

University of Birmingham

OsmoticGate
Qian, Bin; Wen, Zhenyu; Tang, Junqi; Yuan, Ye; Zomaya, Albert; Ranjan, Rajiv

DOI:
10.1109/TC.2022.3193630

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Qian, B, Wen, Z, Tang, J, Yuan, Y, Zomaya, A & Ranjan, R 2023, 'OsmoticGate: Adaptive Edge-based Real-
time Video Analytics for the Internet of Things', IEEE Transactions on Computers, vol. 72, no. 4, pp. 1178-1193.
https://doi.org/10.1109/TC.2022.3193630

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
B. Qian, Z. Wen, J. Tang, Y. Yuan, A. Y. Zomaya and R. Ranjan, "OsmoticGate: Adaptive Edge-Based Real-Time Video Analytics for the
Internet of Things," in IEEE Transactions on Computers, vol. 72, no. 4, pp. 1178-1193, 1 April 2023, doi: 10.1109/TC.2022.3193630.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Apr. 2024

https://doi.org/10.1109/TC.2022.3193630
https://doi.org/10.1109/TC.2022.3193630
https://birmingham.elsevierpure.com/en/publications/c89910ed-6ec2-4385-a428-c86b4b58449a

1

OSMOTICGATE: Adaptive Edge-based Real-time
Video Analytics for the Internet of Things

Bin Qian, Zhenyu Wen∗, Junqi Tang, Ye Yuan, Albert Y. Zomaya, Rajiv Ranjan
Abstract—Edge computing has gained momentum in recent years, and can provide more immediate analysis of streaming video data.
However, the edge devices often lack the computing capabilities (processing power, memory) to guarantee reasonable performance
(e.g., accuracy, latency, throughput) for complex video analytics tasks. To alleviate this critical problem, the prevalent trend is to offload
some video analytics tasks from the edge devices to the cloud. However, existing offloading approaches fail to consider the dynamic
nature of the video analytical tasks (e.g., varying encoding format for different video content) and are unable to adapt system dynamics
(e.g., varying workload between the edge and the cloud).
To overcome the limitation of existing approaches, we develop an edge-cloud offloading performance model based on the concept of
hierarchical queues. The resource constraints (e.g., computing capacity and network bandwidth) of each edge nodes and dynamic
edge-cloud network conditions are used to parameterize the performance model. Since finding optimal solutions for the performance
model is NP-hard, we develop a two-stage gradient-based algorithm and compare it with some state-of-the-art (SOTA) solutions (e.g.,
FastVA, DeepDecision, Hill Climbing). Experiments have shown our performance model’s advantages and the stability of the proposed
offloading approach given different systems (edge-cloud) and video analytics application dynamics.

Index Terms—Video processing, Offloading, Optimization, IoT

✦

1 INTRODUCTION
The adoption of Internet-of-Things (IoT) devices, including
set-top boxes, embedded computers, and mobile devices,
has increased in the context of video generation, delivery,
and processing applications. A case in point, each minute
300 hours of video are uploaded onto Youtube. As noted by
ourselves [1] and others [2], deep learning technologies and
their offshoots are becoming cornerstone for enabling IoT
video analytics applications such as security surveillance,
image object tracking, home or industrial building automa-
tion.

Although the computing power of IoT devices has im-
proved significantly, more research is required to optimize
the execution of deep learning models on the same. For
example, there is a need to develop optimization techniques
that can balance the IoT devices’ resource constraint (e.g.,
processing power and memory) and deep learning model’s
complexity and performance (e.g., processing latency, accu-
racy). HUAWEI Mate 10 pro only has 200MB memory for
its Neural Processing Units (NPU) which is not enough to
run many advanced deep learning models, such as Faster R-
CNN [3]. Moreover, NVIDIA Jetson Nano can only process
five video frames in each second by using ResNet model [4],
far from meeting the requirements of real-time processing.
This bottleneck will be dramatically amplified as the IoT
data volume and velocity continue to grow exponentially.

Developing an offloading technique to balance the video
analytics workload, driven by the edge and cloud resources’
computing and processing capabilities, has evolved as a

• B. Qian, Newcastle University, UK. E-mail: b.qian3@ncl.ac.uk
• Z. Wen, Zhejiang University of Technology, CN. E-mail:

Zhenyuwen@zjut.edu.cn, corresponding author.
• J. Tang, University of Cambridge, UK. E-mail: jt814@cam.ac.uk
• Y. Yuan, Beijing Institute of Technology, CN. E-mail: yuan-ye@bit.edu.cn
• A. Zomaya, Sydney University, E-mail: albert.zomaya@sydney.edu.au
• R. Ranjan, Newcastle University, UK. E-mail: raj.ranjan@newcastle.ac.uk

promising approach [5], [6]. Although offloading techniques
have been widely used to address the resource limita-
tion of IoT applications [7], [8], [9], these works rely on
numerical modeling and fail to consider that the heavy
transmission workload is posted by video analytics, where
a huge amount of streaming video is uploaded to the cloud
server. DeepDecision [5] is the first attempt that combines
the low power edge devices with more powerful cloud
servers to execute a deep learning model both locally and
remotely. However, this approach does not support fine-
grained offloading of video frames across edge and cloud
within a single window, which may lead to inefficient re-
source utilization. The inefficiency is caused by the possible
idle time of either edge devices or cloud servers when the
window size is not well tuned (see more details in §2.2).
FastVA [6] proposes a local frame buffer for fine-grained
splitting of video data within a window. This solution is
not suitable when the number of frames within a window
can change over time, for example, when cameras are con-
figured to adaptive bitrate protocols. Furthermore, FastVA
fails to coordinate video analytics workload across multiple
edge nodes which may cause queuing delay in the cloud.
We discuss this issue through a primary benchmark in
§2.2. VideoPipe [10], VideoEdge [11], VideoStorm [12] and
Chameleon [13] focus on scheduling and configuring the
video analytics jobs (queries) on edge or cloud computing
clusters. These approaches have two key limitations: (i) they
may run out of capacity at the edge layer as most of these
devices are resource constrained and (ii) they are unable to
run complex deep learning models on resource-constrained
devices, which may be required for more complex IoT
application scenarios (e.g., city level traffic modeling).

In the practical deployment of edge computing, an of-
floading policy needs to consider three facts: 1) heterogeneity
of edge node – Each edge node has a different processing rate
based on current working situations (e.g., number of IoT

2

devices to ingest data from). The proportion of the video
offloaded to cloud should consider the computing and net-
work load of each individual edge (e.g., CPU, upstream link
utilization). 2) interplay among edge nodes and cloud servers –
all edge nodes may forward the video to the cloud simul-
taneously, without considering others’ offloading policies.
This may cause starvation on the cloud server where the
video from some edge nodes may be delayed for processing.
3) modern video streaming protocols adaption – video streaming
protocols are essential for video delivery. They break video
into small segments, send to target servers and reassem-
ble them at destination. Video analytical framework needs
to carefully adapt to this protocol, in particular needs to
consider how varying number of frames within a segment
impact the offloading policy.
Objective. Our approach OSMOTICGATE therefore consid-
ers the facts in practical deployment of edge computing, and
proposes a novel technique to uncover the influence of these
facts to offloading policy design. In particular, we develop
a hierarchical queue model to capture the heterogeneity of
edge node, in which the resource constraints (e.g., comput-
ing capacity and network bandwidth) of each edge node
are used to parameterize the local queue and the global queue
performance models. Thereafter, we attempt to minimize
the processing latency of each video stream to achieve the
real-time analytics. Specially, we formulate our problem as
a non-smooth, non-convex, constrained min-latency opti-
mization problem. To find an approximate solution of this
problem efficiently, we develop a two-stage gradient-based
algorithm and compare it with the state-of-the-art (SOTA)
solutions (e.g., FastVA, DeepDecision, HillClimb [14]). Our
evaluation demonstrates the advantages of workload-based
modeling and the proposed algorithms reduce 2 × latency
compared with SOTA methods in 5G network.

The contributions of this paper are as follows:
• We develop a new hierarchical queue model to describe

the system dynamics of a video analytic system in edge-
cloud environment. The model is adapted to bitrate-based
video streaming and focuses on modeling the processing
latency and throughput of a video analytics system (§3).

• We formulate the task offloading problem as a non-
smooth, non-convex and constrained optimization prob-
lem (§4), and propose a gradient-based algorithm to solve
this problem efficiently (§5).

• We feed the model parameter through real-world bench-
mark and compare our algorithms with SOTA methods in
both simulated environment and real-world testbed (§6).

Position of the work. Our framework is generic for mod-
eling the workload of complex video analytic system while
resolving the optimal workload balance problem. The focus
of this work is to minimize the system latency while main-
taining the throughput within the user-defined bounds.
In the future, the framework can be easily extended to
include new decision variables including accuracy, energy
consumption, resolution, bitrate as well as as the choice of
deep learning models.

2 BACKGROUND AND MOTIVATION

2.1 Edge-Cloud Paradigm for Video Analytics
In this work, we aim to provide a general solution for
efficiently performing video analytics on the emerging edge-

Process

Video Stream
Transmision Protocols

Data Center
(Cloud)

Processing Results from
Edge Nodes

Edge Nodes

WAN (e.g., 4G, 5G)

...

Fig. 1: Video Analytics in Edge-Cloud Computing Paradigm

cloud computing paradigm [1] as shown in Fig. 1. In this
computing paradigm, a set of video generating devices (e.g.,
traffic surveillance cameras, drones, mobile phones) are
generating live video stream which can be processed either
on low-power edge computing devices (e.g., Raspberry pi,
Jetson Nano, computing chips), or a cloud data center with
GPU cluster. Extensive research [3], [15] has been conducted
in deep learning and adapted to assist video analytics. The
communication among edge nodes and data center is via
Wide Area Network (WAN), using various video stream
transmission protocols.

2.2 Motivation
In order to perform video analytics efficiently on edge-cloud
computing paradigm, the key is when and how to offload
the video streaming to the data center. In the following, we
use a real-world traffic monitoring application and conduct
two benchmark experiments to study the impact of the three
complexities mentioned in §1.
Setup. We deploy a retrained YOLOv3-tiny (detailed in §6.1)
on both a Jetson Nano and a GPU server to count the
number of cars in each video frame, with an emulated 5G
network environment.

