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Data-Driven Mirror Descent with Input-Convex Neural Networks∗1

Hong Ye Tan† , Subhadip Mukherjee† ‡ , Junqi Tang†§ , and Carola-Bibiane Schönlieb†2

3

Abstract. Learning-to-optimize is an emerging framework that seeks to speed up the solution of certain op-4
timization problems by leveraging training data. Learned optimization solvers have been shown to5
outperform classical optimization algorithms in terms of convergence speed, especially for convex6
problems. Many existing data-driven optimization methods are based on parameterizing the update7
step and learning the optimal parameters (typically scalars) from the available data. We propose8
a novel functional parameterization approach for learned convex optimization solvers based on the9
classical mirror descent (MD) algorithm. Specifically, we seek to learn the optimal Bregman distance10
in MD by modeling the underlying convex function using an input-convex neural network (ICNN).11
The parameters of the ICNN are learned by minimizing the target objective function evaluated at12
the MD iterate after a predetermined number of iterations. The inverse of the mirror map is mod-13
eled approximately using another neural network, as the exact inverse is intractable to compute.14
We derive convergence rate bounds for the proposed learned mirror descent (LMD) approach with15
an approximate inverse mirror map and perform extensive numerical evaluation on various convex16
problems such as image inpainting, denoising, learning a two-class support vector machine (SVM)17
classifier and a multi-class linear classifier on fixed features.18

Key words. Mirror Descent, data-driven convex optimization solvers, input-convex neural networks, inverse19
problems.20

AMS subject classifications. 46N10, 65K10, 65G5021

1. Introduction. Convex optimization problems are pivotal in many modern data science22

and engineering applications. These problems can generally be formulated as23

(1.1) min
x∈X

[f(x) + g(x)] ,24

where X is a Hilbert space, and f, g : X → R̄ are proper, convex, and lower semi-continuous25

(l.s.c.) functions. In different scenarios, f and g have different levels of regularity such as26

differentiability or strong convexity. In the context of inverse problems, f can be a data fidelity27

loss and g a regularization function.28

In the past few decades, extensive research has gone into developing efficient and provably29

convergent optimization algorithms for finding the minimizer of a composite objective function30

as in (1.1), leading to several major theoretical and algorithmic breakthroughs. For generic31

convex programs with first-order oracles, optimal algorithms have been proposed under dif-32

ferent levels of regularity [24, 17, 18], which are able to match the complexity lower-bounds33

of the problem class. Although there exist algorithms that are optimal for generic problem34

classes, practitioners in different scientific areas usually only need to focus on a very narrow35
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2 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

subclass, for which usually neither tight complexity lower-bounds nor optimal algorithms are36

known. As such, it is extremely difficult and impractical to either find tight lower-bounds or37

handcraft specialized optimal algorithms for every single subclass in practice.38

The aim of this work is learning to optimize convex objectives of the form (1.1) in a39

provable manner. Learned optimization solvers have been proposed through various methods,40

including reinforcement learning and unsupervised learning [2, 3, 13, 19]. The goal is to41

minimize a fixed loss function as efficiently as possible, which can be formulated as minimizing42

the loss after a certain number of iterations, or minimizing the number of iterations required43

to attain a certain error. The common idea is to directly parameterize the update step as44

a neural network, taking previous iterates and gradients as arguments. These methods have45

been empirically shown to speed up optimization in various settings including training neural46

networks [19, 2]. However, many of these methods lack theoretical guarantees, and there is a47

lack of principled framework for integrating machine learning into existing classical algorithms.48

Banert et al. developed a theoretically grounded method in [3] for parameterizing such49

update steps using combinations of proximal steps, inspired by proximal splitting methods.50

By learning the appropriate coefficients, the method was able to outperform the classical51

primal-dual hybrid gradient (PDHG) scheme [10]. However, having a fixed model limits the52

number of learnable parameters, and therefore the extent to which the solver can be adapted53

to a particular problem class. Banert et al. later drifted away from the framework of learning54

parameters of fixed models, and instead directly modeled an appropriate update function55

using a deviation-based approach, allowing for a more expressive parameterization [4].56

Learned optimizers are sometimes modeled using classical methods, as the existing con-57

vergence guarantees can lead to insights on how neural networks may be incorporated with58

similar convergence guarantees. Even if such guarantees are not available, such as in the59

case of learned iterative shrinkage and thresholding algorithm (ISTA), they can still lead to60

better results on certain problems [13]. Conversely, Maheswaranathan et al. showed that cer-61

tain learned optimizers, parameterized by recurrent neural networks, can reproduce classical62

methods used for accelerating optimization [21]. By using a recurrent neural network taking63

the gradient as an input, the authors found that the learned optimizer expresses mechanisms64

including momentum, gradient clipping, and adaptive learning rates.65

One related idea to our problem is meta-learning, also known as “learning to learn”. This66

typically concerns learning based on prior experience with similar tasks, utilizing techniques67

such as transfer learning, to learn how similar an optimization task is to previous tasks using68

statistical features [31]. Our problem setting will instead be mainly concerned with convex69

optimization problems, as there are concrete classical results for comparison.70

Integrating machine learning models into classical algorithms can also be found notably71

in Plug-and-Play (PnP) algorithms. Instead of trying to learn a solver for a general class72

of optimization problems, PnP methods deal with the specific class of image restoration.73

By using proximal splitting algorithms and replacing certain proximal steps with generic74

denoisers, the PnP algorithms, first proposed by Venkatakrishnan et al. in 2013, were able to75

achieve fast and robust convergence for tomography problems [32]. This method was originally76

only motivated in an intuitive sense, with some analysis of the theoretical properties coming77

years later by Chan et al. [11], and more recently by Ryu et al. [29]. Most critically,78

many subsequent methods of showing convergence rely on classical analysis such as monotone79
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DATA-DRIVEN MIRROR DESCENT WITH INPUT-CONVEX NEURAL NETWORKS 3

operator and fixed point theory, demonstrating the importance of having a classical model-80

based framework to build upon.81

One of the main difficulties in learning to optimize is the choice of function class to learn on.82

Intuitively, a more constrained function class may allow for the learned method to specialize83

more. However, it is difficult to quantify the similarity between the geometry of different84

problems. Banert et al. proposed instead to use naturally or qualitatively similar function85

classes in [4], including regularized inverse problems such as inpainting or denoising, which86

will be used in this work as well.87

1.1. Contributions. We propose to learn an alternative parameterization using mirror88

descent (MD), which is a well-known convex optimization algorithm first introduced by Ne-89

mirovsky and Yudin [23]. Typical applications of MD require hand-crafted mirror maps, which90

are limited in complexity by the requirement of a closed-form convex conjugate. We propose91

to replace the mirror map in MD with an input convex neural network (ICNN) [1], which has92

recently proved to be a powerful parameterization approach for convex functions [22]. By mod-93

eling the mirror map in this manner, we seek to simultaneously introduce application-specific94

optimization routines, as well as learn the problem geometry.95

Using our new paradigm, we are able to obtain a learned optimization scheme with con-96

vergence guarantees in the form of regret bounds. We observe numerically that our learned97

mirror descent (LMD) algorithm is able to adapt to the structure of the class of optimization98

problems that it was trained on, and provide significant acceleration.99

This paper is organized as follows. In section 2, we recall the MD algorithm and the100

existing convergence rate bounds. Section 3 presents our main results on convergence rate101

bounds with inexact mirror maps, and a proposed procedure of ‘learning’ a mirror map. In102

section 4, we will show some simple examples of both MD and its proposed learned variant103

LMD in the setting where the inverse map is known exactly. Section 5 deals with numerical104

experiments with inverse problems in imaging and linear classifier learning.105

2. Background. In this section, we will outline the MD method as presented by Beck and106

Teboulle [5]. Convergence guarantees for convex optimization methods commonly involve a107

Lipschitz constant with respect to the Euclidean norm. However, depending on the function,108

this may scale poorly with dimension. Mirror descent circumvents this by allowing for this109

Lipschitz constant to be taken with respect to other norms such as the ℓ1 norm. This has110

been shown to scale better with dimension compared to methods such as projected subgradient111

descent on problems including online learning and tomography [9, 25, 6]. Further work has112

been done by Gunasekar et al., showing that MD is equivalent to natural/geodesic gradient113

descent on certain Riemannian manifolds [14]. We will continue in the simpler setting where114

we have a potential given by a strictly convex Ψ to aid parameterization, but this can be115

replaced by a suitable Hessian metric tensor.116

Let X ⊂ Rn be a closed convex set with nonempty interior. Let (Rn)∗ denote the corre-117

sponding dual space of Rn.118

Definition 2.1 (Mirror Map). We say Ψ : X → R is a mirror potential if it is continuously119

differentiable and strongly convex. We call the gradient ∇Ψ : X → (Rn)∗ a mirror map.120

Remark 2.2. A mirror potential Ψ may also be referred to as a distance generating func-121
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4 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

tion, as a convex map induces a Bregman distance BΨ(x, y), defined by BΨ(x, y) = Ψ(x) −122

Ψ(y)−⟨∇Ψ(y), x−y⟩. For example, taking Ψ(x) = ∥x∥22 recovers the usual squared Euclidean123

distance BΨ(x, y) = ∥x− y∥22.124

If Ψ is a mirror potential, then the convex conjugate Ψ∗ defined as125

Ψ∗(x∗) = sup
x∈X

{⟨x∗, x⟩ −Ψ(x)}126

is differentiable everywhere, and additionally satisfies ∇Ψ∗ = (∇Ψ)−1 [5, 28]. The (forward)127

mirror map ∇Ψ mirrors from the primal space X into a subset of the dual space (Rn)∗, and128

the inverse (backward) mirror map ∇Ψ∗ mirrors from the dual space dom (∇Ψ∗) ⊆ (Rn)∗129

back into the primal space X .130

Suppose first that we are trying to minimize a convex differentiable function f over the131

entire space X = Rn, minx∈X f(x). Suppose further for simplicity that dom (∇Ψ∗) = (Rn)∗.132

