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Original Article
Cerebrospinal Fluid Diversion for Refractory Intracranial Hypertension in Traumatic Brain
Injury: A Single Center Experience
Andrew R. Stevens1-3, Helen Gilbody4, Julian Greig4, John Usuah1, Basit Alagbe1, Anne Preece1, Wai Cheong Soon1,

Yasir A. Chowdhury1, Emma Toman1,2, Ramesh Chelvarajah1,6, Tonny Veenith3,5, Antonio Belli1-3, David J. Davies1-3
-BACKGROUND: Diversion of cerebrospinal fluid (CSF) is
a common neurosurgical procedure for control of intra-
cranial pressure (ICP) in the acute phase after traumatic
brain injury (TBI), where medical management is insuffi-
cient. CSF can be drained via an external ventricular drain
(EVD) or, in selected patients, via a lumbar (external lumbar
drain [ELD]) drainage catheter. Considerable variability
exists in neurosurgical practice on their use.

-METHODS: A retrospective service evaluation was
completed for patients receiving CSF diversion for ICP
control after TBI, from April 2015 to August 2021. Patients
were included whom fulfilled local criteria deeming them
suitable for either ELD/EVD. Data were extracted from pa-
tient notes, including ICP values pre/postdrain insertion
and safety data including infection or clinically/radiologi-
cally diagnosed tonsillar herniation.

-RESULTS: Forty-one patients were retrospectively iden-
tified (ELD [ 30 and EVD [ 11). All patients had paren-
chymal ICP monitoring. Both modalities affected
statistically significant decreases in ICP, with relative re-
ductions at 1, 6, and 24 hour pre/postdrainage (at 24-hour
ELD P < 0.0001, EVD P < 0.01). Similar rates of ICP control
failure, blockage and leak occurred in both groups. A
greater proportion of patients with EVD were treated for
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Abbreviations and Acronyms
CNS: Central nervous system
CSF: Cerebrospinal fluid
CT: Computed tomography
ELD: External lumbar drain
EVD: External ventricular drain
GCS: Glasgow Coma Scale
ICP: Intracranial pressure
TBI: Traumatic brain injury
TIL: Therapeutic intensity level
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CSF infection than with ELD. One event of clinical tonsillar
herniation is reported, which may have been in part
attributable to ELD overdrainage, but which did not result
in adverse outcome.

-CONCLUSIONS: The data presented demonstrate that
EVD and ELD can be successful in ICP control after TBI,
with ELD limited to carefully selected patients with strict
drainage protocols. The findings support prospective study
to formally determine the relative risk-benefit profiles of
CSF drainage modalities in TBI.
INTRODUCTION
he acute management of moderate and severe traumatic
brain injury (TBI) is directed at normalizing intracranial
Thomeostasis. Whilst a number of variables can be moni-

tored and targeted, current practices are principally aimed at
avoidance of raised intracranial pressure (ICP) and maintenance of
cerebral perfusion pressure.1 ICP control is typically achieved
through escalation of therapeutic intensity, with varying local
protocols typically based on the Brain Trauma Foundation
guidelines.1 Medical management options for intracranial
hypertension include sedation, mild hypocapnia, and
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hyperosmolar therapy. Where further intervention is required
beyond such measures, therapeutic options include diversion of
cerebrospinal fluid (CSF), barbiturate coma, and decompressive
craniectomy.
The physiological principle of CSF diversion to control ICP is

understood in terms of the Monro-Kellie doctrine.2,3 Diversion (or
buffering) of 1 constituent of the intracranial compartment (CSF)
permits increasing volume of other constituents (expanding
hematoma or parenchymal edema in response to trauma),
thereby mitigating increases of compartmental pressure. CSF
diversion is established in contemporary neurosurgical practice
via 2 modalities: 1) a ventriculostomy catheter in the lateral
ventricle connected to an external ventricular drain (EVD) or 2) a
lumbar catheter connected to an external lumbar drain (ELD)
(for a carefully selected sub-set of patients). Once a drain mo-
dality is established, CSF drainage can be regulated through
intermittent volume-controlled drainage, by continuous pressure-
controlled drainage, or some combination thereof.4 CSF diversion
in TBI is more typically achieved via EVD, though there is
considerable practice variation, with some centers utilizing ELD
where deemed appropriate.5 ELD originated as a method of
reducing intraoperative cerebral tension,6 but has since become
established in a variety of surgical settings.7-13

