence crossover.
Second, outcomes were deterministic, which has generally not been
the case in previous studies (except42). It is possible that the relation-
ship between learning rates and performance in this context is dif-
ferent from that observed when using themore common probabilistic
and reversal learning tasks23,24. In addition, while our task was able to
separate action initiation biases from learning processes, there were
several other possible parameters that it was not practical or theore-
tically meaningful to assess using this design. For example, we did not
include variable learning rates43, choice stickiness parameters44, or the
role of forgetting42, which could be measured in future research using
a suitable probabilistic learning task, possibly with drifting rewards to
capture behavioural variability. Such a task may also help to separate
correlations between model parameters more clearly, which were in
some cases moderately correlated, although the differential associa-
tion with age supports their distinction.

In summary, we tested developmental differences in learning and
action initiation biases in a large, cross-sectional sample of typically
developing adolescents aged9–18 years. Behaviourwasbest explained
by a model with separate learning rates for reward and punishment as
well as a constant action initiation bias, and we observed normative
developmental differences in these parameters, associated with both
chronological age and (to a lesser extent) pubertal stage. Specifically,
we observed linear declines in action initiation biases and increases in
punishment learning across adolescence, combined with stable levels
of reward learning. We conclude that adolescents develop an
increasing ability to inhibit actions, learn fromnegative outcomes, and
makemore selective behavioural responses as they transition through
adolescence and approach adulthood. These findings help add to
theoretical and empirical accounts that largely focus on enhanced
reward processing and suggest that action biases and punishment
learning are crucial processes to understand across adolescence.

Methods
Participants
Participantswere selected from the FemNAT-CDprojectdatabase45. All
participants included in the present analyses had completed the
reinforcement learning task, were 9-18 years old, and were classed as
typically developing, with no current psychiatric diagnoses (including
autism), learning disability, serious physical illness, or histories of
disruptive behaviour disorders including ADHD (see Questionnaire
measures below). Eight hundred and thirty-two participants were eli-
gible for inclusion. We screened the data to exclude participants with
poor task performance. Four participants never responded, two
responded to every trial, six scored below zero points on the task
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(indicating deliberate punishment-seeking and reward-avoidance),
and 78 responded to fewer than half of the reward trials (i.e., trials
where responding was the correct behaviour). The final sample thus
consisted of 742 youths (491 girls, 251 boys; sex is defined here as self/
parent-reported biological sex. The sex imbalance here reflects a
deliberate over-sampling of girls in the larger study from which these
data were taken). Of these, 52 were classed as pre-pubertal, 65 as early
pubertal, 167 as mid-pubertal, 48 as late pubertal, and 16 as post-
pubertal. There was no difference in age between the sexes in the final
sample (t-test: t (488) = 1.00, p = 0.20, 2-tailed, BF01 = 5.03, moderate
evidence in support of the null). The participants were recruited from
11 sites across Europe (Aachen: 139, Frankfurt: 140, Birmingham: 103,
Amsterdam: 90, Southampton: 89, Bilbao: 55, Athens: 49, Szeged: 33,
Basel: 28, Barcelona: 12, Dublin: 4). For LMM and GLMM (i.e., non-
modelling) analyses only, we excluded an additional six participants
who were missing IQ data. For the analyses of model parameters and
age, we excluded 38 participants with valuesmore than three standard
deviations from the mean on one or more model parameters. Reana-
lysing the data with all eligible 832 participants did not change our
results (see Supplementary Notes, Reanalysis with all 832 eligible
participants and no exclusion of outliers, Table S2 and Fig. S12).

All participants provided written informed consent (if over the
age of consent in their country) or written informed assent, with
written informed consent provided by a parent or guardian. Partici-
pants completed the learning task as part of the larger study and
received a small monetary or voucher reimbursement in line with local
ethical approvals46. This payment was not linked to the learning task
specifically, and was therefore not associated with task performance.