0 3 6 9 12 15 18 21 24 27 30
Video Frame

0.0

0.5

1.0

1.5

2.0

La
te

nc
y

(s
)

Bitrate-based
Frame-based

(a) Compare Transmission Latency

0.0 0.2 0.4 0.6 0.8 1.0
Offload Rate

0.0

0.4

0.8

1.2

1.6

2.0

La
te

nc
y

[s
]

Overloaded Edge
Congested Network
FastVA
Optimal
DeepDecision

(b) Heavy System Workload

Fig. 2: What is Affecting the Performance of Edge-Cloud
Video Analytics System?
Bitrate-based V.S. Frame-based Video Transmission. We
crop input video into segments containing 3 to 30 frames
and deliver them from the edge to the cloud server using
two types of transmission methods: 1) bitrate-based method
that compresses the input video in H.264 format before
transmission; and 2) frame-based method that transfers the
video frames sequentially. As shown in Fig. 2(a), with the
increase of video size, the difference of the transmission time
between bitrate-based and frame-based method increases
dramatically. The bitrate-based one is almost 10× faster than
the frame-based one, when the number of frame is 30.
Understanding the System Workload is Essential. In this
experiment, we inject video traffic for 60 seconds between

3

edge node and cloud server while emulating following
system dynamics: i.e., I) Heavy traffic between the edge
node and server: we inject 10 seconds of video chunks to
the communication queue beforehand; II) Heavy load in the
edge: we inject 10 seconds of video chunks to the edge pro-
cessing queue beforehand. Next, we benchmark two SOTA
offloading techniques (FastVA and DeepDecision) and an
exhaustive method. Fig. 2(b) shows that changing system
workload impacts the optimal offloading rate. Moreover, we
conclude that SOTA solutions are unable to achieve optimal
offloading rate when subjected to system dynamics I and II.
Challenges. Bitrate-based video stream transmission is effi-
cient and commonly used in real-world applications. How-
ever, adapting the video analytics pipeline to this trans-
mission protocol requires video encoding/decoding process
and smooth feeding of the data into the analytics model.
Hence, the first requirement (R1) is to study and design a
mechanism for splitting the video streaming processing task
to a granular level that allows efficient encoding/decoding,
assisting optimal offloading performance tuning. The sec-
ond requirement (R2) is to develop a novel model that
automatically captures the dynamic workload in the pro-
posed video analytics system. In the practical deployment,
the edge node heterogeneity, network variation, as well as
the interplay between the edge nodes and cloud servers
can induce complicated and dynamic workload within the
system. Finally, the third requirement (R3) is to design a
new algorithm which adapts to the proposed model and
optimizes the system performance.

3 SYSTEM MODEL
In this section, we first show a new design that allows
our OSMOTICGATE to adapt to bitrate-based video stream-
ing, and then propose a Hierarchical Queue Model (HQM)
to describe the system behaviors for video analytics: we
formulate the offloading policies and system performance
optimization goal. Finally, we model two key metrics for
measuring system performance: processing latency and sys-
tem throughput.
3.1 Adapting Bitrate-based Video Streaming
A video chunk is a segment of video stream which contains
a sequence of video frames. In order to utilize the bitrate-
based video streaming and meet the requirement (R1), we
split a time window of video into n chunks. We therefore
are capable of offloading a proportion of the chunks to the
server for processing.

On edge node, each video is parameterised by a bitrate
b encoding as defined in Eq. (1):

b = α · f · r · c (1)
f is the video frame rate, and r is the resolution of a raw
video frame. α represents the bits required to represent each
image pixel, c is the compression rate with video encoding.
Next, for each split, the start time and chunk duration
are set. As video encoding must store key frame (i.e., I-
frame) within the video as well as cross-frame information
variation at a fixed time interval, we locate I-frames as
well as the group of pictures (GOPS)1 within the duration.
Different video encoding techniques can adapt c and α
to different settings. After this stage, video chunks can

1. https://en.wikipedia.org/wiki/Group of pictures

either be offloaded to cloud or processed locally. Finally,
the decode is the process of converting video chunks into
video frames. The extracted frames are processed by deep
learning models where real detection happens.

3.2 Hierarchical Queue Model (HQM)

𝐄𝐝𝐠𝐞 𝐍𝐨𝐝𝐞 (𝐄(𝟎))

... Encoder Diverter
15

4

3

2
(β("))

Local Processing
(Q$("))

Offloading (Q%("))

𝜇$(")
Offloading Policy

Chunk Duration
OSMOTICGATE

...

De
co

de
r

𝐄𝐝𝐠𝐞 𝐍𝐨𝐝𝐞 (𝐄(𝟏))

𝐄𝐝𝐠𝐞 𝐍𝐨𝐝𝐞 (𝐄(𝟐))

Q&

µ&
𝜆&(")

𝜆&($)

𝜆&(%)

𝜆&

Decoder

Data center
(DC)

Fig. 3: Hierarchical Queue Model in OSMOTICGATE

To meet (R2), we develop OSMOTICGATE and HQM
as shown in Fig. 3. The design of OSMOTICGATE follows
the pipelines in §3.1, with an Encoder and a Diverter on
each edge node for generating and allocating video chunks.
Decoder and Inference Engines are deployed on both edge and
cloud data center for processing the encoded video chunks.

The core of OSMOTICGATE is a Hierarchical Queue
Model (HQM), which uncovers the system bottleneck in
edge-cloud video processing system. Our system considers
K edge nodes, each with the following queues for real-
time video analytics: 1) Offloading Queue QT ; 2) Local
Processing Queue QE for buffering the allocated video
chunks. QC is the Cloud Processing Queue in the data center
that receives the video chunks from any QT . All video in
QE and QC must be decoded into frames in Decoder before
being processed.

3.2.1 System Offloading Policy β

In order to meet (R3), each Diverter generates an offloading
policy that controls the inputs of any QE and QT , which
impacts the system performance. We formulate the system
offloading policy β as:

β := [β1, β2, ..., βk] (2)
βk indicates offloading policy for each edge node Ek. We
allow βk to be any real numbers between 0 and 1 in order
to fit our continuous optimization schemes.

The input rate of any QE and QT are noted by λE(β)
and λT (β) respectively:

λE(β) = β · n/∆t

λT (β) = (1− β) · n/∆t (3)

for n chunks to be processed during time interval ∆t, a
proportion β is placed at the edge node E. As they can
contain decimal numbers, we round the inputs to closest
integer number throughout the following paper.
3.2.2 System Performance Optimization Goal
In HQM, we aim to minimize the system latency T (β)
(modeled in §3.3), while achieving the defined minimal
throughput constraint I(β) (in §3.4). To simplify the prob-
lem, we fix the video encoding configurations and optimize
the offloading parameters β. After we finish the optimiza-
tion stage, we round them to the nearest values which will

4

enforce λE(β)∆t to be integers. Our formulation for the
optimization objective reads:

argmin
β∈RK

T (β) (4)

s.t. C1 : I(β) ≥ I∗

C2 : β ∈ [0, 1]K

C1 represents that the system throughput must be equal to
or greater than a predefined constraint I∗ (detailed in §3.4).
C2 denotes that the video offloading rates β are restricted
between [0, 1].
3.3 Latency Model
In this subsection, we aim to model the end-to-end latency
of processing each video chunk. For example, there are n
chunks of video that are injected to our system during
interval ∆t (including those already in the system). The
latency is the average time of processing all n chunks.
We define the cumulative latency for processing all video
chunks generated during time ∆t in the system as T (β):

T (β) =
K∑

k=1

[T k
E(β

k) + T k
T (β

k)] + TC(β) (5)

T k
E(β

k) and T k
T (β

k) are expected queueing latency for Local
Processing Queue and Offloading Queue at any edge node
Ek. TC(β) is the queueing latency for Cloud Processing
Queue.

3.3.1 Processing Latency for Individual Component
First, we assume that the size for the video chunk is s
(bits/chunk). The processing latency lE for each video
chunk on the edge node E has positive correlation with s as
formalized in Eq. (6) and is assumed the same for chunks in
the same QE :

lE = aE + bE · s (6)

where bE is a constant that defines relation between the
processing latency and the size of each chunk. aE is the
oscillation introduced by the underlying hardware such as
the video decoding latency.

Similarly, the processing latency lC in the server can be
expressed as :

lC = aC + bC · s (7)

bC indicates the coefficient between the processing latency
and the size of a given chunk, and aC is the underlying
hardware influence.

Assuming uploading bandwidth between E and DC is
B, the average transmission latency per chunk lT is:

lT =
s

B
(8)

lT is the same for all chunks in QT .
3.3.2 Queueing Latency for Local Processing QE

Let Size(QE) denotes the number of video chunks in
QE at time t. The input rate of QE is λE(β), linearly
correlated with β (see Eq. (3)).

Given system parameters, the queuing latency of ith
video chunk injected to QE during ∆t (with respect to the
offloading rate β) is denoted by TQE

(i, β):

TQE
(i, β) = (Size(QE) + i) · lE − i

λE(β)
(9)

(Size(QE)+i)·lE indicates the timestamp that the ith chunk
is popped out from QE , i

λE(β) is the timestamp of the chunk
arrived at the queue.

The sum of the processing latency for all items injected
into the queue can be expressed in Eq. (10).

