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Knowing which nodes are influential in a complex network and
whether the network can be influenced by a small subset of
nodes is a key part of network analysis. However, many
traditional measures of importance focus on node level
information without considering the global network architecture.
We use the method of trophic analysis to study directed
networks and show that both ‘influence’ and ‘influenceability’ in
directed networks depend on the hierarchical structure and the
global directionality, as measured by the trophic levels and
trophic coherence, respectively. We show that in directed
networks trophic hierarchy can explain: the nodes that
can reach the most others; where the eigenvector centrality
localizes; which nodes shape the behaviour in opinion or
oscillator dynamics; and which strategies will be successful
in generalized rock–paper–scissors games. We show, moreover,
that these phenomena are mediated by the global directionality.
We also highlight other structural properties of real networks
related to influenceability, such as the pseudospectra, which
depend on trophic coherence. These results apply to any
directed network and the principles highlighted—that node
hierarchy is essential for understanding network influence,
mediated by global directionality—are applicable to many
real-world dynamics.
1. Introduction
Influence in directed complex networks and the ability of the
networks to be influenced is vitally important in many real-world
systems, for example the spreading of opinions and epidemics or
the synchronization of the brain in a seizure [1]. However, when
we think of what makes nodes influential, the answer is very
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disparate and depends on many factors. This question has been of great interest to the network science

community and well studied in the case of undirected networks [2,3]. However, in the directed case
insight can be gained by considering properties unique to directed networks. This is necessary as many
real-world systems are intrinsically directed and the influence of nodes is strongly tied to the
directionality of the edges [4]. Influence can be thought of as how well nodes control the dynamics of a
network, how measures of centrality are distributed across the network, how many nodes can be
reached from a set of nodes and how sensitive the network is to perturbations. We show that all of
these properties can be understood and made intuitive by considering the hierarchical ordering and
global directionality of the network as measured through the technique of trophic analysis [5–7].

When the nodes are easily ordered in a hierarchical fashion, as in a food web, it is clear that the
network can be influenced by the nodes at the bottom of this hierarchy and conversely it is very
difficult to influence the network from the top of the hierarchy. When there is little hierarchical
structure, like in an Erdős–Rényi random graph, this effect is damped and influence over the network
is more evenly distributed. This simple construction, detailed in the Background, aides in the
interpretation of control over network dynamics, spreading processes, localization of centrality
measures and sensitivity to perturbations. Hierarchical ordering can explain why nodes which locally
look unimportant may be able to influence the entire network. This framework may provide an
interpretation to observations made about influence in directed networks in a variety of literature
settings such as the effect of heterogeneous centrality and directionality in opinion formation in real
networks [8], the influence of peripheral nodes on dynamics of directed networks [9] or the
asymmetry between paths up and down the network hierarchy [10]. Trophic analysis pairs a global
measure of directionality with a local measure of hierarchy, making it different from a single centrality
measure. This allows an intuition surrounding the variability in the importance of a node’s position in
the hierarchy and how this affects its role in the network. This differs from previous results on the
relationship between hierarchy and influence which do not feature this pairing of local and global
measures [11,12]. The fact that centrality measures play different roles dependent on the mesoscale
structure of the network has been noted previously in the case of PageRank and clustering [13].

This paper is organized as follows. We first introduce the background and explain the principles
underlying trophic analysis. We then introduce some dynamics and highlight how global
directionality can affect the influence and influenceability of these processes. These are majority vote,
Kuramoto oscillators, the voter model and the frequency of strategies in generalized rock–paper–
scissors games. We then include some results on the relationship between structure and influence in
real-world networks and how this can be shaped by hierarchy. We demonstrate the relationship
between hierarchy and eigenvector localization, left and right eigenvector correlation (with specific
real-world examples), sensitivity to structural perturbation through the pseudospectra and the size of
the out-component of a node. The real network data used in this paper, also used in [7,14], are
available at [15] and contain food webs, neural networks, social networks and more as well as the
original sources of the network data used. This shows how many diverse notions of influence can be
investigated in directed networks using trophic analysis and how in a wide range of systems the
ability to exploit hierarchy to influence a system depends on the global directional organization.
2. Background
Real-world systems formed by many interacting elements can be represented using graphs. These complex
networks are sets of nodes or vertices representing the elements of the system while the edges or links
represent the interactions or connections between elements. Many real-world systems such as social
networks, food webs, the Internet and more have interactions which are intrinsically directional and
may represent the influence a node has over another [16]. This structure can be represented through a
matrix, A, known as an adjacency matrix where the edges are represented by the non-zero entries of the
matrix. For an unweighted directed network of N nodes this N ×N matrix is defined as

Aij ¼ 1 if there exists an edge i ! j
0 otherwise:

�
ð2:1Þ

In the case of directed networks thismatrix is not symmetric, unlike the undirected casewhere edges go in both
directions and the matrix is symmetric. Each node i then has an in-degree, kini ¼ P

j A ji, and an out-degree,
kouti ¼ P

j Aij. The matrix A can also be weighted to show the strength of interactions but here we focus on
the simple unweighted case although it is possible to use trophic analysis in the weighted regime [5].
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2.1. Trophic analysis

Trophic analysis is a technique to quantify the global directionality inherent in real directed networks [5],
and is applicable to any directed network. Trophic analysis was originally derived from ecology [17] where
the original definition linked hierarchy to weighted steps from the basal nodes (vertices of in-degree zero),
which is an intuitive way to view hierarchy but cannot be generalized to any directed network without
basal nodes like the definition used here and in [5–7,18]. Much of the previous work which applied
trophic level and incoherence used the previous definition [14,17,19–21]. This was successfully applied
in a wide variety of settings including infrastructure [22,23], the structure of food webs [20], spreading
processes such as epidemics or neurons firing [21] and organizational structuring [19].

