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Let X ↪→ S be a closed embedding of smooth schemes which 
splits to first order. An HKR isomorphism is an isomorphism 
between the shifted normal bundle NX/S [−1] and the derived 
self-intersection X ×R

S X. Given two different first order 
splittings of a closed embedding, one can obtain two HKR 
isomorphisms using a construction of Arinkin and Căldăraru. 
A priori, it is not known if the two isomorphisms are equal 
or not. We define the generalized Atiyah class of a vector 
bundle on X associated to a closed embedding and two first 
order splittings. We use the generalized Atiyah class to give 
sufficient and necessary conditions for when the two HKR 
isomorphisms are equal over X and over X ×X respectively. 
When i is the diagonal embedding, there are two natural 
projections from X × X to X. We show that the HKR 
isomorphisms defined by the two projections are equal over 
X, but not equal over X ×X in general.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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1. Introduction

1.1. Let X be a smooth algebraic variety over a field of characteristic zero. There 
is an HKR isomorphism [10,11] in the derived category of X

Δ∗Δ∗OX
∼= SymOX

(ΩX [1]),

where Δ : X ↪→ X ×X is the diagonal embedding.
One can interpret the isomorphism above in terms of an isomorphism of derived 

schemes. The structure complex of the derived self-intersection X×R
X×X X is Δ∗Δ∗OX . 

The structure complex of the shifted tangent bundle TX [−1] is SymOX
(ΩX [1]). The 

HKR isomorphism above can be viewed as an isomorphism between the shifted tangent 
bundle and the derived self-intersection

TX [−1] ∼= X ×R
X×X X.

1.2. One can replace the diagonal embedding by an arbitrary closed embedding 
i : X ↪→ S of smooth schemes and consider the derived self-intersection X ×R

S X. The 
embedding i factors as

X
μ

X
(1)
S

ν
S,

where X(1)
S is the first order neighborhood of X in S. We say i splits to first order if and 

only if the map μ is split, i.e., there exists a map of schemes ϕ : X(1)
S → X such that 

ϕ ◦ μ = id.

1.3. There is a bijection between first order splittings of i and splittings of the short 
exact sequence below [5, 20.5.12 (iv)]

0 TX TS |X NX/S 0.

The bijection above is canonical, so we use the same notation ϕ for the splitting of the 
bundles and the splitting map X(1)

S → X of schemes.
We assume that i splits to first order throughout this paper. Let NX/S[−1] be the 

total space of the shifted normal bundle NX/S[−1]. Namely, the space NX/S[−1] is a 
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derived scheme whose structure complex is SymOX
(N∨

X/S [1]). From a fixed first order 
splitting, Arinkin and Căldăraru [1] constructed an isomorphism

HKRϕ : NX/S [−1] ∼= X ×R
S X

between the shifted normal bundle NX/S[−1] and the derived self-intersection X ×R
S X. 

When i is the diagonal embedding, the normal bundle NX/S is isomorphic to the tangent 
bundle TX .

1.4. A positive answer to Arinkin-Căldăraru’s question

When i is the diagonal embedding Δ : X ↪→ X×X, there are two first order splitting 
π1 and π2 obtained from the two projections p1 and p2 : X × X → X. In this case, 
Yekutieli [11] defined a complete bar resolution to compute the HKR isomorphism for a 
general scheme X. It has been shown that the HKR isomorphism obtained by Yekutieli 
is equal to the HKR isomorphism defined by the second projection [3].

Arinkin and Căldăraru [1, Paragraphs 1.21–1.24] asked if the two HKR isomorphisms 
HKRπ1 and HKRπ2 are equal over X. Grivaux provided [7] a positive answer to this 
question. Corollary 5.3 provides a different proof of Grivaux’s result.

1.5. Grivaux’s question

In the case of general embedding X ↪→ S, two different first order splittings ϕ1 and 
ϕ2 define two HKR isomorphisms HKRϕ1 and HKRϕ2 : i∗i∗OX

∼= Sym(N∨
X/S [1]). The 

composite map HKRϕ1 ◦ HKR−1
ϕ2

defines an automorphism of Sym(N∨
X/S [1]). Grivaux 

asked if we can compute this automorphism explicitly and answered this question when 
the codimension of X in Y is two [7, Theorem 4.17]. Theorem A gives a complete answer 
to this question.

1.6. Before we state the main theorems, we need to explain a technical detail. 
One can consider the HKR isomorphism over X or over X × X. An HKR isomor-
phism NX/S [−1] ∼= X ×R

S X over X is equivalent to an algebra isomorphism i∗i∗(OX) ∼=
Sym(N∨

X/S [1]) of the structure complexes of the two derived schemes. An isomorphism 
NX/S [−1] ∼= X ×R

S X over X × X is more complicated. In this case, we can view the 
structure complex of NX/S [−1] as an OX×X -module, i.e., an OX -bimodule. This bimod-
ule is a kernel that represents the dg functor i∗i∗(−) : D(X) → D(X) from the dg 
enhancement D(X) of the derived category of X to itself. It turns out that an isomor-
phism over X × X is equivalent to an isomorphism i∗i∗(−) ∼= Sym(N∨

X/S [1]) ⊗ (−) of 
dg functors [2]. An isomorphism over X ×X implies that the isomorphism is also over 
X. More details about the two natural base schemes have been explained in [2]. From 
a fixed first order splitting, the HKR isomorphism constructed in [1] is over X ×X as 
explained in Section 2.
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1.7. One can obtain two HKR isomorphisms from two different first order splittings. 
We construct a cohomology class below associated to the two splittings and we give 
sufficient and necessary conditions for the two HKR isomorphisms to be equal over X
and over X ×X respectively.

1.8 Definition. Let ϕ1 and ϕ2 be two first order splittings of the map i : X ↪→ S. We 
construct a cohomology class αϕ1,ϕ2(E) associated to ϕ1, ϕ2, and a vector bundle E on 
X in the following way.

The difference ϕ1 − ϕ2 is a map ΩX → N∨
X/S due to the bijection in Paragraph 1.3. 

The class αϕ1,ϕ2(E) is defined as the following composite map

E → E ⊗ ΩX [1] → E ⊗N∨
X/S [1],

where the second map E ⊗ΩX [1] → E ⊗N∨
X/S [1] is idE ⊗(ϕ1 −ϕ2), the first map is the 

Atiyah class of E. We call the class above the generalized Atiyah class of E associated 
to ϕ1 and ϕ2.