One factor contributing to practice variability is due to the po-
tential risk associated with ELD of iatrogenic transtentorial her-
niation, particularly where obliteration of the basal cisterns may
create a pressure gradient between cranial and spinal CSF com-
partments; historical examples of herniation after lumbar punc-
ture in patients with raised ICP illustrate the potential for this.14-17

In other contexts of intracranial hypertension, the use of ELD has
been successfully adopted, including in subarachnoid hemor-
rhage18-20 and bacterial/cryptococcal meningitis.21,22 In these
contexts, ELD has been shown to achieve similar ICP control to
ventriculostomy drainage without significant complication rates.
Whilst lumbar drainage and ventricular drainage both represent

technical means of CSF diversion to achieve ICP control, EVD is
typically favored. Lumbar drainage presents an alternative to
ventriculostomy which avoids the passage of a drain through ce-
rebral parenchyma. Whilst not well quantified in the literature,
avoidance of siting a ventricular catheter may mitigate risks of
ventriculitis, hemorrhage, or malposition.23-25 Patients with TBI
often have small lateral ventricles, which may render successful
EVD positioning challenging or unachievable.
Recent systematic reviews of the literature of ELD in ICP control

in patients with TBI demonstrated a paucity of evidence, but did
not identify an unfavorable safety profile for lumbar drainage with
specific patient selection and strict drainage protocols.26,27 Careful
selection criteria of patients for ELD based on computed
tomography (CT) criteria, including patency of basal cisterns
and absence of a surgical mass/cerebral herniation, have been
utilized in previous studies.18,28-33 Scoring systems based on
such radiological features have been previously proposed for
identification of patients where ELD is considered a safe means of
drainage.29

Utilization of ELD for ICP control in TBI in recent years has
prompted an increase in the research interest in the field.18,28-33

There is a paucity of evidence on the efficacy and safety profile
e266 www.SCIENCEDIRECT.com WORLD NE
of ELD,27 and no evidence in the literature which comparatively
evaluates the 2 methods (EVD and ELD) or their relative
advantages and disadvantages. As such, our objective is to
evaluate the efficacy and safety of ELD and EVD in the control
of refractory intracranial hypertension in acute TBI.
MATERIAL AND METHODS

We conducted a single center retrospective service evaluation of
the safety and efficacy of ELD for control of intracranial hyper-
tension in TBI. Patients admitted between April 2015 and August
2021 were included in the analysis.
Criteria for inclusion were, 1) patients aged over 16 years

admitted to the intensive care unit for acute management of
moderate or severe TBI, 2) requiring ICP monitoring (parenchymal
monitoring in our center), and 3) requiring CSF diversion for
uncontrolled intracranial hypertension (e.g., ICP of greater than 20
mmHg for more than 5 minutes despite maximal medical ther-
apy). Exclusion criteria were, 1) patients with an alternative
requirement for CSF diversion (high-volume intraventricular
hemorrhage, nontraumatic etiology, entrapped ventricle, and
posttraumatic hydrocephalus) or 2) patients receiving EVD inser-
tion whom would have not met our strict criteria for lumbar
drainage as per local practice guidelines (absence of significant
supratentorial mass lesion or midline shift, discernible basal cis-
terns (see Manet and colleagues31), absence of posterior fossa
mass lesion, no crowding at the foramen magnum, no tonsillar
descent).
Data were collected on: patient demographics, length of

intensive care unit stay, length of hospital stay; duration of ICP
monitoring, duration of CSF diversion, ICP pre and postdrain
siting, drainage volumes, and potential safety related events
(clinical or radiological evidence of cerebral herniation, infection,
blockage, need for revision, need for permanent CSF diversion,
need for further ICP control surgery, and mortality). An incident of
central nervous system (CNS) infection was defined as a patient
receiving a course of antimicrobial therapy specifically with the
intention of treating a suspected or confirmed CNS infection.
Tonsillar position was assessed via CT head imaging with sagittal
reconstruction, with the most inferior tonsillar position recorded
with reference to the basion-opisthion (“McRae”) line.
Patients were identified through a prospectively recorded