For an initial point x0 ∈ X and a sequence of step-sizes (tk)k≥0, tk > 0, the mirror descent133

iterations can be written as follows:134

(2.1) yk = ∇Ψ(xk)− tk∇f(xk), xk+1 = ∇Ψ∗(yk).135

There are two main sequences, (xk)
∞
k=0 in the primal space X and (yk)

∞
k=0 in the dual space136

(Rn)∗. The gradient step at each iteration is performed in the dual space, with the mirror137

map ∇Ψ mapping between them. Observe that if Ψ = 1
2∥x∥

2
2, then ∇Ψ is the identity138

map Rn → (Rn)∗ and we recover the standard gradient descent algorithm. An equivalent139

formulation of the MD update rule in (2.1) is the subgradient algorithm [5]:140

(2.2) xk+1 = argmin
x∈X

{
⟨x,∇f(xk)⟩+

1

tk
BΨ(x, xk)

}
.141

This can be derived by using the definitions of the Bregman distance and of the convex142

conjugate Ψ∗. The convexity of Ψ implies that the induced Bregman divergence BΨ is non-143

negative, which allows for this iteration to be defined. Observe again that if Ψ = 1
2∥x∥

2
2, then144

BΨ(x, y) =
1
2∥x− y∥22 and we recover the argmin formulation of the gradient descent update145

rule.146

MD enjoys the following convergence rate guarantees. Let ∥·∥ be a norm on Rn, and147

∥·∥∗= max{⟨·, x⟩ : x ∈ Rn, ∥x∥≤ 1} be the corresponding dual norm. For a set X ⊆ Rn, let148

int(X ) denote the interior of X .149

Theorem 2.3. [5, Thm 4.1] Let X be a closed convex subset of Rn with nonempty interior,150

and f : X → R a convex function. Suppose that Ψ is a σ-strongly convex mirror potential.151

Suppose further that the following hold:152

1. f is Lipschitz with Lipschitz constant Lf with respect to ∥·∥;153

2. The set of minimizers minx∈X f(x) is nonempty; let x∗ be a minimizer of f .154

Let {xk}∞k=1 be the sequence generated by the MD iterations (2.1) with starting point x1 ∈155

int(X ). Then the iterates satisfy the following regret bound:156

(2.3)
s∑

k=1

tk(f(xk)− f(x∗)) ≤ BΨ(x
∗, x1)−BΨ(x

∗, xs+1) + (2σ)−1
s∑

k=1

t2k∥∇f(xk)∥2∗.157
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In particular, we have158

(2.4) min
1≤k≤s

f(xk)− f(x∗) ≤
BΨ(x

∗, x1) + (2σ)−1
∑s

k=1 t
2
k∥∇f(xk)∥2∗∑s

k=1 tk
.159

Remark 2.4. The proof of Theorem 2.3 depends only on the property that∇Ψ∗ = (∇Ψ)−1.160

Therefore, the inverse mirror map (∇Ψ∗) as in (2.1) can be replaced with (∇Ψ)−1, yielding a161

formulation of MD that does not reference the convex conjugate Ψ∗ of the mirror potential Ψ162

itself, but only the gradient ∇Ψ∗.163

To motivate our goal of learning mirror maps, we will demonstrate an application of MD164

that drastically speeds up convergence over gradient descent. We consider optimization on165

the simplex ∆d = {x ∈ Rd : x ≥ 0,
∑

j xj = 1}, equipped with a mirror potential given by166

the (negative log-) entropy map [5]. We have the following mirror maps, where logarithms167

and exponentials of vectors are to be taken component-wise:168

(2.5) Ψ(x) =
∑
j

xj log xj , ∇Ψ(x) = 1 + log(x), ∇Ψ∗(y) =
exp(y)∑
j exp(yj)

.169

This results in the entropic mirror descent algorithm. It can be shown to have similar conver-170

gence rates as projected subgradient descent, with a O(1/
√
k) convergence rate [5, Thm 5.1].171

Given that the optimization is over a probability simplex, a natural problem class to consider172

is a probabilistic distance between points, given by the KL divergence.173

Minimizing the KL divergence is a convex problem on the simplex x ∈ ∆d. For a point174

y ∈ ∆d, the KL divergence is given as follows, where 0 log 0 is taken to be 0 by convention:175

(2.6) min
x∈∆d

KL(x∥y) =
d∑

i=1

xi log

(
xi
yi

)
.176

To demonstrate the potential of MD, we can apply the entropic MD algorithm to the problem177

classes of minimizing KL divergence and of minimizing least squares loss over the simplex ∆d.178

The function classes that we apply the entropic MD algorithm and gradient descent to are:179

FKL = {KL(·∥y) : y ∈ ∆d} , Flsq =
{
∥· − y∥22: y ∈ ∆d

}
,180

where the functions have domain ∆d. Note that the true minimizers of a function in either of181

these function classes is given by the parameter y ∈ ∆d.182

To compare these two optimization algorithms, we optimize 500 functions from the respec-183

tive function classes, which were generated by uniformly sampling y on the simplex. Figure 1184

plots the evolution of the loss for the entropic MD algorithm and gradient descent for these185

two problem classes, applied with various step-sizes. The entropic MD algorithm gives lin-186

ear convergence on the KL function class FKL, massively outperforming the gradient descent187

algorithm. However, entropic MD is unable to maintain this convergence rate over the least-188

squares function class Flsq. The difference in convergence rate demonstrates the importance of189

choosing a suitable mirror map for the target function class, as well as the potential of MD in190

accelerating convergence. This relationship between the function class and mirror maps moti-191

vates a learned approach to deriving mirror maps from data to replace classical hand-crafted192

mirror maps.193
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Figure 1: Effect of using the entropic MD method (2.5) to minimize KL divergence (left)
and least squares loss (right). The step-sizes were taken as 0.1×step-size multi. We can see
that entropic MD (green) outperforms the gradient descent method for the KL divergence
task, though loses out in the least squares task. The unstable iterations at low KL divergence
are due to machine precision. The difference between the two optimization methods on each
problem class demonstrates the potential of adapting to the optimization geometry using MD.

3. Main Results. We first theoretically show convergence properties of mirror descent194

when the mirror map constraint ∇Ψ∗ = (∇Ψ)−1 is only approximately satisfied. Motivated195

by these convergence properties, we propose our Learned Mirror Descent method, trained with196

a loss function balancing empirical convergence speed and theoretical convergence guarantees.197

We briefly explain our key objective of approximate mirror descent. Recall that MD as198

given in (2.1) requires two mirror maps,∇Ψ and∇Ψ∗. We wish to parameterize both Ψ and Ψ∗199

using neural networks Mθ and M∗
ϑ, and weakly enforce the constraint that ∇M∗

ϑ = (∇Mθ)
−1.200

To maintain the convergence guarantees of MD, we will derive a bound on the regret depending201

on the deviation between ∇M∗
ϑ and (∇Mθ)

−1 in a sense that will be made precise later. We202

will call the inconsistency between the parameterized mirror maps ∇M∗
ϑ and (∇Mθ)

−1 the203

forward-backward inconsistency/loss.204

Recall the problem setting as in Section 2. Let Ψ be a mirror potential, i.e. a C1 σ-205

strongly-convex function with σ > 0. In this section, we shall work in the unconstrained case206

X = Rn. We further assume f has a minimizer x∗ ∈ X .207

Recall the MD iteration (2.1) with step sizes {tk}∞k=1 as follows. Throughout this section,208

B = BΨ is the Bregman distance with respect to Ψ, and Ψ∗ is the convex conjugate of Ψ:209

(3.1) xk+1 = argmin
x∈X

{⟨x, tk∇f(xk)⟩+B(x, xk)} = ∇Ψ∗(∇Ψ(xk)− tk∇f(xk)).210

For a general mirror map Ψ, the convex conjugate Ψ∗ and the associated backward mir-211

ror map ∇Ψ∗ may not have a closed form. Suppose now that we parameterize Ψ and Ψ∗212

with neural networks Mθ and M∗
ϑ respectively, satisfying ∇M∗

ϑ ≈ (∇Mθ)
−1. The resulting213
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approximate mirror descent scheme is as follows, starting from x̃1 = x1:214

(3.2) x̃k+1 = ∇M∗
ϑ(∇Mθ(x̃k)− tk∇f(x̃k)), k = 1, 2, · · · .215

Here, we enforce that the sequence {x̃k} represents an approximation of a mirror descent216

iteration at each step, given by217

(3.3) xk+1 = argmin
x∈X

{⟨x, tk∇f(x̃k)⟩+B(x, x̃k)} = (∇Mθ)
−1(∇Mθ(x̃k)− tk∇f(x̃k)).218

Hereafter, we will refer to Mθ and M∗
ϑ as the forward and backward (mirror) potentials,219

respectively, and the corresponding gradients as the forward and backward (mirror) maps. For220

practical purposes, {x̃k} should be considered as the iterations that we can compute. Typi-221

cally, both the argmin and ∇Ψ∗ are not easily computable, hence xk will not be computable222

either. However, defining this quantity will prove useful for our analysis, as we can addition-223

ally use this quantity to compare how close the forward and backward maps are from being224

inverses of each other.225

The following theorem puts a convergence rate bound on the approximate MD scheme226

(3.2) in terms of the forward-backward inconsistency. More precisely, the inconsistency is227

quantified by the difference of the iterates in the dual space. This will allow us to show228

approximate convergence when the inverse mirror map is not known exactly.229

Theorem 3.1 (Regret Bound for Approximate MD). Suppose f is µ-strongly convex with230

parameter µ > 0, and Ψ is a mirror potential with strong convexity parameter σ. Let {x̃k}∞k=0231

be some sequence in X = Rn, and {xk}∞k=1 be the corresponding exact MD iterates generated232

by (3.3). We have the following regret bound:233

K∑
k=1

tk(f(x̃k)− f(x∗))

≤ B(x∗, x̃1) +

K∑
k=1

[
1

σ
t2k∥∇f(x̃k)∥2∗+

(
1

2tkµ
+

1

σ

)
∥∇Ψ(x̃k+1)−∇Ψ(xk+1)∥2∗

]
.