When i is the diagonal embedding, and ϕ1 and ϕ2 are the first order splittings cor-
responding to the projections onto the first and second factor, one can check that N∨

X/S

is isomorphic to the cotangent bundle ΩX and ϕ1 − ϕ2 can be identified as the identity 
map from ΩX to itself. The class is the classical Atiyah class at(E) of E.

Before we state the main theorems we need a few classes below. The class 
αϕ1,ϕ2(N∨

X/S) can be viewed as a map N∨
X/S → N∨

X/S
⊗2[1]. Denote the composite map

N∨
X/S

αϕ1,ϕ2−→ N∨
X/S

⊗2[1]
· 12→ N∨

X/S
⊗2[1] → ∧2N∨

X/S [1]

by αantisym
ϕ1,ϕ2

(N∨
X/S), where the map in the middle is the multiplication by 1

2 , and the last 
map is the natural projection.

For a first order splitting ϕ1, we define a class Φk
ϕ1

(E) : μ∗E → μ∗(N∨
X/S

⊗k ⊗ E)[k]
for all k ≥ 1 in Paragraph 4.2. Due to the complexity of the definition, we do not define 
the class here and readers can find the definition of the class later in Paragraph 4.2. We 
can pushforward the class by ϕ2, so we get ϕ2∗Φk

ϕ1
(E) : E → (N∨

X/S
⊗k ⊗E)[k]. When k

is equal to one, this class is nothing but αϕ1,ϕ2(E).

1.9 Theorem A. Let i : X ↪→ S be a closed embedding of schemes and assume i splits 
to first order. Let ϕ1 and ϕ2 be two first order splittings. The two different first order 
splittings define two HKR isomorphisms HKRϕ1 and HKRϕ2 : i∗i∗OX

∼= Sym(N∨
X/S [1]). 

The composite map HKRϕ1 ◦ HKR−1
ϕ2

defines an automorphism of Sym(N∨
X/S [1]). Write 

the automorphism in the form of a matrix below. Then the matrix is unipotent
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N∨
X/S ∧2N∨

X/S [1] ∧3N∨
X/S [2] · · ·

N∨
X/S id αantisym

ϕ1,ϕ2
(E) · · · · · ·

∧2N∨
X/S [1] 0 id · · · · · ·

∧3N∨
X/S [2] 0 0 id

· · · ,

where the maps on the diagonal are the identity maps. The (p, p + k)-th entry

∧p−1N∨
X/S → ∧p+k−1N∨

X/S [k]

is the composite map

∧p−1N∨
X/S ↪→ N∨

X/S
⊗p−1

ϕ2∗Φk
ϕ1 (N∨

X/S
⊗p−1)

N∨
X/S

⊗k+p−1[k]

1
(k+p−1)!−→ N∨

X/S
⊗k+p−1[k] → ∧p+k−1N∨

X/S [k],

where the third arrow in the composite map above is the multiplication by 1
(k+p−1)! .

1.10 Theorem B. We are in the same setting of Theorem A.

(1) The two HKR isomorphisms HKRϕ1 and HKRϕ2 are equal over X ×X if and only 
if the class αϕ1,ϕ2(E) vanishes for all E.

(2) The two isomorphisms are equal over X if and only if the class αantisym
ϕ1,ϕ2

(N∨
X/S) van-

ishes.

When the map i is the diagonal embedding, the two splittings are π1 and π2, and 
N∨

X/S is the cotangent bundle ΩX , the class απ1,π2(N∨
X/S) is the Atiyah class of the 

cotangent bundle. Note that the Atiyah class of the cotangent bundle is symmetric and 
the class αantisym

π1,π2
(N∨

X/S) is the anti-symmetric part of the Atiyah class. Therefore the class 
αantisym
π1,π2

(N∨
X/S) always vanishes in the case of diagonal embedding. We can conclude that 

the two HKR isomorphisms defined by the two projections π1 and π2 are equal over X
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which is Corollary 5.3. In the case of general embedding X ↪→ S, it is not known whether 
the class αϕ1,ϕ2(N∨

X/S) is symmetric or not.

1.11. The author would like to point out that Arinkin, Căldăraru, and Hablicsek [2]
provided another way to construct an HKR isomorphism from a fixed first order splitting. 
This construction was also obtained by Grivaux [6] in the context of differential geometry. 
From a fixed first order splitting, it is not known whether the isomorphisms obtained 
from the two different constructions in [1] and [2] are equal or not. It is highly possible 
that the two isomorphisms obtained from the two different constructions are equal, but 
we only consider the first construction in [1] throughout this paper.

1.12. Plan of the paper

In Section 2 we recall the construction of the HKR isomorphisms from a first order 
splitting.

In Section 3 we provide an alternative definition of the generalized Atiyah class. Then 
we study the properties of the generalized Atiyah class.

In Section 4, for k ≥ 1, we define two collection of classes Φk
ϕ(E) and Ψk

ϕ(E) from a 
vector bundle E and a first order splitting ϕ. We relate the classes with the construction 
in Section 2 and then prove the first part of Theorem B.

In Section 5 we prove Theorem A and the second part of Theorem B follows from 
Theorem A immediately.

1.13. Conventions

All the schemes in this paper are smooth over a field of characteristic zero.

Acknowledgments

The author is grateful to Kai Xu for helpful discussions and for proving Proposi-
tion 3.1. We would like to thank Tyler Kelly and the anonymous referee for their useful 
suggestions on writing.

The author was partially supported by the UKRI Future Leaders Fellowship through 
grant number MR/T01783X/1.

2. The background on HKR isomorphisms

In this section we recall the constructions of HKR isomorphism HKRϕ in [1] from 
a chosen first order splitting ϕ. In the construction one build an explicit resolution of 
μ∗OX as an O

X
(1)
S

-algebra using ϕ. The explicit resolution is crucial and will be used 
throughout this paper.
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2.1. Fix a first order splitting ϕ. We recall the construction of HKR isomorphism 
NX/S [−1] ∼= X ×R

S X in [1] from the given ϕ.
To define an isomorphism NX/S[−1] ∼= X×R

S X over X, it suffices to define an algebra 
isomorphism

i∗i∗OX
∼= Sym(N∨

X/S [1])

on the structure complexes of both derived schemes. The map is defined as the composite 
map

μ∗ν∗ν∗μ∗OX μ∗μ∗OX

∼= Tc(N∨
X/S [1])

exp
T(N∨

X/S [1]) Sym(N∨
X/S [1]).