database of patients with ELD, and through identification by
clinical coding of electronic records. Data were extracted via
interrogation of electronic records.
For thorough retrospective review, all potential incidences of

morbidity and mortality secondary to CSF diversion were dis-
cussed on 2 occasions: contemporaneously through established
departmental adverse event monitoring, and retrospectively in
January 2022 in the context of this retrospective single center
experience. Retrospective review was performed by 2 senior
neurosurgical consultants and 1 senior neurointensive care
consultant with a subspecialty interest in neurotrauma, 2 neuro-
surgical registrars, and a senior neurotrauma clinical nurse
specialist. The outcome of the review and discussion represents a
consensus opinion on the potential contribution of ELD to adverse
events.
UROSURGERY, https://doi.org/10.1016/j.wneu.2023.05.047
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Statistical analysis was performed using GraphPad Prism (9.2.0)
(2021). Normality of data was tested with Shapiro-Wilk test, with
nonparametric paired data tested with Wilcoxon matched pairs
signed rank test. Binary logistic regression analysis was performed
on the outcome of CNS infection based on the variables of ELD/
EVD, age and duration of drainage. Mixed effects analysis was
performed across pre- and post- CSF diversion CT scan derived
tonsillar position values. Ethical approval was sought and granted
by University Hospitals Birmingham audit department and regis-
tered under the local code of CARMS-15577.
RESULTS

Demographic Data
Between April 2015 and August 2021, 30 patients underwent
lumbar drainage for ICP control after TBI. All received ICP
monitoring via intraparenchymal catheter. The mean age of the
patients was 39 years �17 years. The mean initial Glasgow Coma
Scale (GCS) score was 7 � 4. Severe TBI was diagnosed in n ¼ 15,
moderate in n ¼ 10 and initial GCS was not available in n ¼ 5.
During the same period 22 patients underwent ventricular
drainage for ICP control after TBI, of these n ¼ 11 were deemed
retrospectively to have been suitable for lumbar drainage based on
the highly selective criteria set out above. Reasons for exclusion
were, absence of the basal cisterns (n ¼ 8) and posterior fossa
mass lesion (n ¼ 3). The mean age of these patients was 54 years
�16 years. Mean initial GCS score was 8 � 3. Initial GCS was not
available in n ¼ 5, severe TBI was diagnosed in n ¼ 3, and
moderate TBI in n ¼ 3. Demographic details are summarized in
Table 1. A CT Marshall Grade of 2 was predominant in both
groups: n ¼ 23 for ELD group and n ¼ 7 for the EVD group. Of
Table 1. Participant Demographics

Parameter

ELD (n

Mean � SD

Age (years) 38.9 � 16.9

Initial GCS score 7.5 � 3.9

Initial CT Marshall Score 2.4 � 0.7

ICU LOS (days) 20.1 � 14.4

Hospital LOS (days) 52.2 � 75.8

Duration from injury to drain insertion (days) 3.8 � 2.3

Duration from drain insertion to removal (days) 6.5 � 3.5

First 24 hour hourly drainage volume (ml) 8.4 � 7.8

ICP 1 hour before (mmHg) 22.6 � 12.5

ICP 1hour after (mmHg) 5.9 � 5.6

ICP 6 hours before (mmHg) 17.2 � 7.5

ICP 6 hours after (mmHg) 8.5 � 4.4

SD, Standard deviation; LOS, Length of Stay; ELD, External lumbar drain; EVD, External ventricula
Intracranial pressure.
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those with higher scores, n ¼ 5 patients receiving ELD
underwent other neurosurgical intervention prior to CSF
diversion and n ¼ 3 for EVD. On the CT scan performed prior
to institution of CSF diversion, basal cisterns were discernible in
all patients, with a degree of compression in n ¼ 10 (ELD
group) and n ¼ 4 (EVD group).
Efficacy
ELD and EVD are effective at improving ICP control. At both 1 and
6 hours postinsertion, mean ICP across patients is within the
normal range (Table 1). Figure 1 shows pre- and post-ELD inser-
tion ICP values, matched to individual patients, demonstrating
marked reduction in ICP values in the majority of patients, with 2
patients demonstrating an increase in ICP values despite drainage.
ICP control is sustained over 24 hours. Figure 2 shows a strongly
significant decrease in patients’ ICP values in the 24-hour post-
ELD insertion and a moderately significant decrease for patients
with EVD.
Efficacy was further assessed based on change in 24 hours