TE(β) =

Size(QE)∑
i=1

i · lE +

λE(β)∆t∑
i=1

max{TQE
(i, β), lE} (10)

TE is the cumulative latency with two components: the
first part is the latency for processing (including queueing
latency) the remaining video chunks in QE , i.e., i · lE is
the cumulative latency of popping the ith chunk out of
the queue; the second part is the cumulative time cost of
popping the injected video chunks during time ∆t out of the
queue. The max term indicates that minimum processing
latency must be greater than pure edge processing latency
lE (processed instantly after entering the queue).
3.3.3 Queueing Latency for Offloading QT

Similar computation applies to the Offloading Queue.
Denote Size(QT) as the number of video chunks in the
Offloading Queue at time t, the input rate is λT (β) (see Eq.
(3)). The queuing latency for ith chunk in the Offloading
Queue is computed through:

T k
QT

(i, βk) = (Size(Qk
T) + i) · lkT − i

λk
T (β

k)
(11)

The accumulated processing latency TT (β) is computed as:

TT (β) =

Size(QT)∑
i=1

i · lT +

λT (β)∆t∑
i=1

max{TQT
(i, β), lT } (12)

3.3.4 Queueing Latency for Cloud Processing QC

Assume that Size(QC) represents the number of video
chunks in the cloud queue at time t, µk

T = 1
lkT

indicates the

output rate of Qk
T on edge node Ek. During ∆t, the total

number of video chunks coming into each Offloading Queue
is denoted by Nk

QT
(βk):

Nk
QT

(βk) = λk
T (β

k) ·∆t+ Size(Qk
T) (13)

which adds up the injected chunks λk
T (β

k) · ∆t and the
chunks already in the queue Size(Qk

T).
Thus, the overall input rate λC(β) of QC is defined by:

λC(β) =
K∑

k=1

λk
C(β

k) =
K∑

k=1

min{µk
T ,

Nk
QT

(βk)

∆t
} (14)

input rate λk
C(β

k) from each node is limited by the mini-
mum between the video transmission rate µk

T and average
producing rate Nk

QT
(βk)/∆t from each Offloading Queue.

λC(β) sums up the output from all K Offloading Queues.
Again, we compute the queuing latency of ith chunk

arrived at QC by:

T k
QC

(i, βk) = (Size(QC) + i) · lC − i

λC(βk)
(15)

The cumulative processing latency of QC is:

TC(β) =

Size(QC)∑
i=1

i · lC +

λC(β)∆t∑
i=1

max{T k
QC

(i, βk), lC} (16)

3.4 Throughput Model
We define system throughput as the number of chunks that
can be processed within time ∆t. It is total throughput for
the proposed system and is defined as I(β):

I(β) =
K∑

k=1

IkE(β
k) + IC(β) (17)

where IkE(β
k) indicates the throughout for each edge node

Ek, IC(β) indicates the throughput for cloud DC.

5

3.4.1 Throughput of Edge Node E

Assume that the output rate of QE is µE = 1
lE

, total number
of chunks in QE during ∆t is:

NE(β) = λE(β)∆t+ Size(QE) (18)

which is affected by offloading ratio β.
The throughput of the E is shown in Eq. (19):

IE(β) = min{µE ,
NE(β)

∆t
} (19)

If the queued chunks are greater than the processing capac-
ity µE , the throughput IE equals µE . Otherwise, IE equals
the processing rate of available chunks, i.e., NE(β)/∆t.

3.4.2 Throughput of Cloud DC
The number of chunks in QC at time t is constrained by

cumulative number of chunks 1) injected into, 2) popped
out from all Qk

T , which are defined by NQTin
and NQTout

respectively:

NQTin
=

K∑
k=1

(λk
T∆t) and NQTout

=
K∑

k=1

(µk
T∆t) (20)

The cloud throughput is affected by the output rate of
QC and the total number of chunks in QC , which can be
formalized by the following:

IC(β) = min{NQTin
+Size(QC)

∆t
,
NQTout

+Size(QC)

∆t
, µC}

(21)
The first two terms indicate two upper limits for all available
chunks, which includes transmitted chunks from Ek and
chunks already in the cloud queue Size(QC). µk

C = 1
lC

is
the output rate of QC .
4 CONSTRAINED MIN-LATENCY PROBLEM

Recall in §3.2.2 we formulated the optimization problem
as in Eq. (4), which aims to minimize the system latency
while ensuring the minimal system throughput. In this
section, we list the challenges to solve the problems and
our transformations of the problem.

4.1 Challenges in the optimization task
Constrained optimization. In our formulation, we enforce
constraints C1 and C2 that regularize the decision boundary
of the input variable β. Hence, the optimization algorithms
must take the constraints into account and ensure feasibility
and convergence simultaneously.
Non-smooth optimization with Lipschiz continuity. Our
objective function T (·) is a Lipschitz-continuous function
which satisfies:

∥T (x)− T (y)∥2 ≤ M∥x− y∥2,∀x, y ∈ RK (22)
When M < +∞, Eq. (4) is a non-smooth function globally,
because its components have a piece-wise smooth structure
of the form max{f1(β), f2(β)}. For example, Eq. (10) in-
cludes the term max{(Size(QE)+ i) · lE − i

λE(β) , lE}, where
we have f1(β) = (Size(QE) + i) · lE − i

λE(β) , f2(β) = lE
which is non-differentiable when f1(β) = f2(β). Since both
f1(β) and f2(β) are smooth functions, T (·) is smooth in
most time when the following condition is met: x ∈ RK

which satisfies f1(x) ̸= f2(x), there exists a radius ε(x) > 0:

∥▽T (x)− ▽T (y)∥2 ≤ L(x)∥x− y∥2,∀y : ∥x− y∥2 ≤ ε(x)
(23)

where we denote L(x) < +∞ as the local-smoothness
parameter at the point x which is the smallest possible
positive value to ensure Eq. (23) to hold.

Non-convex optimization. We observe that objective func-
tion T (β) (see Eq. (4)) is also non-convex. Since each
component of TE(β), TT (β) and TC(β) includes a sum
of non-convex functions. For example, in Eq. (10) we have∑λE(β)∆t

i=1 max{(Size(QE)+ i) · lE− i
λE(β) , lE}, where λE =

β · n/∆t, and then the first term in the max is a concave
function in β, while lE is a constant. Hence all the elements
in the sum is either non-convex or a constant function. As
a result, It is a non-convex optimization problem that is a
NP-Hard problem.

Theorem 4.1. To solve Eq. (4) is a NP-hard problem.

Proof. Non-convex Quadratic Programming (QP) is known
to be an NP-hard problem [16]. It is defined as follows:

min
1

2
xTQx+ cTx (24)

s.t. Ax ≤ b

x ≥ 0

where x is the variable and (Q, A, b, c) are the data. When
Q is an indefinite symmetric matrix, QP is non-convex and
NP-hard [17].

Consider the definition of the QP problem as above,
it can be transformed into the optimization problem in
Eq. (4) in a polynomial time. The transformation is as
follows. i) change all variable x into the offloading rate β;
ii) adapt Ax ≤ b into the system throughput constraint
C1 in Eq. (4): with the expansion from Eq. (28), I(β) is
either linearly correlated or irrelevant of β, which satisfies
the linear constraint in QP; iii) adapt the generic quadratic
function 1

2x
TQx + cTx into the optimization goal T (β) in

Eq. (4): T (β) is correlated with TE(β), TT (β) and TC(β) in
Eq. (10), (12) and (16). All three equations are transformed
into quadratic forms with respect to β after the adaptation
of

∑
(·) in Eq. (25). f1(β) is linearly correlated with β and

f2(β) is element-wise non-convex function with respect to
β. The multiplication 1

2 (1+f1(β)) ·f1(β) ·f2(β) reveals that
T (β) fits the quadratic form with respect to β with indefinite
matrix Q. Thus, in non-convex QP with indefinite matrix
Q, Q can be transformed into our problem setting which
also contains indefinite matrix Q. This transformation can
be achieved in polynomial time. Our problem is at least as
hard as non-convex QP problem, which is NP-hard, making
our optimization problem in Eq. (4) NP-hard.

4.2 Problem Transformation
To solve the non-convex problem through a gradient-based
method, in this section, we derive the adaptation of the
objective function and the gradient accordingly. The adap-
tation discussed in this section will assist in derivation of
gradient information as discussed in §5.
Adaptation of

∑
(·). In Eq. (10), (12) and (16) we have the

summation in the form of
∑f1(β)

i=1 (i · f2(β)) which can not
be directly used for computation against the offloading rate
f(β). To adapt them into an expression with respect to the
offloading rate f(β), such that gradient can be computed
wherever possible.

For Eq. (10), we have TE(β) = a+
∑f1(β)

i=1 f2(i, β) where
a is a constant, f1 = β ·∆t and f2(i, β) = max{(Size(QE)+
i) · lE − i

λE(β) , lE}. We first extract the i from f2(i, β) into
the form f2(β), so that:

6

f(β) =
∑f1(β)

i=1 i · f2(β)
= 1

2 (1 + f1(β)) · f1(β) · f2(β) (25)

The gradient of f(β) is expressed as g(β):

g(β) = (12 + f1(β)) · f2(β) +
1
2 (1 + f1(β)) · f1(β) · f

′

2(β) (26)

To ease the computation of gradient, we smooth the value
space of β by transforming it from discrete to continuous
space. We choose the closest discrete value after deciding
the final offloading ratio β.
Relaxation of min(·) and max(·). The non-smoothness
in our optimization function is introduced by min(·)
and max(·) terms. We need to relax these terms to re-
move the non-smoothness. For example in f2(β

k) =
max{f3(·), f4(·)}. where f3(·) = Size(Qk

E)+ i) · lkE − i
λk
E(βk)

and f4(·) = lkE}. The relaxation can be implemented by:

max(f3(·), f4(·)) =
{

f3(·) f3(·) > f4(·)
f4(·) f3(·) < f4(·)

(27)

With the system parameters and offloading rates, the value
of f3(·) and f4(·) are determined, and thus the min(·) term
is relaxed. By doing so, we can ensure that non-smoothness
in the function is removed while not changing the problem
statement of formulation. However, there is no expression
when f3(·) = f4(·). This problem needs to be resolved with
our Alg. 2 (detailed in §5.3) . Similarly, min(f3(·), f4(·))
terms in Eq. (14) and (21) can be relaxed as the following:

min(f3(·), f4(·)) =
{

f3(·) f3(·) < f4(·)
f4(·) f3(·) > f4(·)

(28)

Relaxation of LC . To enable the adaptation of Eq. (25) in
Eq. (16), we make the following relaxation. lC is the latency
of processing video chunks in server side. To simplify the
computation, we assume that lC(r) is the same for any types
of chunks from various edge nodes, i.e., LC =

∑K
k=1 L

k
C/K.