Trophic analysis combines two parts: the node-level local information, trophic level, and a measure of
the global network directionality, trophic incoherence. Trophic level is a node-level quantity which
measures where a specific node sits in the network hierarchy. Trophic level is calculated by solving
the N ×N matrix equation, first proposed in [5], given by

Lh ¼ v, ð2:2Þ

where h is the vector of trophic levels for each node and v is the vector imbalance of the in- and out-
degree of each node, where each element is defined as vi ¼ kini � kouti . L is the Laplacian matrix:

L ¼ diagðuÞ � A� AT , ð2:3Þ

where u is the sum of the in- and out-degrees of each node, ui ¼ kini þ kouti , and AT is the transpose of the
adjacency matrix, A. The solution of equation (2.2), which provides the trophic levels of the nodes, is only
defined up to a constant vector so we take the convention that the lowest level node is set to trophic level
zero. The Laplacian matrix is singular by definition, yet a solution can be found either by choosing a
node (say i = 1) and setting its value (e.g. h1 = 0); or iteratively, which is convenient for very large
networks [5].

In a balanced network, for instance a directed cycle, there is no hierarchical structure so every node
has the same level. This is due to the dependence of equation (2.2) on the imbalance vector, vi ¼ kini � kouti ,
which means that when the in- and out-degrees of all nodes are equal the right-hand side of the equation
goes to zero. In a network with a perfect hierarchy like a directed line, the nodes are assigned integer
levels with steps of one between connected nodes. The level distributions of real networks are more
complex and lie somewhere between these extreme cases.

Trophic incoherence is a global parameter which measures how well hierarchically ordered the
network is. It is related to the amount of feedback in the system, and thus to network properties such
as the spectral radius, non-normality and strong connectivity [5,7]. It is quantified via the trophic
incoherence parameter F, which is defined as

F ¼
P

ij Aijðh j � hi � 1Þ2P
ij Aij

: ð2:4Þ

In [5], the authors begin with equation (2.4) (which is the original definition of trophic incoherence
[17]) and define the trophic levels, h, as those which minimize F. Hence, the linear form of equation
(2.3) and dependence on the imbalance vector come from the minimization of the quadratic function
in equation (2.4).

Trophic incoherence measures how far the mean square of the difference in trophic level, h calculated
via equation (2.2), between start and end vertices of all the edges differs from one. The equation for
trophic level, equation (2.2), can be derived by minimizing equation (2.4) with respect to h. The
trophic incoherence takes values between 0 and 1 with real networks found on a spectrum between
these extreme values. Networks with a perfect hierarchy are coherent and have F = 0. When the
network is balanced like a directed cycle then F = 1. It is also possible to speak in terms of coherence
instead of incoherence by using the quantity 1− F. When we talk about hierarchy we refer to the
bottom of the hierarchy as nodes of low trophic level and the top of the hierarchy as the nodes of
high trophic level. In a directed path the low trophic level nodes would be the start of the path and
the high level nodes would be near the end of the path. In a food web the bottom nodes are plants
and the top nodes are apex predators. This, however, is just a convention and the notion of top and
bottom can be flipped by taking the transpose of the adjacency matrix (for example, when describing
hierarchies of information flow from nodes to nodes).
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Figure 1. Relationship between trophic incoherence and generation temperature in the model used in this work, where each of the
1000 points, per network size, represents a distinct network generated by the model, with N = 100, N = 200 and N = 500, 〈k〉 =
20 and no basal nodes. The generation temperature is logarithmically spaced between 10−2 and 102. We also plot with a dashed
line an analytical approximation, given by equation (2.7), for the relationship between the trophic incoherence and temperature.
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Using directionality and hierarchy to analyse the structure of directed networks in this way is quite
natural and as such alternative similar formulations exists which rank nodes and measure the global
directionality. SpingRank [24] views the ranking problem as minimizing the energy of a network of
directed springs, leading to a similar minimization problem to the one used in trophic incoherence.
However, these authors focus on the node-level ranks rather than the global directionality and add a
regularization term to remove the invariance of their rank equation to addition of a constant vector.
There is also a methodology based on Helmholtz–Hodge decomposition for measuring ‘circularity’ in
directed networks [25,26] which has been shown to be equivalent to trophic analysis [5].
2.2. Network generation
In order to study how the properties of networks depend on their trophic structure it is necessary to be
able to numerically generate networks which span the full range of trophic incoherence, while keeping
the number of nodes and edges fixed. We adapt the generalized preferential preying model (GPPM) [21]
in an identical way to Rodgers et al. [6] to the definition of trophic level which does not require basal
nodes (vertices of zero in-degree) and use that to generate the networks we require. This works by
generating an initial configuration of N nodes and a small number of random edges, calculating the
initial trophic levels of this setup, adding edges up to the required amount using a probability
determined by the trophic level and a temperature-like control parameter which can affect the spread
of level differences. In order to generate a network with no basal nodes the initial configuration is that
each node has in-degree one with the source vertex for that edge chosen uniformly at random from
the other nodes in the network. Once the initial trophic levels ~h are calculated via equation (2.2) then
new edges, up to the required amount, can be added with probability defined as

Pij ¼ exp �ð~h j � ~hi � 1Þ2
2TGen

" #
, ð2:5Þ

where Pij is the probability of connecting nodes i to j. The parameter TGen controls this process. When this
parameter is small it is likely that edges connect only between nodes where the level difference is 1 or
near to it. When TGen is very large then the edge-addition probability goes towards 1 irrespective of
the trophic level difference between the end and start nodes.

The relationship between the generation temperature and the trophic incoherence is displayed in
figure 1, which shows how the model can be used to create a sample of networks of varying
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incoherence. In order to efficiently sample the whole spectrum of the trophic incoherence we use

logarithmic spacing of TGen throughout the paper, except for in the sections on the generalized rock–
paper–scissors games and the out-component analysis. In these two sections, we compare networks of
low, intermediate and high trophic incoherence, for which we selected the generation temperatures to
be 0.02, 1 and 100, respectively. As shown in figure 1 this picks out each of the broad regimes of the
generative model: the low temperature regime of very coherent networks, the intermediate regime
where we see more variability with the temperature, and the high temperature regime of incoherent
networks.

