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—— Abstract

Knowledge representation is the cornerstone of constructing a geoscience knowledge graph (GKG).
The existing representations of spatial and computational relations in GKGs, however, are inadequate.
In this paper, we use Dimensionally Extended Nine-Intersection Model (DE-9IM) to represent spatial
topological relations. To represent computational relations, we use typed lambda calculus via its
implementation in the functional language Haskell, in which functions are first-class primitives. We
exemplify our ideas through some basic examples in Haskell.
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1 Introduction

Knowledge graphs provide a paradigm for representing interconnected information derived
from heterogeneous sources [4]. A geoscience knowledge graph (GKG) organizes geoscience
knowledge with a structured graph, which is suitable for algorithmic processing [21]. The
fundamental idea of establishing a GKG is inspired by the spatial and temporal features
contained in geoscience phenomena and processes, and by knowledge representation models
illustrated in various disciplines of geoscience [21]. Overall, multi-scale spatial and temporal
features are the most significant characteristics of GKGs when compared with knowledge
graphs in other disciplines [21].

The cornerstone of constructing a GKG is knowledge representation. Knowledge
representation is closely connected with formal ontology, which deals with entities from
the given world, together with their properties and relations between them [5]. Normally,
two types of representation models are implemented: one being {entity, relation, entity}
(e.g., {Ningbo City, within, Zhejiang Province}), and another being {entity, attribute,
attribute value} (e.g., {Ningbo City, has population, 8.202 million}) [19]. Reasoning — the

© Yanmin Qi, Heshan Du, Amin Farjudian, and Yunqiang Zhu;
37 licensed under Creative Commons License CC-BY 4.0
15th International Conference on Spatial Information Theory (COSIT 2022).
Editors: Toru Ishikawa, Sara Irina Fabrikant, and Stephan Winter; Article No. 29; pp. 29:1-29:7

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:yanmin.qi@nottingham.edu.cn
mailto:heshan.du@nottingham.edu.cn
https://orcid.org/0000-0002-6300-3503
mailto:amin.farjudian@nottingham.edu.cn
https://orcid.org/0000-0002-1879-0763
mailto:zhuyq@igsnrr.ac.cn
https://orcid.org/0000-0002-3356-3067
https://doi.org/10.4230/LIPIcs.COSIT.2022.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2

Representing Computational Relations in Knowledge Graphs

process of inferring conclusions from existing knowledge [3] — provides a salient purpose for
knowledge representation. Geoscience knowledge reasoning is carried out over GKGs [21],
and is used to shed light on the evolutionary features of geoscience knowledge systems.

It is, however, challenging to represent complex interdisciplinary geoscience knowledge by
the existing representation models [21]. Another challenge is posed by the uniform integration
of spatial, temporal, and computational relations in GKGs [21]. Three kinds of spatial
relations are primarily used in geoscience, which are direction, distance, and topology [20].
Temporal relations signify how events relate to one another in time. Computational relations
describe the process of using mathematical or logical methods to generate entities from other
entities, and they normally include mathematical formulas and modelling procedures [21].
In the existing models, the representation of a computational relation only expresses the
existence of the relation. The formula or logical rule underlying the computational relation,
however, is not represented, because the models are not expressive enough.

In this paper, we use Dimensionally Extended Nine-Intersection Model (DE-9IM) to
represent spatial topological relations. We use the functional programming language
Haskell [8] to represent computational relations and perform reasoning about spatial
topological relations. The paper is organized as follows: Section 2 describes the
representation model of spatial relations. The Haskell implementations of spatial reasoning
and representation of computational relations are exemplified in Section 3. Conclusions and
directions for future work are presented in Section 4.

2 Representation of Spatial Topological Relations

According to the Open Geospatial Consortium (OGC), the DE-9IM [17] string code can be a
standardized format for the data interchange of the typical spatial predicates [14]. DE-9IM
represents the relationship between two spatial objects A and B based on the intersections of
their interiors, boundaries, and exteriors. The spatial objects discussed here include points,
lines, and 2D regions. For our discussion, the concepts of interior, boundary, and exterior
are not the same as those defined in classical topology. For instance, for a given line, we
consider the end-points as the boundary, and the (open) segment between the end-points as
the interior. All the remaining points in the plane are regarded as the exterior. For a point,
the interior is the point itself, the boundary is empty, and the exterior is the entire plane
minus the point itself [17]. Dimension values are assigned to spatial objects as follows: 0
for points, 1 for lines, and 2 for 2D regions. All the above values (0, 1 and 2) are “TRUE”
values in the spatial predicates as they signify non-empty sets. An empty set is represented
by —1, which is the “FALSE” value in the spatial predicates. The eight spatial relationships
involved in DE-9IM are “Crosses”, “Within”, “Contains”, “Equals”, “Disjoint”, “Intersects”,
“Touches”, and “Overlaps”, as detailed in [17].

