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Abstract: Power-electronics-based systems have penetrated into several critical sectors, such as
the industry, power generation, energy transmission and distribution, and transportation. In this
context, the system’s control, often implemented in real-time processing units, has to meet stringent
requirements in terms of safety and repeatability. Given the growing complexity of the implemented
algorithms, floating-point arithmetic is being increasingly adopted for high-performance systems.
This paper proposes to assess the numerical stability of the control algorithms by means of an interval
analysis. The case study of an electric drive is considered, given the wide adoption of such systems
and the importance they hold for the safety of the applications. In particular, two different control
strategies—the resonant control and the vector space decomposition—are examined, and a sensitivity
analysis based on the proposed technique highlights the different characteristics of the two with
respect to numerical stability. The proposed method shows how the resonant control is more robust
to variations of the controller gain coefficients with respect to the numerical stability, which could
make it the preferred choice for mission-critical electric drive control.

Keywords: digital control; floating-point arithmetic; interval arithmetic

1. Introduction

The use of electric drives and static power conversion applications for mission-critical
roles is rapidly expanding with the increasing push towards hybridization and electrifica-
tion of the transportation sector. The main driver of this trend is the growing awareness of
governments and international bodies for a large reduction in CO2 and NOx emitted by
aircraft [1]. In the aerospace field, in particular, there is great interest in the use of electrically
driven fans as the main propulsion system of large commercial airliners, increasing over-
all system efficiency by enabling a more aerodynamically advantageous configuration, as
shown in [2]. For these types of architecture to be viable, several advances are being actively
researched by the scientific community. On the hardware side, the development trends to-
wards high-power-density machines [3], the associated active rectifiers for medium-voltage
DC (MVDC) power distribution [4], and scalable architectures for fault-tolerant machine
and drive systems [5]. On the control system side, a lot of emphasis has been given to the
development of high-performance fault-tolerant control systems that can manage highly
redundant systems, both in terms of optimal postfault machine drive strategies [6], and
fault-tolerant current control systems [7].

From an implementation perspective, the use of floating-point arithmetic is near
ubiquitous in state-of-the-art control systems. This is due to their complexity, that makes
the translation of these algorithms to fixed-point very hard, as well as to the availability of
floating-point units (FPU) in most modern controllers. It is however, the use of floating-
point arithmetic in mission-critical systems that poses some challenges, as this type of
code can introduce numerical rounding errors, which can compound and interact in subtle
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and hard-to-identify ways [8]. The careful analysis of a floating-point control system
implementation is consequently necessary to give strict bounds to these errors to ensure
that their accumulation does not occur.

The only tools that can currently perform these types of studies are general-purpose
static analysis suites, which, by evaluating an implementation at the source code level, can
give guarantees on the magnitude of the errors introduced by floating-point calculations.
In particular, SATIRE [9] is based on interval arithmetic and Fluctuat [10] employs weakly
relational abstract domains. These analysis methods have some drawbacks that make
them less than ideal for mission-critical power-electronics control applications. The first
and by far biggest problem of the static approach is that the behaviour of the controlled
portion of the system (also called the plant) has a very high degree of coupling with the
controller, when operating in closed loop. Thus, an independent evaluation can result in
very imprecise error bound estimation. While some tools can overcome this limitation, they
require the external portion of the system to be modelled as a set of ordinary differential
equation, which is not always practical, or even possible.

A second limitation of source-based static analysis tools is that their use restricts
compilers to only use optimizations that are formally safe, in order not to invalidate the
analysis results, forcing developers to make a choice between a suboptimal implementation
or performing a manual optimization at the source code level, a tedious task that is very
error-prone and greatly reduces overall code quality.

This paper proposes an interval-analysis-based technique that enables the evaluation
of floating-point control algorithms’ implementations and overcomes the previously stated
limitations. The use of a dynamic approach based on cosimulation, decouples the floating-
point analysis from the plant model, allowing the use of a much wider selection of tools.
Another advantage of the chosen approach is that it permits the use of potentially unsafe
optimizations and even allows the strict quantification of the introduced error, enabling an
informed trade-off choice between speed of execution and arithmetic precision.

Moreover, a figure of merit is introduced to globally evaluate the numerical robust-
ness of the analysed code, allowing the use of many common engineering techniques,
such as mathematical optimization or sensitivity analysis in this space. The paper is orga-
nized as follows. Section 2 presents an overview on interval arithmetic, the mathematical
foundations upon which the proposed work is based. Then, in Section 3, the proposed
analysis technique and robustness metrics are shown. Then, to showcase the potential of
this technique in Section 4, a case study is used to demonstrate its potential impact in a
real-world design scenario and conclusions are drawn in Section 5. Finally as appendicces
all abbreviations and symbols are listed.