5 TWO-STAGE ALGORITHM DESIGN
In the previous section we have presented the formula-
tion of the constrained min-latency optimization objective.
Now in this section we complete the algorithmic design
by adapting the gradient-based optimization methods as
the solver according to the characteristics of our objective.
The proposed formulation of the optimization task and the
adaptation of the gradient-based algorithms jointly form a
core contribution of this work.
Why Gradient-based Algorithm. The gradient-based al-
gorithms [18], [19], although they do not have theoretical
guarantees for finding the global optima, have been adapted
to provide numerical solutions for many non-convex op-
timization problems. Motivated by the characteristics of
our objective function, a two-stage gradient algorithm is
proposed for solving Eq. (4). We use the gradient-based
methods to find an approximate solution. The first moti-
vation behind such choice is that the objective function’s
gradients can be efficiently computed (O(

∑K
k=1 n

k) float-
ing point operations). Meanwhile as it is locally smooth
almost everywhere, gradient-based methods can guarantee
decrease at each iteration with suitable step-sizes and fast
convergence rates.

We consider the gradient-based methods to be the most
suitable choices for our optimization task, due to their

Algorithm1

Algorithm2

Local Smoothness
Condition

Meet

Violate
IF

Update Step

Update Step

Fig. 4: High-level Overview of Two-stage Algorithm

numerical efficiency and simplicity of implementation. One
may consider the zeroth-order methods such as the Hill-
Climb, which does not exploit the gradient information
(note that in our setting the gradient evaluation is as efficient
as the function value query) and has poor convergence rates
[20] especially in high dimensions. It is unclear whether
the higher-order methods such as the Newton-type meth-
ods are suitable for our tasks, since they typically need
significantly more computational cost [21] for deriving the
descent direction and handling the constraints compared to
gradient-based methods – we leave this as a future direction
of research.

Alternatively, one may consider adapting the stochastic
gradient descent (SGD) methods [22], [23] to our task. Such
methods compute efficient approximations of the gradients
∇T (·) on randomly subsampled minibatches of the loss
function T (·) as the descent direction. The SGD methods
are tailored for huge-scale tasks such as training deep neural
nets on a large dataset. Since our optimization task is rather
mild-scale, and meanwhile it is unclear how to imple-
ment a stable and efficient line-search scheme for stochastic
gradients in our task (and also considering the practical
limitations and downsides2 of SGD discussed in [24]), we
leave the investigation of the practicality of using SGD-type
iterations for potentially improving the convergence rates in
our task as a future direction.

5.1 Overview of Two-Stage Gradient Algorithm
Denoting Q as the constraint set resulted by C1 and C2:

Q := {v ∈ [0, 1]K | I(v) ≥ I∗}, (29)
we define the projection operator as the following:

PQ(x) := argmin
y∈Q

1

2
∥x− y∥22. (30)

The projection operator takes any point x ∈ RK and returns
its closest point within the constraint set. Then our algo-
rithms for solving Eq. (4) can be generally expressed as the
following iterative form:

βj+1 = PQ(βj − ηjγj), (31)
where ηj is the step size chosen at iteration j, while γj is
some descent direction which seeks to decrease the function
value T (·). The most simple and efficient choice is the
gradient direction:

γj = ▽T (βj), (32)
Since the objective function is globally non-smooth, for

each step we need to choose a step-size ηj that adapts to

2. Compared to the full gradient descent methods, SGD methods can
have slower convergence rates in some scenarios/regimes [24], and
require significantly more frequent calls on the projection operators
[25]. Moreover, they are less compatible with the line-search schemes,
and have less parallelizability [19].

7

Optima

Loss landscape in 2D
Current

iterate

Gradient direction

Next gradient direction

Update

Line-search

Fig. 5: Illustration of the Weak-Wolfe line search mechanism,
which in each iteration seeks a step-size to optimally de-
crease the objective function value and make sure that the
next gradient direction to be as orthogonal as possible to
current gradient direction.

the local smoothness as described in Eq. (23). Therefore, our
proposed algorithm consist of two stages as shown in Fig. 4.
If the local-smoothness condition, a generalized sufficient
decrease property, is met, the efficient algorithm PGD-VAO
(§5.2) is applied for updating the steps. Otherwise, PGS-
VAO (§5.3) is applied for updating the steps. Based on this
switch, the algorithm converges after several iterations. The
detail of how to switch between two algorithm is discussed
in §5.4. Finally, we analyze the algorithm complexity in §5.5.
5.2 Projected Gradient Descent for Video Analytic Of-
floading (PGD-VAO)
We first present our projected gradient descent algorithm
tailored for solving optimization task Eq. (4) in Alg. 1.
In Step 0, we first compute the gradient at point βj by
transferring min(·) and max(·) through Eq. (27) and Eq.
(28). Then, the gradient can be computed by Eq. (26).
Since the local smoothness parameter defined in Eq. (23)
at point β – the L(β) is not known for each update but
the practical step-size choice of gradient step is dependent
on this parameter, we adopt the weak-wolfe line-search [26]
scheme which estimates the local smoothness and allow us
to use an adaptive step-size throughout iterations (see Step
1). Also, we discuss how to choose line search algorithms
to improve the performance of PGD-VAO in §5.2.1. In Step
2, we compute next point yj+1. Then, in Step 3, we check
whether yj+1 meets the constraint, if not it will be returned
to the closet point within the constraint set, denoted βj+1.

5.2.1 Choice of Line Search
In practice the theoretically ideal step-size of ηj =
O(1/L(βj)) cannot be exactly computed since it is com-
putationally intractable and unnecessary to get the exact
value of L(βj), hence the line-search schemes have been
widely-adopted as numerical solutions. For instance, the
back-tracking line-search scheme, being the most simple yet
widely-applied choice, can be expressed as finding step size
ηj such that a sufficient decrease is numerically enforced:

T (βj − ηjγj) ≤ T (βj)− w1ηj⟨∇T (βj),γj⟩, (33)

with parameter w1 ∈ (0, 1) configurable, while the (weak)
Wolfe line-search scheme [26] uses an additional condition:

⟨∇T (βj − ηjγj),γj⟩ ≤ w2⟨∇T (βj),γj⟩, (34)

with a tunable parameter w2 ∈ [w1, 1). The idea behind
the Wolfe-type line-search is simple, as we can observe
from above experession, that besides seeking a decrease

Algorithm 1: Projected Gradient Descent for
Video Analytic Offloading (PGD-VAO)

Input:
Initial point β0 at which T is differentiable,
weak wolfe line search parameter w1, w2, constraints Q,

total number of iterations J
for j = 1, 2, ..., J do

Step 0: Compute the gradient
γj = ▽ T (βj)
Step 1: Step length calculation
ηj = line search(βj ,γj , w1, w2)
Step 2: Update yj+1 = βj − ηjγj

Step 3: Projection βj+1 = argminx∈Q
1
2
||x− yj+1||22

end

in functional value, it enforce the gradient direction of
the forthcoming iteration to be as orthogonal as possible
w.r.t the current descent direction γj (which in the case
of PGD-VAO γj = ∇T (βj)). We also illustrate in 2D the
mechanism of such a line-search method in Figure 5. The
Wolfe-type line search methods are known for providing a
more accurate estimation of the ideal step-sizes compare to
the backtracking line-search.

5.3 Projected Gradient Sampling for Video Analytic Of-
floading (PGS-VAO)
In this subsection we present our PGS-VAO algorithm tai-
lored for solving our constrained optimization task as Alg.
2. The gradient sampling was proposed in [27] whereby ad-
dressing the non-smooth property of the objective function.

Step 1: With sampled points in Step 0, we compute all
gradients at these points following the same procedure as
Step 0 in Alg. (1) . Following the recent research in [28], we
use the non-normalized search direction −γj as opposed
to −γj/||γj ||2 in [27]. If the norm of the gradient ||γj || is
smaller than the optimality tolerance νj , we terminate this
loop, reduce the sampling radius ϵj and optimality tolerance
νj , continue next iteration.

Step 2: We numerically observe that the original back-
tracking line search applied in [28] does not provide con-
sistent results. We hence replace backtracking line search by
bisection line search satisfying Weak Wolfe conditions.

Step 3: After each update, if the resulting points is out
of boundary yj+1 /∈ Q, we implement projection step 4,
otherwise we continue next loop.

Step 4: We solve for each step, yj+1 that do not meet
both C1 and C2 will be projected back to the points within
the original variable space Q that are closed to the current
position yj+1 in terms of euclidean distance and we obtain
βj+1 to move to the next iteration.

5.4 Switching between PGD-VAO and PGS-VAO
In this subsection we discuss the condition that makes the
PGD-VAO non-convergent meaning we have to switch to
the PGS-VAO iterations. Once our algorithm reaches the
point that the PGD iterations are able to make progress, our
algorithm may switch back to PGD-VAO.
A theoretical analysis on the convergence of PGD-VAO.
We start by presenting in Lemma 5.1 a generalized sufficient
decrease property when the local smoothness holds, which
is essential for the convergence of our algorithm. The proof
strategy of this lemma is standard and follows similar

8

Algorithm 2: Projected Gradient Sampling for
Video Analytic Offloading (PGS-VAO)

Input:
Initial point β0 at which T is differentiable, closed unit
ball B, maximum step N .
initial sampling radius ϵ0 > 0, sample radius reduction
factor θϵ ∈ [0, 1], sample size m ≥ K + 1.
Optimality tolerance νj ≥ 0. Optimality tolerance
reduction factor θν ∈ [0, 1]
weak wolfe line search parameter w1, w2, constraints Q
for j ∈ N do

Step 0: Gradient Sampling
Independently sample {βj,1,βj,2, ...,βj,m} from
B(βj , ϵj);
Step 1: Search direction calculation
Compute γj as the solution of argming∈G ||g||22,
where
G = Conv{∇T (βj,0),∇T (βj,1), ...,∇T (βj,m)};
if ||γj || ≤ νj then

tj = 0, set νj+1 = θννj , ϵj+1= θϵϵj ;
go to step 3

else
set νj+1 = νj , ϵj+1 = ϵj ;
go to step 2

end
Step 2: Step length calculation
ηj = line search(βj,0,γj , w1, w2)
Step 3: Update yj+1 = βj − ηjγj

if yj+1 /∈ Q then
go to step 4;

else
set νj+1 = θννj , ϵj+1= θϵϵj ;
continue

end
Step 4: Projection βj+1 = argminx∈Q

1
2
||x− yj+1||22

end

steps as the sufficient-decrease result in [29] which was
originally derived for globally-smooth composite objectives.
We include the proof in the Appendix A for completeness.
Next we will use this lemma to analyze when the projected
gradient descent with practical line-search schemes will
converge to a stationary point.