The spatial relations defined in DE-9IM have been implemented in function ST_Relate()
of PostGIS [6]. For instance, the triple {Ningbo City, Touches, Shaoxing City} semantically
describes that the relation between “Ningbo City” and “Shaoxing City” is “Touches”. If we
call ST_Relate(“NingboCity”, “ShaoxingCity”) in PostGIS, the spatial relation “Touches”
will be represented as [FF'2F11212], in which F represents “FALSE” (—1).

For any particular spatial relation, the existing knowledge graphs use different semantic
descriptions, which causes ambiguity. This problem is exacerbated by the ambiguity that
is inherent in natural languages. For instance, describing entity A as “nearTo” entity B
does not specify how far (say) in meters they are from each other. Therefore, the purpose
of using relation matrixes represented by DE-9IM is to quantitatively represent spatial
relations, which is more suitable for verified learning and inference of downstream models
and reasoning [11].
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Figure 1 Spatial topological relations among three objects.

3 Representation and Reasoning in Haskell

Haskell is a functional programming language, based on typed lambda calculus. As opposed to
imperative languages, the syntax of functional languages resembles mathematical expressions
more closely. As such, in functional programming, the focus is mainly on what is being
computed, rather than low-level details of how it is computed [7]. Functional syntax has
indeed been considered for representation and reasoning in the literature as well. For
instance, Shahzad et al. [16] integrated Haskell with relational algebra to create a user model
called Universe of Discourse (UoD). Leinberger et al. [9] defined and presented a functional
language for handling semantic data. Haskell was also used for integrating conventional
sensor information and volunteered geographic information [15].

For our purposes, Haskell provides many advantages over other languages, especially,
imperative languages such as Java or Python. The most immediate advantage is that
in Haskell, functions are first-class objects, a property shared with other pure functional
languages. For the current work, this is the most important feature which enables us to
integrate computational relations into GKGs seamlessly. There are also other strong features
of Haskell which are vital wherever correctness must be guaranteed [2]. Haskell is a safe
and strongly typed language. This enables faithful retention of ontological relations through
transformations. In Haskell, variables are immutable, which enables verification of the code
through algebraic manipulations [1]. Most importantly, imperative (impure) operations are
syntactically separated from the pure ones through the use of monads [12, 18].

Here, we present a simple example to illustrate the process of reasoning about spatial
topological relations among three polygons. Then, a computational relation of a case study
will be presented.

3.1 Reasoning about Spatial Topological Relation

Figure 1 depicts the spatial topological relations among three polygons. Polygon A contains
Polygon B, Polygon B contains Polygon C. The DE-9IM matrices for the corresponding
relations are also displayed on the right side of Figure 1. Based on the relation between
Polygon A and Polygon B, and the relation between Polygon B and Polygon C', the relation
between Polygon A and Polygon C' can be inferred.

Although this is a simple deduction, the basic principles can be demonstrated via the
corresponding Haskell implementation. Two functions are defined: one is the compu_sr()
functions to compute the matrix of the spatial topological relation between two objects,
and another one is the reason_sr(), which infers the matrix that represents the spatial
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topological relation based on two input matrices. For function compu_sr(), the two input
parameters are two spatial objects, the output is the matrix that describes the topological
relation between the two input objects. Keyword data is applied to define the data types of
parameters, while class defines the types that share same behaviors, and can be computed
by the function declared in the class.

data Matrix= Matrix [[Int]]

class COMPU_SPATIAL_RELATION object_1 object_2
where compu_sr:: object_1-> object_2-> Matrix

class REASON_SPATIAL_RELATION matrix_1 matrix_2
where reason_sr:: matrix_1-> matrix_2-> Matrix

Before implementing the defined functions, the data types of entities used as real instance
data are defined. The matrices of relations between two pairs of entities ((Polygon_ A,
Polygon_ B) and (Polygon_ B, Polygon_ C)) are generated.

data Entity_A = Polygon_A
data Entity_B = Polygon_B
data Entity_C = Polygon_C

instance COMPU_SPATIAL_RELATION Entity_A Entity_B where
compu_sr (Polygon_A)(Polygon_B) = Matrix [[2,1,2],[-1,-1,1]1,[-1,-1,2]]

instance COMPU_SPATIAL_RELATION Entity_B Entity_C where
compu_sr (Polygon_B)(Polygon_C) = Matrix [[2,1,2],[-1,-1,1],[-1,-1,2]]

Using the matrices computed above, the data types of input matrices are defined, and
the matrix of the “contains” relation between Polygon A and Polygon C' is generated.

data Matrix_M= Matrix_ M [[Int]]

instance REASON_SPATIAL_RELATION Matrix_M Matrix_M
where reason_sr (Matrix M [[2,1,2],[-1,-1,1],[-1,-1,2]1]1)
(Matrix_M [[2,1,2],[-1,-1,1],[-1,-1,2]1])
= Matrix [[2,1,2],[-1,-1,1],[-1,-1,2]]