2. Interval- versus Floating-Point Arithmetic

Scientific computation is commonly implemented using floating-point numbers. These
implementations have inherent inaccuracies, mainly due to round-off and truncation
errors. Round-off errors arise because the continuum of real numbers is approximated
by a finite set of finitely representable numbers. For instance, irrational numbers such
as
√

2 cannot be represented exactly as finite-precision floating-point numbers. Even a
rational number such as one-third cannot be represented as a binary floating-point number.
Truncation error arises when an infinite mathematical process is approximated using a
finite initial segment. For example, in the numerical computation of the transcendental
function exp(x) = ∑∞

n=0 xn/n!, the infinite series is truncated at a (sufficiently large) index
M, and the value expM(x) = ∑M

n=0 xn/n! is returned as a sufficiently close approximation
of the true value of ex.

A full error analysis of floating-point computations may be carried out in some cases.
Examples include basic arithmetic operations, the evaluation of polynomials, matrix inver-
sion, QR factorization [11], and the solution of the 1D wave equation [12], to mention a
few. In general, however, a full error analysis of floating-point computations is a compli-
cated task, and the computations may be deceptively unstable, even when the operations
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involved are rather simple [11,13–15]. An effective alternative is developing algorithms
which are correct by construction, that is, they do not require a separate error analysis.
Numerical methods that incorporate explicit and strict error evaluations, referred to as
validated numerics [16], offer a sound alternative of this kind, where results are provided
with absolute guarantees of correctness. Interval arithmetic [17], in particular, is a common
framework for developing validated algorithms.

2.1. Interval Arithmetic

In contrast with the classical arithmetic which is performed over individual numbers,
interval arithmetic is performed over sets of numbers. As the result of each operation is also
a set, it is possible to incorporate all the possible errors (such as round-off and truncations
errors) into the result. Interval arithmetic provides a powerful method for obtaining
guaranteed bounds on errors that arise from various sources, including floating-point
errors and imprecision in physical measurements.

As an example, assume that the result of the measurement of a quantity x is x0, and the
measuring equipment has a precision of δ. Then, it is reasonable to represent the uncertain
value of x with the interval [x0 − δ, x0 + δ]. The central task in interval arithmetic is to
bound the uncertainties as they propagate through the computation steps. For instance,
if it is known that x ∈ [x1, x2] and y ∈ [y1, y2], then, clearly, x + y ∈ [x1 + y1, x2 + y2] and
x− y ∈ [x1 − y2, x2 − y1]. If x1, y1 ≥ 0, then xy ∈ [x1y1, x2y2]. However, multiplication is
slightly more complicated when the intervals contain negative values. Thus, in general:

xy ∈ [min{x1y1, x1y2, x2y1, x2y2}, max{x1y1, x1y2, x2y1, x2y2}].

Interval division is even more complicated as in the case where 0 ∈ [y1, y2] produces
unbounded intervals.

Let R∞ := R∪{−∞,+∞} denote the set of extended real numbers, and let IR∞ denote
the set of intervals over the extended real line, that is, IR∞ := {[a, b] | −∞ ≤ a ≤ b ≤ +∞}.
In general, for any function f : R∞ → R∞, a map f̂ : IR∞ → IR∞ is said to be an interval
approximation of f if, for any given interval [a, b], the following relation holds:

f ([a, b]) := { f (x) x ∈ [a, b]} ⊆ f̂ ([a, b]). (1)

In simple terms, f̂ ([a, b]) bounds the range of values that f takes over the interval [a, b].
Note that the relation in (1) is a subset relation and not an equality. The reason is that, in
general, enforcing equality is either too costly or practically impossible, for instance, when
the endpoints are floating-point numbers. Of course, tighter interval approximations are
preferred because of the higher accuracy of the results that they provide. Obtaining tight
interval approximations of functions such as sin, cos and exp requires a careful analysis,
which is outside the scope of the current article. For more details, the reader may refer
to [17,18].