The leftmost map is given by the counit of the adjunction ν∗ � ν∗. The map exp is 
multiplying by 1/k! on the degree k piece, and the last one is the natural projection map. 
The Tc(N∨

X/S [1]) is the free coalgebra on N∨
X/S[1] with the shuffle product structure, and 

T(N∨
X/S [1]) is the tensor algebra on N∨

X/S[1]. The isomorphism μ∗μ∗OX
∼= Tc(N∨

X/S [1])
in the middle is nontrivial and needs more explanation. With the splitting ϕ one can 
build an explicit resolution of μ∗OX as an O

X
(1)
S

-algebra

(Tc(ϕ∗N∨
X/S [1]), d) μ∗OX ,

where (Tc(ϕ∗N∨
X/S [1]), d) is the free coalgebra on ϕ∗N∨

X/S [1] with the shuffle product 
structure and a differential d. The construction of the resolution is as follows.

Consider the short exact sequence

0 → μ∗N
∨
X/S → O

X
(1)
S

→ μ∗OX → 0.

For a vector bundle E, tensor the sequence with ϕ∗
1(E). We get

0 → μ∗(N∨
X/S ⊗ E) → ϕ∗

1(E) → μ∗E → 0

due to the projection formula.
Taking E to be (N∨

X/S)⊗k for all nonnegative integers k, we get a family of short exact 
sequences

0 → μ∗(N∨
X/S

⊗k+1) → ϕ∗(N∨
X/S

⊗k) → μ∗(N∨
X/S

⊗k) → 0

for all k. Stringing together these exact sequences for successive values of k, we get the 
desired resolution (Tc(ϕ∗N∨

X/S [1]), d) of μ∗OX

· · · → ϕ∗(N∨
X/S

⊗k+1) → ϕ∗(N∨
X/S

⊗k) → · · · → O (1) → μ∗OX → 0.

XS
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The differential vanishes once we pull this resolution back on X via μ, so we get the 
desired isomorphism μ∗μ∗OX

∼= Tc(N∨
X/S [1]).

For any sheaf E on X, we tensor the resolution above by ϕ∗E. Using the projection 
formula and ϕ ◦ μ = id, one can show that we get a resolution of μ∗E

(Tc(ϕ∗N∨
X/S [1]) ⊗ ϕ∗E, d) → μ∗E.

Denote the resolution above by TE,ϕ. The same argument shows that i∗i∗(E) ∼= E ⊗
Sym(N∨

X/S [1]), i.e., that i∗i∗(−) ∼= (−) ⊗Sym(N∨
X/S [1]) as dg functors. All the construc-

tions above are canonical except for the isomorphism Iϕ(E) : μ∗μ∗(E) ∼= T(N∨
X/S [1]) ⊗E

which depends on the splitting.
The author would like to address that Tc(N∨

X/S [1]) is equal to T(N∨
X/S [1]) as chain 

complexes, but we would like to remember the commutative algebra structure on 
Tc(N∨

X/S [1]) and the isomorphism μ∗μ∗(OX) ∼= Tc(N∨
X/S [1]) is an isomorphism of al-

gebras. We omit the superscript c for the isomorphism μ∗μ∗(E) ∼= T(N∨
X/S [1]) ⊗ E

because there are no algebra structures on both sides for general E.

3. The generalized Atiyah class

In this section we give an equivalent definition of the generalized Atiyah class and 
study its properties.

3.1 Proposition. Let ϕ1 and ϕ2 be two first order splittings of the map i : X ↪→ S. We 
construct a cohomology class associated to ϕ1, ϕ2, and a vector bundle E on X in the 
following way. Consider the short exact sequence

0 → μ∗N
∨
X/S → O

X
(1)
S

→ μ∗OX → 0.

Tensor the sequence with ϕ∗
1(E). We get

0 → μ∗(N∨
X/S ⊗E) → ϕ∗

1(E) → μ∗E → 0

due to the projection formula. Then we pushforward the exact sequence by ϕ2

0 → N∨
X/S ⊗ E → ϕ2∗ϕ

∗
1(E) → E → 0.

The sequence above defines an extension class in Ext1(E, E ⊗ N∨
X/S). This class is 

equal to the generalized Atiyah class αϕ1,ϕ2(E).

Proof. The two first order splittings define a map Σ = (ϕ1, ϕ2) : X(1)
S → X×X. Because 

of the map Σ, it induces a map of normal bundles

NX/S = N (1) → NX/X×X = TX .

X/XS
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One can check that the map is dual to ϕ1 − ϕ2. Let p1 and p2 be the two projections 
X ×X → X. The diagram

X
(1)
S

Σ

ϕ1 ϕ2

X ×X

p2

p1

X X

is commutative due to the definition of Σ. For any vector bundle E, there is a morphism 
of short exact sequences

0 E ⊗ ΩX

id⊗(ϕ1−ϕ2)

p2∗p∗1E E

id

0

0 E ⊗N∨
X/S ϕ2∗ϕ

∗
1E E 0,

where the vertical arrow in the middle is defined by adjunction and the equalities ϕ1 =
p1 ◦ Σ and ϕ2 = p2 ◦ Σ. The top line is the exact sequence that defines the Atiyah class 
of E and the bottom line is the exact sequence in this proposition. �

Due to the proposition above and [4, Paragraph 4.1.3], one can conclude that ϕ∗
1E

is isomorphic to ϕ∗
2E if and only if the class αϕ1,ϕ2(E) vanishes. The proposition above 

implies an interesting result below.

3.2 Corollary. Let E be a vector bundle on X whose Atiyah class is zero. Then for any 
closed embedding i : X ↪→ S and any two first order splittings ϕ1 and ϕ2, the two bundles 
ϕ∗

1E and ϕ∗
2E are isomorphic.

3.3. The set of all first order splittings

0 TX TS |X NX/S 0

is a HomOX
(NX/S , TX) = HomOX

(ΩX , N∨
X/S)-torsor. We can identify the set of splittings 

with HomOX
(ΩX , N∨

X/S) by choosing a first order splitting ϕ. Then we get a map

Θϕ : HomOX
(ΩX , N∨

X/S) → Ext1(E,E ⊗N∨
X/S)

as follows. For any element x ∈ HomOX
(ΩX , N∨

X/S), we get another splitting ϕ +x. The 

element x is mapped to the class αϕ+x,ϕ(E) ∈ Ext1(E, E ⊗ N∨
X/S). It is very natural 

to expect that the map Θϕ is a linear map between vector spaces and that it does not 
depend on ϕ. We prove this statement in Proposition 3.4.
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3.4 Proposition. Fix a first order splitting ϕ and it identifies the set of splittings with 
Hom(ΩX , N∨

X/S). The map Θϕ is a linear map between vector spaces.