Lemma 5.1 (Local Sufficient Decrease Property). Let x ∈ Q
and T (·) is locally smooth around x with a radius ε(x) such that:

∥▽T (x)− ▽T (v)∥2 ≤ L(x)∥x− v∥2,∀v : ∥x− v∥2 ≤ ε(x)
(35)

where we denote L(x) < +∞ as local-smoothness parameter at
the point x which is the smallest possible positive value to ensure
(35) to hold, and z = PQ(x−ηγ) with the step-size η is suitably
chosen such that ∥z − x∥2 ≤ ε, then for any a > 0 we have:

0 ≤ T (x)− T (z) +
1

2aL(x)
∥γ − ▽T (x)∥22

+[
L(x)(a+ 1)

2
− 1

2η
]∥x− z∥22

We now apply the local sufficient decrease property by
Lemma 5.1 to show that when local smoothness holds with
a lower-bounded radius ε(βj) ≥ ε > 0, the updating
sequence βj generated by Alg.1 converges to a stationary
point. We start by defining the generalized gradient map at
any position x as:

G(x) :=
1

η
[x− PQ(x− η▽T (x))]. (36)

When the vector x − η▽T (x) is in the constraint set Q, it is
clear that G(x) = ▽T (x).
Theorem 5.2 (Convergence of PGD-VAO under local-s-
moothness). Suppose for all iteration j, the updates βj admit
local smoothness with a radius lower bounded as ε(βj) ≥ ε > 0,
ηj = 1

2aL(βj)
for some a > 1, then the accumulative average

gradient norm, G(J) := 1
J

∑J
j=1 ∥G(βj)∥22 converges at a rate

O(1/J):

G(J) ≤
8aT (β0)maxj∈[J] L(βj)

J
, (37)

and meanwhile ∥G(βJ)∥22 → 0 as J → +∞.

We provide the proof in Appendix B. Theorem 5.2 sug-
gests that for the case where we have local-smoothness
lower bounded above 0 throughout the iterations, the se-
quence generated by Alg.1 strictly converges to a stationary
point of Eq. (4). However, when the iteration violates this
condition, the gradient norm G(J) will be unbounded and
we cannot guarantee convergence for stationary point at
this case. This potential weakness of PGD-VAO motivates
us to adopt the class of gradient sampling algorithms of
Burke et al [27], [28] which is tailored for addressing such a
non-convergent issue of line-search gradient descent meth-
ods in non-smooth optimization 3. While the PGD-VAO is
computationally efficient, our PGS-VAO algorithm demands
significantly more computation cost. Ideally we wish to
run the efficient PGD-VAO algorithm whenever the local-
smoothness holds with a non-decreasing radius.
Practical implementation. From our analysis we can see
that it is easy to check in practice when should we switch
from PGD-VAO to PGS-VAO. We can observe from the proof
of Theorem 5.2 presented in the supplemental material, that
only when ηj = O(1/L(βj)) can we derive the bound
in Eq. (37). Meanwhile if the radius ε(βj) → 0, then the
local sufficient decrease cannot hold unless the step size
must also shrink ηj → 0. In the context of Theorem 5.2,
it is equivalent to regard this case as ηj = 1

2aL(βj)
with

a → +∞, and hence the right-hand-side of (37) become
unbounded:

8aT (β0)maxj∈[J] L(βj)

J → +∞, and at such case
the PGD-VAO cannot have guaranteed convergence to sta-
tionary point and we need to switch to PGS-VAO.

Recall that we use a line-search algorithm to estimate
the local-smoothness and adaptively determine the step-
size. If we observe that the step-sizes given by the line-
search scheme keep decreasing towards 0 for a number of
iterations, then it suggests that sequence arrives at a regime
where the local smoothness fails to hold. At such case we
need to switch to PGS-VAO for further progress.

To be more specific, the most practical scheme for de-
termining the switching point could be: first selecting a
small step-size threshold ηa which is close to 0; then if
the step-sizes chosen by the line-search scheme are below
this threshold consecutively for a number of iterations, we
may switch to the Alg 2. Similarly, after a few iterations of
using costly Alg 2, if the step-sizes chosen by the line-search
scheme are above this threshold, we may switch back to use
the efficient PGD-VAO iterations.

3. We refer the readers to [28, Figure 1] for an illustration of the
non-convergent issue of gradient descent (with line-search) and how
gradient sampling can overcome this.

9

Discussion. Although the gradient-based methods cannot
guarantee convergence to the global optima for non-convex
objectives in general, numerically we found that our algo-
rithms consistently converge to well-performing solutions
which are sufficient in practice. This phenomenon seems to
suggest that our objective function is likely to be a well-
behaved non-convex function, such that local minimas are
almost as good as global optima. However, we plan to
investigate this problem in the future at a greater depth.
5.5 The Complexity of the Algorithms
The complexity per iteration of the PGD-VAO algorithm
is relatively low. To evaluate the gradient of T k

E(β
k),

T k
T (β

k) and TC(β) in E.q 10, 12 and 16, the number of
element-wise gradient evaluation is βknk, (1 − βk)nk and∑K

k=1 min{µk
T , (1−βk)nk +Size(Qk

T)} respectively. Denote
n̄ = 1

K

∑K
k=1 n

k (where K is the total number of edge
nodes) we can see that the gradient evaluation takes O(n̄K)
floating point operations, while the line search takes the
same order of complexity and projection step takes O(K)
floating point operations, and hence the total complexity
per iteration of PGD-VAO is O(n̄K).

However, the PGS-VAO algorithm is much more compu-
tationally expensive per iteration. It first needs to compute
at least K + 1 gradients which cost O(n̄K2), then solving
the QP subproblem in step 1 takes O(K3) floating point
operations. The complexity of PGS-VAO per iteration is
O(n̄K2 + K3). Hence the PGS-VAO iterations are much
more computationally expensive than PGD-VAO iterations.
6 EVALUATION
In the evaluation, we first benchmark system performance
of the cloud-edge video processing system (as shown in
Fig 1) in a real world test-bed and then feed the bench-
marked parameters to our model. Next, we evaluate the
performance of OSMOTICGATE through simulations, and
compare its performance with the SOTA solutions.
6.1 Obtaining the parameters for HQM via real-world
benchmark
Parameters. To make the HQM capture the system behav-
iors of the cloud-edge video processing system, we conduct
a set of real-world benchmark experiments to obtain the
modeling parameters. Specifically, in §3.2, we model the
relationship between the processing latency of system com-
ponents against the video size. Hereby we benchmark three
sets of parameters including edge inference latency (Eq. (6)),
cloud inference latency (Eq. (7)) and network transmission
latency (Eq. (8)). We also add 10% of oscillation to the
network bandwidth to simulate real-world condition.
Environment Set-up. We use NVIDIA Jetson Nano (with
ARM Cortex-A57 CPU and 4GB RAM) as the edge node
and the cloud server is a bare metal Ubuntu machine, with
20 cores (Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz),
GeForce GTX1080 Ti graphics card and 32 GB RAM. The
network is configured by by using Linux traffic control (TC)
as shown in Table 1, according to real world measurement4

Dataset and Deep Learning Model. We aim to achieve real-
time road traffic monitoring which requires to detect the
number of cars in each video frame. We therefore train a
YOLOv3-tiny, a variant of the YOLOv3 [15] with 9 layers by

4. https://www.opensignal.com/reports/2018/04/uk/state-of-the-
mobile-network

Network Latency Upload Bandwidth
2G 500ms 0.1Mbps
3G 80ms 1Mbps
4G 40ms 8Mbps
5G 20ms 20Mbps

TABLE 1: Emulated Network Configuration
using Jackson video dataset [30]. Since the dataset does not
provide the labels, we extract image frames from the video
and manually annotate 2500 frames for training purpose.
The labeled dataset is available at [31]. The models are
implemented with Darknet5 and trained on our server. The
trained YOLOv3-tiny is deployed on both server and edge.
Moreover, TensorRT6 is used to optimize the deployment on
Jetson Nano for high-performance inference.
Benchmarking Results. Table. 2 shows the inference speed
of the cloud server and edge node, we record end-to-end
latency from video decoding to completion of the inference
procedure. We see that the inference latency increases lin-
early against the chunk size. Also, the cloud server has 10x
of processing speed, compared to that of the edge node. We
feed benchmarked parameters to model in Eq. (6) and (7).

Also, we record end-to-end transmission latency under
difference network environments. With the benchmark re-
sults, we can approximate the relation between the chunk
size and transmission latency as formulated in Eq. (8).
Chunk Size to Chunk Duration. As illustrated in Eq. (6),
(7) and (8), we are interested in the relation between the
latency and the chunk size. However, chunk size is not
directly configurable with FFMpeg processing. We resolve
this by mapping the chunk duration to chunk size as shown
in Table 2, such that all experiments can be implemented
with chunk duration as a control variable. Our benchmark
result indicates that chunk size maintains a linear relation
with the chunk duration, and that the processing latency
fits our modeling proposition in Eq. (6), (7) and (8).

Chunk
Duration

(s)

Chunk
Size
(KB)

Cloud
Inference
Latency(s)

Edge
Inference

Latency (s)

Transmission
Latency

(s)
2G 3G 4G 5G

0.1 315 0.065 0.497 15.62 1.565 0.196 0.114
0.2 330 0.08 0.698 19.81 2.013 0.252 0.142
0.3 341 0.095 0.923 21.98 2.242 0.28 0.162
0.4 348 0.11 1.143 25.41 2.573 0.322 0.183
0.5 352 0.125 1.353 26.11 2.683 0.336 0.191
0.6 358 0.14 1.552 28.44 2.916 0.364 0.211
0.7 365 0.165 1.751 31.9 3.363 0.42 0.242
0.8 371 0.17 1.952 38.11 3.921 0.49 0.281
0.9 378 0.185 2.151 41.13 4.364 0.546 0.313
1.0 384 0.20 2.354 47.43 4.923 0.616 0.355

TABLE 2: Testbed Benchmarking
Model Accuracy. Video that is encoded with lower bitrate
can have less latency and bandwidth cost as well as higher
throughput, compared to that is encoded with higher bi-
trate. In order to mitigate the accuracy loss while maximiz-
ing the system throughput, video encoding configuration
has to be carefully designed.