Inclusion and ethics
The data used in this study were collected from several European
countries as part of the FemNAT-CD project. Local researchers from
each site have been included as co-authors in line with FemNAT-CD
guidelines and authorship requirements. Roles and responsibilities
were determined in advance by FemNAT-CD members. Local ethical
approval was obtained from the relevant authorities at each site, as
detailed above. The data reported here did not involve risks to the
safety, wellbeing, or security of participants or researchers.

Ethics declarations
The FemNAT-CD project received ethical approval from the relevant
local ethics committees, as follows: Aachen: Ethik Kommission Medi-
zinische Fakultät der Rheinisch Westfälischen Technischen Hoch-
schule Aachen (EK027/14). Amsterdam: Medisch Etische
Toetsingscommissie (2014.188). Athens: Election Committee of the
First Department of Psychiatry, Eginition University Hospital (641/
9.11.2015). Barcelona: Child and Adolescent Mental Health—University
Hospital Mutua Terrassa (acta 12/13). Basel: Ethik Kommission Nord-
west- und Zentralschweiz (EKNZ 336/13). Bilbao: Hospital del Basurto.
Birmingham and Southampton: University Ethics Committee and
National Health Service Research Ethics Committee (NRES Committee
West Midlands, Edgbaston; REC reference 3/WM/0483). Dublin: SJH/
AMNCH Research Ethics Committee (2014/04/Chairman (3)). Frank-
furt: Ethik Kommission Medizinische Fakultät Goethe Universität
Frankfurt am Main (445/13). Szeged (Hungary): Egészségügyi Tudo-
mányos Tanács Humán Reprodukciós Bizottság (CSR/039/00392–3/
2014). This study was conducted in accordance with the ethical stan-
dards of the 1964 Declaration of Helsinki and its later amendments.

Questionnaire and interview measures
Participants were assessed for current and past psychiatric and beha-
vioural disorders using the K-SADS-PL clinical interview47. The K-SADS-
PL is a semi-structured diagnostic interview used to assess psycho-
pathology in children and adolescents. We conducted interviews
separately with participants and with their parents, or another

responsible adult informant if a parent was not available. All
researchers administering the interview had been trained in its use.
After completing the two interviews (parent and participant), we then
generated combined parent and child summary ratings of all symp-
toms (past, present, and lifetime). Where assessors gave discrepant
ratings for a symptom, they discussed all available information until an
agreement was reached for the summary rating. Except for CD, ODD,
and ADHD, where DSM-5 criteria were used, all diagnoses were gen-
erated based on the DSM-IV-TR diagnostic criteria, whichwere current
at the outset of the project48. For the current study, participants were
excluded if theymet the diagnostic criteria for any current disorder, or
(due to broader project requirements) any history of externalising
behavioural disorders.

IQ was assessed with the vocabulary and matrix reasoning sub-
scales of the Wechsler Abbreviated Scale of Intelligence49 at English-
speaking sites, or with the vocabulary, block design, and matrix rea-
soning subscales of the Wechsler Scale for Children (participants <17
years) or Wechsler Adult Intelligence Scale (17–18 years50).

Pubertal stage was assessed using the self-report Pubertal Devel-
opmental Scale (PDS32), which assesses growth of body and facial hair,
change of voice, andmenstruation. Each item is rated on a scale from 1
(not yet started) to 4 (seems complete). These subscales are then
summed to yield an overall pubertal stage score: pre-pubertal (1), early
pubertal (2), mid-pubertal (3), late pubertal (4) or post-pubertal (5).