therapeutic intensity level (TIL) pre and postintroduction of CSF
diversion measures. TIL scores were evaluated by fulfillment of
criteria of the 38-point scoring system of intermediate TIL34

(Figure 3).
Patient Selection - CT Criteria
Based on local CT criteria for suitability for ELD, compliance
across 41 patients receiving ELD was 28/30. One patient received
an ELD in the presence of midline shift of 11 mm. One further
patient received an ELD after CT demonstrating 7 mm midline
shift, but the procedure was performed as ultima ratio therapy as
[ 30) EVD (n [ 11)

Median Mean � SD Median

35 54.1 � 15.7 60

7 8.3 � 2.9 8.5

2 2.6 � 1.3 2

18 21.1 � 3.8 20

38.5 55.9 � 27.2 45

4 3.4 � 2.5 3

6 10 � 5.11 10

9 8.3 � 7.2 6

22 25 � 7.8 23

5 10.9 � 9.1 10

17 20 � 5 22

8 12.2 � 7.8 11.5

r drain; GCS, Glasgow Coma Scale; CT, Computed tomography; ICU, Intensive care unit; ICP,
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Figure 1. Matched pre- and post-external lumbar drain (ELD) insertion
intracranial pressure (ICP) values. Matched ICP values for individual
patients over 24 hours preceding (pre) and 24 hours following (post) ELD
insertion.
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not deemed suitable for further cranial surgery. All other patients
with EVD or ELD met the CT criteria.

Patient Selection - ICP Criteria
For ELD, 29 of 30 patients fulfilled the local eligibility criteria of
“ICP persistently raised between 20 and 35 despite best medical
measures.” Eleven of 11 patients with EVD fulfilled these criteria.
One of 30 patients received an ELD due to “elevated ICP >5 days
postinjury resulting in inability to wean sedation.”

Drainage Protocol
Greater variability in the protocol for CSF drainage is noted in
patients with ELD compared with EVD (Table 2). All patients had
pressure-controlled drainage with EVD and 19/30 with ELD.
Of these, 6 had volume limits prescribed (e.g., no greater than 10
Figure 2. Combined data from pre- and post-ELD (left panel) or EVD (right
panel) insertion ICP values from 24 hours preceding and immediately
following drain insertion. Range, interquartile range, and median
presented in each box plot. ** ¼ P < 0.01; **** ¼ P < 0.0001. ELD,
External lumbar drain; ICP, Intracranial pressure; EVD, External ventricular
drain.

e268 www.SCIENCEDIRECT.com WORLD NE
ml/hr). Incidences of “overdrainage” (>20 ml in a single hour in
the first 24 hours after insertion) were similar between ELD and
EVD groups, with 4.7% and 4.8% of recorded drainage values over
this threshold.

Adverse Events
All cases of infection, blockage, or leak did not result in adverse
neurological sequelae. Eleven cases of CSF diversion ended in
mortality and/or subsequent ICP control surgery (ELD n ¼ 7
[23%], EVD n ¼ 4 [36%]) (Table 3). Due to clear differences
between ELD and EVD groups, binary logistic regression
analysis was performed on the outcome of CNS infection based
on the variables of ELD/EVD, age and duration of drainage, but
this trend was not statistically significant (P ¼ 0.46).
For patients with ELD, 4 patients died within 1 month of injury.