(3.4)234

Proof. We start by employing amortization to find an upper bound on the following ex-235

pression:236

(3.5) tkf(x̃k)− tkf(x
∗) + (B(x∗, x̃k+1)−B(x∗, x̃k)).237

From the formulation (3.2), since ∇Ψ∗ = (∇Ψ)−1:238

∇Ψ(xk+1) = ∇Ψ(x̃k)− tk∇f(x̃k).239

We have the following bound on B(x∗, x̃k+1)−B(x∗, x̃k):240
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8 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

B(x∗, x̃k+1)−B(x∗, x̃k) = Ψ(x∗)−Ψ(x̃k+1)− ⟨∇Ψ(x̃k+1), x
∗ − x̃k+1⟩241

− [Ψ(x∗)−Ψ(x̃k)− ⟨∇Ψ(x̃k), x
∗ − x̃k⟩] [definition of B]242

= Ψ(x̃k)−Ψ(x̃k+1)− ⟨∇Ψ(x̃k+1), x
∗ − x̃k+1⟩+ ⟨∇Ψ(x̃k), x

∗ − x̃k⟩ [cancel Ψ(x∗)]243

= Ψ(x̃k)−Ψ(x̃k+1)− ⟨∇Ψ(xk+1), x
∗ − x̃k+1⟩ [add/subtract244

− ⟨∇Ψ(x̃k+1)−∇Ψ(xk+1), x
∗ − x̃k+1⟩+ ⟨∇Ψ(x̃k), x

∗ − x̃k⟩ terms in blue]245

= Ψ(x̃k)−Ψ(x̃k+1)− ⟨∇Ψ(x̃k)− tk∇f(x̃k), x
∗ − x̃k+1⟩ [MD update (3.3)246

− ⟨∇Ψ(x̃k+1)−∇Ψ(xk+1), x
∗ − x̃k+1⟩+ ⟨∇Ψ(x̃k), x

∗ − x̃k⟩ on ∇Ψ(xk+1)]247

= Ψ(x̃k)−Ψ(x̃k+1) + ⟨∇Ψ(x̃k), x̃k+1 − x̃k⟩︸ ︷︷ ︸
−BΨ(x̃k+1,x̃k)

248

+ ⟨tk∇f(x̃k), x
∗ − x̃k+1⟩ − ⟨∇Ψ(x̃k+1)−∇Ψ(xk+1), x

∗ − x̃k+1⟩.249

Observe that the first line in the final expression is precisely −BΨ(x̃k+1, x̃k). By σ-strong-250

convexity of Ψ, we have −BΨ(x̃k+1, x̃k) ≤ −σ
2 ∥x̃k+1 − x̃k∥2. Therefore, our final bound for251

this expression is:252

B(x∗, x̃k+1)−B(x∗, x̃k)

≤ −σ

2
∥x̃k+1 − x̃k∥2+⟨tk∇f(x̃k), x

∗ − x̃k+1⟩ − ⟨∇Ψ(x̃k+1)−∇Ψ(xk+1), x
∗ − x̃k+1⟩.

(3.6)253

Returning to bounding the initial expression (3.5), we have by substituting (3.6):254

tkf(x̃k)− tkf(x
∗) + (B(x∗, x̃k+1)−B(x∗, x̃k))255

≤ tkf(x̃k)− tkf(x
∗) + ⟨tk∇f(x̃k), x

∗ − x̃k+1⟩256

− σ

2
∥x̃k+1 − x̃k∥2−⟨∇Ψ(x̃k+1)−∇Ψ(xk+1), x

∗ − x̃k+1⟩ [by (3.6)]257

= tkf(x̃k)− tkf(x
∗) + ⟨tk∇f(x̃k), x

∗ − x̃k⟩+ ⟨tk∇f(x̃k), x̃k − x̃k+1⟩ [add/subtract258

− σ

2
∥x̃k+1 − x̃k∥2−⟨∇Ψ(x̃k+1)−∇Ψ(xk+1), x

∗ − x̃k+1⟩ terms in blue]259

= −tkBf (x
∗, x̃k) + ⟨tk∇f(x̃k), x̃k − x̃k+1⟩260

− σ

2
∥x̃k+1 − x̃k∥2−⟨∇Ψ(x̃k+1)−∇Ψ(xk+1), x

∗ − x̃k⟩261

− ⟨∇Ψ(x̃k+1)−∇Ψ(xk+1), x̃k − x̃k+1⟩.262

The above two equalities are obtained by writing the second term of the inner products as263

x∗ − x̃k+1 = (x∗ − x̃k) + (x̃k − x̃k+1), and by the definition of Bf . By µ-strong-convexity of264

f , we get −tkBf (x
∗, x̃k) ≤ − tkµ

2 ∥x∗ − x̃k∥2. Therefore, the bound on the quantity in (3.5)265
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reduces to266

tkf(x̃k)− tkf(x
∗) + (B(x∗, x̃k+1)−B(x∗, x̃k))

≤ − tkµ

2
∥x∗ − x̃k∥2+⟨tk∇f(x̃k), x̃k − x̃k+1⟩

− σ

2
∥x̃k+1 − x̃k∥2−⟨∇Ψ(x̃k+1)−∇Ψ(xk+1), x

∗ − x̃k⟩

− ⟨∇Ψ(x̃k+1)−∇Ψ(xk+1), x̃k − x̃k+1⟩.

(3.7)267

Liberally applying Cauchy-Schwarz and Young’s inequality to bound the inner product terms:268

269

tkf(x̃k)− tkf(x
∗) + (B(x∗, x̃k+1)−B(x∗, x̃k))

≤ − tkµ

2
∥x∗ − x̃k∥2+

1

σ
t2k∥∇f(x̃k)∥2∗+

σ

4
∥x̃k − x̃k+1∥2

− σ

2
∥x̃k+1 − x̃k∥2+

1

2tkµ
∥∇Ψ(x̃k+1)−∇Ψ(xk+1)∥2∗+

tkµ

2
∥x∗ − x̃k∥2

+
1

σ
∥∇Ψ(x̃k+1)−∇Ψ(xk+1)∥2∗+

σ

4
∥x̃k − x̃k+1∥2

≤ 1

σ
t2k∥∇f(x̃k)∥2∗+

(
1

2tkµ
+

1

σ

)
∥∇Ψ(x̃k+1)−∇Ψ(xk+1)∥2∗.

(3.8)270

Summing from k = 1 to K, we get271

K∑
k=1

[tkf(x̃k)− tkf(x
∗) + (B(x∗, x̃k+1)−B(x∗, x̃k))]

≤
K∑
k=1

[
1

σ
t2k∥∇f(x̃k)∥2∗+

(
1

2tkµ
+

1

σ

)
∥∇Ψ(x̃k+1)−∇Ψ(xk+1)∥2∗

]
.

(3.9)272

Observe
∑K

k=1(B(x∗, x̃k+1)−B(x∗, x̃k)) = B(x∗, x̃K+1)−B(x∗, x̃1) ≥ −B(x∗, x̃1). Apply this273

with (3.9) to finish the regret bound.274

Remark 3.2. This bound may be extended to the constrained case X ⊊ Rn. This can be275

shown by adding an extra projection step to the iterates of the form π(y) = argminx∈X B(x, y),276

and having x̃k+1 instead approximate the projection of the exact mirror step x̃k+1 ≈ π(xk+1)277

in (3.2) [23]. Note that if y /∈ X , then B(x∗, π(y)) ≤ B(x∗, y) for any x∗ ∈ X .278

Remark 3.3. The convex function f need not be differentiable, and having a non-empty279

subgradient at every point is sufficient for the regret bound to hold. The proof will still work280

if ∇f is replaced by a subgradient f ′ ∈ ∂f .281

Remark 3.4. Observe there is a t−1
k coefficient in the approximation term. This prevents282

us from taking tk ↘ 0 to get convergence as in the classical MD case. Intuitively, a suffi-283

ciently large gradient step is required to correct for the approximation. However, due to the284

Lipschitz condition on the objective f , the gradient step is still required to be limited above285

for convergence.286
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With Theorem 3.1, we no longer require precise knowledge of the convex conjugate. In287

particular, this allows us to parameterize the forward mirror potential with an ICNN, for288

which there is no closed-form convex conjugate in general. We are thus able to approximate289

the backwards mirror potential with another neural network, while maintaining approximate290

convergence guarantees. While the true backward potential will be convex, these results allow291

us to use a non-convex network, resulting in better numerical performance.292

3.1. Relative Smoothness Assumption. We have seen that we can approximate the iter-293

ations of MD and still obtain convergence guarantees. With the slightly weaker assumption of294

relative smoothness and relative strong convexity, MD can be shown to converge [20]. We can295

get a similar and cleaner bound by slightly modifying the proof of convergence for classical296