The standard IEEE Std 1788-2015 [19] for interval arithmetic was approved in 2015,
and many libraries exist for interval computation in various languages. Common interval
libraries either use fixed-precision or arbitrary-precision floating-point endpoints for the
representation of intervals. To account for all the possible errors, outward rounding must
be implemented, that is, when computing interval results, the left-end point must be
rounded towards −∞ and the right endpoint must be rounded towards +∞. In the current
work, the arbitrary-precision library MPFI [20] was used. Specifically, the C++ Boost
library implementation was chosen, which provides a wrapper around the original MPFI
types [21].

On the theoretical side, interval arithmetic has a firm foundation in domain theory [22],
and it has proven to be a useful tool in fundamental research. In fact, interval arithmetic
gained further prominence when it was used to prove that the Lorenz attractor was a
strange attractor, thereby solving Smale’s fourteenth problem [23]. Nevertheless, there are
pitfalls in using interval arithmetic as well.
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2.2. Sources of Inaccuracy in Interval Computations

Inaccuracies enter into interval computations for a variety of reasons, with the follow-
ing ones being the most relevant to the current article:

Finite representations: If any of the endpoints of an interval is not representable as
a floating-point number, then the interval must be rounded outwards. For instance, let
e be the Euler number. As e is an irrational number, it does not have a finite binary
expansion. Thus, in MPFI, when the precision is set to 10, the result of exp([1, 1]) is given as
[2.718281828, 2.718281829]. Furthermore, as the precision of the endpoints of each interval
must be set first, an inaccuracy is incurred even on simpler computations. For example, if
the bit size is set to n, then the result of [0, 0] + [−2−2n, 2−2n] must be rounded outwards to
[−2−n, 2−n]. This source of inaccuracy is inevitable and, to a large extent, harmless. The
reason is that a higher accuracy may be obtained by simply increasing the bit size of the
representation of the endpoints.

Dependency: By default, interval computations do not take into account any depen-
dencies between parameters. For instance, assume that x ∈ [0, 1]. Applying interval
subtraction results in (x− x) ∈ [−1, 1], which is a significant overestimation as the true
value is x− x = 0. In some cases, inaccuracies arising from the dependency problem can
be reduced by using a hybrid symbolic–interval method [24].

Wrapping effect: Whenever a set which is not a hyperbox is overapproximated by a
bounding hyperbox, some accuracy is lost. This source of inaccuracy in interval arithmetic
is referred to as the wrapping effect [25]. An example is depicted in Figure 1, in which the
dashed square represents (x, y) = ([−1, 1], [−1, 1]). Let

Rθ :=
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
be the rotation map around the origin through the angle θ. The result of Rπ/4(x, y) is the
square (drawn in blue) whose sides are not parallel to the x and y axes. Hence, it must be
bounded by a larger box, which is the outermost square drawn in black.

+1
√
2−

√
2 −1 x

y

+1

−1

√
2

−
√
2

Figure 1. Wrapping effect.

As a result, interval computations are prone to overestimations which, at times, are too
conservative, especially when long sequences of computations are performed. Nonetheless,
even when the bounds are wide, interval computations can provide valuable insight into
the sensitivity of computation processes with respect to designated parameters, as shall be
demonstrated in what follows.



Electronics 2023, 12, 390 5 of 12

3. Verification of Closed-Loop Floating-Point Core

The aim of the analysis technique presented in this paper is the definition of a figure of
merit, the robustness performance indicator (abbreviated to RPI) to allow the comparison
of numerical robustness of various control techniques and their floating-point implementa-
tions. This type of evaluation system is a delicate balancing act of many different aspects
that make this operation fairly hard, especially when applied to closed-loop processes
where it is not possible to define a clear line of demarcation between the dynamics of the
controller and the controlled system. Static-analysis-based approaches, while simple to
apply and requiring minimal changes to existing code, need the inclusion of the mathemat-
ical model of the controlled plant, as it has a deep influence over the controller behaviour
which is, unfortunately, very challenging, as the switching behaviour of power electronic
converters can be highly nonlinear. For the aforementioned reasons, the technique pro-
posed in this paper is based on a dynamic analysis, as the study of the system while in
operation completely bypasses the issue.

The core robustness metric that can be derived from an interval analysis is the width
of the confidence interval within which a specific value is guaranteed to lie, having taken
into account all uncertainties. This value, however, is not guaranteed to be monotonically
increasing. A factor that significantly complicates the comparison of different implementa-
tions or algorithms is that these local minimums and maximums in the confidence interval
width do not occur at the same time, but rather depend on how the whole system evolves,
making the result of any comparison effectively dependent on the choice of instant at which
it is performed. To make the RPI immune to this issue, it is defined as follows:

RPI =
∫ TSIM

0

N

∑
x=1

EWx(t) dt, (2)

where EWx(t) is the confidence interval width for the xth quantity of interest. The use of
the integral over the whole duration of a simulation (from start to TSIM) allows the RPI to
take into account the complete history of the error width for the relevant period, enabling
comparisons between differing implementations, provided that the length of the examined
period is kept constant.