No case of mortality was attributable to the use of ELD determined
by retrospective consensus discussion. One patient had a cata-
strophic injury from the outset and lumbar drainage had been
instituted postdecompressive craniectomy as ultima ratio despite
effaced basal cisterns and midline shift. One patient died from
cardiac arrest secondary to propofol infusion syndrome. Two pa-
tients died after deterioration due to progression of unihemi-
spheric TBI, despite decompressive craniectomy in one such case.
Three additional patients with ELD required subsequent surgi-

cal intervention for ICP control. Two were due to progression of
unihemispheric TBI and the requirement for subsequent surgery
was not deemed attributable to use of ELD. One patient developed
uncontrollable intracranial hypertension and subsequently
unreactive pupils (size 2) on day 6 postinjury and required
decompressive craniectomy. Progression of TBI and tonsillar
descent (6 mm) were present on a CT scan prior to decompressive
surgery, and consensus opinion was that overdrainage via the ELD
partially contributed to the noted tonsillar descent, in addition to
progression of injury related swelling. The patient made a good
neurological recovery with a Modified Rankin Scale score of 1 at 6
months postinjury.
For EVD, 1 patient died after withdrawal of care was deemed in

the patient’s best interests, due to a poor neurological recovery in
the context of underlying comorbidities. Three patients required
decompressive surgery for refractory ICP despite EVD on the same
day as EVD (n ¼ 1), 1 day post-EVD (n ¼ 1), and 5 days post-EVD
(n ¼ 1). All such cases were related to failure of EVD and medical
therapies for achieving ICP control and were not deemed attrib-
utable to the use of an EVD.
To further evaluate the potential trends of tonsillar shift as a

result of CSF diversion across both groups, CT images were
analyzed for distance of cerebellar tonsils from the basion-
opisthion (“McRae”) line (Figure 4). For all images, the most
inferior tonsillar position was recorded, with tonsillar positions
above the McRae line recorded as a negative value, and those
below as a positive value. Patients were included where at least
1 CT head scan was performed during the CSF diversion period.
Mixed-effects analysis with Geisser-Greenhouse correction be-
tween the 4 groups did not demonstrate any significant difference.
Paired t tests between respective pre and postsubgroups for ELD
and EVD also demonstrated no significant differences.
These findings were further analyzed by significant event

analysis, where a significant event was determined by any
UROSURGERY, https://doi.org/10.1016/j.wneu.2023.05.047
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postdrain value �3 mm (i.e. �3 mm below the foramen magnum).
These significant events occurred in 28.6% of patients in both EVD
and ELD groups. Using significant event criteria of any postdrain
value �5 mm, n ¼ 1 and n ¼ 0 events occurred in ELD and EVD,
respectively.

DISCUSSION

This retrospective observational data represent the first report of a
comparative experience between EVD and ELD in TBI patients in
the literature to date.30 This preliminary comparison between ELD
and EVD is limited in its methodology and power and as such any
conclusions should be drawn with substantial caution, though it
does demonstrate some similarities in efficacy and safety of the
2 modalities, within this selective sub-set of patients with TBI
who met strict criteria of suitability for ELD. The present work
further adds evidence to the efficacy and safety for CSF diversion
as an adjunct for ICP control and represents a basis for more
comprehensive prospective research.

Efficacy
The observed reductions in parenchymal ICP from 24 , 6 hours
and 1 hour pre- and post-CSF diversion demonstrate similar effi-
cacy across ELD and EVD. If “success” of CSF diversion is
considered as the avoidance of more invasive neurosurgical ICP
control procedures, the “success” rates of ELD and EVD are
similarly favorable (>80%). Given our local procedure, where ELD
is considered where maximal medical management of ICP fails, of
30 patients receiving ELD, 26 did not then require cranial surgery
for ICP control. Similarly, 9 of 11 patients with EVD did not require
more invasive ICP control measures.