We also show in figure 1 how the behaviour of this model can be analytically approximated. In
previous work on trophic analysis, where the ecological definition of trophic levels was used, the
trophic incoherence, q, was defined as the standard deviation of the trophic level differences spanned
by edges [17]. Under this definition the mean trophic level is always one, and a network is more
incoherent the more heterogeneously the trophic differences are distributed around this value. Given a
set of trophic levels (by whichever definition), it is possible to convert between the two measures of
incoherence via the formula defined in [5]:

F ¼ h2

1þ h2 , ð2:6Þ

where η = σ/μ, σ is the standard deviation of the level differences and μ is the mean level difference. Hence,
η is the appropriate replacement for the incoherence parameter q used in [14,17] and subsequent papers,
when using the MacKay level definition [5]. If we assume that the trophic level difference distribution
across the edges in the generated networks is distributed as in the edge addition probability, we can
replace η2 with TGen, if we assume that iteration of the attachment probability given by equation (2.5)
leads to an approximately Gaussian distribution of trophic differences. The differences in trophic level
have been found roughly to follow a Gaussian distribution in real networks. Also, analytical results
which hold for real networks have been based on the assumption that the level difference distribution
is Gaussian [7]. The assumption that the trophic levels follow the same Gaussian as implied by the
edge-addition probability leads to the approximation that

F � TGen

1þ TGen
: ð2:7Þ

As shown by figure 1 this fits quite well for the larger networks sizes. We plot the data with a logarithmic
scaling on the x-axis which allows the different regimes of low, intermediate and high incoherence to be
visualized and leads to the sigmoid shape, as writing a = log10TGen leads to the alternative form

F � 1
1þ 10�a , ð2:8Þ

which is an equation of a sigmoid curve. This approximation fails at low temperatures for the small very
dense networks, N = 100, as the generative model struggles to make networks which are very coherent at
such a high edge density—it becomes difficult to place edges in locations where the coherence is
maximized. We note that at high TGen we obtain η2 < TGen; however, the approximation works fairly
well thanks to the sigmoid function, which is close to one for all large arguments. Hence, η2 and TGen

are not directly equivalent, but relatable when used to calculate F in this way. Nevertheless, this
approximation provides an illustration of how the model works. Incoherence increases with
temperature by augmenting the probability that edges are placed with edge difference further from one.

Additional detail of how to efficiently generate these networks by more efficiently sampling the space
of edge addition probabilities so that each draw of a random number results in an edge being added is
given in [6]. All graph manipulations in this work were carried out using the Julia package Graphs.jl [27].
3. Influence and influenceability of dynamics
In this section, we present a wide range of dynamics and show how trophic level and incoherence can be
used to provide insight into disparate and unrelated processes. The idea is to use simple dynamics to
highlight the phenomena being picked out by trophic analysis. In this case, we define ‘influence’
to mean the ability of a targeted perturbation or modification of the nodes to affect the state of the
system some time after it is applied. In each of the dynamics we show how the nodes which can be
regarded as ‘influential’ are the ones with low trophic level—i.e. those at the bottom of the hierarchy.
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We also find that the ‘influenceability’ of the whole network by the low trophic level nodes depends on

the network’s trophic coherence. The goal of this section is to highlight the broad range of dynamics to
which trophic analysis can be applied. In this section, we use numerically generated networks only—as
opposed to the structural section where we provide results on numerically generated networks and a
dataset of real-world networks [15]. We generate networks numerically with the model described
above, which allows us to set the numbers of nodes and edges and to vary the trophic coherence. We
can also set the number of basal nodes (nodes with zero in-degree). The dynamics of basal nodes are
not affected by the states of other nodes, since they have no inputs. However, they are obvious
candidates for nodes with a high influence on the whole network, and this has been demonstrated in
previous work [9,16]. While basal nodes will tend to have low trophic levels, trophic analysis is not
needed in order to identify them. We, therefore, fix the number of basal nodes in our generated
networks to be zero, so as to highlight the importance of trophic level even in networks where all
nodes can be affected by the rest of the system.

Our hypothesis is that the nodes at the lowest trophic levels (regardless of whether they are basal
nodes) are the most influential across a broad range of different dynamics. We test this in the
following way. We set up initial conditions such that all the nodes begin in one state or frequency,
except for a ‘perturbed fraction’ of nodes which start in a different state or frequency. We choose the
nodes with lowest trophic level for this perturbation, and observe the subsequent dynamics of
the system. Whenever the system evolves to the state or frequency initially given to, say, only 5%
of the nodes, we can conclude that: the network is highly ‘influenceable’, and these are the most
‘influential’ nodes. We go on to find that influenceability depends on trophic coherence, and influence
is indeed determined by trophic level, across several dynamics.

We present the results as scatter plots of individual networks, but also show the averages and
standard deviations of the sets of networks we generate. This allows the variability of the dynamics
for a small number of influential nodes to be visualized as well as showing the general trend. For
each of the dynamics we influence 5%, 20% and 40% of the nodes with the lowest trophic level to
show how varying the size of this set affects the influence and the spread of the results.

3.1. Majority vote
Majority vote dynamics is the first dynamics to be studied as it is very simple to define as well as being
widely used. This allows the primary focus to be on the network structure. Each agent (node) in the
model is given an ‘opinion’ and then updates their opinion such that they select the opinion held by
the majority of their neighbours. This model is very simplistic yet shares some properties with other
common agent-based discrete dynamics widely used in complex networks, such as the SIS epidemic
model [28], the Hopfield neural network model [6], the Ising model [29] and the Moran process from
biology [30]. Each of these models has additional details which separate it from the basic majority
vote, but the dynamics is governed by similar principles.