A diagram of the complete workflow for the proposed robustness analysis is shown
in Figure 2. It can be broken down in two distinct phases. The first one, the study setup,
is only performed once for a given control system and involves the implementation of all
the base building blocks that are needed for the simulation and to calculate the RPI. The
second phase, the system evaluation, consists in repeated simulations where the numerical
robustness of the target system is evaluated for various parameter values and operating
conditions.

Reference plant model
implementation and validation

Native C/C++ implementation of
the control system

translation of implementatio
system to MPFR/MPFI

Control system evaluation

Simulation Initialization

Reference plant evaluation

Evaluation phase

Setup phase

RPI integration

t<t_end

END

Figure 2. Flow diagram of the proposed numerical robustness analysis technique.
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3.1. Setup Phase

In this preparatory phase, the instrumented cosimulation models needed for the
proposed analysis technique are developed and validated. The first step of this phase
involves the creation of a reference plant model that will be used throughout the whole
analysis. This needs to be sufficiently detailed to accurately capture the system behaviour,
while being as computationally efficient as possible to enable the use of this technique with
optimizations, sensitivity analyses and other engineering methods that involve repeated
system evaluations. Upon completion, the model should be experimentally validated,
to ensure that it correctly captures the behaviour of the examined system and that an
acceptable degree of modelling accuracy has been achieved, meaning only acceptably small
errors between predicted and measured value of the studied variables. This is crucial to
ensure the applicability of the results to real-world scenarios. Once the model is ready, the
second step of the process calls for the C/C++ implementation of the target control system
or the adaptation of an existing implementation to work with the simulator of choice.
In a first phase, the use of native floating-point types is advised to eliminate a potential
source of inconsistencies, helping to achieve a well-rounded, stable, and fast simulation.
Once this is ready, the final step of the setup phase involves swapping the control system
implementation with one that makes use of the MPFI types for the interval analysis. This,
in addition to the control system evaluation, also has to convert the controller inputs to
intervals, taking into account the eventual sensor noise and precision, and converting the
outputs to regular floating-point values that will be passed to the system model.

3.2. Evaluation Phase

The evaluation phase is at the core of the proposed analysis technique; it is in this
phase that the instrumented simulation developed during setup is actually run to evaluate
the robustness of the developed model with respect to various operating conditions, added
uncertainties, etc. In this phase, the simulation is repeatedly evaluated with different com-
binations of parameters to investigate how the RPI evolves. From an operative standpoint,
this phase consists of a regular control level simulation where, after the initialization is
complete, the control system and reference plant model are evaluated repeatedly in a loop.
For each time step, the confidence interval for the studied quantities (i.e., controller outputs,
state variables, etc.) are calculated and then numerically integrated to update the overall
RPI value. The length of the operating period to be simulated is chosen to be only as long
as necessary to be relevant with respect to the studied system dynamics, to reduce the
computational cost as much as possible.

4. Case Study

This section presents a real-world case study, where the analysis technique presented
previously is applied to a concrete power electronics control problem. This highlights the
usefulness of the proposed robustness index and how this can be used by both hardware
designers and control system engineers to quickly assess the impact of their choice over the
numerical robustness of the control system implementation.

4.1. System and Control Architecture

The target system, whose schematic representation is shown in Figure 3, consisted of a
six-phase asymmetric permanent magnet synchronous machine (PMSM), whose stator was
composed by two star-connected three-phase winding sets with a radial shift of 30° between
them. The current in each phase was managed by a separate node consisting of a half-bridge
power section, with the relative support circuitry. The control system was implemented on
a single centralized controller, which was linked by a digital communication protocol with
each single-phase driving cell.
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`

Figure 3. Diagram of the hardware configuration used in the case study.

From a control system perspective, two different techniques were compared. The first
one was based on the traditional vector space decomposition (VSD) and used standard
proportional–integral (PI) regulators relying on a change from a static to rotating reference
frame to avoid tracking a sinusoidal reference, as shown in Figure 4a. The second control
methodology examined in this comparison was the direct current control, presented in [5]
and shown in Figure 4b, where the current flowing in each phase is controlled directly in
the static reference frame through the use of a proportional, integral, and resonant (PIR)
controller, which is able to track a sinusoidal reference with arbitrary frequency. This tech-
nique has the advantage of completely decoupling the control for each phase, potentially
allowing distributed current control, improving the modularity and fault tolerance of the
entire system.