3.2 Computational Relations

Soil erosion is a widespread and major environmental threat to terrestrial ecosystems. To
study soil erosion in the Chinese Loess Plateau, we use the revised universal soil loss equation
(RUSLE) [10]. RUSLE is a widely accepted method that can be used as the best-fitted model
for monitoring soil erosion. The RUSLE equation is as follows:

A=Rx K xLSxCx P,

in which A is the average soil loss (t - hm™! - a~!). Here we take the calculation of factor
R as an example of a computational relation in models of GKGs, where R is the rainfall
erosivity factor (MJ - mm - hm~!-h~!-a~1). The rainfall erosivity factor of a particular
month can be obtained using:

pg
R; = 1.735 x 101>%195, ~0-8159) W
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where R, is the rainfall erosivity factor of a particular month, p, is the monthly rainfall in a
particular year, and p, is the yearly rainfall. The first step is to construct formal ontology of
rainfall. We integrate top-level ontologies in Semantic Web for Earth and Environmental
Terminology (SWEET) Ontology [13] with type classes, which are sets of types sharing the
same behavior.

class THING thing

The upper-case THING is the type class name, which is the top ontology in SWEET. The
parameter thing is the type that belongs to the class. To represent subclass relations, the
symbol => is used to illustrate the hierarchy of ontology levels. PHENOMENA is the subclass
of THING class in SWEET, we then define the class RAINFALL, AVERAGE _ANNUAL_RAINFALL
and AVERAGE_MONTHLY_ RAINFALL

class THING phenomena => PHENOMENA phenomena
class PHENOMENA rainfall => RAINFALL rainfall

class RAINFALL average_annual_rainfall =>
AVERAGE_ANNUAL_RAINFALL average_annual_rainfall

class RAINFALL average_monthly_rainfall =>
AVERAGE_MONTHLY_RAINFALL average_monthly_rainfall

To represent the calculation of factor R, the keyword data is applied to define the data
type of parameters in (1). The name of the data type is Value. There are four value

constructors in data type Value, for example, constructor Measure has the data type Float.

data Value=Measure Float | Count Int | Boolean Bool | Category String

To represent the computational relation described by (1), we first define the type class
RAINFALL_ERQOSIVITY_FACTOR (REF), which corresponds to the dependent variable R,
in (1). Two parameters must be included in type class REF: average_monthly_rainfall
(representing monthly average rainfall p;), and average annual_ rainfall (denoting yearly
average rainfall p,). REF is declared as a multi-parameter type class for the computational
relation, defining which parameters are required to calculate the rainfall erosivity factor. The
input parameters of the function rFactor are average monthly rainfall and average annual
rainfall, the data type of the result is one of the data type constructors in Value.

class RAINFALL_EROSIVITY_FACTOR average_monthly_rainfall
average_annual_rainfall
where rFactor :: average_monthly_rainfall->
average_annual_rainfall -> Value

Next, we use the keyword instance to implement the computational relation defined
above. Firstly, we define the data type of average monthly rainfall and average
annual rainfall as float type. Avg_ monthly rainfall and Avg_ annual rainfall
are the real instance data types that correspond to average monthly rainfall and
average annual rainfall. The parameters monthlyrain avg and annualrain_ avg are

the parameters with data type Float, which are the input parameters for function rFactor.

Therefore, the constructor Measure in Value is used to illustrate the data type of rainfall
erosivity factor. The computational relation exists among rainfall erosivity factor, average
monthly rainfall and average annual rainfall.

29:5
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data Avg_monthly_rainfall = Avg_monthly_rainfall Float
data Avg_annual_rainfall = Avg_annual_rainfall Float

instance RAINFALL_EROSIVITY_FACTOR Avg _monthly_rainfall
Avg_annual_rainfall
where rFactor (Avg_monthly_rainfall monthlyrain_avg)
(Avg_annual _rainfall annualrain_avg) =
Measure (1.735*(10**x(1.5% (logBase 10
((monthlyrain_avg))**2/(annualrain_avg)))-0.8188))

4 Conclusion

Functional languages provide many advantages over their imperative counterparts for
representation and reasoning tasks in geoscience knowledge graphs (GKGs). The first step
in this direction is to represent computational relations as first-class objects, which enables
further reasoning and algorithmic processing in a uniform framework. As such, languages
such as Haskell which treat functions as first-class primitives are ideal for augmenting GKGs
with computational relations as first-class entities. Higher-order functions can then be used
for uniform processing of ground entities and computational relations alike. Furthermore,
Haskell is ideal for computational processes that must retain ontological relations faithfully.
We have demonstrated through some simple examples how these tasks can be handled in
Haskell.

In our future research, further computational relations will be studied. Besides
mathematical expressions, logic rules and modelling procedures will also be considered.
Moreover, the representation of spatial direction relations and temporal relations will be
included. Based on the case study of representing computational relations in this paper, we
will investigate efficient reasoning with spatial, temporal, and computational relations in
GKGs. This includes seamless integration of functional programming into qualitative spatial
and temporal reasoning.
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