Majority vote dynamics can be defined as a system where there are two opinions, denoted as +1 and
−1. An agent holds either of the two options and updates their state using an update rule defined as

Siðtþ DtÞ ¼ sgn
XN
j¼1

AjiS jðtÞ
0
@

1
A: ð3:1Þ

Theupdates canbedoneasynchronouslyor in parallel and in thisworkwe chose parallel updates. This specific
update rule is deterministic but it can bemodified in a range ofways to add stochastic behaviour to the system.
Additionally, more than two possible states could be added to model a larger number of opinions. An
absorbing state is reached if all nodes have the same opinion. However, it is also possible for the system to
remain in a fixed point or in a cycle involving nodes with different opinions. In practice, we allow the
system to run for a specified number of updates before recording the proportion of nodes in the +1 opinion.

The effectiveness of using trophic level to identify influential nodes is shown in figure 2. When a
small number of nodes at the bottom of the hierarchy (nodes with low trophic level) are placed in the
−1 opinion, most or all the rest of the nodes can evolve towards this state despite the majority of the
nodes being initialized in the +1 opinion. This scenario holds except when the networks become too
incoherent for the perturbed nodes to have a decisive influence. Viewed as a function of trophic
incoherence, there is a transition from an influenceable regime (in which the low trophic level nodes
dominate) to one which is less influenceable. Where this transition occurs varies with the fraction of
perturbed nodes. Moreover, for a given trophic incoherence and perturbed fraction, some network
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realizations are highly influenceable and others are not, suggesting that there are other relevant network
properties to be determined.

This is the expected behaviour in networks of lower incoherence as there is less feedback and cycles so
the majority opinion at the bottom of the network moves up through the hierarchy, eventually changing the
opinion of the whole system. In a network which is more incoherent this does not happen, for two reasons:
there are fewer nodes connected only to the perturbed fraction; and there is more feedback (from directed
cycles), which allows the unperturbed nodes to reinforce their initial opinion.

The standard deviation of the points is largest at the incoherence which is between the two regimes.
When 40% of the nodes are perturbed, figure 2c, almost all nodes are influenced by the low level nodes
apart from in the most incoherent networks, which may remain in an intermediate state. Similar
behaviour is seen when 20% of nodes are perturbed, figure 2b, although there is now a clearer regime
of networks which are too incoherent to be influenced by this fraction of nodes. When only 5% of
nodes are perturbed, figure 2a, despite the number of nodes being small, they are able to influence the
state of many of the networks of low coherence and the average state only increases as the incoherence
becomes intermediate and there are more cycles and feedback in the system. There are a few outlier
points at low incoherence. This is to be expected as we perturb such a small fraction of the nodes that
there may be features of the network which make it difficult for them to influence the system. For
example the number of edges which leave the set which is perturbed may be small or the trophic levels
may be organized in such a way that the small set does not fill the lowest level of the network [6].
However, these simulations still demonstrate the usefulness of this method. Indeed, in very coherent
networks specific targeted influence can overcome an opinion held by 95% of the network. This
example provides perhaps the simplest demonstration of the insight trophic analysis can give into
network dynamics. This may have potential applications in social networks and organizations,
particularly in the promoting of cooperation in prisoner dilemma-like games on networks [31].
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networks and compute the mean and standard deviation of this set, with the mean plotted with the red dashed line and the
standard deviation shown with the shaded area. The coupling constant, K = 100, is twenty times the average degree to ensure
synchronization. Nodes are initially synchronized with phase 0. (a) Influence by 5% of nodes with lowest trophic level. (b)
Influence by 20% of nodes with lowest trophic level. (c) Influence by 40% of nodes with lowest trophic level.
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3.2. Synchronization phenomena and Kuramoto oscillators
A very similar result to that observed in the discrete majority vote dynamics can be observed in the
frequency synchronization of continuous Kuramoto oscillators, where the low level nodes can
influence the frequency of the whole system. The Kuramoto model is a well-known model of
synchronization with a wide range of applications, from neuroscience to power grids [32–36]. We use
NetworkDynamics.jl [37] to solve the system of differential equations used in our variant of the
model. Each oscillator (node) i has a phase, θi, which evolves according to the equation

dui
dt

¼ vi þ K
kini

XN
j¼1

Aji sin ðu j � uiÞ, ð3:2Þ

where K is the coupling constant, kini is the in-degree of the node and ωi is the natural frequency of the
node. We use the form normalized by in-degree so that the oscillators update at similar rates regardless of
the number of input nodes. For the system used we set the coupling constant to K = 20〈k〉, which is well
above the critical threshold for maintaining frequency and phase synchronization when the system is
initialized at a single phase. This equation could be modified by adding noise or delays to the
updates to make the system more realistic. However, we focus here on the simplest case. Phase
synchronization can be measured by the order parameter

r ¼ 1
N

����XN
i¼1

eiui
����, ð3:3Þ

which reaches one when all the oscillators share the same phase but is zero when the phases are
uniformly randomly distributed from 0 to 2π. How the low trophic level nodes influence the
frequency in networks with varying trophic coherence is shown in figure 3, where a fraction of
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the low trophic level nodes have natural frequency ω =−1 and the remainder have ω = +1. Average

frequency is measured by sampling differences in node phase during the latter half of the simulation
and dividing by the time differences, averaging over samples and nodes. Since we are interested in
which frequency the nodes synchronize to, we set the initial condition so that the nodes begin with
the same phase and the dynamics are driven by the topology and natural frequencies only, and not
the varying initial conditions. The networks maintain phase synchronization, r close to 1, and
adequate frequency synchronization, standard deviation of node frequencies is generally very small
and always less than 1 (equivalent to standard error less than 0.045), as the simulation evolves due to
the initial conditions and strong coupling. Networks with low incoherence propagate the frequency of
the low-level nodes through the whole system and the network synchronizes at that frequency. In
networks of high trophic incoherence the feedback from the higher level nodes back to the lower level
nodes dilutes this effect, so the final average frequency of the system is further from that at the low
level nodes and closer to that of the higher level nodes.