DeepDecision [5] has evaluated that resolution does
not impact greatly on model inference accuracy. In the
following, we evaluate the relation between model infer-
ence accuracy and bitrate. The model prediction accuracy
is computed against the annotated car objects in the video
frame. The overlapping between the detection and annota-
tion bounding boxes is computed using IoU (Interaction of

5. http://pjreddie.com/darknet
6. https://developer.nvidia.com/tensorrt

10

Bitrate (kb/s) Precision Recall F1
1000 0.9626 0.9338 0.9433
500 0.9661 0.9247 0.9400
250 0.9670 0.9052 0.9286
100 0.9607 0.7358 0.8121

TABLE 3: Model Accuracy under Various Bitrates and the
Video Resolution is 1080P.

Union) metrics. We identify one detection as true positive
when computed IoU metric exceeds a threshold (0.7 in out
setting). As both the prediction accuracy and coverage are
important, we consider the F1 score as a metric to evalu-
ate model performance. Table 3 shows that the prediction
precision does not decrease too much with the reduction of
bitrate. Note that the accuracy decrease dramatically when
the bitrate is lower than 100kb/s. In this paper, we set the
bitrate as 1000kb/s for the rest of experiments. We are aware
that accuracy of YOLOv3-Tiny could be inferior to YOLO.
However, for our developed real-world dataset, yolov3-
tiny already achieves acceptable accuracy. Also, the same
detection model is deployed at both the edge and the cloud.
Once the video is encoded, the same configuration would
lead to the same accuracy for both sides, which applies
to all baselines in §6.2, and not only HQM. The above
benchmarking result motivates modeling the accuracy as an
observation parameter instead of an variable parameter in
the HQM.
Determine the Chunk Duration. As discussed in §3.2, we
adapted video analytics task offloading based on bitrate
video streaming. The following evaluates the impacts of the
video split granularity (i.e., chunk duration) to the system
performance. To this end, we first configure the input rate
of video stream and network as 30 frame/s and 5G, and
consider two scenarios below: 1) Varying system workload: We
set three system status, i.e. no workloads (empty), normal
workloads (normal) and heavy workloads (busy) across the
whole system. We also encode video bitrate and resolution
at 1000kb/s and 1080P, receptively. 2) Varying video resolu-
tion: we adjust the resolution of input video among 1080P,
720P and 480P, and set the system in normal condition. In
both scenarios, we vary the chunk duration from 0.2 second
to 2 second and report its influence to latency.

Fig 6(a) shows that the optimal chunk duration decreases
with the increase of the system workload, i.e., the optimal
chunk duration for busy, normal and empty are 0.6 seconds,
0.8 seconds and 1.4 seconds, respectively. In Fig. 6(b), our
finding is that the smaller the video resolution, the smaller
optimal chunk duration. Due to the fact that the lower video
resolution requires less time to process each video chunk,
the whole system configuration should be reduced as well
for achieving smaller system latency.

Another finding from Fig. 6 is that when the video chunk
is too small, the latency increases dramatically. It is because
only a few frames are included in a chunk and the benefit
of video compression is not sufficiently utilized. Also, more
computing resources are wasted in encoding and decoding.

In the following evaluations, we use the obtained opti-
mal settings of chunk duration. For more complex environ-
ment, in future, we can train reinforcement learning models
to decide the optimal chunk duration automatically [32].

0.0 0.5 1.0 1.5 2.0
Chunk Duration [s]

0.0

0.2

0.4

0.6

0.8

La
te

nc
y

[s
]

Empty
Normal
Busy

(a) Varying System Workload

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Chunk Duration [s]

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

[s
]

1080P
720P
480P

(b) Varying Video Resolution

Fig. 6: Latency V.S. Chunk duration

6.2 Evaluation
Simulation Configuration. We configure the system param-
eters according to Table 2, the input rate of each edge node is
30 frame/s, and video resolutions are 1080P, 720P and 480P,
respectively. The network is the same as in benchmarking
experiments (see Table 1). The system workload is set as no
workloads (empty), normal workloads (normal) and heavy
workloads (busy), with 0, 5 and 10 video chunks in the
respective queues. Time interval ∆t is 30 seconds for all
experiments.
Evaluation Metric. We mainly consider two metrics in our
evaluation: 1) Latency – the average latency of processing
each video frame; this includes the data transmission time
and processing time either on edge or cloud. 2) Throughput–
the number of the video frame processed in each second.
Algorithms. Although we proposed a two-stage algorithmic
strategy to overcome a potential issue that the PGD itera-
tions could converge at non-stationary points, our extensive
numerical experiments do not observe such a case. Hence
we compared our algorithms PGD-VAO and PGS-VAO sep-
arately with three baseline solutions below. We implemented
and parameterized these baseline techniques based on our
system configurations.

• DeepDecision: considers the optimization problem that
during each time interval, video is processed only on
the edge side or the cloud side depending on system
throughput.

• FastVA: considers making most use of network trans-
mission to offload the video chunks to the cloud.

• HillClimb: utilizes the Hill Climbing [14] algorithm to
solve our optimization problem.

6.3 Comparison With Existing Approaches
In this subsection, we analyze the algorithm performance
under various system conditions. For all experiments, opti-
mal chunk duration is chosen based on the benchmarking
results as shown in Fig. 6. We configure the number of edge
node , cloud server and video resolution as 10, 1 and 720P
respectively, if not otherwise stated.
6.3.1 The Impact of Network Bandwidth
Fig. 8(a) shows that with the increase of the network band-
width, the latency is greatly reduced. In 3G condition, the
latency is 2× of that in 4G and 5G. However, when network
is 4G and 5G, there is no obvious performance difference.
This is because more data are transmitted to the cloud when
the network speed increase, more computing resources from
the cloud server are utilized until it is saturated.

In order to better understand the trends, we show the
latency introduced by different components using PGS-
VAO, according to our HQM in Fig. 8(b). In 2G and 3G
network, the latency is introduced by data queuing for

11

Empty Normal Busy
System Workload

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(a) Uniform System Workload un-
der 3G Network

Empty Normal Busy
System Workload

0.0

0.1

0.2

0.3

0.4

0.5

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(b) Uniform System Workload un-
der 5G Network

Edge Net Cloud
Overloaded/Congested System Nodes

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(c) Imbalanced System Workload
under 3G Network

Edge Net Cloud
Overloaded/Congested System Nodes

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(d) Imbalanced System Workload
under 5G Network

Fig. 7: Performance under Different System Workloads

2G 3G 4G 5G
Networks

0.0
0.5
1.0
1.5
2.0
2.5
3.0

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(a) Algorithm Comparison

2G 3G 4G 5G
Networks

0.0

0.5

1.0

1.5

2.0
La

te
nc

y
[s

]
Cloud
Edge
Network

(b) System Latency Proportion
(PGS-VAO)

Fig. 8: Performance under Different Network Bandwidth

processing in the edge nodes and transmitting to the cloud.
As the improvement of network, our algorithm can adapt to
this change, offloading more data to the cloud to utilize the
computing resources from cloud, thereby reducing latency.

6.3.2 The Impact of System Workload

We first test the general performance of the algorithms
with uniform system workloads, i.e., empty, normal and busy
workload for all system queues. Then, we tune the workload
imbalance by setting overloaded edge and cloud nodes,
and congested network conditions respectively. We set these
nodes as busy while keeping others as normal. We conduct
the experiments in both 3G and 5G networks.

Fig. 7(a) and 7(b) indicate that with the increase of the
workload, the system latency is increasing as well. It is also
obvious that HQM-based algorithms (e.g., PGS-VAO, PGD-
VAO) perform better than non-HQM-based algorithms
(e.g., FastVA), which performs better in 5G (see Fig. 7(b)).

Fig. 7(a) illustrates that our proposed algorithm can
capture the the system bottleneck which is the network
speed and understand that maximizing the network utility
is the best strategy. FastVA shares the similar offloading
strategy, thereby achieving similar performance compared
to our algorithms. However, FastVA cannot adapt to the
change of system status, using the same offloading strategy
in 5G network (as shown in Fig. 7(b)). Since the network
is not the bottleneck, the ideal offloading policy should be
based on the processing capacity of both edge nodes and
cloud server.

To further highlight the advantage of our algorithms, we
imbalance the workload on different components modeled
by our HQM. In particular, when the bottleneck is on
the cloud/network, i.e., a lot of data is queuing for either
transmitting or processing on the cloud, both FastVA and
DeepDecision fail to make the right offloading decision. In
5G network (see Fig 7(d)), the situation is magnified because
FastVA is able to push more data to the cloud server, without
considering the queued data on network or cloud.

6.3.3 The Impact of Computing Resources
In this experiment, we evaluate the performance of the
algorithms with different computing resources. We first fix
the number of cloud servers from 1 to 5 and vary the
number of edge nodes from 10 to 50 to report the system
latency. Then we set edge nodes as 10 and 30 and vary the
cloud nodes from 1 to 5. The experiment is conducted in 5G
network, and results are shown in Fig. 9.

The findings are two-folds. First, from Fig. 9(a) and 9(b),
we can see that the cloud processing capability has great
impact on the overall system processing latency. When there
is only one cloud node, the processing latency is approxi-
mately 5 × than the system with 5 cloud nodes. However, if
the capacity of the cloud server becomes sufficient, adding
more cloud resources will not affect the overall system
processing latency (see Fig. 9(c) and 9(d)). When the ratio
of number of edge node and cloud server is 10:1, the system
latency can be reduced to less than 0.1s. The latency reaches
0.2s when the ratio is around 15:1. This is also revealed in
Fig. 9(c) and 9(d), when the ratio exceeds 15:1, the overall
latency increases dramatically. This indicates that one cloud
server is not sufficient for supporting more than 15 edge
nodes. In order to scale up the system, appropriate cloud
servers should be added with the increase of edge nodes .