Proof. Proposition 3.1 shows that Θϕ(x) = (idE ⊗x) ◦ at(E). It is clear that this map is 
linear and it does not depend on the splitting ϕ we choose. �

Proposition 3.4 has an interesting application in the case of diagonal embedding. Fix 
a first order splitting ϕ = π1, and then the set of first order splittings is identified with 
Hom(ΩX , ΩX). One can show that the difference of the two first order splittings π1 and 
π2 is the identity map idΩX

. Similarly 1
2 idΩX

corresponds to a new splitting π1+π2
2

0 ΩX ΩX ⊕ ΩX

π1+π2
2

ΩX 0.

The map Θϕ sends idΩX
to the Atiyah class at(E). The linearity of the map implies 

that Θϕ(1
2 idΩX

) = 1
2at(E), i.e., the equality απ1,

π1+π2
2

(E) = 1
2at(E).

3.5 Proposition. Let E and F be two vector bundles on X. The class αϕ1,ϕ2 satisfies the 
equality

αϕ1,ϕ2(E ⊗ F ) = idE ⊗αϕ1,ϕ2(F ) + αϕ1,ϕ2(E) ⊗ idF .

Proof. The Atiyah class satisfies [9]

at(E ⊗ F ) = idE ⊗at(F ) + at(E) ⊗ idF .

Then use Proposition 3.1. �
4. Proof of Theorem B (1)

In this section we define cohomology classes Φk
ϕ(E) and ΨK

ϕ (E) for a first order split-
ting ϕ and a vector bundle E. We explain that the classes are related to the explicit 
resolution of μ∗OX in Section 2. We study the properties of the classes and then use the 
properties to prove the first part of Theorem B.

4.1. The exact sequence

0 → μ∗(N∨
X/S ⊗E) → ϕ∗(E) → μ∗E → 0

is crucial in this paper. It defines a map Φ1
ϕ(E) : μ∗E → μ∗(N∨

X/S ⊗ E)[1]. Pushing 
forward the class onto S, we get a map Ψ1

ϕ(E) : i∗E → i∗(N∨
X/S ⊗ E)[1]. We define a 

collection of maps Φk
ϕ(E) and Ψk

ϕ(E) in Paragraph 4.2.
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Given two splittings ϕ1 and ϕ2, one sees that ϕ2∗Φ1
ϕ1

(E) is equal to αϕ1,ϕ2(E) defined 
in Definition 1.8 due to Proposition 3.1.

When i is the diagonal embedding Δ : X ↪→ X × X, E is the structure sheaf OX , 
and ϕ = π2 is the first order splitting obtained from the projection p2 : X × X → X

onto the second factor. The class Ψ1
π2

(OX) is called the universal Atiyah class [3]. The 
class is a map i∗OX → i∗ΩX [1]. Let p1 : X × X → X be the projection onto the first 
factor. Tensoring the map with p∗1(E) and then pushing forward by p2, we get a map 
E → E ⊗ ΩX [1] which is nothing but the Atiyah class of E.

4.2. It is easy to see that Φ1
ϕ(E) = idϕ∗E ⊗ Φ1

ϕ(OX) because of the projection 
formula. The resolution TE,ϕ of μ∗E has a nice description in terms of the map Φ1

ϕ(E). 
The truncation τ≥kTE,ϕ of the resolution complex TE,ϕ gives an exact sequence

0 → μ∗(N∨
X/S

⊗k⊗E) → ϕ∗(N∨
X/S

⊗k−1⊗E) → · · · → ϕ∗(N∨
X/S⊗E) → ϕ∗E → μ∗E → 0

which defines a map Φk
ϕ(E) : μ∗E → μ∗(N∨

X/S
⊗k ⊗E)[k]. Due to the construction of the 

resolution, the map Φk
ϕ(E) is equal to the following composite map

(idϕ∗N∨
X/S

⊗k−1 ⊗Φ1
ϕ(E)) ◦ (idϕ∗N∨

X/S
⊗k−2 ⊗Φ1

ϕ(E)) ◦ · · · ◦ Φ1
ϕ(E).

Pushing forward the map above onto S, we get a map i∗E → i∗(N∨
X/S

⊗k ⊗ E)[k]. 
Compose it with the natural projection N∨

X/S
⊗k → ∧kN∨

X/S . We get a map Ψk
ϕ(E) :

i∗E → i∗(∧kN∨
X/S ⊗ E)[k].

4.3 Proposition. In the same setting of Theorem A, consider the isomorphism Iϕ(E) :
μ∗μ∗(E) ∼= T(N∨

X/S [1]) ⊗ E constructed from a fixed splitting ϕ. Due to the adjunction 
of the functors μ∗ � μ∗, we obtain a map Φϕ(E) : μ∗(E) → μ∗(T(N∨

X/S [1]) ⊗ E). Each 

degree k component of the map Φϕ(E) is the map Φk
ϕ(E) defined in Paragraph 4.2. 

Similarly, one can construct a map Ψϕ(E) : i∗E → i∗(Sym(N∨
X/S [1]) ⊗ E). Each degree 

k component of the map Ψϕ(E) is 1
k!Ψ

k
ϕ(E).

Proof. The proposition above has been proven [3] in the case where i is the diagonal 
embedding, ϕ is π2, and E is trivial. The proof in [3] does not use anything special 
about the diagonal map. We write the general proof here because the proof will be used 
throughout this paper.