This transition is different from the majority vote transition since both phase and frequency are
continuous, rather than the discrete states available to the majority vote dynamics. Additionally, in
this case we are permanently changing an intrinsic property of the nodes which is maintained
throughout the process, whereas previously the perturbation was to the initial conditions. However,
the fact that applying the same principle to two very different systems results in qualitatively similar
behaviour highlights the usefulness of trophic analysis as a tool. When only 5% of the low level nodes
are selected in the Kuramoto case, figure 3a, the trend is noisy and the standard deviation is large.
However, even in this regime we see the trend of the more coherent networks being more easily
influenced by the low level nodes and only the most incoherent networks resistant to this. When 20%
of the low level nodes are set, figure 3b, the trend is much clearer. The most coherent networks are all
very strongly influenced by the low level nodes, and there is a clear transition as the network
becomes more incoherent, with a lower standard deviation. When 40% of the nodes are perturbed,
figure 3c, the system is more strongly influenced by the low level nodes and the frequency is reduced
away from one, even in the most incoherent networks. In all cases, even at high incoherence there are
some networks which synchronize with the ‘influenced’ (low level) nodes.

The oscillators begin in a synchronized state, so we find similar results when the end time of the
simulation is varied. If a different oscillator function were used it may be possible to exploit the
network hierarchy to create more complex states. It has recently been shown that oscillators on non-
normal networks can lead to chimaera states [38], and it is known that non-normality is related to
trophic coherence [5,16].
3.3. Voter model
Avoter model is another way to model opinion formation for which similar results around influence and
influenceability can be demonstrated. Similar to the majority vote dynamics the agents can be given
states of either +1 or −1 and updated according to an update rule. However, instead of taking the
majority opinion of the neighbours the agent can update its state by choosing at random one of its
incoming neighbours and adopting the selected state. This model can be adapted, increased in
complexity and then applied to study real voting processes [39], economics [40] and chemistry [41,42].
The model has two absorbing states where all nodes share the same opinion (consensus). However,
after a finite time the system can find itself in an intermediate state which includes both opinions (and
on a directed network the absorbing states can be inaccessible).

Similar results to the previously obtained ones can be seen, where a new opinion introduced at the
lowest trophic level nodes spreads well in coherent networks but is less likely to establish itself in
more incoherent networks. This is demonstrated in figure 4. In the low incoherence networks, the
standard deviation is quite small and the ability of the low level nodes to influence the system is
clear. As we increase incoherence this is no longer always the case and we pass through a region of
higher variability as we transition to the incoherent regime, where the dynamics cannot be as easily
shaped by the low level nodes. When 40% of the nodes are set to −1, figure 4c, almost all the
networks flip to the minority state and only a small number of very incoherent networks maintain
the majority state. Very similar behaviour is found when 20% of the nodes are set to −1, figure 4b,
with most of the networks being easily influenced and only some of the high incoherence networks
being resilient to the perturbation. When only 5% are set to −1, figure 4a, we see the same trend but a
smaller fraction of the networks are influenced, with more networks being outliers from the trend.
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In a similar way to the majority rule case, targeting a very small number of nodes makes it more likely
that an insufficient number of edges leave the perturbed set to influence the whole network [6].

This section has shown how in different dynamical processes the nodes which can be regarded as
influential can be determined by using trophic levels, and the ability of the network to be influenced
is heavily shaped by the trophic coherence.
3.4. Generalized rock–paper–scissors dynamics
We show that trophic level can also be used as an analysis tool for the states of generalized rock–paper–
scissors games where the interactions between strategies are defined by a complex network. A standard
rock–paper–scissors game can be described with a directed cycle, in which each strategy has an edge to
the strategy it defeats. In this case, there is no overall best choice of strategy thanks to the symmetry of the
situation. This, however, may not be the case when the strategies interact through a more complex
‘strategy network’ which does not feature this cyclic structure (e.g. interactions between strategies and
characters in video-games or ecological interactions such as competition between bacteria [43], as
shown in figure 5). In such cases, there may be strategies which perform better than others.

The interaction between individual agents can be defined on a spatial structure like a lattice or by
allowing every agent to interact with every other as in a complete graph. For simplicity we allow all
the agents to interact with each other and ignore spatial structure. This setup shares many similarities
with mean-field analysis of Lotka–Volterra systems, which have been studied with respect to trophic
levels and coherence in [17]. It has also been much more widely studied in the regime of large
random systems [44,45]. Most studies on non-random systems have looked at smaller systems, quite
often with spatial aspects to them [46]. There has been some work looking at networks of generalized
rock–paper–scissors games but it mostly focuses on varying the strength of parameters rather than
looking at large varied structures. This work has mostly been numerical [47–51], with some looking at
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the behaviour of smaller systems with weighted interactions and weaker species. There has been some
analytical work on rock–paper–scissors–lizard–spock networks which have a more complex topology
than the basic rock–paper–scissors game [52].

The setup used here is a graph of 100 nodes representing the possible strategies. Then 1000 players per
graph play each other at randomwith the interactions determined by the strategy graph. The initial strategy
of each node is randomly assigned from the set of 100 possible strategies. If an edge points from strategy i
to strategy j then if a player playing strategy j meets a player playing strategy i they will be beaten and
switch from strategy i to strategy j. This definition could easily be flipped and then successful strategies
would be those of high trophic level. However, we use this convention to match the earlier results.
These dynamics can be quite complicated to analyse for several reasons. ‘Weaker’ strategies may survive
better than expected if the strategies that they are weak to are made extinct before them. The presence
of cycles and neutral interactions means that one strategy taking over everywhere is not the norm and
instead the system moves to a dynamic equilibrium where many of the strategies coexist and ‘defensive
alliances’ are possible [43]. What makes a strategy successful is a complex problem—it depends on the
balance of how many strategies it beats or is beaten by, as well as where those strategies fit into the
global meta-game. For example, it is better to be weak to a strategy which is overall not widely used
and then strong against a strategy which is widely played. In this setup a strategy which is influential is
one which becomes widely played. As a test for the ability of trophic level to predict influence we
compare the probability of a strategy being played with the trophic level ranking of a node and then
compare this to ranking by traditional centrality metrics such as PageRank [53,54].

