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TOMOGRAPHIC FOURIER EXTENSION IDENTITIES FOR SUBMANIFOLDS

OF Rn

JONATHAN BENNETT, SHOHEI NAKAMURA, AND SHOBU SHIRAKI

Abstract. We establish identities for the composition Tk,n(|ĝdσ|
2), where g 7→ ĝdσ is the Fourier

extension operator associated with a general smooth k-dimensional submanifold of Rn, and Tk,n is
the k-plane transform. Several connections to problems in Fourier restriction theory are presented.

1. Introduction

The purpose of this article is to establish identities involving expressions of the form

(1) Tk,n(|ĝdσ|
2),

where Tk,n denotes the k-plane transform on Rn and

ĝdσ(x) =

∫

S

g(ξ)e−2πix·ξdσ(ξ)

is the Fourier extension operator associated with a general smooth k-dimensional submanifold S of
Rn; here dσ denotes surface measure on S. Many problems in harmonic analysis and its applications
call for an understanding of Fourier extension operators, and we refer to [17] for further context. The
particular interest in compositions of the form (1) stems from two very simple observations. The first
is that they involve L2 norms on affine subspaces, allowing for the application of L2 methods (such
as Plancherel’s theorem). The second is the well-known fact that the k-plane transform is invertible

on L2, raising the prospect that a variety of expressions involving |ĝdσ|2 may be understood via the
composition (1). This idea may be traced back at least as far as Planchon and Vega [15] (see also
[18]), and has motivated several works recently – see for example [7], [11], [4], [12].

In this work we place particular emphasis on the generality of the submanifold S, allowing us to

bring the underlying geometric features of the tomographic data Tk,n(|ĝdσ|
2) to the fore. Our results

build on the work of the first and second authors in [12] in the particular case where S is the unit
sphere. In addition to clarifying the underlying geometry in that work, the generality of our results
leads to richer connections with contemporary problems in Fourier restriction theory.

In what follows we use the standard parametrisation of the grassman manifold Mk,n of k-planes
in Rn by a k-dimensional subspace π and a translation parameter y ∈ π⊥. This allows the k-plane
transform to be written as

Tk,nf(π, y) =

∫

Rn

f(x)δπ+{y}(x)dx :=

∫
f(x+ y)dλπ(x),

where λπ is Lebesgue measure on π.

2. Identities and applications

Our main result here consists of two simple formulae for Tk,n(|ĝdσ|
2)(π, y) that hold under the

assumption that S and π satisfy a certain transversality condition. Notably, we see that Tk,n is unable

to distinguish |ĝdσ|2 from T ∗
n−k,nµ for a large family of measures µ on Mn−k,n, again provided a
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2 BENNETT, NAKAMURA, AND SHIRAKI

suitable transversality condition is satisfied. Here T ∗
n−k,n denotes the adjoint (n− k)-plane transform

on Rn,

(2) T ∗
n−k,nµ(x) =

∫

Mn−k,n

δθ+{z}(x)dµ(θ, z),

which is of course a superposition of Dirac masses on (n − k)-planes. This may be interpreted as an
explicit manifestation of the close relationship between Fourier restriction and Kakeya-type problems,
and we refer to [12] and our forthcoming applications for more on this perspective. The family of
measures µ with this property, which of course depends on the function g, is constructed via measures
ν on the tangent bundle

TS = {(ξ, y) : ξ ∈ S, y ∈ TξS},

and specifically those whose pushforwards νS under the natural projection map TS ∋ (ξ, y) 7→ ξ ∈ S
are given by

(3) dνS(ξ) = |g(ξ)|2dσ(ξ).

Perhaps the simplest such measure ν is dν(y, ξ) = δ0(y)|g(ξ)|
2dydσ(ξ). Finally, the family of measures

µ that we seek consists of the pushforwards of such ν under the (Gauss) map

TS ∋ (ξ, y) 7→ ((TξS)
⊥, y) ∈ Mn−k,n,

so that ∫

Mn−k,n

ϕdµ =

∫

TS

ϕ((TξS)
⊥, y)dν(ξ, y).