 

 

 

(a)

 

 

 

(b)

Figure 4. Overview of the examined control techniques: (a) vector space decomposition (VSD) and
(b) resonant current control.

The machine and inverter models, whose main parameters are shown in Table 1,
were constructed in the PLECS environment and experimentally validated against the
data collected in [5]. This is demonstrated in Figure 5, which compares the phase current
waveforms captured during an experiment with their simulated analogues. The performed
load-step test consisted of a sudden change in the current setpoint, that allowed the
verification of a good match between the two sets of waveforms, both in the steady state
and during transients. This gave confidence that the numerical model used in this work
was in strong agreement with the prototype system result and could be therefore adopted
for the algorithm evaluation.

Table 1. Parameters of the studied system.

Parameter Value

DC-link voltage 270 V
Motor rated power 18 kW
Stator inductance 125 µH
Stator resistance 8.5 mΩ

Switching frequency 60 kHz
Pole pairs 4
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Figure 5. Comparison between experimental data (dashed line) and simulation results (solid line).

The control system for both studied architectures was initially implemented in C with
native single floating-point arithmetic, targeting the femtoCore processor [26], and then
converted to use MPFI types. A preliminary step for the subsequent analyses was the
individuation of the various design and operating parameters whose impact on numerical
stability needed to be evaluated, as shown in Table 2.

Table 2. Studied operating parameters.

Resonant Control VSD Control

Proportional gain Proportional gain for α β controllers
Resonant gain Integral gain for α β controllers

Damping Proportional gain for x y and 0 controllers
Current sensor error Integral gain for x y and 0 controllers

Frequency sensor error Current sensor error
Speed Angle sensor error

Speed

The developed model could, at this point, be used to evaluate, through the procedure
outlined in Section 3, the system behaviour with respect to the numerical robustness of the
controller output. The first step was a global sensitivity analysis, a technique that uses a
representative sample of the parameters’ input space to quickly evaluate how sensitive the
controller output’s numerical stability is to the variation of each single parameter, through
a variance analysis. This step reduced the number of relevant parameters, enabling the
use of a more powerful and computationally intensive Monte Carlo statistical analysis, to
exactly determine the distribution of RPI values within the defined range of inputs.

First, a sensitivity analysis was conducted to evaluate which of the parameters had the
highest impact, then a more in-depth statistical analysis was performed to directly compare
the two control techniques. Figure 6 shows as a flowchart the analysis process used in this
case study.

4.2. Sensitivity Analysis

Given the multitude of parameters that can affect the numerical stability of a real-
world control system implementation, a sensitivity analysis was a necessary step to estimate
the relative impact of each of them on the RPI, reducing both computational and analytical
effort needed for more in-depth analyses that could be run on the most important factors
only. The simplest and most intuitive methodologies that are often used for this task
belong to the class of one-at-a-time (OAT), also known as local, methods. These involve
changing a single parameter for each experiment while the nominal value is used for all
others. A fundamental problem of these type of methods is that they are only applicable to
linear models, as their coverage of the input space decreases as the number of parameters
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increases, as shown in [27]. When working with complex problems, such as the numerical
stability of control systems, a variance-based global sensitivity analysis method [28] should
be used. These methods have the advantage of being capable of working with models that
present nonlinearities and some interaction between inputs.

Random
sampling of the

input space

Simulate design
over all samples

Calculation of the
total sobol indices

Evaluation of the
error bands with
bootstrapping

Evaluation of RPI
statistics

Statistical Analysis

Sensitivity analysis

Figure 6. Flow diagram of the analyses used performed in this case study.

From an operative perspective, the initial step required the generation of two groups of
completely uncorrelated points, sampled from the entire model input space. To do this, the
Sobol low-discrepancy sequence [29] was used, as it greatly reduced the number of model
evaluations needed by sampling the input spaces in a more uniform fashion, as opposed to
a pseudorandom sampling. The simulation was then run, obtaining as an output an RPI
for each point. These data were then used to estimate the total Sobol sensitivity index STi,
defined as:

STi =
EX∼i

(
VXi (Y | X∼i)

)
V(Y)

(3)

where Y denotes the random variable associated with the model output, Xi the one con-
nected to the examined parameter while X∼i indicates the random variable of all other
uncertain parameters. Finally, following the conventional notation, E() indicates the av-
erage value and V() the variance. The method presented in [30] was used to estimate
these the indicators as a direct calculation through simple Monte Carlo simulations was
computationally prohibitively expensive. The bootstrapping technique [31] was used to
obtain an estimate of the confidence interval for the sensitivity index of each parameter.