The results are shown in figure 6 for networks with low, intermediate and high trophic incoherence.
We consider the following centralities: trophic level, PageRank, out-degree and imbalance (the difference
between in-degree and out-degree). In the case of PageRank and imbalance, we apply the centrality to the
adjacency matrix such that influence should correlate with a high out-degree, which may require
transposing the matrix depending on convention used. The higher the area under the curve for a
given centrality, the better it performs at identifying the most successful strategies.

For the most coherent networks, the best predictor of influence is PageRank, closely followed by
trophic level, figure 6a. In these networks PageRank correlates with trophic level but also reveals
information about a node’s reach, and we hypothesize that both these features contribute to a
strategy’s success. For networks of intermediate incoherence both trophic level and PageRank again
are the best predictors of a strategy being successful, figure 6b, although imbalance is also now a good
measure. However, this changes for networks with high incoherence, where the imbalance between
in- and out-degrees starts to matter more than PageRank. Trophic level and the degree imbalance are
now the best predictors, with PageRank performing similarly to out-degree, figure 6c. This
demonstrates how trophic level is a good measure of influence as it compares well to the best
centrality measure in each case. It also highlights the utility of trophic coherence as a measure to
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Figure 6. Cumulative distributions of probability of playing a strategy per player per game per network by different centrality
rankings and different mean incoherence over 1000 network samples generated by the model in §2.2 at fixed temperatures
corresponding to low, medium and high incoherence: TGEN = 0.02, 1 and 100, respectively. Each network has N = 100, 〈k〉 = 5
and 1000 players playing a generalized rock–paper–scissors game. (a) Networks of low trophic incoherence. (b) Networks of
intermediate trophic incoherence. (c) Networks of high trophic incoherence.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221380
12
understand network structure, since it helps to explain why the best centrality measure depends on the
network. Similar results can be found for many standard network types like random graphs or scale-free
networks, where again trophic level is competitive with the best other centrality metrics. It is noteworthy
that trophic level is a good predictor of strategy success even in highly incoherent networks. However, if
the network were maximally incoherent (F = 1), all the nodes would have the same trophic level and
hence, according to this predictor, an equal probability of success. This is the case, for instance, in the
standard rock–paper–scissors game.
4. Influence and influenceability of structure
In this section, we demonstrate how several topological notions of ‘influence’ and ‘influenceability’ based
on the eigenvectors of the adjacency matrix can be understood and interpreted by looking at the trophic
structure of directed networks. This section provides an explanation for the effect of trophic coherence on
dynamics seen in the last section, and how networks can be better understood through trophic analysis.
In particular, we show why the importance of low trophic level nodes depends on the network’s trophic
coherence. We provide results for numerically generated networks to control for variations in size, as well
as results on a diverse dataset of real-world networks [15]. In real-world networks, such as the ones
contained within our sample, there are a variety of network sizes, mean degrees and degree
distributions. However, we show in this section that the general trends hold in both the numerically
generated and real-world networks.

4.1. Localization of eigenvectors
One simple way to quantify influence in a network is eigenvector centrality, a widely used centrality
metric [55]. The eigenvector centrality score of a node is determined by the centrality scores of its
neighbours [55]. This makes sense as we assume that important nodes also connect to other nodes of
high importance. This can be shown to be equivalent to the principal eigenvector of the adjacency
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matrix and provides one measure of the importance of nodes in a network [55]. As we shall see, in
trophically coherent networks the eigenvectors are localized. This has many implications for the
dynamics and affects the sensitivity of the network to perturbation and being disrupted by a small
subset of nodes. The localization of eigenvectors was first discovered in physics [56] where the
phenomenon of electron localization known as Anderson localization was put forward. It has more
recently been widely studied in random matrices [57]. It has wide implications for the dynamics of
both physical systems and biological neural networks [58–60].

The localization of the eigenvectors can be measured in a variety of ways and it is also important to
consider which nodes the eigenvectors localize around. This is because the ability to influence a network
depends on the distribution of the centrality and where the high centrality nodes are in the network.

4.1.1. Inverse participation ratio

The inverse participation ratio (IPR) measures the localization of an eigenvector. It is defined for the nth
eigenvector as

IPRn ¼
PN

i¼1 jCn
i j4

ðPN
i¼1 jCn

i j2Þ2
: ð4:1Þ

Here jCn
i is the absolute value of each component of the nth eigenvector. This sum is maximized when all

non-zero components are concentrated at one value and takes its minimum value when the non-zero
components are exactly equally distributed. In figure 7 we show, for each network, the average IPRn

over eigenvectors, IPR ¼ N�1 P
n IPRn. The localization varies with trophic incoherence: it is large

when the network is more coherent and the eigenvalues are localized; it decreases when the network
is more incoherent and the eigenvectors delocalize. Moreover, at low incoherence there is a higher
variability in IPR between different networks.

For numerically generated networks, figure 7a, the effect is very clear. The inverse participation also
follows the same trend in a dataset of real-world networks, figure 7b, which includes food webs, trade
networks, neural and social networks [15]. However, the real networks vary in size, density and
degree heterogeneity, and thus present a noisier picture. The maximum localization is also larger than
in the numerically generated case. This helps to explain why in the previous section we found that a
small number of low trophic level nodes can influence the dynamics when the network is more
coherent, as this is the regime where the eigenvectors localize and ‘influence’ is concentrated.