We note that the support of µ is contained in the set of translates of the normal planes to S.

Theorem 1. Suppose that S is a k-dimensional C1 submanifold of Rn and π is a k-dimensional

subspace of Rn for which

(T) TξS ∩ π⊥ = {0} for all ξ ∈ S,

and

(GT) 〈ξ − η〉 ∩ π⊥ = {0} for all ξ, η ∈ S.

Then for any measure µ satisfying the above conditions,

(4) Tk,n(|ĝdσ|
2)(π, y) =

∫

S

|g(ξ)|2

|(TξS)⊥ ∧ π|
dσ(ξ) = Tk,nT

∗
n−k,n(µ)(π, y).

Before turning to the context of Theorem 1 we make some clarifying remarks. Regarding the wedge
product in (4), given any two transverse subspaces V,W of Rn of complementary dimensions ℓ and m,
we define |V ∧W | to be |v1 ∧ · · · ∧ vℓ ∧ w1 ∧ · · · ∧ wm|, where {vj}, {wj} are orthonormal bases of V
and W respectively. Equivalently,

|V ∧W | :=

∫

V

∫

U

e−π|u+v|2dudv,

which of course has the advantage of being explicitly well-defined.
The conditions (T) and (GT) are transversality conditions relating S and π, and both are necessary

for (4) to hold – a fact that we establish in Section 4. The condition (GT) guarantees that S intersects
any translate of π⊥ in at most one point, allowing it to be viewed as a graph of a function φ over π.
The condition (T) stipulates that all tangent spaces to S meet π⊥ transversely, and ensures that this
function φ is C1. Specifically, if U ⊆ π is the orthogonal projection of S onto π, and u ∈ U , then φ(u)
is the unique element of the set S ∩ ({u}+ π⊥)− {u}. By construction, φ : U → π⊥, and

(5) S = {u+ φ(u) : u ∈ U}.

The conditions (T) and (GT) are closely related. The local condition (T) may be viewed as a limiting
(or infinitesimal) form of the global condition (GT) as η approaches ξ. Under various assumptions on
S one of these conditions may be seen to imply the other. For example, if k = 1 and S is connected
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(making S a curve), an application of the mean value theorem reveals that (T) =⇒ (GT). In general,
however, neither of these conditions implies the other, even if S is connected. Helical surfaces provide
simple examples for which (T) is satisfied while (GT) is not. On the other hand, curves in the plane
with a point of inflection can satisfy (GT) but not (T).

Of course if S has dimension or codimension 1, then Theorem 1 involves the Radon transform

R := Tn−1,n and X-ray transform X := T1,n respectively. Specifically, for k = 1 the identity (4)
becomes

X(|ĝdσ|2)(ω, v) =

∫

S

|g(ξ)|2

|τ(ξ) · ω|
dσ(ξ) = XR∗µ(ω, v),

where τ(ξ) denotes a unit tangent to S. Here we are identifying one-dimensional subspaces π with
vectors ω ∈ Sn−1. On the other hand, for k = n− 1 the identity (4) becomes

R(|ĝdσ|2)(ω, t) =

∫

S

|g(ξ)|2

|v(ξ) · ω|
dσ(ξ) = RX∗µ(ω, t),

where v(ξ) denotes a unit normal to S. Here we have indulged a slightly more serious abuse of notation
by reparametrising hyperplanes by a normal vector ω ∈ Sn−1 and a distance t from the origin.

The first identity in (4), and in particular its independence of the translation parameter y ∈ π⊥, may
be interpreted as a conservation law, generalising certain energy conservation properties of dispersive
PDE, such as the time-dependent Schrödinger equation. This perspective is best understood in the
setting of parametrised extension operators, where the submanifold S is parametrised by a C1 injective
map Σ : U → Rn. Here U is a subset of Rk, and the (parametrised) extension operator associated to
Σ is given by

Ef(x) =

∫

U

e−2πix·Σ(ξ)f(ξ)dξ,

where x ∈ Rn. A simple computation reveals that Ef = ĝdσ, where f and g are related by

f(ξ) =

∣∣∣∣
∂Σ

∂ξ1
∧ · · · ∧

∂Σ

∂ξk

∣∣∣∣ g(Σ(ξ)),

and the first of the two identities in (4) becomes

(6) Tk,n(|Ef |2)(π, y) =

∫

U

|f(ξ)|2∣∣∣ ∂Σ∂ξ1
∧ · · · ∧ ∂Σ

∂ξk
∧ π⊥

∣∣∣
dξ.