MD under these new assumptions.297

Definition 3.5 (Relative Smoothness/Convexity). Let Ψ : X → R be a differentiable con-298

vex function, defined on a convex set X (with non-empty interior), which will be used as a299

reference. Let f : X → R be another differentiable convex function.300

f is L-smooth relative to Ψ if for any x, y ∈ int(X ),301

(3.10) f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ LBΨ(y, x).302

f is µ-strongly-convex relative to Ψ if for any x, y ∈ int(X ),303

(3.11) f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µBΨ(y, x).304

Observe that these definitions of relative smoothness and relative strong convexity extend305

the usual notions of L-smoothness and strong convexity with the Euclidean norm by taking306

Ψ = 1
2∥·∥

2
2, recovering BΨ(x, y) = 1

2∥x − y∥22. Moreover, if ∇f is L-Lipschitz and Ψ is µ-307

strongly convex with µ > 0, then f is L/µ smooth relative to Ψ. If both functions are308

twice-differentiable, the above definitions are equivalent to the following [20, Prop 1.1]:309

(3.12) µ∇2Ψ ⪯ ∇2f ⪯ L∇2Ψ.310

Using the relative smoothness and relative strong convexity conditions, we can show con-311

vergence even when the convex objective function f is flat, as long as our mirror potential Ψ312

is also flat at those points. The analysis given in [20] readily extends to the case where our313

iterations are approximate.314

Theorem 3.6. Let f be relatively L-smooth and relatively µ-strongly-convex with respect to315

the mirror map Ψ, with L > 0, µ ≥ 0. Let {x̃k}k≥0 be a sequence in X , and consider the316

iterations {xk}k≥1 defined as317

(3.13) xk+1 = argmin
x∈X

{⟨x,∇f(x̃k)⟩+ LB(x, x̃k)} ,318

i.e. the result of applying a single MD update step with fixed step size 1/L to each x̃k. We319

have the following bound (for any x ∈ X ), where the middle expression is discarded if µ = 0:320

(3.14) min
1≤i≤k

f(x̃i)− f(x) ≤ µB(x, x̃0)

(1 + µ
L−µ)

k − 1
+Mk ≤ L− µ

k
B(x, x̃0) +Mk,321
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where322

(3.15) Mk =

∑k
i=1(

L
L−µ)

i[L⟨∇Ψ(xi)−∇Ψ(x̃i), x− x̃i⟩+ ⟨∇f(xi), x̃i − xi⟩]∑k
i=1(

L
L−µ)

i
.323

In particular, if L⟨∇Ψ(xi) − ∇Ψ(x̃i), x − x̃i⟩ + ⟨∇f(xi), x̃i − xi⟩ is uniformly bounded (from324

above) by M , we can replace Mk by M in (3.14).325

Proof. We follow the proof of [20, Thm 3.1] very closely. We state first the three-point326

property ([20, Lemma 3.1], [30]).327

Lemma 3.7 (Three-point property). Let ϕ(x) be a proper l.s.c. convex function. If328

z+ = argmin
x

{ϕ(x) +B(x, z)},329

then330

ϕ(x) +B(x, z) ≥ ϕ(z+) +B(z+, z) +B(x, z+), for all x ∈ X .331

As in [20, Eq 28], we have for any x ∈ X and i ≥ 1,332

f(xi) ≤ f(x̃i−1) + ⟨∇f(x̃i−1), xi − x̃i−1)⟩+ LB(xi, x̃i−1)

≤ f(x̃i−1) + ⟨∇f(x̃i−1), x− x̃i−1)⟩+ LB(x, x̃i−1)− LB(x, xi)

≤ f(x) + (L− µ)B(x, x̃i−1)− LB(x, xi).

(3.16)333

The first inequality follows from L-smoothness relative to Ψ, the second inequality from the334

three-point property applied to ϕ(x) = 1
L⟨∇f(x̃i−1), x− x̃i−1⟩ and z = x̃i−1, z+ = xi, and the335

last inequality from µ-strong-convexity of f relative to Ψ. We thus have336

f(x̃i) = f(xi) + f(x̃i)− f(xi)

≤ f(x) + (L− µ)B(x, x̃i−1)− LB(x, xi) + f(x̃i)− f(xi)

= (L− µ)B(x, x̃i−1)− LB(x, x̃i)

+ [f(x) + LB(x, x̃i)− LB(x, xi) + f(x̃i)− f(xi)].

(3.17)337

By induction/telescoping, we get:338

k∑
i=1

(
L

L− µ

)i

f(x̃i) ≤ LB(x, x̃0) +
k∑

i=1

(
L

L− µ

)i

f(x)

+
k∑

i=1

(
L

L− µ

)i

[L(B(x, x̃i)−B(x, xi)) + f(x̃i)− f(xi)].

(3.18)339

The final “approximation error” term is340

L(B(x, x̃i)−B(x, xi)) + f(x̃i)− f(xi)

= L⟨∇Ψ(xi)−∇Ψ(x̃i), x− x̃i⟩ − LB(x̃i, xi) + f(x̃i)− f(xi)

≤ L⟨∇Ψ(xi)−∇Ψ(x̃i), x− x̃i⟩ −Bf (x̃i, xi) + f(x̃i)− f(xi)

= L⟨∇Ψ(xi)−∇Ψ(x̃i), x− x̃i⟩+ ⟨∇f(xi), x̃i − xi⟩,

(3.19)341
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where in the inequality, we use the definition of L-relative smoothness Bf (x, y) ≤ LBΨ(x, y).342

(Recall B(c, a) +B(a, b)−B(c, b) = ⟨∇Ψ(b)−∇Ψ(a), c− a⟩ [5, Lemma 4.1].)343

Substituting Ck defined by344
k∑

i=1

(
L

L− µ

)i

=:
1

Ck
345

and rearranging, we get346

(3.20)

min
1≤i≤k

f(x̃i)− f(x) ≤ CkLB(x, x̃0)

+ Ck

k∑
i=1

(
L

L− µ

)i

[L⟨∇Ψ(xi)−∇Ψ(x̃i), x− x̃i⟩+ ⟨∇f(xi), x̃i − xi⟩].
347

In particular, if we have a uniform bound on [L⟨∇Ψ(xi)−∇Ψ(x̃i), x−x̃i⟩+⟨∇f(xi), x̃i−xi⟩],348

say M , then we have349

(3.21) min
1≤i≤k

f(x̃i)− f(x) ≤ CkLB(x, x̃0) +M.350

Finally, note that if µ = 0 then Ck = 1/k, and if µ > 0 then351

Ck =

(
k∑

i=1

(
L

L− µ

)i
)−1

=
µ

L
(
(1 + µ

L−µ)
k − 1

) ≤ 1/k.

352

Theorem 3.6 gives us convergence rate bounds up to an additive approximation error353

Mk, depending on how far the approximate iterates x̃k are from the true MD iterates xk.354

By taking x in (3.14) to be an optimal point x∗ where f attains its minimum, we can get355

approximate linear convergence and approximate O(1/k) convergence if the relative strong356

convexity parameters satisfy µ > 0 and µ = 0 respectively. In particular, the quantity357

(3.22) L⟨∇Ψ(xi)−∇Ψ(x̃i), x− x̃i⟩+ ⟨∇f(xi), x̃i − xi⟩358

that we would like to bound gives an interpretation in terms of how the approximate iterates359

x̃i should be close to xi. To minimize the first term, ∇Ψ(xi)−∇Ψ(x̃i) should be small, and360

x̃i − xi should be small to minimize the second term.361

3.2. Training Procedure. In this section, we will outline our general training procedure362

and further detail our definitions for having faster convergence. We further propose a loss363

function to train the mirror potentials Mθ and M∗
ϑ to enforce both faster convergence, as well364

as forward-backward consistency in order to apply Theorem 3.1.365

Suppose we have a fixed function class F consisting of convex functions f : X → R, where366

X ⊆ Rd is some convex set that we wish to optimize over. Our goal is to efficiently minimize367

typical functions in F by using our learned mirror descent scheme.368

For a function f ∈ F , suppose we have data initializations x ∈ X drawn from a data dis-369

tribution Px|f , possibly depending on our function. Let {x̃k}Kk=1 be the sequence constructed370
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by applying learned mirror descent with forward potential Mθ and backward potential M∗
ϑ,371

with initialization x̃0 = x:372

(3.23) x̃k+1 = ∇M∗
ϑ(∇Mθ(x̃k)− tk∇f(x̃k)).373

To parameterize our mirror potentials Mθ,M
∗
ϑ : Rd → R, we use the architecture proposed374

by Amos et al. for an input convex neural network (ICNN) [1]. The input convex neural375

networks are of the following form:376

(3.24) zi+1 = σ
(
W

(z)
i zi +W

(x)
i x+ bi

)
, M(x; θ) = zl,377

where σ is the leaky-ReLU activation function, and θ = {W (x)
0:l−1,W

(z)
1:l−1, b0:l−1} are the pa-378

rameters of the network. For the forward mirror potential Mθ, we clip the weights such that379

W
(z)
i are non-negative, so the network is convex in its input x [1, Prop 1]. This can be done380

for both fully connected and convolutional layers. We note that it is not necessary for the381

backwards mirror potential M∗
ϑ to be convex, which allows for more expressivity. Using the382