Safety
Conclusively demonstrating safety for CSF diversion in TBI is
challenging: potential complications of these procedures can be
inextricable from the progression of the primary injury. In 30 cases
Figure 3. Left: Therapeutic intensity level (TIL) in 24
hours pre- and post-external lumbar drain (ELD)
insertion. Middle: TIL in 24 hours pre- and post-external
ventricular drain (EVD) insertion. Right: Comparison of

WORLD NEUROSURGERY 176: e265-e272, AUGUST 2023
here of ELD for ICP control in TBI, a single case was determined
where ELD use was a potential contributing factor to an adverse
event which did not result in adverse outcome. In this case, it was
determined by multidisciplinary consensus panel that necessity for
decompressive surgery is likely to have arisen in spite of ELD, but
the urgency was potentially hastened by tonsillar descent, to which
overdrainage by ELD may have contributed. This is in accordance
with the literature which reports similar infrequent cases with the
use of ELD.20 Based on the results of this report, including the
identification of high variability of drainage protocols, local
practice has since been updated via a standard operating
procedure to include a limit on midline shift (5 mm) and clear
guidance on drainage protocols to include a volume drainage
limit (initially 10 ml/hour). In our center’s current practice (and
in accordance with our current guidelines [Figure 5]), this
patient would not be deemed suitable for ELD insertion and
such levels of drainage would not be permitted. Cases such as
this are evidence of the potential risk of ELD in ICP control for
patients with TBI. However, factors such as patient selection
and drainage protocols have a great effect on the safety of ELD,
and in strictly selected patients with strictly enacted protocols, the use
of ELD may avoid the need for EVD (or decompressive surgery)
without undue additional risk burden to patients. Whilst this
data do not offer sufficient power, in its numbers nor
methodology, to draw conclusions on the noninferiority of ELD
versus EVD, it may add support for further prospective study to
this end.
The recorded rate of CNS infection in the EVD cohort reported

here is higher than typically expected infection rates. There are
some potential explanations, given the relative immunosup-
pressed state of trauma patients and, in particular, the older pa-
tient with neurological trauma. The higher age of the EVD cohort
may in part explain this discrepancy, though this is also consistent
with findings in the literature which have previously identified
higher infection rates in EVD versus ELD.23,24 The audit period
encompasses a separate local quality improvement project which
change in 24 hours pre-/post-CSF diversion TIL in ELD
and EVD groups. Error bars denote SD. **** ¼ P < 0.
0001. ns, non-significant; CSF, Cerebrospinal fluid.
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Table 2. Initially Prescribed Drainage Protocol for Patients with
ELD or EVD

ELD (n [ 30) EVD (n [ 11)

Pressure 5 cmH2O 1 0

Pressure 10 cmH2O 7 2

Pressure 12 cmH2O 1 1

Pressure 15 cmH2O 10 8

Pressure driven with volume limit 6 1

Volume 5 ml/hr 1 0

Volume 7.5 ml/hr 1 0

Volume 10 ml/hr 3 0

ICP dependent 1 0

ELD, External lumbar drain; EVD, External ventricular drain; ICP, Intracranial pressure.
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has resulted in significant reductions in the infection rates of EVD
in our center.35 Comparative study of EVD versus ELD infection
rates are limited and the small body of literature varies greatly,
with evidence for similar rates,36 and for reduced rates with
ELD.23,24 If an effect is present of higher infection rates in EVD,
it may be attributable in part in this cohort to longer durations
of drainage.36 This effect may too explain the differences
between need for long-term CSF diversion between groups,
markedly greater in the EVD group. Again, the sample size is
insufficient to draw conclusions in this regard, though the factors
of ventricular catheter infection and extended duration of drainage
may contribute to this observation.

Limitations
These data are limited by the retrospective design and by limited
numbers of included patients. The retrospective case-control
cohort design limits the validity of the findings of the compara-
tive analysis, though groups are reasonably well matched by using
Table 3. Comparative Table of Complication/Event Rates in
Patients with ELD and EVD

Complication/Event ELD (%, Rate) EVD (%, Rate)

Infection 10% (3/30) 45% (5/11)

Blockage 13% (4/30) 9% (1/11)

Blockage requiring revision 0% (0/30) 0% (0/11)

Drain system leakage 7% (2/30) 18% (2/11)

Long term CSF diversion 3% (1/30) 18% (2/11)

Failure of ICP control
(i.e., subsequent surgical ICP intervention)

13% (4/30) 18% (2/11)

Mortality at 30 days 13% (4/30) 9% (1/11)