Socioeconomic status (SES) was assessed based on parental
income, education, and occupation. Assessments were based on the
International Standard Classification of Occupations (International
Labour Organization; www.ilo.org/public/english/bureau/stat/isco/)
and the International Classification of Education (UNESCO; uis.u-
nesco.org/en/topic/international-standard-classification-education-
isced). Human ratings and computer-based ratings were combined
into a factor score using principal component analysis. A clear one-
dimensional structure underlying the different measures could be
corroborated using confirmatory factor analysis (comparative fit index
= 0.995; root mean square error of approximation = 0.035). Reliability
of the composite SES score was acceptable (Cronbach’s α =0.74). To
account for economic variation between countries, the final SES score
was scaled and mean-centred within each country, providing a mea-
sure of relative SES. Missing data were imputed by statisticians at the
Institute of Medical Biometry and Statistics (Freiburg, Germany), as
described below.

Imputation of missing data
Missing data were imputed by statisticians at the Institute of Medical
Biometry and Statistics (IMBI), a member of the FemNAT-CD project.
Missing data for the PDS were imputed separately, before the decision
wasmade to imputemissing values for othermeasures. The procedure
for the PDS imputation is thus described separately from the other
measures. The following description is a standard text provided by
IMBI, for use in all FemNAT-CD project publications.

Missing values of the PDS score were imputed based on the whole
FemNAT-CD sample. It has been shown that missing data in a multi-
item instrument is best handled by imputation at the item level51. Thus,
missing values of the single items were imputed first, and the scores
were calculated based on the imputed items. The imputationwasdone
in SAS® version 9.4 using the procedure PROCMI. Imputation by fully
conditional specification (FCS) is used, which offers a flexible method
to specify the multivariate imputation model for arbitrary missing
patterns including both categorical and continuous variables52. As the
items are measured at an ordinal level, the logistic regression method
is specified in the FCS statement. For imputation diagnostics, dis-
tribution of the observed and imputed items and scores were checked.
The imputation of the PDS items was done separately in males and in
females because of sex specific items: item 2 (females and males) and
items 4, 5a of the form for females or items 4, 5 of the form for males
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were imputed respectively. The following variables were included in
the imputation model: sex specific items of the PDS as mentioned
above and the two remaining PDS items (items 1 and 3), age at PDS and
age at informed consent, to impute age at PDS ifmissing, weight, case/
control status, site, and migration status.

Imputation for the remaining measures was conducted sepa-
rately, following the same procedure as above. The following variables
were included in the imputation model: all items of the respective
questionnaire, age, IQ, group (case/control), sex (male/female), site,
comorbidities (post-traumatic stress disorder (PTSD), attention-defi-
cit/hyperactivity disorder (ADHD), oppositional defiant disorder
(ODD), depression, anxiety), and items of other questionnaires if cor-
related with at least one of the items with ≥.4. For imputation diag-
nostics, distribution of the observed and imputed items and scores
were checked. Data were not imputed for the learning task itself.

Learning task
Participants completed a ‘passive avoidance’ reinforcement learning
task on a computer in a quiet testing room. The taskwas adapted from
twoprevious studies53,54 andpresented in E-Prime55. The aimof the task
was to gain points by pressing a button when presented with ‘good’
objects (to earn points) and withholding responses when presented
with ‘bad’ objects (to avoid losing points). Participants were carefully
instructed that some of the objects were ‘good’ (would earn them
points) and some were ‘bad’ (would lose them points), and that they
must learn which objects were good and which were bad so that they
could respond only to the good objects. The researcher checked that
this was clear to each participant. There were no practice trials before
themain experiment so thatparticipantswould be learning for thefirst
time from the first trial onwards. In order to maximise their point
score, participants thus had to learn through trial-and-error which