ICNN architecture allows for guaranteed convex mirror potentials with minimal computa-383

tional overhead. By adding an additional small quadratic term µ∥x∥2 to the ICNN, we are384

able to enforce strong convexity of the mirror map as well.385

We would like to enforce that f(x̃k) is minimized quickly on average, over both the function386

class and the distribution of initializations x̃0 = x corresponding to each individual f . One387

possible method is to consider the value of the loss function at or up to a particular iteration388

x̃N for fixed N . We also apply a soft penalty such that ∇M∗
ϑ ≈ (∇Mθ)

−1 in order to maintain389

reasonable convergence guarantees. The loss that we would hence like to optimize over the390

neural network parameter space (θ, ϑ) ∈ Θ is thus:391

(3.25) argmin
θ,ϑ

Ef,x[f(x̃N )] + EX [∥∇M∗
ϑ ◦ ∇Mθ − I∥].392

The expectations on the first term are taken over the function class, and further on the initial-393

ization distribution conditioned on our function instance. To empirically speed up training,394

we find it effective to track the loss at each stage, similar to Andrychowicz et al. [2]. Moreover,395

it is impractical to have a consistency loss for the entire space X , so we instead limit it to396

around the samples that are attained. The loss functions that we use will be variants of the397

following:398

x̃k+1 = ∇M∗
ϑ(∇Mθ(x̃k)− tk∇f(x̃k)),(3.26a)399

L(θ, ϑ) = Ef,x

[
N∑
k=1

rkf(x̃k) + sk∥(∇M∗
ϑ ◦ ∇Mθ − I)(x̃k)∥

]
,(3.26b)400

where rk, sk ≥ 0 are some arbitrary weights. For training purposes, we took rk = r = 1 as401

constant throughout, and varied sk = sepoch to increase as training progresses. In particular,402

we will take s0 = 1, and increase the value every 50 epochs by a factor of 1.05. To train our403

mirror maps, we use a Monte Carlo average of (3.26b) over realizations of f and initializations404

x0 derived from the training data. This empirical average is optimized using the Adam405
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optimizer for the network parameters θ, ϑ. This can be written as follows for a minibatch406

{f (i), x
(i)
0 }Bi=1 of size B:407

(3.27) L̃(θ, ϑ) =
1

B

B∑
i=1

[
N∑
k=1

rkf
(i)(x̃

(i)
k ) + sk∥(∇M∗

ϑ ◦ ∇Mθ − I)(x̃
(i)
k )∥

]
.408

409

The maximum training iteration was taken to be N = 10, which provided better gen-410

eralization to further iterations than for smaller N . While N could be taken to be larger,411

this comes at higher computational cost due to the number of MD iterates that need to be412

computed. We found that endowing X = Rd with the L1 norm was more effective than using413

the Euclidean L2 norm. The aforementioned convergence results can be then applied with414

respect to the dual norm ∥·∥∗= ∥·∥∞.415

We additionally find it useful to allow the step-sizes to vary over each iteration, rather416

than being fixed. We will refer to the procedure where we additionally learn the step-sizes417

as adaptive LMD. The learned step-sizes have to be clipped to a fixed interval to maintain418

convergence and prevent instability. The LMD mirror maps are trained under this “adaptive”419

setting, and we will have a choice between using the learned step-sizes and using fixed step-420

sizes when applying LMD on test data. For testing, we will plot the methods applied with421

multiple step-sizes. These step-sizes are chosen relative to a ‘base step-size’, which is then422

multiplied by a ‘step-size multiplier’, denoted as ‘step-size multi’ in subsequent figures.423

Training of LMD amounts to training the mirror potentials and applying the approximate424

mirror descent algorithm. For training, target functions are sampled from a training set,425

for which the loss (3.26b) is minimized over the mirror potential parameters θ and ϑ. After426

training, testing can be done by applying the approximate mirror descent algorithm (3.2)427

directly with the learned mirror maps, requiring only forward passes through the networks.428

This allows for efficient forward passes with fixed memory cost, as extra iterates and back-429

propagation are not required.430

All implementations were done in PyTorch, and training was done on Quadro RTX 6000431

GPUs with 24GB of memory [26]. The code for our experiments are publicly available1.432

4. Learned Mirror Maps With Closed-Form Inverses. We illustrate the potential use of433

LMD by learning simple mirror maps with closed-form backward maps, and how this can lead434

to faster convergence rates on certain problems. We demonstrate these maps on two convex435

problems: solving unconstrained least squares, and training an SVM on 50 features. We first436

mention two functional mirror maps that can be parameterized using neural networks, and437

describe the training setup in this scenario.438

One possible parameterization of the mirror potential is using a quadratic form. This can439

be interpreted as gradient descent, with a multiplier in front of the gradient step. The mirror440

potentials and mirror maps are given as follows, where x ∈ Rd and A ∈ Rd×d:441

(4.1) Ψ(x) =
1

2
x⊤Ax, ∇Ψ(x) =

(
1

2
A+

1

2
A⊤
)
x, ∇Ψ∗(y) =

[
1

2
A+

1

2
A⊤
]−1

y.442

1https://github.com/hyt35/icnn-md
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The weight matrix A was initialized as A = I + E, where I is the identity matrix and443

E is a diagonal matrix with random N(0, 0.001) entries. For Ψ to be strictly convex, the444

symmetrization (A + A⊤)/2 needs to be positive definite. With this initialization of A, we445

numerically found in our example that explicitly enforcing this non-negativity constraint was446

not necessary, as the weight matrices A automatically satisfied this condition after training.447

Another simple parameterization of the mirror potential is in the form of a neural network448

with one hidden layer. In particular, we will consider the case where our activation function449

is a smooth approximation to leaky-ReLU, given by g(t) := αt+(1−α) log(1+exp(t)). Here,450

the binary operator ⊙ for two similarly shaped matrices/vectors is the Hadamard product,451

defined by component-wise multiplication (x ⊙ y)i = xiyi. Operations such as reciprocals,452

logarithms, exponentials and division applied to vectors are to be taken component-wise. For453

x ∈ Rd, A ∈ Rd×d, w ∈ Rd
+, the maps are given as follows:454

Ψ(x) = w⊤g(Ax) = w⊤(αAx+ (1− α) log(1 + exp(Ax))),(4.2a)455

∇Ψ(x) = αA⊤w + (1− α)w ⊙ exp(Ax)

1 + exp(Ax)
,(4.2b)456

∇Ψ∗(y) = A−1 log

(
(1− α)−1w−1 ⊙ (y − αA⊤w)

1− (1− α)−1w−1 ⊙ (y − αA⊤w)

)
.(4.2c)457

This is quite a restrictive model for mirror descent, as it requires the perturbed dual vector458

(1− α)−1w−1 ⊙ (y − αA⊤w)− η∇f to lie component-wise in (0, 1) in order for the backward459

mirror map to make sense. Nevertheless, this can be achieved by clipping the resulting gradient460

value to an appropriate interval inside (0, 1).461

The negative slope parameter was taken to be α = 0.2. The weight matrix A was initialized462

as the identity matrix with entry-wise additive Gaussian noise N(0, 0.01), and the vector w463

was initialized entry-wise using a uniform distribution Unif(0, 1/d).464

4.1. Least Squares. The first problem class we wish to consider is that of least squares in465

two dimensions. This was done with the following fixed weight matrix and randomized bias466

vectors:467

(4.3) min
x∈R2

∥Wx− b∥22, W =

(
2 1
1 2

)
, b ∈ R2.468

For training LMD for least squares, the initialization vectors x and target bias vectors b469

were independently randomly sampled as Gaussian vectors b, x ∼ N(0, I2). The function class470

that we wish to optimize over in (3.25) is:471

F = {fb(x) = ∥Wx− b∥22 : b ∈ R2}, x ∼ Px|f = N(0, I2),472

where the expectation Ef,x is taken over b, x ∼ N(0, I2).473

For this problem class, a classical MD algorithm is available. Observe that ∇fb(x) =474

W⊤W (x−W−1b). By taking Ψ(x) = 1
2x

⊤(W⊤W )x, the mirror maps are ∇Ψ(x) = (W⊤W )x,475

∇Ψ∗(x) = (W⊤W )−1x. The MD update step (2.1) applied to f = fb becomes476

(4.4) xk+1 = (W⊤W )−1((W⊤W )xk − tk∇f(xk)) = xk − tk(xk −W−1b).477
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This update step will always point directly towards the true minimizer W−1b, attaining lin-478

ear convergence with appropriate step-size. In Figures 2a and 3a, this method is added for479

comparison as the “MD” method.480

We can observe this effect graphically in Figure 2b. This figure illustrates the effect of MD481

on changing the optimization path from a curve for GD, to a straight line for MD. Without482

loss of generality, suppose we take b = 0 and work in the eigenbasis {v1, v2} of W , so the483

function to minimize becomes f(x1, x2) = 9x21 + x22. From initialization u = (u1, u2), the484

gradient flow induces the curve γ(t) = (u1 exp(−9t), u2 exp(−t)). The curvature restricts the485

step-size allowed for gradient descent and moreover increases the curve length compared to486

the straight MD line, leading to slower convergence.487

An alternative perspective is given using the mirror potential Ψ in Figure 2c, which takes488

the shape of an elliptic paraboloid. In the eigenbasis v1 = (1, 1), v2 = (1,−1) of W , the489

greater curvature of Ψ in the v1 direction implies that gradients are shrunk in this direction490

in the MD step. In this case, the gradient is shrunk 9 times more in the v1 direction than the491

v2 direction, inducing the MD curve µ(t) = (u1 exp(−t), u2 exp(−t)), which is a straight line.492