ELD, External lumbar drain; EVD, External ventricular drain; ICP, Intracranial pressure; CSF,
Cerebrospinal fluid.
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strict criteria for allocation. Notably the age difference between
groups should be considered. This (and the likely prevalence of
other unrecorded differences) is inherent in groups, given the
practice of a single unit was the basis for differing choice of CSF
drainage modality. The authors recognize that the tendency to
select ELD over EVD in our unit (which increased over the retro-
spective period) results in an inherent selection bias. Similarly, in
patients rapidly developing intracranial hypertension, CSF diver-
sion requiring EVD may be attempted to control ICP (prior to
decompressive surgery) more readily in other centers. Given the
greater age of the EVD cohort, the differing responses of CSF
pathways in older age or the presence of low-volume intraven-
tricular blood may have contemporaneously resulted in the choice
of EVD where ELD would have been acceptable in accordance with
local practice guidelines, but such nuance of decision-making is
not discernible via retrospective study. However, it is felt that the
methodology offers novel insights into the comparison of CSF
diversion methods and is justifiable on this basis with a guarded
approach to the interpretation of the findings.
The retrospective study design is a further limitation, particu-

larly in the evaluation of adverse events and attribution of etiology
on the basis of a retrospective case review. To mitigate this limi-
tation, a multidisciplinary, multiexpert review panel was formed to
consider each case of adverse outcome and considered radiolog-
ical imaging, extensive clinical noting and monitoring data, as
well as wider contemporaneous outcomes such as departmental
morbidity findings. Due to the potential contribution of both
disease progression and iatrogenic contribution to events such as
tonsillar herniation, this approach was deemed the most valid for
considering each case in the absence of any legitimate objective
means of determining the relative contributions of injury or
intervention. However it is inherently limited by its retrospective
nature.
Comparative Synthesis
It is not possible based on the methodology or numbers included
in the present cohort to draw conclusions on the relative merits or
demerits of EVD and ELD as means of CSF diversion for ICP
control in patients with TBI. However, it can be concluded that
both methods are effective means of ICP control and result in
significant reductions in ICP. ELD has been shown to correlate
with a significant reduction in TIL in the 24 hours after
commencing drainage. No episode of clinical tonsillar herniation
was observed with use of EVD, in contrast to a single episode with
ELD. This highlights the necessity for care in both patient selec-
tion and protocol implementation in the use of ELD. However,
analysis of CT data did not demonstrate significant changes in
tonsillar position in either group based on pre and postdrainage
comparison of tonsillar position, and prevalence of radiological
tonsillar descent via significant event analysis was the same in ELD
and EVD groups. Trends of increased rates of infection and need
for long-term CSF diversion after EVD require larger datasets and
alternative methodology to validate. These observations support
the need for comparative study of CSF diversion methods to fully
elucidate the entire complication profile of the respective methods
and inform future recommendations for method selection in
clinical practice.
UROSURGERY, https://doi.org/10.1016/j.wneu.2023.05.047
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Figure 4. Box-and-whisker plot of tonsillar position relative to FM pre and
postinsertion of lumbar (ELD) and ventricular (EVD) drains. Range,
interquartile range and median presented in each box plot. No significant
difference between groups was identified (P > 0.05). FM, foramen
magnum; ELD, External lumbar drain; EVD, External ventricular drain.
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CONCLUSIONS

These data add to a growing body of evidence concerning the
efficacy and safety of CSF drainage methods for ICP control in TBI.
Whilst this small number of patients reported from retrospective
Figure 5. Standard operating procedure for ELD CSF
diversion in TBI (instituted as a result of the present
findings) at University Hospitals Birmingham, UK. ELD,

WORLD NEUROSURGERY 176: e265-e272, AUGUST 2023
design cannot inform practice conclusively, it does support the
notion that, in particular patients and under strict protocols, ELD
and EVD can aid ICP control in medically refractory intracranial
hypertension after TBI. The efficacy of ELD and EVD in reducing
ICP in this particular group are similar and both statistically sig-
nificant. Adverse event profiles are also similar with regard to
blockage, leakage, and failure of ICP control. EVD may be asso-
ciated with higher rates of CSF infection. One event of clinical
tonsillar herniation is reported, which may have been attributable
in part to ELD, but which did not result in adverse outcome, and
highlights the absolute necessity for strict patient selection criteria
and strict drainage protocols.
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