Moreover, our proposed method always performs better
than baseline methods in any condition. There is no signif-
icant performance difference between PGS-VAO and PGD-
VAO, but as discussed earlier, PGS-VAO is more stable in
dealing with non-smooth value functions, it is still worth
using PGS-VAO when the computation reaches break point.

6.3.4 The Impact of Video Resolution
In this subsection, we vary the video resolution from 1080P
to 480P and show its impact on latency in Fig. 10(a). Our
proposed algorithm outperform all other baseline methods.
In general, the latency of 720P and 480P video is about
1/2 and 1/6 of that in 1080P video, near linear reduction
with resolution decreasing. The reduction of the latency is
caused by two reasons: 1) less data needs to be transmitted
2) faster inference time. Video resolution also affects the
system throughput as we will discuss in the next subsection.

6.4 Impact of Throughput Constraint
Recall E.q 4, our optimization problem is to minimize the
system latency which is bounded by a pre-defined through-
put threshold (I∗ in C1). In order to study the impact of
the I∗ on latency, our experiments are conducted under
different video resolution, while we adjust the throughput
constraint with different values.

Fig. 10(b), 10(c) and 10(d) shows that our proposed algo-
rithms can achieve less latency, compared to other methods,

12

10 20 30 40 50
Edge Nodes

0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(a) 1 Cloud Node

10 20 30 40 50
Edge Nodes

0.0
0.1
0.2
0.3
0.4
0.5

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(b) 5 Cloud Nodes

1 2 3 4 5
Cloud Nodes

0.0

0.1

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(c) 10 Edge Nodes

1 2 3 4 5
Cloud Nodes

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(d) 30 Edge Nodes

Fig. 9: The Latency with Various Edge Nodes and Cloud Servers

1080P 720P 480P
Resolution

0.0
0.2
0.4
0.6
0.8
1.0

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(a) Impact of Resolution on La-
tency

20 60 100 140 180
Throughput [frame/s]

0.5

0.7

0.9

1.1

La
te

nc
y

[s
]

PGS-VAO
PGD-VAO
HillClimb
FastVA
DeepDecision

(b) Input Video Resolution (1080P)

20 60 100 140 180 220
Throughput [frame/s]

0.2

0.3

0.4

0.5

0.6

La
te

nc
y

[s
]

PGS-VAO
PGD-VAO
HillClimb
FastVa
DeepDecision

(c) Input Video Resolution (720P)

20 60 100 140 180 220
Throughput [frame/s]

0.0

0.1

0.2

La
te

nc
y

[s
]

PGS-VAO
PGD-VAO
HillClimb
FastVA
DeepDecision

(d) Input Video Resolution (480P)

Fig. 10: Impact of Throughput Constraint on System Latency with Varying Resolution

5 10 15 20 25 30 35 40 45 50
Edge Nodes

0

1

2

3

4

5

Co
m

pu
ta

tio
n

La
te

nc
y

[s
]

HillClimb
DeepDecision
FastVA
PGS-VAO
PGD-VAO

Fig. 11: Algorithm Computation Latency with Different
Edge Nodes

and ensure the latency is fluctuating in a certain range with
the varying of throughput constraints. This fluctuation is
caused by the network oscillation that we add into the sim-
ulated network environments. HillClimb is implemented
based on HQM, but it fails to obtain the optimal solution
in some cases. For example, Fig. 10(b) and 10(c) show that
when the throughput is set higher than 180, the latency
increases significantly. Moreover, FastVA and DeepDecision
are not based on HQM, and they therefore do not have
throughout constraint. We report the monitored throughput
by using two algorithms.

Additionally, it is a challenge to set an optimal through-
put constraint that is affected by many factors such as input
stream rate, network conditions and video resolution etc.
Throughout, in this paper, for each set of the experiment,
we manually set the throughput constraint below the max-
imum system throughput to ensure smooth running of the
optimization algorithms. A more advance method is desired
to maximize the throughput in future work.

6.5 The Complexity Analysis of the Algorithms

In §5.5, we analyzed the algorithm complexity and we
validate the analysis in this subsection. Fig. 11 shows the
execution time of the HQM-based algorithms to compute an
offloading solution. PGD-VAO outperforms the other two

0.0 0.2 0.4 0.6 0.8 1.0
Offload Rate

0.1

0.2

0.3

0.4

La
te

nc
y

[s
]

Real Testbed
Simulation

(a) System Latency with Different
Offloading Rate

Testbed Simulation
Environment

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

[s
]

0.0

0.5

0.0

0.4 0.4

0.0

0.5

0.0

0.4 0.4

DeepDecision
HillClimb
FastVA

PGS-VAO
PGD-VAO

(b) Algorithm Performance in Dif-
ferent Environments

Fig. 12: Testbed vs Simulation

algorithms in terms of efficiency; its computation time in-
crease linearly as the edge nodes increase. The computation
time of PGS-VAO has a superlinear growth when the number
of edge node increase. The results experimentally confirm
our time complexity analysis for both PGD-VAO and PGS-
VAO.

6.6 Real-world Test-bed
We evaluate the performance of the OSMOTICGATE using
a lab test-bed in order to compare the real-system perfor-
mance against simulation.
Lab Test-bed Configuration. The real-world test-bed is
configured with Jetson Nanos and servers. We connect 4
Jetson-Nanos to the GPU server and set the connection as
5G with TC. To emulate the workload of the transmission
queues, we maintain all transmission queues with 30 video
chunks to saturate the cloud server. Time interval ∆t is set
as 30 seconds.

Fig. 12(a) reports the average queuing latency for both
the simulation and the test-bed environment given different
offloading rates. Generally, the computed simulation latency
is quite close to the real test-bed. The difference between the
two is less than 0.01 seconds for most cases and the two
curves nearly overlap at several points. Small oscillation has
been noted for the real test-bed as well. The complexity of
the data transmission and processing pipelines, as well as
the varying working conditions of the HQM, are all factors
that introduce oscillation to the test-bed performance.

13

Fig. 12(b) compares our proposed algorithm and other
baselines in both test-bed and simulation environments.
Overall, the HQM based algorithms (i.e., PGS-VAO, PGD-
VAO, HillClimb) can achieve better performance as com-
pared to non-HQM based algorithms (i.e., DeepDecision,
FastVA). HillClimb, PGS-VAO and PGD-VAO all reach near-
optimal point around 0.5 and 0.4, as seen in Fig. 12(a), while
DeepDecision and FastVA consider transmitting all process-
ing tasks to the cloud. PGS-VAO and PGD-VAO outperform
the other baselines by 2x. This huge difference has proved
the necessity to consider system workload dynamics when
making offloading decisions.

7 RELATED WORK

Content Delivery Network. Content Delivery Network
(CDN) has been well studied in many areas including
vehicle monitoring [33], Unmanned Aerial Vehicle (UAV)
monitoring [34] and smart city [35]. The main goal of CDN
is to use various technologies such as caching [36], [37]
or machine learning (ML) [38], [39] to optimize streaming
data delivery at the network level. Our OSMOTICGATE can
be built up on these underlying systems to have better
performance of video analytics task offloading.
Video Streaming System. Video streaming systems aim
to deliver video data under different network conditions,
while meeting various QoS requirements, including latency,
throughput and system re-buffering level. To this end, the
adaptive video streaming algorithms aim to configure the
video stream to achieve efficient video delivery. The existing
work usually considers two factors: i) Rate-based algorithms
that decide the bitrate based on network bandwidth as-
sumption [40], [41], [42]. ii) Buffer-based algorithms that
consider the client’s playback buffer [43], [44]. This method
keeps the system buffer at a stable level without sacrificing
the video quality at large. Our work is built upon the
modern video streaming technologies. Unlike the traditional
video streaming systems that focus the QoS on video deliv-
ery, instead, we aim to offload the video processing tasks
over edge-cloud environment.
Video Analytics Task Offloading. [10], [11], [12], [13] have
been conducted on scheduling and configuring the video
analytics jobs (queries). DeepDecision [5] considers both
edge and cloud for conducting video analytics. However,
it chooses CNNs only on one node (edge/cloud) for pro-
cessing the videos. FastVA [6] considers offloading from
local NPU to edge server, CrowdVision [45] considers client-
server task offloading. However, They all fail to consider the
system workload thus can not deliver optimal decisions un-
der heavily-loaded systems. Also, these works treated video
as a sequence of images, whereas we consider bitrate-based
video analytics that benefit from modern video streaming
protocols.
Task Offloading in Edge and Cloud Computing. Of-
floading techniques have been widely used to address the
resource limitation of IoT applications [7], [8], [9]. These
works are limited when the heavy transmission workload is
posted by video analytics, where a huge amount of stream-
ing video is uploaded to the cloud server. The complex
encoding/decoding video processing pipeline complicates
the system modeling as the change of video configurations
may affect the computation and transmission at the same

time. [7] studies computation offloading for Internet of
Vehicles and proposes to solve a mixed-integer nonlinear
programming problem with Edmonds–Karp algorithm. [8]
studies generic edge-cloud task offloading and decomposes
the optimization problem in a convex form where global
optimal can be achieved via KKT conditions. [9] is another
generic task offloading work and proposes simple logistics
to optimize the QoS metrics. These works decompose the
optimization problems into simpler convex forms and thus
can be solved by heuristic or other simpler algorithms.
However, as modeled in our paper, video analytics task
offloading can be formulated as a constrained, non-smooth
and non-convex optimization problem, can not be solved
with above methods.

8 CONCLUSIONS

In OSMOTICGATE, we investigated video streaming pro-
cessing task offloading in cloud-edge computing paradigm.
Based on bitrate-based video streaming protocols, we pro-
pose a HQM that is capable of capturing system workload
dynamics. We model the system latency and throughput
and then formulate a non-smooth, non-convex, constrained
min-latency optimization problem. A two-stage gradient-
based algorithm has been proposed which features switch-
ing between PGS-VAO and PGD-VAO algorithms. We have
analyzed the convergence bound of PGA-VAO. Using this
bound, we give practical implementation criteria for switch-
ing between the two algorithms. Extensive benchmarking
has been conducted that serve as the foundations of our ex-
periments. Simulation results showed that the our algorithm
outperforms baseline works. Also, the two-stage algorithm
is stable given different throughput constraints and various
system conditions, which confirmed its effectiveness.