Figure 2 and Figure 3 illustrate the results of training LMD using the quadratic mirror493

potential and with the one-layer NN potential respectively. These figures include the evolution494

of the loss function, the iterates after 10 iterations of adaptive LMD as in the training setting,495

and a visualization of the mirror map. Figure 3b shows the instabilities that occur when the496

domain of the backwards map is restricted. This is an example of a problem where applying497

LMD with a well-parameterized mirror map can result in significantly accelerated convergence.498

4.2. SVM. The second problem class is of training an SVM on the 4 and 9 classes of499

MNIST. From each image, 50 features were extracted using a small neural network ϕ :500

[0, 1]28×28 → R50, created by training a neural network to classify MNIST images and re-501

moving the final layer. The goal is to train an SVM on these features using the hinge loss; see502

the SVM formulation in subsection 5.1.1 for more details. The problem class is of the form503

F =

{
fI(w, b) =

1

2
w⊤w + C

∑
i∈I

max(0, 1− yi(w
⊤ϕi + b))

}
.504

This is the feature class of training SVMs with certain features ϕi and targets yi, with i taking505

values in some index set I. In this case, the features and targets were taken as subsets of506

features extracted from the MNIST dataset. The initializations (w, b) ∼ P(w,b)|f were taken507

to be element-wise standard Gaussian.508

Figure 4 and Figure 5 demonstrate the evolution of the SVM hinge loss under the qua-509

dratic and one-layer NN mirror potentials respectively. In Figure 4, the loss evolution under510

quadratic LMD is faster compared to GD and Adam. This suggests that quadratic LMD511

can learn features that contribute more to the SVM hinge loss. We can see clearly the ef-512

fect of learning the step-sizes for increasing convergence rate for the first 10 iterations in the513

“adaptive LMD” plot, as well as the effect of a non-optimized step-size after 10 iterations514

by the increase in loss. In Figure 5, we can see that the one-layer NN mirror potential can515

perform significantly better than both Adam and GD. However, the instability due to the516

required clipping causes the hinge loss to increase for larger step-sizes. This instability further517
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(a) Evolution of least squares loss when using quadratic LMD.

(b) Optimization path for GD
and MD in the eigenbasis ofW .
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(c) Mirror potential Ψ

Figure 2: We observe that quadratic LMD is able to learn a map that allows for linear
convergence in this case. Further learning the step-size allows for immediate convergence to
machine precision. Note that W has eigenvectors v1 = (1, 1), v2 = (1,−1) with eigenvalues
λ1 = 3, λ2 = 1 respectively. As demonstrated in (b), the path that GD takes in the eigenbasis
is curved as it minimizes the v1 direction faster than the v2 direction, whereas MD travels in
a straight line to the minimizer. This is reflected in (c), where the quadratic form given by

Ψ curves more in the v1 direction. Indeed, the learned weight is A =

(
0.69 0.55
0.55 0.69

)
, which is

almost proportional to the classical MD weight W⊤W =

(
5 4
4 5

)
.

motivates the use of using a more expressive neural network, as well as directly modelling the518

backwards mirror map.519

Both of these methods require parameterizations of matrices, and moreover require com-520

puting the inverse of these matrices, which can cause instability when performing back-521

propagation. Moreover, such closed form expressions of the convex conjugate are not readily522

available in general, especially for more complicated mirror potentials parameterized using523

deep networks. Therefore, training LMD under this setting can not be effectively scaled up to524

higher dimensions. This motivates our proposed approach and analysis of using two separate525

networks instead, modeling the mirror and inverse mirror mappings separately.526

5. Numerical Experiments. Motivated by the examples in the preceding section, we em-527

ploy the LMD method for a number of convex problems arising in inverse problems and528
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(a) Evolution of least squares loss when using 1-layer-NN LMD.
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Figure 3: We can see the effect of needing to clip the dual iterates, as it creates a pair of lines
(in blue). This heavily affects the performance when using certain step-sizes, and demonstrates
the issues with such simple models. Note that the adaptive LMD and LMD with step-size
multi 0.5 are identical. This is due to the choice of interval that the step-size is clipped to
be in. The lower bound of the interval coincides with the step-size corresponding to step-size
multiplier 0.5, and adaptive LMD learns the step-sizes to be this lower bound.

machine learning. Specifically, we use a deep ICNN for learning the optimal forward mirror529

potential. However, unlike the constructions in the previous section, the convex conjugate530

cannot be expressed in a closed form. We instead approximate the inverse of the mirror map531

using a second neural network, which is not necessarily the gradient of an ICNN. We will532

demonstrate how this can allow for learning the geometry of the underlying problems and533

result in faster convergence. We will namely be applying the LMD method to the problems of534

learning a two-class SVM classifier, learning a linear classifier, and model-based denoising and535

inpainting on STL-10. The dimensionality of these problems, with STL-10 containing images536

of size 3 × 96 × 96, makes the matrix-based MD parameterizations proposed in the previous537

section infeasible. A list of training and testing hyper-parameters can be found in Table 2.538

5.1. SVM and Linear Classifier on MNIST. We consider first the problem of training539

an two-class SVM classifier and a multi-class linear classifier using features extracted from540

MNIST. A small 5 layer neural network (2 convolutional layers, 1 dropout layer and 2 fully541

connected layers) was first trained to a 97% accuracy, with the penultimate layer having 50542
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Figure 4: Evolution of SVM hinge loss under
quadratic LMD. LMD outperforms GD and
Adam, with nice convergence for the middle
step-size multipliers. With only 3 out of 51
eigenvalues of A being greater than 1 and the
rest below 0.5, this suggests that quadratic
LMD is able to learn combinations of features
that contribute most to the hinge loss.
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Figure 5: 1 layer NN mirror map applied
to SVM training. In this case, LMD out-
performs the other methods for smaller step-
sizes. The two LMD lines with higher loss
is due to the component-wise clipping that is
required for this method.

features. We consider the problem of training an SVM on these features for two specific543

classes. We also consider the problem of retraining the final layer of the neural network for544

classification, which is equivalent to a linear classifier. Our goal is to minimize the correspond-545

ing losses as quickly as possible using LMD. Let us denote the neural network that takes an546

image and outputs the corresponding 50 features as ϕ : [0, 1]28×28 → R50. This will work as a547

feature extractor, on which we will train our SVMs and linear classifiers.548

5.1.1. SVM. Our objective is to train a support vector machine (SVM) on the 50 ex-549

tracted features to classify two classes of digits, namely 4 and 9. Given feature vectors ϕi ∈ Rd550

and target labels yi ∈ {±1}, an SVM consists of a weight vector w ∈ Rd and bias scalar b ∈ R.551

The output of the SVM for a given feature vector is w⊤ϕi + b, and the aim is to find w and552

b such that the prediction sign(w⊤ϕi + b) matches the target yi for most samples. The hinge553

loss formulation of the problem is as follows, where C > 0 is some positive constant [7]:554

(5.1) min
w,b

1

2
w⊤w + C

∑
i

max(0, 1− yi(w
⊤ϕi + b)).555

The function class that we wish to learn to optimize for is thus556

(5.2) F =

{
fI(w, b) =

1

2
w⊤w + C

∑
i∈I

max(0, 1− yi(w
⊤ϕi + b))

}
,557

where each instance of f depends on the set of feature-target pairs, indexed by I. We use558

C = 1 in our example. For each training iteration, I was sampled as a subset of 1000559
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Figure 6: Plot of the SVM hinge loss (left) and SVM test accuracy (right) when optimizing
from random SVM initializations. The mirror descent significantly outperforms both gradient
descent and Adam, and does not exhibit as large of a decrease in accuracy for later iterations.

feature-target pairs from the combined 4 and 9 classes of MNIST, giving us a target function560

fI(w, b) ∈ F . A batch of 2000 initializations (w, b) was then sampled according to a standard561

normal distribution P(w,b)|f = N(0, I50+1). Subsets from the training fold were used for562

training LMD, and subsets from the test fold to test LMD.563

Figure 6 shows the evolution of the hinge loss and SVM accuracy of the LMD method,564

compared with GD and Adam. We can see that adaptive LMD and LMD with sufficiently565

large step-size both outperform GD and Adam. In particular, considering LMD with step-566

size multiplier 2, we can see accelerated convergence after around 10 iterations. One possible567

interpretation is that the network is learning more about the geometry near the minima, which568

is why we do not see this increased convergence for smaller step-sizes. The LMD method with569

approximate backwards map is much more stable in this case, even if it performs slightly570

worse than LMD with the one-layer NN-based mirror potential as in Figure 5.571

5.1.2. Linear Classifier. We additionally consider the problem of training a multi-class572

linear classifier on the MNIST features. We use the same neural network ϕ to produce 50573

features, and consider the task of training a linear final layer, taking the 50 features and574

outputting 10 scores corresponding to each of the digits from 0-9. The task of finding the575

optimal final layer with the cross entropy loss can be formulated as follows:576

(5.3) min
W∈R50×10

E(ϕ,y)∈features×target

[
− log

exp(Wϕ)y∑9
i=0 exp(Wϕ)i

]
.577

The corresponding feature class we wish to learn to optimize for is:578

(5.4) F =

fI(W ) =
1

|I|
∑

(ϕ,y)∈I

[
− log

exp(Wϕ)y∑9
i=0 exp(Wϕ)i

] ,579
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Figure 7: Plots of the linear classifier cross entropy loss (left) and classification accuracy
(right). MD converges significantly faster than both GD and Adam. However, it suffers from
stability issues for larger step-sizes, demonstrated by the increase in loss after 10 iterations
with step-size multiplier 4. This increase in loss is also reflected in the decrease of accuracy.