Consider the unit map η : μ∗E → μ∗μ
∗μ∗E of the adjunction μ∗ � μ∗. It can be 

viewed as a map η : μ∗E = μ∗E ⊗ O
X

(1)
S

→ μ∗μ∗μ∗E ∼= μ∗E ⊗ μ∗OX where the 
isomorphism is due to the projection formula. This map is precisely idμ∗E ⊗ε, where 
ε : O

X
(1)
S

→ μ∗OX is the natural map of algebras. Due to the adjunction μ∗ � μ∗, we 

have the equality η ◦ μ∗(Iϕ) = Φϕ(E). The isomorphism Iϕ is defined by identifying the 
resolution complex TE,ϕ = (Tc(ϕ∗N∨ [1]) ⊗ ϕ∗E, d) with μ∗E in the derived category 
X/S



12 S. Huang / Advances in Mathematics 431 (2023) 109246
of X. Under this identification, one can show that the map η ◦ μ∗(Iϕ) = Φϕ is the map 
below

ϕ∗(N∨
X/S

⊗k ⊗E) ϕ∗(N∨
X/S

⊗k−1 ⊗ E) · · · ϕ∗(N∨
X/S ⊗ E) ϕ∗E

μ∗(N∨
X/S

⊗k ⊗E) 0
μ∗(N∨

X/S
⊗k−1 ⊗E) 0 · · · 0

μ∗(N∨
X/S ⊗E) 0

μ∗E

which is the natural map between the chain complexes TE,ϕ and the complex

μ∗(T(N∨
X/S [1]) ⊗E)

with trivial differential. The map Φϕ above factors through the truncation τ≥−kTE,ϕ as 
follows

ϕ∗(N∨
X/S

⊗k ⊗E) ϕ∗(N∨
X/S

⊗k−1 ⊗ E) · · · ϕ∗(N∨
X/S ⊗ E) ϕ∗E

μ∗(N∨
X/S

⊗k ⊗E) ϕ∗(N∨
X/S

⊗k−1 ⊗ E) · · · ϕ∗(N∨
X/S ⊗ E) ϕ∗E

μ∗(N∨
X/S

⊗k ⊗E) 0
μ∗(N∨

X/S
⊗k−1 ⊗E) 0 · · · 0

μ∗(N∨
X/S ⊗E) 0

μ∗E

We look at the degree k-th component of the map Φϕ, i.e.,

ϕ∗(N∨
X/S

⊗k ⊗E) ϕ∗(N∨
X/S

⊗k−1 ⊗E) · · · ϕ∗(N∨
X/S ⊗E) ϕ∗E

μ∗(N∨
X/S

⊗k ⊗E) ϕ∗(N∨
X/S

⊗k−1 ⊗E) · · · ϕ∗(N∨
X/S ⊗E) ϕ∗E

μ∗(N∨
X/S

⊗k ⊗E) 0
μ∗(N∨

X/S
⊗k−1 ⊗E) 0 · · · 0

μ∗(N∨
X/S ⊗ E) 0

μ∗E

μ∗(N∨
X/S

⊗k ⊗ E).

The exact sequence on the top is a resolution of μ∗E, so it is identified with μ∗E in the 
derived category of X. Therefore the composition of the vertical chain maps above is a 
map μ∗E → μ∗(N∨ ⊗k ⊗ E)[k] which is the degree k-th component of Φϕ. One can 
X/S
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conclude that the degree k-th component of Φϕ is the map Φk
ϕ defined by the truncating 

the complex TE,ϕ in Paragraph 4.2. The proof for Ψϕ is similar. �
4.4 Proposition. We pull back the short exact sequence

0 → μ∗(N∨
X/S ⊗ E) → ϕ∗(E) → μ∗E → 0

by μ. It defines an exact triangle

μ∗μ∗(N∨
X/S ⊗ E) → E → μ∗μ∗E → μ∗μ∗(N∨

X/S ⊗E)[1].

The diagram

μ∗μ∗E μ∗μ∗(N∨
X/S ⊗ E)[1]

E ⊗N∨
X/S

⊗k[k] id
E ⊗N∨

X/S
⊗k−1[k − 1][1]

is commutative, where the vertical maps are the adjunctions to Φk
E and Φk−1

E⊗N∨
X/S [1] using 

the adjunction μ∗ � μ∗ of the functors.

Proof. It suffices to prove the commutativity of the diagram

μ∗E

Φk
E

μ∗(N∨
X/S ⊗ E)[1]

Φk−1
E⊗N∨

X/S
[1]

μ∗(E ⊗N∨
X/S

⊗k)[k] id
μ∗(E ⊗N∨

X/S [1] ⊗N∨
X/S

⊗k−1)[k − 1]

which follows immediately from the construction of the resolution TE,ϕ of μ∗E. The 
resolution complex is defined by stringing together a family of short exact sequences. �

The proposition above shows that the study of Φk
E,ϕ can be reduced to the study of 

Φ0
E⊗N∨

X/S
⊗k,ϕ

. The second one is easier because there is no cohomological shift.

4.5 Proposition. There is an isomorphism of

E

id

μ∗μ∗(E)

Iϕ(E)∼=

μ∗μ∗(E ⊗N∨
X/S [1])

Iϕ(E⊗N∨
X/S [1])∼=

E T(N∨
X/S [1]) ⊗ E T(N∨

X/S [1]) ⊗ (E ⊗N∨
X/S)[1]
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exact triangles. The vertical maps are the isomorphisms Iϕ applied to E and E⊗N∨
X/S [1]. 

The exact triangle on the top is defined in Proposition 4.4. The kernel of the natural 
projection map T(N∨

X/S [1]) ⊗ E → T(N∨
X/S [1]) ⊗ (E ⊗ N∨

X/S)[1] is E. Therefore the 
bottom line of the diagram above forms a short exact sequence of complexes which can 
be viewed as an exact triangle in the derived category.

Proof. Take the direct sum of the maps Φk
E and Φk−1

E⊗N∨
X/S [1] in the proof of Proposi-

tion 4.4 for all k ≥ 1. And notice that the quotient map μ∗μ∗E → E naturally splits by 
the map E → μ∗μ∗E constructed in Proposition 4.4. �
Proof of Theorem B (1). For any vector bundle F on X(1)

S , tensor it with the short exact 
sequence

0 → μ∗N
∨
X/S → O

X
(1)
S

→ μ∗OX → 0.

We get

0 → μ∗(N∨
X/S ⊗ F |X) → F → μ∗(F |X) → 0.

Pushing forward by the first order splitting ϕ, we get

0 → (N∨
X/S ⊗ F |X) → ϕ∗F → (F |X) → 0.

It is known that the exact sequence splits if and only if F is isomorphic to ϕ∗(F |X) [4].
Choose F and ϕ above to be ϕ∗

1E and ϕ2 respectively. Then the class αϕ1,ϕ2(E) is 
zero if and only if ϕ∗

1E is isomorphic to ϕ∗
2E because of the reason above.

Denote the two HKR isomorphisms i∗i∗(E) ∼= Sym(N∨
X/S [1]) ⊗ E constructed from 

the two splittings ϕ1 and ϕ2 by HKRϕ1(E) and HKRϕ2(E). The two isomorphism are 
equal over X×X is equivalent to HKRϕ1(E) = HKRϕ2(E) for all E. They are equal over 
X is equivalent to HKRϕ1(OX) = HKRϕ2(OX).