In the particular case where k = n − 1, U = Rn−1, Σ(ξ) = (ξ, |ξ|2), and (x, t) ∈ Rn−1 × R, then

u(x, t) := Ef(x, t) solves the Schrödinger equation i∂tu = ∆xu with initial data u(x, 0) = f̂(x).
Taking π to be purely spatial – that is the horizontal hyperplane at height t – the identity (6) reduces
to the classical energy conservation law ‖u(·, t)‖L2

x
= ‖u(·, 0)‖L2

x
.

We conclude this section with three applications that serve to further contextualise Theorem 1.

2.1. Application 1: Restriction-Brascamp–Lieb inequalities. Theorem 1, combined with a well-
known theorem of Barthe [3], is easily seen to imply the endpoint case of the restriction-Brascamp–Lieb

inequality ([8], [19], [6]), in the so-called rank-1 case. The restriction-Brascamp–Lieb inequality is a
broad generalisation of the multilinear restriction inequality of [10], involving a collection of extension
operators associated with submanifolds of various dimensions. Concretely, suppose that for each
1 ≤ j ≤ m, Σj : Uj → Rn is a smooth parametrisation of a nj-dimensional submanifold Sj of Rn by a
neighbourhood Uj of the origin in Rnj , and let

Ejgj(ξ) :=

∫

Uj

e−2πiξ·Σj(x)gj(x)dx

be the associated (parametrised) extension operator. In this setting it is natural to conjecture that if
the Brascamp–Lieb constant BL(L,p) is finite for the linear maps Lj := (dΣj(0))

∗ : Rn → Rnj , then
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provided the neighbourhoods Uj of 0 are chosen to be small enough, the inequality

(7)

∫

Rn

m∏

j=1

|Ejgj|
2pj .

m∏

j=1

‖gj‖
2pj

L2(Uj)

holds for all gj ∈ L2(Uj), 1 ≤ j ≤ m. We note that the weaker local inequality
∫

B(0,R)

m∏

j=1

|Ejgj |
2pj ≤ CεR

ε
m∏

j=1

‖gj‖
2pj

L2(Uj)
,

involving an arbitrary ε > 0 loss was established in [8] (see also [5] and [19] where the power loss
is reduced to polylogarithmic). Here we make a modest contribution to this problem using a simple
instance of Theorem 1.

Corollary 2. The global inequality (7) holds whenever n1 = · · · = nm = 1.

Proof. We begin by observing that the linear map Lj := (dΣj(0))
∗ : Rn → R satisfies Ljx = 〈x, vj〉,

where vj is a tangent vector to Sj at the point Σj(0). By Barthe’s finiteness characterisation [3], the
Brascamp–Lieb constant BL(L,p) is finite if and only if p belongs to the convex hull of the points pJ ,
where J denotes a subset of [1,m] := {1, . . . ,m} of cardinality n, the exponent pJj = 1J(j), and J is

such that the set {vj : j ∈ J} forms a basis for Rn. Here 1J : [0,m] → {0, 1} denotes the indicator
function of J . Now, since BL(L,p) is finite, there are nonnegative scalars λJ such that

p =
∑

J

λJp
J and

∑

J

λJ = 1.