ACKNOWLEDGMENT

This research is funded and aligned with the following
EPSRC projects, EP/W003325/1 & EP/T021985/1, currently
co-led by Prof. Ranjan and Prof. Zomaya. Zhenyu Wen is
supported by the NSFC (Grant No. 62072408) and Ye Yuan
is supported by the NSFC (Grant No. 61932004) and the
Fundamental Research Funds for the Central Universities
(Grant No. N181605012).

REFERENCES

[1] B. Qian, J. Su et al., “Orchestrating the development lifecycle of
machine learning-based iot applications: A taxonomy and survey,”
ACM Computing Surveys (CSUR), vol. 53, pp. 1–47, 2020.

[2] K. He, X. Zhang et al., “Deep residual learning for image recogni-
tion,” in (CVPR) 2016.

[3] S. Ren, K. He et al., “Faster r-cnn: towards real-time object detec-
tion with region proposal networks,” in (NeurIPS) 2015.

[4] Nvidia, Deep Learning Inference Benchmarks. https://developer.
nvidia.com/embedded/jetson-nano-dl-inference-benchmarks

[5] X. Ran, H. Chen et al., “Deepdecision: A mobile deep learning
framework for edge video analytics,” in (INFOCOM) 2018.

[6] T. Tan and G. Cao, “Fastva: Deep learning video analytics through
edge processing and npu in mobile,” in (INFOCOM) 2020.

[7] X. Wang, Z. Ning et al., “Offloading in internet of vehicles: A fog-
enabled real-time traffic management system,” (TII) 2018.

[8] J. Ren, G. Yu et al., “Collaborative cloud and edge computing for
latency minimization,” (TVT) 2019.

[9] X. Xu, Q. Huang et al., “Intelligent offloading for collaborative
smart city services in edge computing,” (IoT-J) 2020.

14

[10] M. Salehe, Z. Hu et al., “Videopipe: Building video stream process-
ing pipelines at the edge,” in (Middleware) 2019.

[11] C.-C. Hung, G. Ananthan et al., “Videoedge: Processing camera
streams using hierarchical clusters,” in (SEC) 2018.

[12] H. Zhang, G. Ananthan et al., “Live video analytics at scale with
approximation and delay-tolerance,” in {USENIX} ({NSDI} 17).

[13] J. Jiang, G. Ananthanarayanan et al., “Chameleon: scalable adap-
tation of video analytics,” in (SIGCOMM) 2018, 2018, pp. 253–266.

[14] S. Russell and P. Norvig, “Artificial intelligence: a modern ap-
proach,” 2002.

[15] J. Redmon and A. Farhadi, “Yolov3: An incremental improve-
ment,” arXiv preprint arXiv:1804.02767, 2018.

[16] J. Chen, “Globally solving nonconvex quadratic programming
problems via completely positive programming,” (MPC) 2012.

[17] M. Parda, “Global optimization algorithms for linearly con-
strained indefinite quadratic problems,” (Comp. Math. Appl.) 1991.

[18] Y. Nesterov, “Gradient methods for minimizing composite func-
tions,” (Mathematical Programming) 2013.

[19] J. Tang, M. Golb et al., “Gradient projection iterative sketch for
large-scale constrained least-squares,” in (ICML) 2017.

[20] S. U. Stich, C. L. Muller et al., “Optimization of convex functions
with random pursuit,” (SIOPT) 2013.

[21] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[22] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in COMPSTAT’2010. Springer, 2010, pp. 177–186.

[23] J. Tang, M. Golb et al., “Rest-katyusha: Exploiting the solution's
structure via scheduled restart,” in (NeurIPS) 2018.

[24] J. Tang, K. Egia et al., “Practicality of stochastic optimization in
imaging inverse problems,” (Trans. Comput. Imag.) 2020.

[25] J. Tang and M. Davies, “A fast stochastic plug-and-play admm for
imaging inverse problems,” arXiv, 2020.

[26] A. S. Lewis and M. L. Overton, “Nonsmooth optimization via
quasi-newton methods,” (Mathematical Programming) 2013.

[27] J. V. Burke, A. S. Lewis et al., “A robust gradient sampling algo-
rithm for nonsmooth, nonconvex optimization,” (SIOPT) 2005.

[28] J. V. Burke, F. E. Curtis et al., “Gradient sampling methods for
nonsmooth optimization,” in Numerical Nonsmooth Optimization.

[29] D. Driggs, J. Tang et al., “Spring: A fast stochastic proximal alter-
nating method for non-smooth non-convex optimization,” arXiv.

[30] C. Canel, T. Kim et al., “Scaling video analytics on constrained
edge nodes,” (SysML ‘19), 2019.

[31] Training dataset. https://drive.google.com/file/d/
11CqVAl7R1523823F5smLU6gQSCOmfZ8w/view?usp=sharing

[32] H. Mao, R. Netravali et al., “Neural adaptive video streaming with
pensieve,” in (SIGCOMM) 2017.

[33] W. Xiong, C. Shan et al., “Real-time processing and storage of mul-
timedia data with content delivery network in vehicle monitoring
system,” in (WINCOM) 2018. IEEE, 2018, pp. 1–4.

[34] A. Asheralieva and D. Niyato, “Game theory and lyapunov opti-
mization for cloud-based content delivery networks with device-
to-device and uav-enabled caching,” (TVT) 2019.

[35] M. Chen and L. Wang, “A computing content delivery network in
smart city: Scenario, framework, analysis,” (IEEE Netw.) 2019.

[36] J. Ni and D. H. Tsang, “Large-scale cooperative caching and
application-level multicast in multimedia content delivery net-
works,” IEEE Communications Magazine.

[37] T.-Y. Ku, J. D. Shin et al., “Hybrid cache architecture using big data
analysis for content delivery network,” in (BdCloud) 2014.

[38] Z. Chang and L. Lei, “Learn to cache: Machine learning for
network edge caching in the big data era,” (WCM) 2018.

[39] A. Sadeghi, G. Wang et al., “Drl for adaptive caching in hierarchical
content delivery networks,” (TCCN) 2019.

[40] Z. Li, X. Zhu et al., “Probe and adapt: Rate adaptation for http
video streaming at scale,” (JSAC) 2014.

[41] Y. Sun and X. Yin, “Cs2p: Improving video bitrate selection
and adaptation with data-driven throughput prediction,” in (SIG-
COMM) 2016.

[42] J. Jiang, V. Sekar et al., “{CFA}: A practical prediction system for
video qoe optimization,” in 13th {USENIX} ({NSDI}).

[43] J. Huang and R. Johari, “A buffer-based approach to rate adap-
tation: Evidence from a large video streaming service,” in (SIG-
COMM) 2014.

[44] K. Spiteri, R. Urgaonkar et al., “Bola: Near-optimal bitrate adapta-
tion for online videos,” TON.

[45] Z. Lu, K. Chan et al., “Crowdvision: A computing platform for
video crowdprocessing using deep learning,” (TMC) 2018.

Bin Qian (Member, IEEE) received the M.Sc.
degree in Data Science from University of
Southampton, U.K, in 2018. He is currently pur-
suing the Ph.D. degree in computer science from
Newcastle University, Newcastle Upon Tyne,
U.K. His research interests include IoT, machine
learning, task offloading.

Zhenyu Wen received the M.Sc. and Ph.D. de-
grees in computer science from Newcastle Uni-
versity, Newcastle Upon Tyne, U.K., in 2011
and 2016, respectively. He is currently a Pro-
fessor with the Institute of Cyberspace Security
and college of Information Engineering, Zhejiang
University of Technology, China. His current re-
search interests include IoT, crowd sources, AI
system, and cloud computing.

Junqi Tang received the M.Sc. and Ph.D. from
the Institute for Digital Communications, Univer-
sity of Edinburgh, U.K., in 2015 and 2019, re-
spectively. Prior to that he received B.Eng in
Communication Engineering from Sichuan Uni-
versity, China, in 2014. He is currently a post-
doctoral research associate with the Department
of Applied Mathematics and Theoretical Physics
(DAMTP), University of Cambridge, U.K. His re-
search interests include machine learning, ex-
plainable AI, large-scale optimization. , with ap-

plications in computer vision and image processing.

Ye Yuan received his BS, MS and PhD degrees
in Computer Science from Northeastern Univer-
sity, China in 2004, 2007 and 2011, respectively.
He is now a Professor at the College of Informa-
tion Science and Engineering at Beijing Institute
of Technology. His research interests include
graph databases, probabilistic databases, data
privacy-preserving and cloud computing.

Albert Y. ZOMAYA is Peter Nicol Russell Chair
Professor of Computer Science and Director of
the Centre for Distributed and High-Performance
Computing in the School of Computer Science
at the University of Sydney, Australia. To date,
he has published over 700 scientific papers
and articles and is (co-)author/editor of over 30
books. A sought-after speaker, he has delivered
over 250 keynote addresses, invited seminars,
and media briefings. He is currently the Editor
in Chief of the ACM Computing Surveys and

served in the past as Editor in Chief of the IEEE Transactions on
Computers (2010-2014) and the IEEE Transactions on Sustainable
Computing (2016-2020).

Rajiv Ranjan is a Full professor in Computing
Science at Newcastle University, United King-
dom. Before moving to Newcastle University,
he was Julius Fellow (2013-2015), Senior Re-
search Scientist and Project Leader in the Digital
Productivity and Services Flagship of Common-
wealth Scientific and Industrial Research Orga-
nization (CSIRO C Australian Government’s Pre-
mier Research Agency). Prior to that he was
a Senior Research Associate (Lecturer level B)
in the School of Computer Science and Engi-

neering, University of New South Wales (UNSW). Prof. Ranjan has a
PhD (2009) from the department of Computer Science and Software
Engineering, the University of Melbourne.