We consider the isomorphism over X×X. We prove that the class αϕ1,ϕ2(E) vanishes 
for all E if HKRϕ1 is equal to HKRϕ2 over X × X. If HKRϕ1 is equal to HKRϕ2 over 
X ×X, then the diagram

i∗i∗(E) id

HKRϕ1

i∗i∗(E)

HKRϕ2

Sym(N∨
X/S [1]) ⊗ (E) id Sym(N∨

X/S [1]) ⊗ (E)

N∨
X/S ⊗ E[1] id

N∨
X/S ⊗ E[1]
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is commutative, where the vertical map Sym(N∨
X/S [1]) ⊗ (E) → N∨

X/S ⊗ E[1] is the 
natural projection. Due to Proposition 4.3, we know that the two composite vertical 
maps i∗i∗(E) → N∨

X/S ⊗ E[1] in the diagram above are adjunction to Ψ1
ϕ1

and Ψ1
ϕ2

respectively. The commutativity of the diagram above is equivalent to saying that Ψ1
ϕ1

and Ψ1
ϕ2

are equal, i.e., there is an isomorphism between the two short exact sequence

0 i∗(N∨
X/S ⊗ E)

id

ν∗ϕ∗
1E i∗E

id

0

0 i∗(N∨
X/S ⊗ E) ν∗ϕ∗

2E i∗E 0.

It is enough to consider the exact sequence on X(1)
S

0 μ∗(N∨
X/S ⊗ E)

id

ϕ∗
1E μ∗E

id

0

0 μ∗(N∨
X/S ⊗ E) ϕ∗

2E μ∗E 0

instead of on S. The commutativity of the diagram above implies that ϕ∗
1E

∼= ϕ∗
2E, 

equivalently, the class αϕ1,ϕ2(E) is zero for any E.
We prove that HKRϕ1 is equal to HKRϕ2 over X ×X if the class αϕ1,ϕ2(E) vanishes 

for all E. In particular, the class αϕ1,ϕ2(E ⊗ N∨
X/S) vanishes, and then there is an 

isomorphism ϕ∗
1(N∨

X/S⊗E) ∼= ϕ∗
2(N∨

X/S⊗E) which pull back to identity map of N∨
X/S⊗E

by μ. One sees that the isomorphism induces an isomorphism of complexes between TE,ϕ1

and TE,ϕ2 which pull back to the identity map on T(N∨
X/S [1]) ⊗ E by μ. Therefore we 

can conclude that HKRϕ1 is equal to HKRϕ2 over X ×X.
We consider the isomorphism over X. From the discussion above, one can conclude 

that HKRϕ1 is equal to HKRϕ2 over X if αϕ1,ϕ2(N∨
X/S) vanishes because the two resolu-

tions of μ∗OX build from the two splittings are isomorphic. �
4.6. Consider the example when i is the diagonal embedding X ↪→ X ×X = S and 

ϕi are πi for i = 1, 2. Then απ1,π2(E) is the Atiyah class at(E) of E, so we can conclude 
that HKRπ1 is not equal to HKRπ2 over X ×X for general X.

4.7 Corollary. In the same setting of Theorem A, the class αϕ1,ϕ2(N∨
X/S) is zero if and 

only if the Iϕ1(OX) is equal to Iϕ2(OX).

Proof. We know that Iϕ1(OX) is equal to Iϕ2(OX) if the class αϕ1,ϕ2(N∨
X/S) is zero from 

the proof of the first part of Theorem B above. Conversely, if Iϕ1(OX) is equal to Iϕ2(OX), 
then Iϕ1(N∨

X/S) is equal to Iϕ2(N∨
X/S) due to Proposition 4.5. Then HKRϕ1(N∨

X/S) is 
equal to HKRϕ2(N∨

X/S). From the proof of the first part of Theorem B, we know that 
the class αϕ1,ϕ2(N∨ ) vanishes. �
X/S
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The commutative diagram in Proposition 4.5 is crucial in the proof above. However, 
we can not get a similar commutative diagram by replacing μ by i because there is no 
map E → i∗i∗(E) generally.

4.8. From the construction of the HKR isomorphism, we know [1] that there is a 
commutative diagram of algebras

i∗i∗OX

HKRϕ

μ∗μ∗OX

Iϕ

Sym(N∨
X/S [1]) Tc(N∨

X/S [1]),

where Tc(N∨
X/S [1]) is the free tensor coalgebra with the commutative shuffle product. 

The symmetric algebra is naturally a subalgebra of the tensor coalgebra. Two splittings 
produce an automorphism HKRϕ1 ◦HKR−1

ϕ2
of Sym(N∨

X/S [1]) and an automorphism Iϕ1 ◦
I−1
ϕ2

of Tc(N∨
X/S [1]) respectively. The HKR isomorphisms HKRϕ1(OX) and HKRϕ2(OX)

are equal is equivalent to saying that the automorphism is the identity on the subalgebra. 
The maps Iϕ1(OX) and Iϕ2(OX) are equal is equivalent to saying that the automorphism 
is the identity on the tensor coalgebra.

5. Proof of Theorem A and Theorem B (2)

From two splittings, we obtain two maps Iϕ1(E) ◦I−1
ϕ2

(E) and HKRϕ1◦HKR−1
ϕ2

. The first 
map defines an automorphism of T(N∨

X/S[1]) ⊗E and the second defines an automorphism 
of Sym(N∨

X/S [1]). We compute the first automorphism and then we use the result to prove 
Theorem A and the second part of Theorem B.

5.1 Proposition. The map Iϕ1(E) ◦ I−1
ϕ2

(E) defines an automorphism of T(N∨
X/S [1]) ⊗E. 

Write the automorphism in the form of a matrix below. Then the matrix is unipotent

E E ⊗N∨
X/S [1] E ⊗N∨

X/S
⊗2[2] · · ·

E id αϕ1,ϕ2(E) · · · · · ·

E ⊗N∨
X/S [1] 0 id αϕ1,ϕ2(E ⊗N∨

X/S) · · ·

E ⊗N∨
X/S

⊗2[2] 0 0 id

· · · ,
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where the maps on the diagonal are the identity maps. The (k+1, k+2)-th entry in this 
matrix is αϕ1,ϕ2(E ⊗N∨

X/S
⊗k).