By the m-linear Hölder inequality it follows that
∫

Rn

m∏

j=1

|Ejgj|
2pj =

∫

Rn

∏

J

( m∏

j=1

|Ejgj |
2pJ

j

)λJ

=

∫

Rn

∏

J

(∏

j∈J

|Ejgj|
2
)λJ

≤
∏

J

∥∥∥
∏

j∈J

Ejgj

∥∥∥
2λJ

2
,

and so it remains to show that

(8)
∥∥∥
∏

j∈J

Ejgj

∥∥∥
2
.
∏

j∈J

‖gj‖2

for each J . Provided the neighbourhoods Uj are chosen small enough, this elementary inequality is
a straightforward consequence of Theorem 1 (in its parametrised form (6)) applied to the cartesian
product

S :=
∏

j∈J

Sj ⊂ (Rn)n ∼= Rn2

with the (diagonal) subspace π = {(x1, . . . , xn) ∈ (Rn)n : x1 = · · · = xn}. It is also instructive to
provide a direct proof of (8) as it merely requires a change of variables and Plancherel’s theorem. �

2.2. Application 2: Weighted L2 norm identities. Theorem 1 sheds a little light on a variant of a
longstanding conjecture of Stein [16] concerning the manner in which Kakeya-type maximal operators
might control Fourier extension operators. This was initially considered for the extension operator
for the sphere, and we refer to [9] and the references there for some context and results. In the
setting of rather general submanifolds of Rn this (somewhat tentative) conjecture arose in discussions
between the first author and Tony Carbery some years ago, and states that if S is a smooth (compact)
k-dimensional submanifold of Rn, then

(9)

∫

Rn

|ĝdσ(x)|2w(x)dx .

∫

S

|g(ξ)|2 sup
y∈TξS

Tn−k,nw((TξS)
⊥, y)dσ(ξ).

A manifestly weaker form of (9), similarly generalising a conjecture attributed to Mizohata and
Takeuchi – see [2] – is the claim that

(10)

∫

Rn

|ĝdσ(x)|2w(x)dx . ‖Tn−k,nw‖∞‖g‖22,
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where the L∞ norm should be interpreted as a supremum rather than an essential supremum. We
refer to [9] and [1] for further discussion.

In the particular case that w lies in the image of T ∗
k,n, and satisfies a certain transversality condition,

the conjectural inequality (9) follows from Theorem 1, where it is in fact an identity.

Corollary 3. If w = T ∗
k,nu for some u : Mk,n → [0,∞) whose support is transverse to S in the sense

of (T) and (GT), then

(11)

∫

Rn

|ĝdσ(x)|2w(x)dx =

∫

S

|g(ξ)|2 sup
y∈TξS

Tn−k,nw((TξS)
⊥, y)dσ(ξ).

A similar observation was made in the case S = Sn−1 in [12]; see also [13] for some related results.

Proof. Observe first that by an application of (4),
∫

Rn

|ĝdσ|2w = 〈Tk,n(|ĝdσ|
2), u〉 = 〈Tk,nT

∗
n−k,nµ, u〉 =

∫

Mk,n

Tn−k,nw dµ.

Here µ may be any admissible measure on Mn−k,n – that is, the pushforward of a measure ν on TS
satisfying the marginal condition (3); for example dν(ξ, y) = |g(ξ)|2δ0(y)dydσ(ξ). By the transversality
hypotheses on the support of u, it follows that Tn−k,nw(π, y) is independent of y, and so

∫

Rn

|ĝdσ|2w =

∫

Mk,n

sup
z∈π⊥

(Tn−k,nw(π, z)) dµ(π, y)

=

∫

TS

sup
z∈TξS

(
Tn−k,nw((TξS)

⊥, z)
)
dν(ξ, y)

=

∫

S

|g(ξ)|2 sup
y∈TξS

Tn−k,nw((TξS)
⊥, y)dσ(ξ),

by the definition of µ and the marginal condition (3). �

2.3. Application 3: Convolution identities for extension operators. Theorem 1 is quickly seen
to imply the following multilinear extension identity of Iliopoulou and the first author in [11].