objects were associated with reward and which with punishment.
There were eight different objects in total, four associated with
rewards and four with punishment, with values of +/−1, +/−700,
+/−1400, or +/−2000 points. The point value associated with each
object was fixed and did not change throughout the task. The eight
objects were each presented 10 times in a randomorder (thus 80 trials
in total). Each response was followed by feedback on the number of
points gained or lost plus the running total; when participants did not
respond, the value of the object was not revealed (see Fig. 1). Stimuli
were displayed for 3000ms or until the participant responded, and
feedback (or the running total alone) was then displayed for 1000ms.
We checked that 3000ms was sufficient for participants to make a
response if they elected to do so. Themean reaction timewas 1000ms
(SD = 231.47) for the whole sample, and 1050ms (SD = 252.61) in the
youngest participants (aged 9-12 years). Therefore, participants were
able to respond in the allotted time (see Supplementary Notes, Reac-
tion time across stimulus repetitions by age, and Figures S13-14 for
additional analysis of reaction times). Participants started the taskwith
10,000 points and could theoretically obtain final scores between
51,010 and −31,010, although the maximum score obtainable through
learning (rather than ‘lucky guesses’) was 46,909. Since scores below
zero could only be obtained by systematically responding to punish-
ment instead of reward, participants with scores below zero points
were excluded (see Participants above, and Figures S15-16 for more
information on exclusions and the final sample).

Model fitting and comparison procedure
Seven different reinforcement learning models were constructed.
For each model, rewards were coded as 1, neutral outcomes
(when no response was made) as 0, and punishments as −1.
Expected values for ‘go’ and ‘no-go’ actions were initialised at 0 at

2 b_i
(1) 

b_c (2) 

2 b b b2

b_i b_c b b b2

1 2 3 4 5 6 7

Fig. 7 | Steps in model construction procedure. In the first step (1), models with
one versus two learning rateswere compared, and separately,models with an initial
versus constant action initiation bias were compared. A fifth model was then con-
structed by combining all parameters from the winning models in step 1 (i.e., one
versus two learning rates and thewinning action initiationbias). In step 2, we tested

whethermodel 5 was improved by adding a singlemagnitude sensitivity parameter
(model 6) or separate magnitude sensitivity parameters for reward versus pun-
ishment outcomes (model 7). Finally, to confirmthat thewinningmodel fromstep2
was the best overall model, we compared models 1–7 directly in step 3.
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the task outset, which is the midpoint between the possible
outcomes 1 and −1 and reflects participants’ initial lack of
knowledge about stimuli values. (An exception to this was for
models with an initial action initiation bias; see below). First, we
constructed a basic reinforcement learning model, in which
learning was captured by a single learning rate (α) parameter and
a temperature parameter β, which captures noisiness in
responding. In this model, the expected value V of a response on
trial t is updated with a reward prediction error PE scaled by the
learning rate α, where the prediction error is the discrepancy
between the outcome r (1, 0, or −1) and the expected value:

If go : Vðt + 1Þ =VðtÞ + ðα * PEðtÞÞ
If no� go : Vðt + 1Þ =VðtÞ

where

PEðtÞ = rðtÞ � VðtÞ

(1) basic model
The expected values are then converted to response probabilities

using the Softmax equation, where the temperature parameter β adds
noise:

Probability of observed response = eVgoðtÞ=β=ðeVgoðtÞ=β + eVnogoðtÞ=βÞ

(2) softmax
Using the model comparison procedure illustrated in Fig. 7, we

constructed six further models with combinations of additional para-
meters. These parameters were separate learning rates for reward
versus punishment outcomes (3), two versions of an action initiation
bias towards responding regardless of anticipated outcome (4–5), and
one or two magnitude sensitivity parameters, which accounted for
sensitivity to the actual point value obtained (6–7).

For rewardoutcomes : Vðt + 1Þ =VðtÞ + ðαr * PEðtÞÞ
Forpunishmentoutcomes : Vðt + 1Þ =VðtÞ + ðαp * PEðtÞÞ

(3): two learning rates
For models that included the initial ‘go’ bias, the starting value of

responding to each object was increased (or decreased) by an amount
b_i on the first presentation of the object only:

Vð1Þ = b i

(4): initial ‘go’ bias
For models that included the constant ‘go’ bias, the value of

responding to each object was increased (or decreased) by an amount
b_c on each presentation of the object:

VbiasedðtÞ =VðtÞ +b c

(5): constant ‘go’ bias
Vbiased was used only to calculate the response probability for the

current trial, so that the bias did not accumulate over repeated pre-
sentations of the object.