Proof. We can apply the isomorphisms Iϕ1 and Iϕ2 to E ⊗N∨
X/S

⊗k[k]. We get an auto-
morphism

Iϕ1(E ⊗N∨
X/S

⊗k[k]) ◦ I−1
ϕ2

(E ⊗N∨
X/S

⊗k[k])

of T(N∨
X/S [1]) ⊗ (E ⊗N∨

X/S
⊗k[k]). Proposition 4.5 shows that the (p, q)-th entry in the 

new matrix of the automorphism above is the (k+ p, k+ q)-th entry of the matrix of the 
automorphism Iϕ1(E) ◦ I−1

ϕ2
(E) by induction on k. Therefore, to compute all the entries 

in the matrix, it suffices to compute the (1, k)-th entry of the automorphism matrix.
The map E → E ⊗N∨

X/S
⊗k[k] in the 1-th row and k + 1-th column of the matrix is 

defined as follows. The complexes TE,ϕ1 and TE,ϕ2 are resolutions of μ∗E

· · · ϕ∗
1(E ⊗N∨

X/S) ϕ∗
1(E)

μ∗E

· · · ϕ∗
2(E ⊗N∨

X/S) ϕ∗
2(E).

Since the resolution TE,ϕ1 → μ∗E is a quasi-isomorphism, it is invertible in the derived 
category of X. Therefore, we get an isomorphism Jϕ1,ϕ2 : TE,ϕ2 → TE,ϕ1 from the 
complex on the bottom to the complex on the top of the diagram above. There is a 
natural map from TE,ϕ1 to the truncation τ≥−kTE,ϕ1 , so we get a map TE,ϕ2 → TE,ϕ1 →
τ≥−kTE,ϕ1

0 μ∗(E ⊗N∨
X/S

⊗k) · · · ϕ∗
1(E ⊗N∨

X/S) ϕ∗
1(E)

ϕ∗
1(E ⊗N∨

X/S
⊗k) · · · ϕ∗

1(E ⊗N∨
X/S) ϕ∗

1(E)

μ∗E

ϕ∗
2(E ⊗N∨

X/S
⊗k) · · · ϕ∗

2(E ⊗N∨
X/S) ϕ∗

2(E).
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The truncation naturally maps to μ∗(E ⊗ N∨
X/S

⊗k)[k] and ϕ∗
2(E) naturally maps to 

TE,ϕ2 . Therefore we get a map ϕ∗
2(E) → μ∗(E⊗N∨

X/S
⊗k)[k]. Pulling back by μ, we get a 

map E → μ∗μ∗(E⊗N∨
X/S

⊗k)[k]. There is a map μ∗μ∗(E⊗N∨
X/S

⊗k)[k] → E⊗N∨
X/S

⊗k[k]
due to the adjunction. Compose the two maps together, we get E → E ⊗ N∨

X/S
⊗k[k]. 

We want to show that the map is equal to the map in the 1-th row and k+ 1-th column 
of the matrix. It follows from the following two facts.

• The map μ∗Jϕ1,ϕ2 : μ∗μ∗(E) → μ∗μ∗(E) is exactly the automorphism Iϕ1 ◦ I−1
ϕ2

.
• For any vector bundle F , consider the map ϕ∗

2F → μ∗F by μ∗. Pull the map back 
to X, we get a map F → μ∗μ∗F . Compose it with the natural map μ∗μ∗F → F

defined by adjunction. The composite map is the identity map on F . To prove what 
we need above, we choose F = (E ⊗N∨

X/S
⊗k)[k].

From the discussion above, one can conclude that the (1, 1)-th entry in the matrix is the 
identity map on E.

We compute the (1, 2)-th entry in the matrix. There are two exact triangles

μ∗(E ⊗N∨
X/S) → ϕ∗

k(E) → μ∗(E)
Φ1

ϕk→ μ∗(E ⊗N∨
X/S)[1]

for k = 1, 2. Consider the composite map

β : ϕ∗
2E → μ∗E

Φ1
ϕ1→ μ∗(E ⊗N∨

X/S)[1].

We get a map E → (E⊗N∨
X/S)[1] by adjunction. We know that this map is the (1, 2)-th 

entry in the automorphism matrix due to the discussion above. We need to show that it 
is equal to αϕ1,ϕ2(E). The class αϕ1,ϕ2 is defined by pushing forward the map Φ1

ϕ1
by 

ϕ2∗

E = ϕ2∗μ∗E
ϕ2∗(Φ1

ϕ1 )
→ ϕ2∗μ∗(E ⊗N∨

X/S)[1] = (E ⊗N∨
X/S)[1],

i.e., we have the equality αϕ1,ϕ2 = ϕ2∗(Φ1
ϕ1

). Let η : E → ϕ2∗ϕ
∗
2E be the unit of the 

adjunction ϕ∗
2 � ϕ2∗. The composite map

ϕ2∗(β) ◦ η : E → ϕ2∗ϕ
∗
2E → ϕ2∗μ∗E = E

ϕ2∗(Φ1
ϕ1 )

→ ϕ2∗μ∗(E ⊗N∨
X/S)[1]

is the map adjunction to β by the property of the unit map of the adjunction ϕ∗
2 � ϕ2∗. 

Since E → ϕ2∗ϕ∗
2E → ϕ2∗μ∗E = E is the identity, we get the desired result. �

Proof of Theorem A and Theorem B (2). From the proof of Proposition 5.1 one can 
conclude that the (p, p + k)-th entry
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E ⊗N∨
X/S

⊗p−1 → E ⊗N∨
X/S

⊗p+k−1[k]

of the automorphism matrix is ϕ2∗Φk
ϕ1

(E⊗N∨
X/S

⊗p−1). Because of the projection formula 

and the definition of Φk
ϕ(E), one can show that for any E

ϕ2∗Φk
ϕ1

(E) = ϕ2∗Φ1
ϕ1

(E) ⊗ id ◦ · · · ◦ ϕ2∗Φ1
ϕ1

(E) ⊗ id ◦ϕ2∗Φ1
ϕ1

(E)

which implies that the (p, p + k)-th entry in the matrix of the automorphism Iϕ1(E) ◦
I−1
ϕ2

(E) is determined by the (p, p + 1)-th entry.
When E is the structure sheaf OX , the class αϕ1,ϕ2(N∨

X/S
⊗p−1) in the (p, p +1)-th entry 

is determined by the class αϕ1,ϕ2(N∨
X/S) in the (2, 3)-th entry of the matrix due to Propo-

sition 3.5. Namely, the entries in the matrix of the automorphism Iϕ1(OX) ◦ I−1
ϕ2

(OX)
are completely determined by the class αϕ1,ϕ2(N∨

X/S). When the class αϕ1,ϕ2(N∨
X/S)

vanishes, the automorphism matrix of Iϕ1(OX) ◦ I−1
ϕ2

(OX) is the identity matrix. This 
provides another proof of Corollary 4.7.