Corollary 4. Suppose S1, . . . , Sn are smooth codimension-1 submanifolds of Rn. Suppose further that

the volume form v1(ξ1) ∧ · · · ∧ vn(ξn) is nonvanishing, where vj(ξj) is a unit normal to Sj for each

ξj ∈ Sj and 1 ≤ j ≤ n. Then,

|ĝ1dσ1|
2 ∗ · · · ∗ |ĝndσn|

2 ≡

∫

S1×···×Sn

|g1(ξ1)|
2 · · · |gn(ξn)|

2

|v1(ξ1) ∧ · · · ∧ vn(ξn)|
dσ1(ξ1) · · · dσn(ξn).

Proof. By modulation invariance it suffices to prove the claimed identity at the origin. Observe that

|ĝ1dσ1|
2 ∗ · · · ∗ |ĝndσn|

2(0) = n−n/2Tn(n−1),n2(|ĝdσS |
2)(π, 0),

where S = S1 × · · · × Sn, g = g1 ⊗ · · · ⊗ gn and

π =
{
x = (x1, . . . , xn) ∈ (Rn)n :

n∑

j=1

xj = 0
}
.

Finally, a straightforward linear algebra argument reveals that

|(TξS)
⊥ ∧ π| = n−n/2|v1(ξ1) ∧ · · · ∧ vn(ξn)|,

allowing the desired conclusion to follow from Theorem 1. �

As may be expected Corollary 4 may be generalised to submanifolds S1, . . . , Sm or varying dimen-
sions, provided certain natural arithmetic and transversality conditions are satisfied.
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3. The proof of Theorem 1

We begin with the first identity in (4), and use (5) to write

ĝdσ(x) =

∫

U

eix·(Σ(u))g(Σ(u))J(u)dλπ(u),

where J(u) =
∣∣∣ ∂Σdu1

∧ · · · ∧ ∂Σ
∂uk

∣∣∣ and Σ(u) = u+ φ(u). Consequently, by Plancherel’s theorem on π,

Tk,n(|ĝdσ|
2)(π, y) =

∫

π

|ĝdσ(x+ y)|2dλπ(x)

=

∫

π

∣∣∣∣
∫

U

e−2πi(x·u+y·φ(u))g(u+ φ(u))J(u)du

∣∣∣∣
2

dλπ(x)

=

∫

π

∣∣∣e−2πiy·φ(u)g(u+ φ(u))J(u)
∣∣∣
2

dλπ(u)

=

∫

π

∣∣∣g(u+ φ(u))J(u)1/2
∣∣∣
2

J(u)dλπ(u)

=

∫

S

|g(ξ)|2J(u(ξ))dσ(ξ),

where u(ξ) is the orthogonal projection of ξ ∈ S onto π. Since |(TΣ(u)S)
⊥ ∧ π| = |TΣ(u)S ∧ π⊥| it

therefore remains to show that

(12) J(u) =
1

|TΣ(u)S ∧ π⊥|
.

In order to establish (12) we may, by the rotation-invariance of the statement of Theorem 1, assume
that π = 〈e1, . . . , ek〉, where e1, . . . , en denote the standard basis vectors of Rn. We observe first that
since φ : π → π⊥,

(13)

∣∣∣∣
∂Σ

∂u1
∧ · · · ∧

∂Σ

∂uk
∧ ek+1 ∧ · · · ∧ en

∣∣∣∣ = 1.

Next we construct orthogonal (as opposed to orthonormal) v1, . . . , vk ∈ TΣ(u)S from ∂Σ
∂u1

, . . . , ∂Σ
∂uk

by
the Gram–Schmidt process, and observe that

v1 ∧ · · · ∧ vk =
∂Σ

∂u1
∧ · · · ∧

∂Σ

∂uk
.

Consequently,

|v1| · · · |vk| =

∣∣∣∣
∂Σ

∂u1
∧ · · · ∧

∂Σ

∂uk

∣∣∣∣ ,

and so by (13),

|TΣ(u)S ∧ π⊥| =

∣∣∣∣
v1
|v1|

∧ · · · ∧
vk
|vk|

∧ ek+1 ∧ · · · ∧ en

∣∣∣∣ =
1

J(u)
.