The results of the analysis for the resonant control are shown in Figure 7a. The first ob-
servation that can be drawn from these data is that the numerical robustness of the resonant
controller, in its simplest implementation, was deeply affected by the operating speed, as
was its performance [32]. Naturally, another factor with a large impact was the speed sensor
error, as it interacted with the speed itself. A more surprising conclusion was the relatively
low impact of the controller’s tuning parameters to the numerical robustness of the overall
control system, especially with respect to the resonant element. This result uncovered a
dependence between the speed-sensing performance and the numerical robustness of the
control, thus a high-performance direct speed-sensing technique should be used, as opposed
to the more indirect sensing strategy, relying on the derivative of the angle measurement.

The situation was fairly different when examining VSD control, whose results are
shown in Figure 7b. The controller tuning parameters had a relatively large and even impact
on the numerical robustness of the control system, along with the speed. Surprisingly, the
sensors’ accuracy had a lower impact, for both current and angle measurements. This is
positive for low-end applications, where cheaper sensing strategies can be used effectively;
however, it is not ideal for mission-critical systems, where numerical robustness and
performance consistency is more important than sensor cost.

Overall, it can be concluded that for mission-critical systems, resonant control is
the better option, from a numerical robustness perspective, as it exhibits a much lower
sensitivity to controller parameters, affording much more freedom during tuning. On the
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other hand, the current sensor choice is also much more critical for the VSD method as it
had a fairly large effect on the RPI as opposed to resonant techniques.
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Figure 7. Results of the case study: (a) sensitivity analysis for resonant control, (b) sensitivity analysis
for VSD control.

4.3. Statistical Analysis

Given the large number of parameters and operating conditions that control system
implementations are supposed to operate in, only statistical approaches can offer a mean-
ingful numerical stability analysis, allowing direct comparisons. The starting point for this
analysis was a set of input samples covering the entire design space. It was defined by
current and angle/speed-sensing errors and constructed with the same low-discrepancy
sequence that was also used in the sensitivity analysis. The model was then evaluated
at each sample point, collecting the resulting RPI. Figure 8 shows the distribution of RPI
indices across the whole input space. It should be noticed that given the large range of
variability in index values, the base 10 logarithm was used to better highlight the histogram
shapes. These show that both techniques achieved a comparable RPI (106), making them
largely equivalent in term of worst-case robustness performance. Globally, however, the
distributions had very different shapes, with resonant control having a uniform distribution
over the entire range of RPI values, whereas VSD control showed a definite peak with a
negatively skewed Gaussian distribution. This is well reflected in the mean and median
values shown in Table 3.
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Figure 8. Statistical comparison in RPI distribution between the two strategies.

Table 3. RPI analysis results.

Technique Mean RPI Median RPI Variance

Resonant 22.94× 103 283.84 5.90× 109

VSD 129.92× 103 105.83× 103 9.03× 109
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5. Conclusions

This paper introduced a novel technique for the evaluation of the numerical robust-
ness of floating-point control systems that widened the applicability of formal verification
techniques. Moreover, the cosimulation approach greatly simplified the integration of the
numerical robustness quantification with respect to other more general-purpose techniques.
This enabled a case study that highlighted significant differences in the numerical robust-
ness of two widely used current control methodologies and demonstrated a significant
advantage of resonant control over vector space decomposition within this area.
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Abbreviations

List of Abbreviations
CO2 Carbon dioxide
NOx Nitrogen oxides
FPU Floating-point unit
MPFI Multiple-Precision Floating-Point Interval Library
MVDC Medium-voltage DC
OAT One-at-a-time
PI Proportional integral
PIR Proportional integral resonant
PLECS Piecewise Linear Circuit Simulator
PMSM Permanent magnet synchronous machine
RPI Robustness performance indicator
VSD Vector space decomposition
List of Symbols
TSIM Simulation time
EWx(t) Confidence interval width for the xth quantity of interest
STi Sobol Sensitivity index
EX∼i () Mean value of the input random variable X not connected to the examined parameter
VXi () Variance of the input random variable X connected to the examined parameter
VXi () Output random variable
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