The diagram in Paragraph 4.8 shows that Sym(N∨
X/S [1]) is naturally a subalgebra of 

the tensor coalgebra Tc(N∨
X/S [1]) with the shuffle product. Therefore we can conclude 

that the corresponding automorphism matrix of Sym(N∨
X/S [1]) is also unipotent. The 

inclusion splits as vector spaces

Sym(N∨
X/S [1]) ↪→ Tc(N∨

X/S [1]) exp→ T(N∨
X/S [1]) → Sym(N∨

X/S [1]),

where the first arrow is the inclusion and the other maps have been explained in Para-
graph 2.1. Due to the reasons above, one can compute the entries in the automorphism 
matrix of HKRϕ1(OX) ◦ HKR−1

ϕ2
(OX) explicitly. The (p, p + k)-th entry

∧p−1N∨
X/S → ∧p+k−1N∨

X/S [k]

is the composite map

∧p−1N∨
X/S ↪→ N∨

X/S
⊗p−1

ϕ2∗Φk
ϕ1 (N∨

X/S
⊗p−1)

N∨
X/S

⊗k+p−1[k]

1
(k+p−1)!−→ N∨

X/S
⊗k+p−1[k] → ∧p+k−1N∨

X/S [k].

The (2, 3)-th entry is the class αantisym
ϕ1,ϕ2

(N∨
X/S). Similarly, one can show that the auto-

morphism matrix of HKRϕ1(OX) ◦ HKR−1
ϕ2

(OX) is the identity matrix if αantisym
ϕ1,ϕ2

(N∨
X/S)

vanishes. �
When X is of codimension two in S, Grivaux [7, Theorem 4.17] showed that the 

matrix of the automorphism HKRϕ1 ◦ HKR−1
ϕ is
2



20 S. Huang / Advances in Mathematics 431 (2023) 109246
[ id 0 0
0 id θ(χ)
0 0 id

]
,

where the definition of the class θ(χ) can be found in [7]. Because of Proposition 3.1, 
this class θ(χ) is exactly αantisym

π1,π2
(N∨

X/S) which shows that our computation in the proof 
of Theorem A agrees with Grivaux’s result above.

Grivaux also obtained the following theorem [7, Theorem 1.2]. If either the conormal 
bundle N∨

X/S carries a global holomorphic connection or the map ϕ1 − ϕ2 is an isomor-
phism between ΩX and N∨

X/S , then HKRϕ1 and HKRϕ2 are equal. In the first situation, 
the existence of a holomorphic connection implies that the Atiyah class of N∨

X/S vanishes, 
which implies αantisym

π1,π2
(N∨

X/S) vanishes due to Proposition 3.1. In the second situation, 
the conormal bundle N∨

X/S is identified with ΩX by the isomorphism ϕ1 −ϕ2. The class 
απ1,π2(N∨

X/S) is nothing but the Atiyah class of ΩX in this case. As a consequence, we 
know that αantisym

π1,π2
(N∨

X/S) vanishes because the Atiyah class of ΩX is symmetric. This 
explains that our Theorem B implies Grivaux’s theorem.

5.2 Corollary. Fix a vector bundle E, the isomorphisms Iϕ1(E) and Iϕ2(E) are equal if 
and only if αϕ1,ϕ2(E) and αϕ1,ϕ2(N∨

X/S) vanish.

Proof. It is clear from the proof of Theorem A and Proposition 3.5. The (p, p +k)-th entry 
in the matrix of the automorphism Iϕ1(E) ◦ I−1

ϕ2
(E) is determined by the (p, p + 1)-th 

entry. The (p, p +1)-th entry vanishes for all p if and only if αϕ1,ϕ2(E) and αϕ1,ϕ2(N∨
X/S)

vanish. �
5.3 Corollary. Let Δ : X ↪→ X×X be the diagonal embedding, π1 and π2 be the two first 
order splittings defined by the two projections. Then HKRπ1 is equal to HKRπ2 over X.

Proof. Recall that E = OX and the conormal bundle N∨
X/S is the cotangent bundle ΩX

in this case. The Atiyah class at(ΩX) = απ1,π2(N∨
X/S) is symmetric, i.e., it can be viewed 

as a map ΩX → (Sym2 ΩX)[1]. In this case the class αantisym
π1,π2

(N∨
X/S) in Theorem B always 

vanishes. �
5.4. In the case of diagonal embedding, as mentioned in the introduction, the most 

widely used HKR isomorphism defined by complete bar resolution is equal to the HKR 
isomorphism defined by π1 and π2. Applying Hom(−, OX) to the isomorphism we get 
the induced isomorphism of vector spaces

HKRπ2 : HT∗(X) =
⊕

p+q=∗
Hp(X,∧qTX)

∼=→ HH∗(X),

where the right hand side is the Hochschild cohomology of X. There are natural algebra 
structures on both sides of the isomorphism above, but the HKR isomorphism is not an 
isomorphism of algebras. Kontsevich [8] has modified the HKR isomorphism above to 
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obtain an isomorphism of algebras. He defined an automorphism of td− 1
2 : HT∗(X) →

HT∗(X) given by the contraction with the Todd class of X. Then the composite map 
HKRπ2 ◦ td− 1

2 is an isomorphism of algebras. We show that this composite map is not 
equal to the HKR isomorphism defined by any first order splitting.

5.5 Corollary. In the case of diagonal embedding, the map HKRπ2 ◦ td− 1
2 defined by 

Kontsevich is not equal to HKRϕ for any first order splitting ϕ in general.

Proof. We look at the automorphism td− 1
2 : HT∗(X) → HT∗(X). For a general X, the 

map

Hp(X,TX) ↪→ HT∗(X) =
⊕

p+q=∗
Hp(X,∧qTX) td− 1

2→ HT∗(X) → Hp+1(X,OX)

is nonzero because it is the contraction with the first Chern class of X. In particular, for 
a general X, the map is nonzero when p = 0.

However, for any first order splitting ϕ, the (1, 2)-entry in the automorphism matrix of 
HKRϕ◦HKR−1

π2
is zero because the class αϕ,π2(OX) vanishes. It implies that HKRπ2 ◦td− 1

2

can not be equal to HKRϕ for any ϕ. �
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