For models that included a single magnitude sensitivity para-
meter, the absolute point score obtained on each trial (re- scaled to be
between 0 − 1) was multiplied by a magnitude sensitivity parameter ρ
and added to the outcome (which was itself still coded as 1, 0, or −1):

OutcomeðtÞ = rðtÞ +magnitudeðtÞ *ρðtÞ

(6): magnitude sensitivity parameter

Finally, models that included two magnitude sensitivity para-
meters applied different magnitude sensitivities to reward and pun-
ishment outcomes:

If reward : OutcomeðtÞ = rðtÞ +magnitudeðtÞ *ρrðtÞ
If punishment : OutcomeðtÞ = rðtÞ +magnitudeðtÞ *ρpðtÞ

(7): two magnitude sensitivity parameters
Modelfitting and comparisonwere conducted inMATLAB2019b

(TheMathWorksInc56). We used an iterative maximum a posteriori
(MAP) approach for all model fitting, in line with previous work using
reinforcement learning models29–31,34. This procedure computes the
maximum posterior probability (PPi) estimate obtained with para-
meter vector hi, given the observed choices and given the prior
computed from group–level Gaussian distributions over the para-
meters with a mean vector μ and standard deviation σ2. This is a
conservative approach whereby any differences in resulting para-
meters can be seen as robustly capturing latent differences across
people, for example across ages. It is ideally suited for studies of
reinforcement learning where group-level estimates can improve the
reliability of the resulting fitted parameters57. First, we initialised
Gaussian distributions as uninformative priors with a mean of 0.1
(plus noise) and variance of 100. Next, during the expectation step,
we estimated the model parameters for each participant using
maximum likelihood estimation (MLE), calculating the log-likelihood
of the participants’ set of responses given themodel being fitted. We
then computed the maximum posterior probability estimate, given
the participants’ responses and the prior probability from the
Gaussian distribution, and recomputed the Gaussian distribution
over parameters during the maximisation step. These alternating
expectation and maximisation steps were repeated iteratively until
convergence of the posterior likelihood, or for a maximum of 800
iterations. Convergence was defined as a change in the posterior
likelihood of less than 0.001 between successive maximisation steps
(see31 for full details). Bounded free parameters were transformed
from theGaussian space into nativemodel space using link functions.
We used a sigmoid function to bound learning rates between 0 and 1,
an exponential function for the temperature parameter to ensure
positive values, and a hyperbolic tangent transfer (tansig) function
for the action initiation bias to allow the parameter to have positive
or negative values consistent with previous modelling of the action
initiation bias25.

To compare models, we used Laplace approximation of log
model evidence (more positive values indicating better fit58) in a
random-effects analysis using spm_bms59 from SPM8 (www.fil.ion.
ucl.ac.uk/spm/software/spm8/). This calculates the exceedance
probability, i.e., the posterior probability that eachmodel is themost
likely. An exceedance probability over 0.95 provides strong evidence
for the best-fitting model. We also calculated the integrated BIC
score (BICint) for eachmodel, which penalisesmore complexmodels.
Lower BICint scores indicate better performance. MATLAB code for
models and model fitting and comparison procedures is available at
https://osf.io/d2zp4/.

In addition to the main model fitting and comparison procedure
with the full sample, we also repeated the procedure separately for
participants aged 9-12 years, those aged 13–15 years, and those aged
16–18 years, to confirm that the samemodel won across the age range
(see Figure S6). An additional control model, with a declining rather
than constant action initiation bias, underperformed relative to our
winning model and was therefore not considered further (see Supple-
mentary Notes, Declining action initiation bias model).