4.1.2. Entropy of eigenvectors

The entropy of an eigenvector is another way to measure localization based on the information about the
system carried by the vector. It is defined for the nth eigenvector Fn (normalized so that the absolute
values of the elements sum to 1) as

SðFnÞ ¼ �1
lnN

XN
i¼1

jFn
i j ln jFn

i j: ð4:2Þ



0 0.2 0.4 0.6
trophic incoherence

0.8 0 0.25 0.50 0.75
trophic incoherence

1.00

0.2

0.4

0.6

0.8

1.0

(a) (b)

av
ea

ra
ge

 e
ig

en
ve

ct
or

 e
nt

ro
py

0.2

0.4

0.6

0.8

0av
ea

ra
ge

 e
ig

en
ve

ct
or

 e
nt

ro
py

Figure 8. Average entropy of L1 normalized eigenvectors of the adjacency matrix of real and generated networks for varying trophic
incoherence. (a) 1000 data points each representing a network generated by the model in §2.2 of N = 500 nodes, 〈k〉 = 20.
Generation temperatures are logarithmically spaced between 10−2 and 102. (b) Real networks from [15]. Each point represents
a single network.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221380
14
This is minimized when all the weight of the eigenvector is concentrated in one node, and hence we
know the most information about the system as all the importance is concentrated in that node. The
entropy is maximized when the weight of all nodes is equal and all nodes are equivalent, so we
have the least knowledge about the structure of the system. We normalize by the maximum value,
lnN, so that 0≤ S≤ 1 and we can compare networks of different size. A network can be
characterized by the average, �S ¼ N�1 P

n SðFnÞ. In figure 8, we show �S for networks of varying
trophic incoherence.

The trend in the numerically generated networks, figure 8a, is very clear, with the entropy of the very
coherent networks being low and then increasing with incoherence. The real networks, figure 8b, produce
a similar trend to the numerically generated networks, but again the data are noisier because of the more
varied structure of real systems. This again is consistent with networks being sensitive to perturbations or
attacks targeting the nodes of low trophic level, but the degree of sensitivity depending on the trophic
coherence of the network.
4.2. Correlation between left and right eigenvectors
A node can be considered important if it is able to receive information from and input information into
the rest of the network. In directed networks, the underlying hierarchy of trophic levels may mean that
the nodes which are able to reach the most nodes in the network and the nodes which are reached by the
most in the network are distinct groups. This is different from the undirected case where a hub node can
effectively do both. This can be understood by looking at the correlation between the left and right
principal eigenvectors. The left eigenvector can be thought of as a measure of the centrality of a node
based on in-degree and its ability to receive information, and the right eigenvector can be thought of
as the ability to emit information. This is just convention and transposing the adjacency matrix swaps
these roles. One way to understand this is to look at the scalar product between the eigenvector
centrality, given by the principal eigenvector of the adjacency matrix, and that of its transpose. Due to
the Perron–Frobenius theorem both of these eigenvectors are real and non-negative so the
multiplication of each element of the vector is real and non-negative. This is shown in figure 9a,b. We
see that the correlation is small when the networks are coherent, as nodes of high centrality do not
overlap; while when the network does not have such a well-defined hierarchical structure (i.e. it is
more incoherent) there is a larger overlap, tending towards 1 as the eigenvectors are both normalized.
This highlights the effects of hierarchy on the notion of node importance and that hierarchy can
induce an asymmetry in node behaviour.

In the generated networks, the correlation between the eigenvectors follows a smooth trend while
again in the case of real networks the overall correlation is reproduced but the results are much more
noisy. These results can also be viewed in terms of matrix normality, which measures how well the
adjacency matrix commutes with its transpose. This has previously been shown to be linked to
trophic incoherence [5,16]. However, the correlation between right and left principal eigenvectors
provides a more direct measure of whether the influential nodes are also those that are influenceable.
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4.2.1. Example networks

The previous results on the localization of the eigenvectors and the correlation between the left and right
eigenvectors, on both numerically generated and real-world networks, can be better understood by
looking at some specific network examples. In coherent networks with a clear hierarchy of trophic
levels, such as the Ythan estuary food web, figure 10a, the left and right eigenvectors localize to
different parts of the network hierarchy. The nodes of large left eigenvector centrality are towards the
top of the hierarchy while the nodes of large right eigenvector centrality centre on the nodes of lower
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trophic level. This reflects the intuition around the localization of eigenvectors and the difference between

the left and right eigenvectors, as well as what we know about food webs where energy flows from the
bottom to the top of the system. This phenomenon can also be observed in real networks of intermediate
coherence such as the connectome of the nematode C. elegans, figure 10b. In this network, the localization
is less pronounced than in the food web due to the network being more incoherent and having more
feedback. There is, however, still clearly visible localization with the non-zero elements not being
evenly distributed with respect to trophic level, and the distribution of the non-zero elements of the
left and right eigenvectors being centred at different places in the hierarchy.

A non-trivial relationship between trophic level and the distribution of eigenvectors can also be
observed in some random graphs, figure 10c, where one would not expect there to be much useful
hierarchical structure to observe. In a random graph the left and right eigenvectors are not as strongly
localized and there are many non-zero elements shared by both the left and right eigenvectors.
However, there is a positive correlation between the left eigenvector and trophic level, and a negative
correlation between the right eigenvector and trophic level. This implies that nodes which are the best
at emitting information and reaching the whole network are at the bottom of the hierarchy, nodes
which receive information are at the top and nodes which do both equally are in the middle. This
agrees with the well-known bow tie structure observed in directed networks [63].

There do, however, exist networks which break this trend. Figure 10d shows the Federal Aviation
Administration (FAA) preferred routes between airports. This network is directed, but since it is an
airport network it features hubs which are hubs of both in- and out-degree. Due to the fact that
certain airports are very important hubs in both senses, the left and right eigenvector peaks overlap
more than in previous real-world examples, as we can see in figure 10d. Thus, this kind of network is
quite different from, say, a food web, which has an overall directionality. The airport network is more
coherent than a random graph (in part because the degree imbalance is larger). However, the level
distribution does stretch out beyond the central peak to span a number of levels. This shows how
trophic analysis can be used to identify structural features related to network function. In particular, it
distinguishes clearly between networks with a directional flow, like a food web or neural network,
and those lacking this property, like the airport network.
4.3. Pseudospectra and pseudospectral radius
A network can be influenced if it is sensitive to perturbations; in particular, if a disruption to a small
number of nodes leads to a large change in the behaviour of the system. This kind of phenomenon
can be linked to the non-normality of the adjacency matrix [64], i.e. how far it is from commuting
with its transpose. Networks which are highly non-normal (a feature that has been shown analytically
to be related to low trophic incoherence [5,16]) have the property that their eigenvalues are extremely
sensitive to perturbations [64]. This can be impactful in many fields, such as fluid mechanics,
acoustics, condensed matter physics and construction of numerical methods [64–68].