where each instance of f depends on the set of feature-target pairs, indexed by I. For each580

training iteration, I was sampled as a subset of 2000 feature-target pairs from MNIST, giving581

a target function fI(W ) ∈ F . A batch of 2000 initializations W was then sampled according582

to a standard normal distribution PW |f = N(0, I50×50) for training. Subsets from the training583

fold were used for training LMD, and subsets from the test fold to test LMD.584

Figure 7 shows the evolution of the cross-entropy loss and neural network classification585

accuracy under our optimization schemes. All of the LMD methods converge quite quickly,586

and we see that LMD with smaller step-sizes converge faster than larger step-sizes, reflecting587

a similar phenomenon in gradient descent. We additionally see that for LMD with step-size588

multiplier 4, the cross entropy loss has a large spike after 10 iterations. This is likely due to589

the the step-size being too large for the Lipschitz constant of our problem.590

5.2. Image Denoising. We further consider the problem of image denoising on the STL-10591

image dataset [12]. Our goal is to have a fast solver for a single class of variational objectives592

designed for denoising, rather than devise a state-of-the-art reconstruction approach. As the593

reconstructions are completely model-driven and do not have a learned component, the quality594

of the solution will depend completely on the chosen model.595

The denoising problem is to minimize the distance between the reconstructed image with596

an additional regularization term, which we have chosen to be total variation (TV). The597

corresponding convex optimization problems can be represented as follows:598

(5.5) min
x∈X

∥x− y∥2X+λ∥∇x∥1,X .599

Here, X is the space of images from a pixel space S 7→ [0, 1], y is a noisy image, λ > 0 is600

a regularization parameter, and the gradient ∇x is taken over the pixel space. In the case of601
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STL-10, the pixel space is 3 × 96 × 96. The function class we wish to learn to optimize over602

is thus:603

(5.6) F =
{
f(x) = ∥x− y∥2X+λ∥∇x∥1,X : noisy images y

}
.604

In our experiments, y was taken to have 5% random additive Gaussian noise over each605

color channel, and the initializations x were taken to be the noisy images x = y. We trained606

the LMD method on the training fold of STL10, and evaluated it on images in the test fold.607

The TV regularization parameter was manually chosen to be λ = 0.3 by visually comparing608

the reconstructions after running gradient descent for 400 iterations. To parameterize the609

mirror potentials, we use a convolutional neural network with an ICNN structure, as the data610

is in 2D (with 3 color channels). We additionally introduce a quadratic term in each layer611

for added expressiveness. The resulting models are of the following form, where the squaring612

operator [ · ]2 for a vector is to be taken element-wise, and σ is a leaky-ReLU activation613

function:614

(5.7) zi+1 = σ
(
W

(z)
i zi +W

(x,l)
i x+ [W

(x,q)
i x]2 + bi

)
, M(x; θ) = zl.615

By clipping the kernel weights W
(z)
i to be non-negative, we are able to obtain an input convex616

convolutional neural network.617

Figure 8 and Figure 9 show the result of applying the LMD algorithm to the function class618

of denoising models (5.6). In general, LMD and adaptive LMD outperform GD and Adam for619

optimizing the reconstruction loss. Moreover, Figure 9 shows that the reconstructed image620

using LMD is very similar to the ones obtained using Adam, which is a good indicator that621

LMD indeed solves the corresponding optimization problem efficiently.622

Figure 9a shows a pixel-wise ratio between the forward map ∇Mθ(y) and noisy image y.623

The outline of the horse demonstrates that ∇Mθ learns away from the identity, which should624

contribute to the accelerated convergence. In particular, we observe that around the edges of625

the horse, the pixel-wise ratio ∇Mθ(y)/y is negative. Intuitively, this corresponds to the MD626

step performing gradient ascent instead of gradient descent for these pixels. As we are using627

TV regularization, the gradient descent step aims to create more piecewise linear areas. If we628

interpret gradient descent as a “blurring” step, then MD will instead perform a “sharpening”629

step, which is more suited around the edges of the horse.630

We additionally consider the effect of changing the noise level, and the ability of LMD to631

generalize away from the training function class. We keep the LMD mirror maps trained for632

5% additive Gaussian noise, and apply LMD to denoise images from STL-10 with additive633

Gaussian noise levels up to 20%. We consider now the PSNR and SSIM of the denoised images634

compared to a “true TV reconstruction”, which is obtained by optimizing the objective (5.5)635

to a very high accuracy using gradient descent for 4000 iterations. We compare the iterates636

with respect to the true TV reconstruction as opposed to the ground truth, as we want to637

compare the resulting images with the minimum of the corresponding convex objective.638

Table 1 compares the PSNR and SSIM of denoised images obtained using LMD, Adam,639

and GD, compared against the true TV reconstructions. We apply GD and LMD with five640

fixed step-sizes ranging from 2.5× 10−3 to 4× 10−2 up to 20 iterations, and Adam with five641
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learning rates ranging from 1.25 × 10−2 to 2 × 10−1 for 20 iterations. We then compare the642

best PSNR/SSIMs over all step-sizes and iterations for each method, and the best overall643

step-sizes for the 10th and 20th iteration.644

We see that LMD outperforms both GD and Adam when applied on the trained noise645

level of 5% for the trained number of iterations N = 10, with better SSIM up to 10% noise as646

well. LMD also performs well for lower noise levels, which can be attributed to good forward-647

backward consistency near the true TV reconstruction. However, LMD begins to diverge for648

larger noise levels. This can be attributed to the increased noise being out of the training649

distribution, increasing the forward-backward loss and thereby causing instabilities.650
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Figure 8: Denoising reconstruction loss. The vertical gray line at iteration 10 indicates the
end of the training regime. After this line, the iterates are out-of-distribution for the proposed
method. LMD outperforms both GD and Adam for earlier iterations, however might not reach
the minimum due to forward-backward inconsistency. The sharp increase in loss for adaptive
LMD after 10 iterations is due to the choice of step-size to extend the trained 10 iterations.

5.3. Image Inpainting. We additionally consider the problem of image inpainting with651

added noise on STL10, in a similar setting to image denoising. 20% of the pixels in the image652

were randomly chosen to be zero to create a fixed mask Z, and 5% Gaussian noise was added653

to the masked images to create noisy masked images y. The inpainting problem is to minimize654

the distance between the masked reconstructed image and the noisy masked image, including655

TV regularization. The corresponding convex optimization problem is656

(5.8) min
x∈X

∥Z ◦ (x− y)∥2X +λ∥∇x∥1,X ,657
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Figure 9: Visualization of outputs when when applying LMD for TV model-based denoising.
We can see a faint outline of the horse when taking a pixel-wise ratio between the forward and
noisy image indicating a region of interest. LMD allows for much faster convergence compared
to Adam here, reaching a comparable reconstruction in only 3 iterations compared to 10 for
Adam.

where Z denotes the masking map S 7→ {0, 1}d, and the image difference x − y is taken658

pixel-wise. The corresponding function class that we wish to learn to optimize over is:659

(5.9) F =
{
f(x) = ∥Z ◦ (x− y)∥2X +λ∥∇x∥1,X : noisy masked images y

}
.660

The initializations x were taken to be the noisy masked images x = y. We trained the661

LMD method on the training fold of STL10, and evaluated it on images in the test fold.662

The TV regularization parameter was chosen to be λ = 0.3 as in the denoising case, and the663

mirror potentials are parameterized with a convolutional neural network similar to that used664

in the denoising experiment. We trained the LMD method on the training fold of STL10, and665

evaluated it on images in the test fold.666

Figure 10 shows the loss evolution of applying the LMD algorithm to the function class667

of inpainting models (5.9). LMD with sufficiently large step-size outperforms GD and Adam,668

however having too small of a step-size can lead to instability. We can also clearly see the669

effect of approximating our backward maps, as some of the LMD methods result in asymptotic670

reconstruction loss that is higher than a minimum. Nonetheless, adaptive LMD results in the671

best convergence out of the tested methods.672

Figure 11 provides a visualization of the resulting iterations. Figure 11a plots the ratio673

between the forward mapped masked image ∇Mθ(y) and masked image y, with clipped values674

to prevent blowup in the plot. We can again see a faint outline of the horse indicating a675

region of interest, with some speckling due to the image mask. Figure 11b is a plot of the676

result after 20 iterations of adaptive LMD, and it is qualitatively quite similar to the result677

after 20 iterations of Adam, demonstrating the feasibility of LMD as a solver for model-based678

reconstruction.679
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Figure 10: Inpainting reconstruction loss. The vertical gray line at iteration 10 indicates the
end of the training regime. LMD outperforms both GD and Adam, however suffers from
instability when the step-size is small, as remarked in Remark 3.4. The increase in loss after
10 iterations for adaptive LMD is due to the choice of step-size to extend the trained 10
iterations.
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Figure 11: Visualization of some LMD on TV model-based inpainting. While a faint outline
of the horse is visible, it is not as clear as in Figure 9 with speckling due to the zeroing mask.
LMD is able to reach a reasonable reconstruction in fewer iterations compared to Adam.
While the LMD reconstruction has artifacts around the edges, the Adam reconstruction is
generally noisy.
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Table 1: Table of PSNR and SSIM, compared to the true TV reconstruction. As our goal is
to minimize the TV-regularized loss function, we compare with the loss-minimizing image as
opposed to the ground truth image. LMD outperforms both GD and Adam when applied for
noise levels up to 5% for the trained N = 10 iterations, but is unstable for noise levels above
10%, which are out-of-distribution. Values are taken as the best over five step-sizes.