Turning to the second identity in (4), by (2) we have

Tk,nT
∗
n−k,nµ(π, y) =

∫

Rn

T ∗
n−k,nµ(x)δπ+{y}(x)dx

=

∫

Rn

(∫

Mn−k,n

δθ+{z}(x)dµ(θ, z)

)
δπ+{y}(x)dx

=

∫

Mn−k,n

(∫

Rn

δπ+{y}(x)δθ+{z}(x)dx

)
dµ(θ, z).
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Recalling that the transverse subspaces π and θ are k-dimensional and (n−k)-dimensional respectively,
an affine change of variables reveals that

(14)

∫

Rn

δπ+{y}(x)δθ+{z}(x)dx =
1

|θ ∧ π|

for all y ∈ π⊥ and z ∈ θ⊥. Hence,

Tk,nT
∗
n−k,nµ(π, y) =

∫

Mn−k,n

dµ(θ, z)

|θ ∧ π|

=

∫

TS

dν(ξ, y′)

|(TξS)⊥ ∧ π|

=

∫

S

dνS(ξ)

|(TξS)⊥ ∧ π|

=

∫

S

|g(ξ)|2

|(TξS)⊥ ∧ π|
dσ(ξ),

where in the final line we have used (3).

4. Optimality

While the hypothesis (T) is clearly necessary for finiteness in (4), the necessity of the global hy-

pothesis (GT) is rather less aparent. Here we establish that if the data Tk(|ĝdσ|
2)(π, y) is inde-

pendent of y, as claimed by (4), then (GT) must hold. To this end we fix a k-dimensional C1

submanifold S and a k-dimensional subspace π, and assume that (GT) fails, that is, there exist
ξ0, η0 ∈ S such that ξ0 − η0 ∈ π⊥\{0}. We then define g0 : S → R by g0 = χCε(ξ0) + χCε(η0), where
Cε(a) := S ∩ {ξ ∈ Rn : |ξ − a| < ε}, and ε > 0 will be chosen later. It will suffice to show that the
directional derivative

(15) (ξ0 − η0) · ∇y

[
Tk,n(|ĝ0dσ|

2)(π, ·)
]
(0) = (ξ0 − η0) · ∇y

[ ∫

π

|ĝ0dσ(x + y)|2dλπ(x)
]
|y=0

does not vanish for some ε > 0. We remark that

(16)

∫

π

|ĝdσ(x+ y)|2dλπ(x) < ∞

for all y ∈ π⊥ and all g ∈ L2(S) thanks to (T). In particular, (16) holds for g = g0 and g(ξ) =
(ξ0 − η0) · ξg0(ξ), from which it follows that

(17)

∫

π

∣∣(ξ0 − η0) · ∇Rn

(
|ĝ0dσ|

2
)
(x)
∣∣dλπ(x) < ∞.

This justifies an interchange of derivative and integral in (15), reducing matters to establishing that

(18)

∫

π

(ξ0 − η0) · ∇Rn

(
|ĝ0dσ|

2
)
(x)dλπ(x) 6= 0

for some ε > 0. By the dominated convergence theorem, (17) also ensures that

(19) (ξ0 − η0) · ∇y

[ ∫

π

|ĝ0dσ(x+ y)|2 dλπ(x)
]
|y=0 = lim

R→∞

∫

π

(ξ0 − η0) · ∇Rn

(
|ĝ0dσ|

2
)
(x)γR(x)dλπ(x),

where γR(x) = γ(x/R) for some Schwartz function γ on π chosen to have compact Fourier support
and satisfy γ(0) = 1. For sufficiently large R, by Fubini’s theorem we have

∫

π

(ξ0 − η0) · ∇Rn

(
|ĝ0dσ|

2
)
(x)γR(x)dλπ(x)

= −2πi

∫

S

∫

S

(ξ0 − η0) · (ξ − η)g0(ξ)g0(η)γ̂R(Pπ(ξ − η))dσ(ξ)dσ(η).
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We now claim that
∫

S

∫

S

(ξ0 − η0) · (ξ − η)g0(ξ)g0(η)γ̂R(Pπ(ξ − η))dσ(ξ)dσ(η)

is bounded away from zero for sufficiently large R, provided ε is chosen small enough. By our choice
of g0 we now write

∫

S

∫

S

(ξ0 − η0) · (ξ − η)g0(ξ)g0(η)γ̂R(Pπ(ξ − η))dσ(ξ)dσ(η) = 2Iξ0,η0
(R) + I ′ξ0,η0

(R),

where

Iξ0,η0
(R) :=

∫

S

∫

S

(ξ0 − η0) · (ξ − η)χCε(ξ0)(ξ)χCε(η0)(η)γ̂R(Pπ(ξ − η))dσ(ξ)dσ(η).