The pseudospectrum of a matrix A with eigenspectrum σ(A) is defined as

seðAÞ ¼ fsðAþ EÞ : kEk � eg, ð4:3Þ
for some e . 0 and E a matrix of norm less than e. It measures how the spectrum changes subject to
perturbations, and can be computed using the Julia package [69] based on EigTool [70]. The
pseudospectra have recently been shown to be important in complex networks and the stability of
ecosystems [71].

One way to measure the sensitivity to perturbation is to compute the pseudospectral radius, the
spectral radius of the perturbed matrix minus the original spectral radius, and divide by the size of the
perturbation. If this quantity is of order 100 then the system is stable to perturbations of that scale. The
size of perturbation used can be very small. In the following figures the perturbation is of order 10−3.
The pseudospectral radius exhibits a transition as trophic incoherence is varied for generated networks,
figure 11a,b, being large for networks of low incoherence and then decreasing as incoherence increases,
as we would expect. A similar result can be found for real-world networks, figure 11c.

We again produce a similar trend for both the real and generated networks, with the real network
data appearing more noisy, as expected. As with the various dynamics described above, the
pseudospectral radius demonstrates an increased sensitivity to perturbations—in this case structural—
as networks become more coherent.
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4.4. Out-components
One way to understand the transition in influence of nodes with hierarchical ordering is to look at the
number of nodes which are reachable from a a given node—its ‘out-component’—and how that
changes with the trophic level of the node, and with the trophic coherence of the network. This is
shown in figure 12.

When the network is very incoherent it is strongly connected and there is no heterogeneity in the
ability of one node to influence other nodes. When the incoherence is intermediate there is still a large
strongly connected component; however, the nodes at the top of the network are unable to influence
the network as they lie outside this component. When the network is very coherent and F is close to
zero, the strongly connected component is small and the size of the node’s out-component is strongly
linked to its trophic level. This leads to an asymmetry in the network due to the hierarchy of trophic
levels, where some nodes can reach the whole network whereas others have a very small out-
component. These results are a simple representation since the precise size of the out-component can
vary widely depending on the type of network and how cycles are distributed throughout it.
However, the general principle that networks of low incoherence lead to an asymmetry in component
size is generally true due to the lack of feedback, and agrees with results from the literature [10]. This
is also in agreement with other work on trophic analysis and the intuition behind it, which has
analytically linked the emergence of a giant strongly connected component in a network to its trophic
properties [7].
5. Discussion and conclusion
These results provide a different perspective on influence and influenceability in directed complex
networks by using the fact that directed networks have an underlying hierarchical structure, unlike
the undirected case. Thus, trophic analysis can give some insight into the function of a complex
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system. It reveals the links between many network properties, and how a node’s trophic level can
determine its ability to influence the rest of a network.

Trophic analysis is based on a simple calculation, a linear equation dependent onlyon the degrees and the
adjacencymatrix, and is straightforward to interpret. We hope that highlighting the diverseways it can shed
light on network function and structure might prompt its use in future work. In particular, when applied to
real-world networks for analysis of structural features or understanding of dynamics, as we expect the
phenomena we describe here to be quite general and applicable to many real-world systems. Since the
equation is linear it can be solved for large real-world networks. Additionally, the results can be related to
network properties such as the spectral radius, non-normality or strong connectivity [5,7]. In particular,
networks of low trophic incoherence are highly non-normal. It has been shown recently that non-normal
networks are very common [71], that non-normality of the adjacency matrix can have a large effect on the
stability of a system [72], and it has been related to economic bubbles [73].

The general principle that the influence of a node is a function of its position in a hierarchy does not
necessarily require the use of trophic levels to measure this and another metric such as PageRank could
provide a similar result. However, trophic analysis allows a local measure of node importance to be
related to trophic coherence, which gives a measure of how important the hierarchy is expected to be
to the system. This is useful when trophic analysis is applied to real-world systems, such as when it
has been used to investigate the hierarchy in a network of sustainable development goals [74,75]. This
paper highlights how the importance of node-level measures of centrality (such as trophic level or
PageRank) depends strongly on how these measures are distributed among the nodes, as well as on
global network properties (trophic coherence) which may hinder or accentuate their effects. Trophic
analysis can be a useful way to understand directed networks as it does not simply rely on either the
in- or out-degree. In a directed network the ability to influence or be influenced may be of different
relative importance depending on the dynamics, and it is possible that no correlation (nor more
complex statistical relationship) exists between in- and out-degree. So nodes of importance in one
measure may not be important in another. Trophic level simplifies this as the low level nodes are
good at emitting and have many nodes downstream of them while nodes at the top of the network
receive many paths from below. The interplay between trophic levels and degree distributions is
something that could have a large impact on influence and will be the subject of future work. For
example, a network could have a scale free distribution in either in- or out-degrees or both, which
may or not be correlated, or bear some relationship to the trophic structure.

In conclusion, we have highlighted how there are many disparate ways to view influence and
influenceability in real-world and generated networks, such as the ability to shape various discrete
and continuous dynamics, the localization of eigenvectors, the sensitivity of the spectra to structural
perturbations, or the distribution of out-components within networks. We have shown that all these
phenomena can be thought of in terms of the local placement of nodes within the hierarchical
structure of trophic levels, which is mediated by the global directionality given by trophic coherence.
And we have described how this insight can be used to understand many structural and dynamical
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processes in directed complex networks, which we hope prompts the use of trophic analysis in the study
of specific real-world systems.
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