Gaussian Noise %
Best Iteration 10 Iteration 20

GD Adam LMD GD Adam LMD GD Adam LMD

PSNR

1 30.91 34.13 34.25 27.92 31.04 33.27 30.91 34.03 32.88
2 30.93 34.06 34.21 27.90 30.86 33.21 30.93 34.00 32.87
5 31.09 33.36 34.22 27.73 29.91 32.92 31.09 33.44 33.11
10 31.08 32.59 28.21 26.45 29.00 27.88 31.08 32.40 25.92
15 29.68 32.56 21.39 23.65 28.89 19.84 29.68 32.30 13.25
20 28.96 33.68 20.12 22.97 30.32 10.94 28.96 33.37 -21.09

SSIM

1 0.905 0.960 0.963 0.862 0.914 0.956 0.905 0.956 0.961
2 0.905 0.955 0.963 0.858 0.908 0.955 0.905 0.951 0.961
5 0.898 0.935 0.962 0.857 0.880 0.950 0.898 0.932 0.961
10 0.893 0.907 0.950 0.817 0.831 0.908 0.893 0.902 0.950
15 0.876 0.893 0.849 0.698 0.799 0.689 0.876 0.889 0.849
20 0.850 0.917 0.887 0.662 0.841 0.772 0.850 0.915 0.878

Table 2: Hyper-parameters for the problem classes considered.

SVM Linear Classifier Denoising Inpainting

Batch size 2000 2000 10 10
Epochs 10,000 10,000 1300 1100

All

ICNN training parameters (Adam) α = 10−5, β = (0.9, 0.99)
Learned iterations N 10
Learned step-size initialization 10−2

Learned step-size range (10−3, 10−1)
Testing base step-size (LMD,GD) 10−2

Testing base step-size (Adam) 5× 10−2

5.4. Effect of Regularization Parameter. We now turn to studying the effect of the reg-680

ularization parameters used to enforce consistency of the forward and backward mirror maps.681

The regularization parameter sk = sepoch as in (3.26b) was initialized as 1, and subsequently682

multiplied by 1.05 every 50 epochs.683

Under the assumption that the model is trained well for each regularization parameter,684

the training loss gives a perspective into the trade-off between the loss and the forward-685
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Figure 12: Training loss and forward-
backward consistency loss when training an
SVM, plotted against training epochs. We
can see clearly the tradeoff between the loss
and forward-backward loss at the earlier it-
erations. Each vertical grey line corresponds
to an epoch where the forward-backward loss
regularization is increased.
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Figure 13: Training loss and forward-
backward consistency loss when training in-
painting on STL10, plotted against training
epochs. We can see the effect of increasing
the forward-backward regularization parame-
ter as the forward-backward loss continues to
decrease along the iterations, while the loss
begins to increase.

backward consistency of the learned mirror maps. Informally, the model will try to learn686

a one-shot method similar to an end-to-end encoder-decoder model. Increasing the forward-687

backward regularization parameter sepoch reduces this one-shot effect, and encourages a proper688

optimization scheme to emerge. Therefore, it is natural that the objective loss will increase689

as the forward-backward loss decreases. This effect can be seen in Figure 12, where the690

objective loss starts very low but then increases as the forward-backward error decreases.691

This could be interpreted as the LMD learning a single good point, then switching to learning692

how to optimize to a good point. In addition to encouraging a proper optimization scheme,693

increasing the forward-backward regularization parameter has the added effect of encouraging694

the forward-backward loss to continue decreasing. This can be seen in Figure 13, where the695

objective loss also decreases before increasing again.696

5.5. Ablation Study. In this section, we will compare the effect of various design choices697

on LMD. In particular, we will consider (i) the effect of the number of training iterations698

N , (ii) the effect of not enforcing the forward-backward consistency by setting sk = 0, and699

(iii) a further comparison against GD with learned step-sizes (LGD). In particular, the first700

experiment will be LMD trained with N = 2. The latter experiment is equivalent to our LMD701

with both mirror maps fixed to be the identity. We will compare these three experiments on702

the inpainting setting as in Subsection 5.3. Figure 14 compares the forward-backward incon-703

sistency and the loss for these three experiments with LMD trained for inpainting, detailed704

in Subsection 5.3. For each of these methods, we choose to extend the learned step-sizes by a705

constant, up to 20 iterations.706

For experiment (i), decreasing the number of training iterations N severely impacts the707

forward-backward inconsistency. Moreover, the number of training iterations is insufficient to708
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be close to the minimum of the problem. These problems coupled together lead to the loss709

converging to a poor value, or diverging depending on the step-size extension.710

For experiment (ii), setting sk = 0 in (3.26b) and not enforcing forward-backward con-711

sistency results in high forward-backward loss. Nonetheless, the loss rapidly decreases in the712

first couple iterations, faster than LMD. This is consistent with the view that the pair of mir-713

ror potentials acts as an encoder-decoder network, rapidly attaining close to the minimum.714

Due to the higher forward-backward loss, this method has looser bounds on the convergence,715

resulting in the increase in reconstruction loss in the later iterations compared to LMD.716

For experiment (iii), learning the step-sizes for GD directly results in significantly worse717

performance compared to LMD. This can be attributed to LMD learning the direction of718

descent via the mirror maps, in addition to the speed of descent given by the learned step-719

sizes. This demonstrates that a better direction than steepest descent exists, can be learned720

by LMD and results in faster convergence rates.721

These experiments demonstrate the effect of the variables of LMD. In particular, we show722

that a sufficient number of training iterates is required to maintain longer term convergence,723

and that enforcing forward-backward consistency sacrifices some early-iterate convergence rate724

for better stability for longer iterations. Moreover, the LGD experiment shows that learning725

a direction via the mirror maps in addition to the speed of convergence allows for faster726

convergence.727
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(a) Evolution of forward-backward loss.
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(b) Evolution of inpainting reconstruction loss.

Figure 14: Ablation study considering the forward-backward loss and reconstruction loss for
image inpainting. We consider (i) training a small number of iterations N = 2, (ii) training
without enforcing the forward-backward inconsistency sk = 0, and (iii) training where the
mirror maps are fixed to be the identity, corresponding to GD with learned step-sizes (LGD).
Adaptive LMD is trained for N = 10 iterations, as in Subsection 5.3. Note that LGD does
not have a forward-backward loss, as the iterates are exact.
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5.6. Computational Complexity. In this subsection, we discuss the computational com-728

plexity of the LMD method in terms time and memory, for both training and testing time.729

For a single backward and forward pass, the proposed method scales linearly with the730

dimension and number of iterations. In particular, suppose the space we wish to optimize is731

over X ⊆ Rd with dimension d and batch size n, and we run N iterations of LMD. Assuming732

that backpropagating and taking gradients scales linearly with the number of parameters P ,733

the backwards pass takes O(n×d×N×P ) time and O(n×d×N×P ) memory. The forwards734

pass takes O(n × d ×N × P ) time and O(n × d × P ) memory, where we drop a factor of N735

as holding intermediate iterates is not required.736

Table 3 compares the GPU wall-times and memory consumption for various numbers737

of training iterations N , tested for the STL-10 inpainting experiment for both training and738

testing. We find that the times and memory consumption are as expected, with near-linear739

increase in time and train memory, and near-constant test memory.740

Table 3: Table of GPU wall time and memory consumption for training and testing LMD,
with various iteration counts. Times are per batch, with a batch-size of 25 on STL-10 images
with dimension 3× 96× 96. Training and testing was done on Quadro RTX 6000 GPUs with
24GB of memory.

Iterations Train time (s) Test time (s) Train memory (GB) Test memory (GB)

N = 2 5.13 0.422 8.24 1.52
N = 5 8.26 1.05 12.68 1.53
N = 10 13.41 2.11 20.09 1.54
N = 20 - 4.22 - 1.57
N = 50 - 10.55 - 1.64

6. Discussion and Conclusions. In this work, we proposed a new paradigm for learning-741

to-optimize with theoretical convergence guarantees, interpretability, and improved numerical742

efficiency for convex optimization tasks in data science, based on learning the optimal Breg-743

man distance of mirror descent modeled by input-convex neural networks. Due to this novel744

functional parameterization of the mirror map, and by taking a structured and theoretically-745

principled approach, we are able to provide convergence guarantees akin to the standard746

theoretical results of classical mirror descent. We then demonstrate the effectiveness of our747

LMD approach via extensive experiments on various convex optimization tasks in data sci-748

ence, comparing to classical gradient-based optimizers. The provable LMD approach achieves749

competitive performance with Adam, a heuristically successful method. However, Adam lacks750

convergence guarantees for the convex case, achieving only local convergence [27, 8, 34]. LMD751

is able to achieve the fast convergence rates from Adam, while retaining convergence guaran-752

tees from slower classical methods such as GD.753

In this paper, we have only considered the most basic form of mirror descent as our starting754

point. There is still much potential for further improvements on both theoretical results and755

numerical performance of the algorithm. If a deep parameterization of convex functions with756
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closed form convex conjugate exists, then this would allow for exact convergence. One open757

question is what an optimal mirror map should look like for a particular problem class such as758

image denoising, and how well a deep network is able to approximate it. Our ongoing works759

include accelerating the convergence rates of LMD with momentum acceleration techniques760

which have been developed for accelerating classical mirror descent [15, 16], and stochastic761

approximation schemes [33].762
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