By (T) we may choose ε > 0 so that (GT) holds on Cε(ξ0) and Cε(η0). In particular, for ζ0 being ξ0
or η0, we have ∫

Cε(ζ0)

ϕ(ξ)dσ(ξ) =

∫

Uε,ζ0

ϕ(u + φε,ζ0(u))Jε,ζ0(u)du,

for some open Uε,ζ0 ⊂ π and φε,ζ0 : Uε,ζ0 → π⊥, and any test function ϕ. Note that the Jaco-
bians are bounded from above and below. Since ξ0 − η0 ∈ π⊥, it is straightforward to verify that
|I ′ξ0,η0

(R)| .ε,ξ0,η0
R−1. Hence it suffices to show

(20) |Iξ0,η0
(R)| > 0

uniformly in sufficiently large R. Since ε is small, (ξ0 − η0) · (ξ − η) ∼ |ξ0 − η0|
2 for all ξ ∈ Cε(ξ0) and

all η ∈ Cε(η0), and hence, using the fact that ξ0 − η0 ∈ π⊥,

Iξ0,η0
(R) ∼ |ξ0 − η0|

2

∫

Cε(ξ0)

∫

Cε(η0)

γ̂R(Pπ(ξ − η))dσ(ξ)dσ(η)

= |ξ0 − η0|
2

∫

Cε(ξ0)−ξ0

∫

Cε(η0)−η0

γ̂R(Pπ(ξ − η))dσ(ξ)dσ(η),

where dσ continues to denote surface measure. If u0 ∈ Uε,ξ0 is such that ξ0 = u0 + φε,ξ0(u0), and
v0 ∈ Uε,η0

is such that η0 = v0 + φε,η0
(v0), then

Cε(ξ0)− ξ0 = {u′ + φε,ξ0 (u
′ + u0)− φε,ξ0(u0) : u

′ ∈ U ′
ε,ξ0},

where U ′
ε,ξ0

:= Uε,ξ0 − u0, and similarly

Cε(η0)− η0 = {v′ + φε,η0
(v′ + v0)− φε,η0

(v0) : v
′ ∈ U ′

ε,η0
}, U ′

ε,η0
:= Uε,η0

− v0.

Since φε,ξ0 (u
′ + u0)− φε,ξ0(u0) and φε,η0

(v′ + v0)− φε,η0
(v0) belong to π⊥,

Pπ(ξ − η) = Pπ

(
u′ + φε,ξ0(u

′ + u0)− φε,ξ0(u0)− (v′ + φε,η0
(v′ + v0)− φε,η0

(v0))
)
= u′ − v′

for all ξ ∈ Cε(ξ0) and η ∈ Cε(η0). Hence,

Iξ0,η0
(R) ∼ |ξ0 − η0|

2

∫

U ′

ε,ξ0

∫

U ′
ε,η0

γ̂R(u
′ − v′)du′dv′.

Since U ′
ε,ξ0

and U ′
ε,η0

contain the origin,

Iξ0,η0
(R) & |ξ0 − η0|

2

∫

U ′

ε,ξ0
∩U ′

ε,η0

∫

U ′

ε,ξ0
∩U ′

ε,η0

γ̂R(u
′ − v′)du′dv′ ∼ε |ξ0 − η0|

2,

from which (20) follows.
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[1] J. A. Barceló, J. Bennett, A. Carbery, A note on localised weighted estimates for the extension operator,
J. Aust. Math. Soc. 84 (2008), 289–299.
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