Parameter recovery and model identifiability
We used a parameter recovery procedure to ensure that the para-
meters from the winning model were dissociable from each other,
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and a model identifiability procedure to ensure that the reinforce-
ment learning models were dissociable from each other29. For the
parameter recovery procedure, we simulated participant response
data only for the winning model, using a range of parameter values
between the minimum and maximum values for that parameter.
Parameter values were selected from a vector for each parameter.
The vectors consisted of 10 equal steps between the minimum and
maximum values that were observed for that parameter when mod-
elling the real participant data, with some deviation for noise. This
procedure created a grid of all possible values for each parameter to
be used for recovery. Data were simulated for 10,000 synthetic
participants. Thewinningmodelwas thenfitted again to its simulated
data using the MAP procedure, and correlations between the para-
meters used to simulate the data and the recovered parameters
(estimated from the simulated data) were checked for correspon-
dence. For the model identifiability procedure, we simulated parti-
cipant response data for each model in turn, using a range of
parameter values within the observed range from the real data. For
each of these models, the full set of seven models was then fitted to
the simulated data from that model, using the MAP procedure, and
this was repeated 10 times. We then created confusion matrices for
mean exceedance probability and for the number of times each
model won, to check that for each model and its simulated data, the
winning model was the one that had been used to generate the data.
This procedure confirms that eachmodel is reliably associated with a
different pattern of responses from the competing models.

We also generated synthetic behavioural responses using our
winning model and its median parameter values, to check that the
real and simulated responses were broadly similar. Behavioural
responses for 742 synthetic participants were generated using the
whole-sample median value for each parameter, and then plotted for
comparisonwith the actual observed behavioural responses from the
742 (non-synthetic) participants. We then repeated this procedure
for the winning model using stimulus repetitions 2–10 only, and
separately for participants aged 9-12, 13–15, and 16–18 years to check
that our winning model captured behaviour adequately across the
sample’s full age range. Finally, as an additional test of the validity of
our winning model, we conducted correlations between task per-
formance (number of overall correct responses and correct respon-
ses for reward and punishment separately) and each model
parameter (Spearman’s correlations, R’s correlation package cor_test
function).

Statistical analysis
All statistical analyseswereconducted in R (v. 4.1.1 and v. 4.1.2) through
RStudio. First, we investigated associations between age or pubertal
stage and the model parameters from the winning model. Since
parameter values were not normally distributed, we used robust linear
mixed effects regression models using the rlmer function in R. We
tested whether each parameter was predicted by age, with IQ and sex
as covariates (fixed effects) and varying intercepts for different sites of
data collection (random effects). We then checked for quadratic
associations with age by adding an age2 term to each model. Discrete
variables were recoded so that contrasts summed to zero, and con-
tinuous variables were z-scored.

To confirm these learning effects matched participants’ beha-
vioural responses, we next used nested linear mixed effects models
to assess whether age was related to participants’ changing respon-
ses to reward and punishment stimuli over the course of the task.
These analyses were conducted using R’s lme4 package glmer
function60. Participants’ responses were coded as 1 (active response)
or 0 (no response) and were predicted from age, sex (0 = male, 1 =
female), object repetition number (1-10), and object valence (0 =
reward, 1 = punishment) (fixed effects), with varying intercepts

allowed for responses grouped by participant nested within site
(random effects). All continuous variables were z-scored, and dis-
crete variables (participant response, sex) were recoded so that the
two levels summed to zero (e.g., 0 and 1 becomes −0.5 and 0.5). The
same analysis was then repeated for pubertal stage, using PDS score
as the dependent variable instead of age. In all analyses, IQ, and sex
were included as covariates. The strength of null effects was inter-
preted using Bayes factors calculated with the BIC method33 and R’s
lme4 BIC function60, using standard priors, and the language sug-
gested by Jeffreys61.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data included in this study were collected as part of the FemNAT-
CD project45. Raw and processed data have been deposited in the OSF
repository and are available at https://doi.org/10.17605/OSF.
IO/D2ZP4.

Code availability
MATLAB code for models and model fitting and comparison proce-
dures is available at https://doi.org/10.17605/OSF.IO/D2ZP4.
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